Bank provisioning behaviour and procyclicality

J.A. Bikker*, P.A.J. Metzemakers

De Nederlandsche Bank, Directoraat Toezicht, Sectie Strategie, Postbus 98,
1000 AB Amsterdam, Netherlands

Received 13 October 2002; accepted 17 March 2004

Abstract

The current debate on the possible procyclicality of the new Basel Accord pays little attention to the procyclicality created by unsound loan loss provisioning. This article investigates how bank provisioning behaviour is related to the business cycle, using 8000 bank-year observations from 29 OECD countries over the past decade. Provisioning turns out to be substantially higher when GDP growth is lower, reflecting increased riskiness of the credit portfolio when the business cycle turns downwards, which also increases the risk of a credit crunch. This effect is mitigated somewhat as provisions rise in times when earnings are higher, suggesting income smoothing, and loan growth is higher, indicating increased riskiness.

© 2004 Published by Elsevier B.V.

JEL classification: E32; G21; G28

Keywords: Loan loss provisioning; Credit crunch; Business cycle

1. Introduction

One of the main objectives underlying the new Basel Accord is to substantially increase the risk sensitivity of the minimum capital requirements for banks (BCBS, 2003). This has raised a lively debate in both policy circles and the economic literature about the potential procyclical effect such risk sensitive requirements might have on the economy.

* Corresponding author. Tel.: +31 20 524 2352; fax: +31 20 524 3669. E-mail address: j.a.bikker@dnb.nl (J.A. Bikker).

1042-4431/$ – see front matter © 2004 Published by Elsevier B.V.
doi:10.1016/j.intfin.2004.03.004
During a cyclical downturn, the quality of banks’ assets is likely to deteriorate, which would increase risk exposure and, hence, capital requirements, exactly at a time when new capital becomes more expensive or, for weaker institutions, simply unobtainable (Jackson, 1999). As a consequence, banks might be forced to cut back their lending. Particularly in countries where corporate lending is provided mainly by banks, this would further weaken cyclical conditions into a so-called credit crunch, which would in turn exacerbate the downturn. New proposals by the Basel Committee have substantially reduced the possible procyclical effects of the new accord and thereby reduced the risks of financial instability. Yet the new capital requirements continue to be more risk-sensitive than before, as, by the way, they should in order to promote the financial soundness of banks. Hence, the issue of possible procyclicality continues to exist.

In the current debate on procyclicality, not much attention is being paid to the already existing potential procyclicality created by unsound provisioning. There is general agreement that unexpected losses by banks should be covered by bank capital, whereas expected losses should be covered by loan loss provisions or by future margin income. In reality, however, the distinction may be blurred. Whereas specific provisions are linked to impaired loans, general provisions are often based on a broad assessment of possible future losses on the entire portfolio. According to the Basel definition of capital, part of the general provisions counts as capital. Besides, when loan loss reserves and future margin income are inadequate to cover expected losses due, for instance, to a deterioration of the business cycle, these losses also eat into the capital reserve.

Given this close relation between provisions and capital, one could argue that a sound provisioning policy should be part of any regulations on capital requirements (Cavallo and Majnoni, 2002; Banque de France, 2001). The Second Pillar of the proposed accord – the Supervisory Review – may also provide scope for such a policy (Turner, 2000). In any case, it is useful to investigate the present relationships between provisions on the one hand, and the business cycle and capital on the other.

This article is precisely such an investigation into the provisioning behaviour of banks and their dependency on the business cycle. It seeks to shed light on the question whether such behaviour is procyclical too, as alleged. We distinguish the following two causal channels from the business cycle to provisioning. First, credit risk is most probably linked to the phase of the cycle. The ‘classical view’ assumes that risk increases in a downturn and vice versa. It is this behaviour which would cause procyclicality, as in a downturn provisioning swallows a larger part of profits just when more resources are needed for capital. An alternative view is that of Borio et al. (2001) and Lowe (2002), who state that credit risks are built up

1 The Basel Committee has recognized the possible procyclical effects of the Accord and has taken far-reaching steps, elaborated in the recent proposals of the new Accord. First, the new capital requirements are less risk sensitive which reduce the procyclical impact by one third (Segaviano and Lowe, 2002). Second, banks are allowed to treat some types of loans to small- and medium-sized enterprises as retail loans, which have lower capital requirements and are less risk sensitive because the dispersion of small loans over many counterparties in the retail portfolio reduces the risk for the bank. Third, more types of collateral are recognized for capital reduction, what is typically used by banks when the business cycle deteriorates. Fourth, banks need to show with stress testing that their capital is adequate to cope with a recession (that is, six months without economic growth) without a reduction of lending. Finally, banks are free to estimate through-the-cycle ratings instead of point-in-time ratings.
during a boom, particularly when loan growth is relatively high. Second, provisioning may also depend on earnings, as assumed in the so-called income-smoothing hypothesis. An alternative explanation of smooth income is that prudent banks may behave far-sightedly and provide for lean years during fat years. Sound provisioning when lending grows and flattening of earnings reduce the procyclical behaviour of provisioning.

A number of recent studies in the economic literature investigate provisioning behaviour and procyclicality. They tend to focus on certain aspects of provisioning or analyse one individual country only, e.g. Greenawalt and Sinkey (1988, 1991), Arpa et al. (2001), de Lis et al. (2001) and Pain (2003). We have opted for a wider approach, developing a more comprehensive provisioning model and employing a large set of 8000 bank-year observations from the past decade and from all 29 OECD countries. This approach allowed us to compare bank provisioning behaviour across countries, and may reveal typical worldwide conduct regarding loan loss provisioning as well as idiosyncratic country-specific deviations.

During our analysis we came across two studies (Cavallo and Majnoni (2002) and Laeven and Majnoni (2003), further abbreviated to C&M and L&M), which in some respects are similar to this article. This article aims at elaborating on these studies by:

- Criticizing some aspects of the C&M model.
- Including additional variables in the applied regression model of provisioning, such as GDP growth (to investigate cyclical behaviour; left out in C&M), equity ratio (to test the capital management hypotheses; left out in C&M and L&M) and country dummies (left out in L&M).
- Using all available data instead of a selected subset, analysing a somewhat more recent period and improving on the estimation procedures.
- Analysing also the levels of loan loss reserves besides the annual additions to the loan loss provisions (levels are more important for the financial soundness of the bank and differ from the annual additions, which are supposed to be primarily determined by discrete – cycle-dependent – decisions).

In any case our analysis forms a robustness test on the two mentioned studies, as it deviates from them by using different (i) explanatory variables (and different definitions of common explanatory variables), (ii) estimation techniques to avoid autocorrelation, (iii) data, and (iv) countries and regions. With respect to the sign of the loan growth effect, our estimation results appear to deviate significantly from those of C&M and L&M. We find a positive effect in line with the view of Borio et al. (2001) and Lowe (2002), whereas C&M and L&M discovered a negative coefficient. We execute a set of sensitivity analyses to reveal which differences are responsible for this essential change in outcome.

The outline of this article is as follows. Section 2 reviews the theory and practice of bank provisioning behaviour and its relation to procyclicality. Section 3 specifies our hypotheses and presents a regression model for provisioning. Section 4 reports the empirical results of this loan loss provisions model, while the next section provides outcomes of a loan loss reserves model. The final section summarises and draws conclusions.
2. Provisioning in theory and practice

An important aspect of provisioning is its timing with respect to the business cycle and
the related issue of procyclicality. The common view is that an economic upswing and
rising incomes indicate improving conditions for firms and reduce the likelihood of loan
defaults, whereas a recession will have the opposite effect. Banks are expected to reflect this
feature in their decisions by lowering provisions during an economic boom and increasing
them during a downturn. This cyclical bank behaviour is reported by e.g. C&M, L&M and
Bikker and Hu (2002).\(^2\) According to this common view, the banks’ provisioning behaviour
may be procyclical, meaning that it may reinforce the current development of the business
cycle. However, an alternative, countercyclical view states that credit risk is build up in
a boom and materialises in a downturn (Borio et al., 2001; Lowe, 2002). The favourable
conditions of an economic expansion could lead to an excessive increase in credit lending
and a less critical assessment of creditworthiness.\(^3\) The countercyclical view associates this
with higher risks and the build-up of financial imbalances that increase the likelihood of
economic contraction. According to this view, provisions should be positively correlated
with the lending cycle, for banks should recognise the underlying risk and build up loan
loss reserves in good times to be drawn on in bad times.

This countercyclical behaviour assumes (far) forward-looking risk assessment by banks.
However, in practice, business cycle developments are hard to foresee, given their erratic
duration and amplitude. In addition, accounting rules and tax constraints also contribute
to increases in general provisions during downturns, as they tend to allow only provisions
based on past events, not on expectations (Borio and Lowe, 2001). Nevertheless, Spain
introduced a new provisioning regulation in mid 2000, called statistical provisioning, based
on risk assessment with a longer time horizon (de Lis et al., 2001).\(^4\) The French supervisor is
firmly advocating a comparable approach, called dynamic provisioning (Banque de France,
2001). Other countries, such as the Netherlands, also allow certain forward looking elements
in provisioning.\(^5\)

Provisioning leaves room for subjective judgements as to what extent losses are inherent
in the loan portfolio on the balance sheet date. This holds in particular for general provi-
sions meant to cover possible or expected losses, which neither have become manifest nor
are related to individually identified loans.\(^6\) Therefore, bank management may have some
discretion in setting the appropriate provisioning levels, so that loan loss reserves can be
influenced by several other considerations. The literature cites three main reasons for the
use of provisioning, other than purely providing a realistic valuation of outstanding loans.

\(^2\) Bikker and Hu (2002) used aggregated country level data instead of bank data.

\(^3\) Keeton (1999) pointed out that there is empirical support for this statement, insofar as the increase in loan
growth is driven by an expansion of loan supply. As loan growth is often demand driven – which is not harmful –
the link between loan growth and loan losses is no ‘law of nature’.

\(^4\) A similar provisioning approach is compulsory for Portuguese banks.

\(^5\) More transparency on provisioning, as recently introduced in the Netherlands, may also enhance market
discipline in terms of proper provisioning and may thus counter procyclicality. See also the Pillar III proposals
under Basel II (BCBS, 2003).

\(^6\) As opposed to specific provisions which reflect known and identified loan impairment.
First, the discretionary use of provisioning is frequently associated with the practice of earnings management. Allegedly, banks may reserve more in good years, for instance, because as a precaution – provisions are increased in fat years for use in lean ones – or, as is suggested in the literature, for credibility (not to say window dressing), i.e. presenting a fairly constant profit over the years. Reporting a less variable income flow could be seen as signalling good performance from the viewpoint of stock price stability, external rating performance and lowering of funding costs, and management rewards (Greenawalt and Sinkey, 1988; Fudenberg and Tirole, 1995). Such countercyclical provisioning policies would reduce procyclical provisioning behaviour by banks.

Second, as far as general provisions also count as regulatory capital, they may be used to manage the capital ratio (e.g. Kim and Kross, 1998; Ahmed et al., 1999; Cortavarria et al., 2000). The capital management hypothesis assumes that banks with low Tier 1 capital ratios are inclined to make more general loan loss provisions in order to keep their capital ratios adequate. Reasons for managing the capital ratio through provisions are the high cost in terms of both money and time of raising new capital on the market (particularly when market conditions are unfavourable), the trade-off between dividend payments and retained earnings due to shareholder pressure and the tax regime (see below).

Third, if general provisions are tax deductible as is the case in most countries, this in itself is an incentive to provisioning. And if general provisions also count as regulatory capital, this incentive is even stronger, as a shift from pure (Tier 1) capital to general provisions lowers the tax burden (Cortavarria et al., 2000).

3. A model for loan loss provisioning

As explained above, both loan loss reserves and the capital stock are buffers to preserve banks’ continued solvency by shielding it against, respectively, expected and unexpected loan losses. They are formed, however, according to different principles. The optimum capital stock is determined mainly by strategic and long-term arguments reflecting, among other things, the trade-off between risk and return on assets on the one hand and regulatory requirements on the other. Provisions are linked more directly to the quality of the

7 Kim and Santomero (1993) argue that a positive correlation between earnings and provisions may well be the result of optimal statistical forecasting with respect to loan losses and hence need not be due to misleading provisioning behaviour as supposed in the income smoothing theory. Hence, we cannot distinguish window dressing from prudent provisioning.

8 The Basel Accord allows banks to include general loan loss reserves in Tier 2 capital, the lower quality part of regulatory capital, up to 1.25% of risk weighted assets. An accompanying constraint is that Tier 2 capital may not exceed the level of Tier 1 capital, the higher quality part of regulatory capital.

9 There are, however, large differences in tax regulations across countries. Beattie et al. (1995) and Dziobek (1996) have documented these differences for a large number of OECD countries. In general, there are five main areas where national tax rules may differ: (i) the relationship between the tax and accounting treatment of loan loss provisions; (ii) the limit on the amount of provisions that is tax deductible; (iii) differences in the deductibility of general and specific provisions and write-offs; (iv) the choice of method used to determine allowable provisions; and (v) the existence of spreading provisions. All in all, these differences mean that banks in different countries face different incentives towards optimising their provisioning, resulting in different practices around the world. This also means that banks may differ in their response to other variables that determine the level of provisions.
loan portfolio and hence are more susceptible to short-term fluctuations arising from the macroeconomic environment and developments in the solvency of individual counterparties. This holds in particular for specific provisions, which are directly linked to impaired loans. Provisioning may also be affected by country-specific circumstances with respect to accounting, regulatory and tax rules or to bank behaviour such as income smoothing or forward-looking risk assessment. Given such discretionary features, a model explaining the level of provisions should prominently contain variables that relate to the underlying decision-making process of provisioning.

This article investigates both the loan loss provisions (the annual addition) and the loan loss reserves (the level) because the two are different in character. Loan loss provisions reflect managerial decisions at a point in time, which may be more likely to be ad hoc discretionary decisions. Loan loss reserves reflect the year-on-year accumulated net provisioning that, on average, ought to reflect mainly actual expected loan losses. Analysts, regulators, management and auditors tend to see the loan loss reserves as important information regarding the credit portfolio’s quality.

C&M developed a simple theoretical model for banks’ profits that incorporates the business cycle and shows the impact of various provisioning regimes on earnings, income taxes and the capital ratio:

\[
\pi = L[(r_B + E(d)k) - r_D] - OC - BL - [\gamma E(d)L - BL] \quad \text{either}
\]

\[
L[(r_B + k) - r_D] - OC + (1 - \gamma)E(d)L \quad \text{if } LLR > 0 \quad \text{or (1)}
\]

\[
L[(r_B + k) - r_D] - OC + [E(d)L - BL] \quad \text{if } LLR = 0
\]

where \(\pi\) are bank profits, \(L\) loans, \(r_B\) the risk-free interest rate, \(E(d)\) the expected default ratio on loans as an average through the business cycle, \(k\) the risk premium, \(r_D\) the funding rate, \(OC\) operating costs, \(BL\) bank losses on loans and \(LLR\) loan loss reserves. Loans and bank losses on loans are stochastic variables with a cyclical pattern, respectively, positively and negatively correlated with the business cycle. The business cycle feeds into bank profits through bank losses (BL), the demand for loans (L) and, probably, the levels of the interest rates. The expected default ratio \(E(d)\) should not depend on the business cycle, as it is a (so-called) through-the-cycle rate.

Net loan loss provisions equal the difference between gross provisions \((\gamma E(d)L)\) and write-offs (BL), where \(\gamma\) is a proportional factor which, according to C&M, ranges from 0 to 1. However, in general, \(\gamma\) is expected to fluctuate around 1. During an economic upswing, when loan losses are smaller than the provisions based on through-the-cycle rate default rates, there is build-up of loan loss reserves and \(\gamma\) indeed ranges from 0 to 1. During a downturn, when loan losses increase and net provisions become negative, the reserves are gradually drawn down. This provisioning regime requires initially positive loan loss reserves. To some extent this model shares features with the dynamic or statistical provisioning strategy. According to C&M, expected losses are fully provisioned when \(\gamma = 1\) and there is no need for an a priori positive reserve for loan losses. This would be true when the expected default ratio on loans was a so-called point-in-time (hence up-to-date) estimate. However, C&M actually state that expected default ratios are averages through the cycle, which indeed is more plausible, as the risk margin of the interest rate on long-term loans is fixed over the entire duration. Where actual losses turn out higher than expected, \(\gamma\) would be larger than 1.
This model assumes the full provisioning strategy – as long as loan loss reserves remain positive – which insulated profits from unexpected loan losses, so that the only source of variability in banks’ earnings is the cyclical pattern of demand for loans over the business cycle. Further, it ignores the many other determinants of bank profitability, as discussed in Section 2.10

We employ a more elaborated multi-country model, including the core elements of the gross loan loss provisions term $yE(d)L$ discussed above, which includes proxies for the business cycle, various bank specific balance sheet characteristics and dummy variables for country-specific conditions. This model for loan loss provisions (LLP) reads:

$$\text{LLP}_{i,j,t} = \alpha_1 + \alpha_2 \Delta \ln \text{GDP}_{j,t} + \alpha_3 \text{UNEMPL}_{j,t} + \alpha_4 \text{EARN}_{i,j,t} + \alpha_5 \Delta \ln \text{LOANS}_{i,j,t} + \alpha_6 \left(\frac{\text{LOANS}_{i,j,t}}{\text{TA}_{i,j,t}} \right) + \alpha_7 \left(\frac{\text{CAP}_{i,j,t}}{\text{TA}_{i,j,t}} \right) + \sum_{j=1}^{28} \alpha_{28,j} d_j + \varepsilon_{i,t}$$

The flow variable LLP is scaled by the stock variable ‘total assets’, for which we have taken the average of the current and preceding year. The subindices refer to bank i from country j in year t. The dependent variables can be subdivided into (i) the macroeconomic variables of the banks’ own country, GDP growth and the unemployment rate (UNEMPL), (ii) various bank specific variables, earnings (EARN), loan growth ($\Delta \ln \text{LOANS}$), loans as share of total assets and the equity or capital ratio, and (iii) country dummies (d_j). These variables are explained in greater detail in Annex 1 of Bikker and Metzemakers (2004).

3.1. The data

We use pooled cross-section and time series data of individual banks’ balance sheet items from 29 OECD countries (listed in Table 1) and country-specific macroeconomic indicators for these countries, over an 11-year period from 1991 to 2001. This episode covers a full business cycle for all the countries included. In general, the cycle develops from a trough in or after 1991, an economic boom in the nineties to a slowdown beginning in 2001. Some countries, such as Korea, Mexico and Turkey, experienced a severe financial crisis during this period. The macroeconomic data are from the OECD and the IMF (see Bikker, 2004, page 246), whereas the balance sheet data were taken from the Bankscope database (Fitch-IBCA). Bank-specific data allow for the investigation of individual banks’ provisioning characteristics. Moreover, the high number of available observations on banks’ provisions provides a rich source of information. We employed data from commercial banks only, in order to obtain a more homogeneous group of banks. Besides, commercial banks tend to provide more balance sheet information, especially about the loan loss provisions central to our analysis. Nevertheless, data on loan loss reserves and total problem loans are less

10 See also Demirgüç-Kunt and Huizinga (1999, 2001), and Bikker and Hu (2002) for other determinants of bank profitability in practice.
Table 1
OECD and EU models for loan loss provisions

<table>
<thead>
<tr>
<th>Variables</th>
<th>OECD</th>
<th>EU</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coefficient</td>
<td>t-value</td>
<td>Coefficient</td>
<td>t-value</td>
</tr>
<tr>
<td>Intercept</td>
<td>-0.0016</td>
<td>-1.1</td>
<td>0.0032</td>
<td>1.3</td>
</tr>
<tr>
<td>LLP/TA, lagged</td>
<td>0.4131</td>
<td>5.2***</td>
<td>0.4259</td>
<td>5.2***</td>
</tr>
<tr>
<td>GDP growth</td>
<td>-0.0005</td>
<td>-3.8***</td>
<td>-0.0007</td>
<td>-2.9***</td>
</tr>
<tr>
<td>Unemployment rate</td>
<td>0.0000</td>
<td>0.3</td>
<td>0.0002</td>
<td>1.0</td>
</tr>
<tr>
<td>Earnings before T&P</td>
<td>0.2784</td>
<td>5.1***</td>
<td>0.3512</td>
<td>3.6***</td>
</tr>
<tr>
<td>Loan growth</td>
<td>0.0003</td>
<td>2.4***</td>
<td>0.0003</td>
<td>0.5</td>
</tr>
<tr>
<td>Loans/TA</td>
<td>0.0038</td>
<td>2.5***</td>
<td>0.0023</td>
<td>1.1</td>
</tr>
<tr>
<td>Capital/TA</td>
<td>-0.0329</td>
<td>-3.6***</td>
<td>-0.0355</td>
<td>-2.5***</td>
</tr>
</tbody>
</table>

* Country dummies are not shown.
* Based on Newey and West’s heteroskedasticity and autocorrelation consistent covariances. One, two and three asterisks indicate a level of confidence of 90%, 95% and 99%, respectively. Critical values are: 1.282, 1.645 and 2.326.
* T&P is short for tax and provisions.

4. Empirical results of the loan loss provisions model

Table 1 presents the ‘world-wide’ estimation results of the loan loss provisions model of Eq. (2). Initial estimates reveal that the disturbances of this regression model exhibit serial correlation, as indicated by the Durbin–Watson (DW) test and Breusch–Godfrey’s Lagrange Multiplier (LM) test. This feature has been dealt with through inclusion in

11 Another threshold is that L&M require at least three successive annual observations for each bank. This could affect the calculations.
12 The correlation matrices in Annex 2 of Bikker and Metzemakers (2004) show that multicollinearity is not a problem in this regression nor in later ones. We tested the model for influences caused by any possible correlation by regressing the lagged dependent and macroeconomic variables first, and then one by one regressing the other variables on the residuals of the preceding regression. Value and significance of all coefficients remained unchanged.
13 In this table and in later ones, we present the F-test statistic of the LM test. The alternative, the number of observations times the R^2-squared, which has a χ^2 distribution, yields virtually identical test results.
the model of the lagged dependent variable as an explanatory variable. Such a Koyck lag model assumes that the actual provision values adjust gradually over time to its assumed model values due, for instance, to the lagged availability of information or the gradual build-up of necessary provisions (Theil, 1971). An argument for gradual adjustment may be that banks observe the state of the cycle with a lag, while information with respect to the bank’s balance sheet items and income accounts are also obtained with a certain lag. Another argument is that provisions for (probable) losses may be spread out over a longer term.14 Going by the DW and the Breusch-Godfrey LM test statistics, the Koyck lag solves the autocorrelation problem.15 Nevertheless, to remain on the safe side, we use the approach of Newey and West (1987) to correct the \(t \)-values of the coefficients for any possible remaining heteroskedasticity and autocorrelation. This prevents us from making wrong inferences from these \(t \)-values, such as regarding the level of significance (Greene, 2000). Incidentally, the estimates from the model with a Koyck lag (\(\lambda \)) hardly deviate from the initial equation without gradual adjustment (after correction of the lag effect by dividing the coefficients by \((1 - \lambda) \)).16

All macroeconomic and bank-specific variables, except the unemployment rate, have significant effects on loan loss provisions, see the left-hand column in Table 1.17 In line with expectations, the GDP growth coefficient is significantly negative, indicating that provisions indeed rise when the business cycle falls. The elasticity between provisions as share of total assets and GDP growth is \(-0.23\) in the short run and \(-0.39\) in the long run.18 This strong cyclical effect implies that banks’ provisioning behaviour is significantly procyclical and probably lacks a (far) forward looking risk assessment over the business cycle. Similar cyclical effects were found by C&M, L&M and Bikker and Hu (2002).

Unemployment, which also reflects structural unbalances, apparently does not increase loan loss risk significantly.

This procyclical behaviour as reflected by the coefficient of GDP is mitigated somewhat by the impact of banks’ earnings on provisions, as banks do provision considerably more when earnings are high and vice versa. The elasticity between provisions and earnings is \(0.76\) in the short run and \(1.29\) in the long run. This positive relationship is found in virtually all studies cited in this article. Regardless of the commendable or condemnable motives

14 Besides, just like autocorrelation, this model structure often indicates that at least one explanatory variable with lasting effects has been omitted. This comes as no surprise, as our model can use only general (balance-sheet) information; after all, more detailed information about the loan portfolio and its riskiness being unavailable. For instance, in many countries, information regarding concentration on regions, sectors or obligors is not made public.

15 The DW test statistic is not applicable to models with a lagged dependent variable, but the high number of observations made the formula of the appropriate Durbin’s \(h \)-test statistic — here and elsewhere in this paper — intractable. DW test values below 1.60 may well be within the critical limit. This limit is derived from an estimated critical lower limit, \(D_1 \), which is downward-distorted as the number of explanatory variables \(k \) increases. The usual DW tables run to \(k=6 \) as a maximum with a DW index of 1.57. As this model and subsequent models in this and following tables all contain considerably more than six variables and considerably more observations, we may deduce that the critical \(D_1 \) limit is well below 1.57.

16 A model without a Koyck lag estimates the long-run only, ignoring short-term dynamics. Similar long-run effects do not imply that short-term dynamics are absent.

17 By significant (or very significant) we mean, in this paper, at the 95% (or 99%) level of confidence.

18 The short-run elasticity is calculated as \(-0.0005 \times 3.236/0.007 = 0.23\) (see Tables 1 and 4). The long-run elasticity is the short-run elasticity divided by \((1 - \lambda) \), with \(\lambda = 0.41 \).
underlying income smoothing (as discussed above), this behaviour contributes to financial soundness of banks and reduces procyclicality.

Loan growth as a proxy of increased credit risk appears to be significantly positive as a determinant of provisioning, reflecting the views of Borio et al. (2001) and Lowe (2002) that risks are built up during economic booms. This countercyclical outcome is in line with the earnings effect, but is dominated by the overall procyclical provisioning behaviour as indicated by the GDP effect. Our estimation result deviates strongly from that of C&M and L&M, who found negative loan growth effects.\(^{19}\) We have executed a series of sensitivity analyses to find out which differences are essential for the swing in the loan growth effect. Differences in specification choices and in restrictions on data each explain a part of the change. When we re-estimate the model with our data but with specification choices of L&M (see Section 1), the loan growth effect becomes insignificant.\(^{20}\) When we further apply the – rather rigorous and arbitrary – data restrictions of L&M (see Section 3), the loan growth effect becomes significantly negative.\(^{21}\) Re-estimation of C&M in two steps yields similar results. Although we consider our specification as more plausible and our data choices as less controversial, the results at least make clear that the loan growth effect appears to be sensitive to such choices.

Banks that have higher credit risk exposure, in the sense that they hold greater amounts in (risky) loans on the balance sheet, tend to provision more, as also found by Greenawalt and Sinkey (1988) and C&M. The elasticity between provisions and loans is 0.30 in the short run and 0.51 in the long run, hence lower than 1. This result suggests that banks with relatively more loans do not increase provisioning proportionally.

Finally, the capital to asset ratio is negatively correlated with provisions, which supports the capital management hypotheses predicting higher provisioning when the capital ratio is relatively low. The elasticity between provisioning and capital is \(-0.42\) in the short run and \(-0.72\) in the long run. The same result was found by Ahmed et al. (1999) for the US. An alternative phenomenon contributing to these results might be that some banks are more risky in the sense that they (i) hold a greater share of risky loans (and hence incur more losses and provision more) and (ii) have a lower capital ratio. This also engenders a negative relationship between provisioning and capital.

Many country dummies – not shown in Table 1 – are significant. The \(F\)-test indicates that they are also jointly significant, as also found by C&M. More than half of the country dummy coefficients show a significant positive deviation from the US. This reflects that banks in these countries provision more, taking the other explanatory variables into account.

Three variables reflect the cyclical pattern: GDP growth, earnings on provisions and loan growth, the first one pointing to procyclicality and the latter indicating behaviour that mitigates procyclicality. The multiple regression coefficients provide little insight into the net effect of the cyclical on provisioning. A more commodious method is to

\(^{19}\) Both in our study and in their analyses, this effect varies also across countries, showing a certain lack of robustness.

\(^{20}\) Alternatively, when we re-estimate the model with our specification using the data restrictions of L&M, we immediately observe a significant negative loan growth effect, as found by L&M.

\(^{21}\) Particularly, L&M’s loan growth cap affect the estimation results.
use a simple bilateral comparison between provisioning and GDP growth, assuming that GDP growth is the best indicator of the business cycle. On average, in periods of GDP growth below 3%, provisions are as much as 60% higher than in periods with GDP growth above 3%.\(^{22}\) This confirms the substantial procyclical effect of provisioning behaviour.

We applied the provisioning model to the EU and individual countries as well, in order to test its robustness and to reveal possible empirical differences across countries.\(^ {23}\) The results for the EU as a whole, the US, Japan and France are rather similar to the total sample outcome, see, respectively, Tables 1 and 2. The GDP effects are significantly negative, in line with expectations, a result also found by Arpa et al. (2001) for Austrian banks. For the EU as well as France, the unemployment rate is significant too, in accordance with expectations carrying a positive sign. These outcomes support the view that provisioning behaviour is typically procyclical. Income smoothing or prudential dynamic provisioning, as indicated by the positive coefficient of earnings, is common in the EU, the US and France, but lacking in Japan. The sign and significance of the loan growth effect varies across the countries. The loan-share ratio behaves as expected in the US (and Italy), but not elsewhere.\(^ {24}\) In Japan the loan growth coefficient is negative, which further emphasises the procyclical provisioning behaviour observed above. For the US, we also tried the share of total problem loans as a proxy for credit risk; this variable is hardly ever available for banks in other countries. Surprisingly, and contrary to our hypothesis, this variable proved not to be significant. Apparently, a clear link between the recorded impaired loans and provisioning is lacking. Kim and Kross (1998) also found an insignificant effect of the lagged nonperforming loans-assets ratio on LLP for low-capital banks, but a significantly positive impact for high-capital banks. The capital ratio coefficient is negative in these regions and countries, supporting the capital management view.

The results in the other four countries, Italy, Luxembourg, Spain and the UK, are less in line with those for the whole sample. The cyclical effects as indicated by GDP growth are not significant. Income smoothing or prudential provisioning is found in Luxembourg only. The credit risk indicator 'loans as a share of total assets' is significantly positive in Italy and the UK, whereas the capital ratio is significantly negative in Italy and Luxembourg.

All in all, these outcomes suggest substantial differences in provisioning behaviour across countries, as could be expected given the diverging legal, regulatory or institutional frameworks, including tax and accounting regimes, market or financial structures and business cultures.

\(^{22}\) The original procyclical effect as measured by the GDP growth, so without the buffers originating from earnings on provisions and loan growth, is substantially greater.

\(^{23}\) We have chosen only countries with many banks for which the required data are available. For this reason we did not test the model for Germany, as Bankscope did not provide many observations of loan loss provisions for that country. Autocorrelation was not solved always by inclusion of a Koyck lag. For some models, inclusion of an AR(1) term worked out well. In the remaining models, the Newey and West’s procedure is supposed to correct for any residual autocorrelation.

\(^{24}\) Note, however, that the loan share is significant for the level of loan loss reserves, as observed in the next section.
Table 2
Country models for loan loss provisions

<table>
<thead>
<tr>
<th>Variables</th>
<th>US</th>
<th>Japan</th>
<th>France</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coefficient</td>
<td>t-valuea</td>
<td>Coefficient</td>
</tr>
<tr>
<td>Intercept</td>
<td>−0.0012</td>
<td>−0.6</td>
<td>0.0312</td>
</tr>
<tr>
<td>LLP/TA, lagged</td>
<td>0.7598</td>
<td>11.5***</td>
<td>−0.0016</td>
</tr>
<tr>
<td>GDP growth</td>
<td>−0.0005</td>
<td>−2.1***</td>
<td>−0.0040</td>
</tr>
<tr>
<td>Unemployment rate</td>
<td>−0.0001</td>
<td>−0.2</td>
<td>0.0037</td>
</tr>
<tr>
<td>Earnings before T & P</td>
<td>0.1186</td>
<td>2.9***</td>
<td>0.0598</td>
</tr>
<tr>
<td>Loan growth</td>
<td>0.0002</td>
<td>2.3***</td>
<td>−0.0147</td>
</tr>
<tr>
<td>Loans/TA</td>
<td>0.0044</td>
<td>2.7***</td>
<td>−0.0046</td>
</tr>
<tr>
<td>Capital/TA</td>
<td>−0.0122</td>
<td>−1.5***</td>
<td>−0.7200</td>
</tr>
<tr>
<td>AR (1)</td>
<td></td>
<td></td>
<td>0.5251</td>
</tr>
<tr>
<td>No. of observations</td>
<td>2239</td>
<td>161</td>
<td>1222</td>
</tr>
<tr>
<td>Adjusted R-square</td>
<td>0.73</td>
<td>0.87</td>
<td>0.44</td>
</tr>
<tr>
<td>F-statistic</td>
<td>865.0***</td>
<td>134.7***</td>
<td>139.3***</td>
</tr>
<tr>
<td>Durbin–Watson test</td>
<td>1.86</td>
<td>1.78</td>
<td>1.54</td>
</tr>
<tr>
<td>Breusch–Godfrey LM</td>
<td>3.1***</td>
<td>0.3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variables</th>
<th>Italy</th>
<th>Luxembourg</th>
<th>Spain</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coefficient</td>
<td>t-valuea</td>
<td>Coefficient</td>
</tr>
<tr>
<td>Intercept</td>
<td>−0.0031</td>
<td>−0.5</td>
<td>−0.0008</td>
</tr>
<tr>
<td>LLP/TA, lagged</td>
<td>0.4199</td>
<td>6.0***</td>
<td>0.1787</td>
</tr>
<tr>
<td>GDP growth</td>
<td>−0.0006</td>
<td>−1.6***</td>
<td>−0.0001</td>
</tr>
<tr>
<td>Unemployment rate</td>
<td>0.0005</td>
<td>1.1</td>
<td>0.0002</td>
</tr>
<tr>
<td>Earnings before T & P</td>
<td>0.0459</td>
<td>1.5***</td>
<td>0.3377</td>
</tr>
<tr>
<td>Loan growth</td>
<td>−0.0001</td>
<td>−2.1***</td>
<td>0.0003</td>
</tr>
<tr>
<td>Loans/TA</td>
<td>0.0030</td>
<td>2.5***</td>
<td>−0.0011</td>
</tr>
<tr>
<td>Capital/TA</td>
<td>−0.0089</td>
<td>−2.0***</td>
<td>−0.0294</td>
</tr>
<tr>
<td>No. of observations</td>
<td>505</td>
<td>526</td>
<td>342</td>
</tr>
<tr>
<td>Adjusted R-square</td>
<td>0.25</td>
<td>0.58</td>
<td>0.27</td>
</tr>
<tr>
<td>F-statistic</td>
<td>25.1***</td>
<td>105.1***</td>
<td>19.3***</td>
</tr>
<tr>
<td>Durbin–Watson test</td>
<td>2.15</td>
<td>1.82</td>
<td>1.51</td>
</tr>
<tr>
<td>Breusch–Godfrey LM</td>
<td>0.5</td>
<td>0.6</td>
<td>8.3***</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variables</th>
<th>UK</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coefficient</td>
<td>t-valuea</td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>−0.0052</td>
<td>−1.0</td>
<td></td>
</tr>
<tr>
<td>LLP/TA, lagged</td>
<td>0.5876</td>
<td>4.1***</td>
<td></td>
</tr>
<tr>
<td>GDP growth</td>
<td>0.0023</td>
<td>1.7***</td>
<td></td>
</tr>
<tr>
<td>Unemployment rate</td>
<td>−0.0004</td>
<td>−1.0</td>
<td></td>
</tr>
<tr>
<td>Earnings before T & P</td>
<td>0.0227</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>Loan growth</td>
<td>0.0005</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>Loans/TA</td>
<td>0.0048</td>
<td>2.0***</td>
<td></td>
</tr>
<tr>
<td>Capital/TA</td>
<td>0.0054</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>AR (1)</td>
<td>−0.4696</td>
<td>−3.7***</td>
<td></td>
</tr>
<tr>
<td>No. of observations</td>
<td>291</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjusted R-square</td>
<td>0.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-statistic</td>
<td>12.0***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Durbin–Watson test</td>
<td>1.61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breusch–Godfrey LM</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a Based on Newey and West’s heteroskedasticity and autocorrelation consistent covariances. One, two and three asterisks indicate a level of confidence of 90%, 95% and 99%, respectively.

b T & P is short for tax and provisions.
5. The level of loan loss reserves

The model of C&M specifies the gross loan loss provisions as $\gamma E(d) L$, see below Eq. (1). Although this is a proper description of ex ante provisioning, reflecting the need to reserve for expected losses in order to cover incurred losses, it lacks a direct link between the optimal level of total provisioning and the real quality of the loan portfolio. Deviations of actual losses from expectations over former years are not adjusted. Moreover, when the business cycle deteriorates and the creditworthiness of the obligor gets worse, more provisions are needed, whereas the need for provisions declines when economic conditions improve. This cyclical adjustment is recognised in our Eq. (2) as all cyclical effects are measured, but it is ignored in the model of C&M. Finally, gross provisions may also be affected by discrete managerial decisions, such as those related to income smoothing. For this reason it is also interesting to investigate the level of loan loss reserves (LLR) – which is the accumulation of annual net provisions – instead of its annual gross provisions (LLP) only, as in Section 4:

$$LLR_t = \sum_{i=0,1,2,...} LLP_{t-i} - BL_{t-i} = LLR_{t-1} + LLP_t - BL_t$$

Therefore, we apply Eq. (2) with provisioning LLP replaced by the level of the reserves LLR, as we expect that the same explanatory variables determine the loan loss reserve level.

The first column of Table 3 presents the results of the ‘world-wide’ model for LLR. Because data on banks’ reserves levels are unavailable for many countries, the world-wide data set looks like a survey sample, including only a limited subset of 12 countries. Although the level of reserves may differ substantially from gross provisions, we find that the level is affected by the explanatory variables in a similar way; almost all coefficients are significant and have the same sign. The effects of the business cycle (GDP), income smoothing or dynamic provisioning (earnings) and credit risk (loan growth and loan share) all are similar to those in the provisioning model, be it that the t values are somewhat lower. In terms of elasticities, the effects on the LLR of GDP growth (-0.77 in the short run and -4.95 in the long-run) and of loans (0.36 in the short run and 2.29 in the long-run) are larger compared to provisioning, whereas the effect of earnings (0.12 in the short run and 0.80 in the long run) is smaller. Only a clear relationship between reserves and capital appears to be lacking. This is remarkable, as the capital management hypothesis predicts a possible interdependence between these two cushions for larger losses. Apparently, provisions react on the equity level, but there is no feedback with the level of reserves.

The speed of adjustment of the reserves level towards its model value ($0.222 = 1 - 0.788$) is substantially lower than in the model for the annual provisioning ($0.587 = 1 - 0.413$), seems to make sense. The coefficients of the country dummies – not shown in Table 1 – are rather similar to those of the provisioning model discussed in Section 4.

We test the ‘world-wide’ model’s consistency by also applying the model to the US and Europe separately. Note that Europe is represented by six countries only. The differences

Note, however, that LLR, as a stock variable, is scaled by current total assets (and not by an average). The dummy variables appeared to be not jointly significant. Therefore, they are dropped in the final regression and shown mainly, between brackets, to indicate which countries represent Europe. Actually, the dummies hardly
Table 3
Models for loan loss reserves

<table>
<thead>
<tr>
<th>Variable</th>
<th>Whole sample</th>
<th>Europe</th>
<th>US</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coefficient</td>
<td>t-value</td>
<td>Coefficient</td>
</tr>
<tr>
<td>Intercept</td>
<td>-0.0058</td>
<td>-1.7**</td>
<td>-0.0089</td>
</tr>
<tr>
<td>LLR/TA, lagged</td>
<td>0.7880</td>
<td>17.7***</td>
<td>0.7754</td>
</tr>
<tr>
<td>GDP growth</td>
<td>-0.0003</td>
<td>-2.0**</td>
<td>-0.0007</td>
</tr>
<tr>
<td>Unemployment rate</td>
<td>0.0003</td>
<td>1.3</td>
<td>0.0007</td>
</tr>
<tr>
<td>Earnings before T&Pc</td>
<td>0.0760</td>
<td>1.8**</td>
<td>-0.0931</td>
</tr>
<tr>
<td>Loan growth</td>
<td>0.0001</td>
<td>1.8**</td>
<td>-0.0002</td>
</tr>
<tr>
<td>Loans/TA</td>
<td>0.0082</td>
<td>2.4***</td>
<td>0.0157</td>
</tr>
<tr>
<td>Capital/TA</td>
<td>0.0056</td>
<td>0.4</td>
<td>0.0257</td>
</tr>
<tr>
<td>No. of observations</td>
<td>4167</td>
<td>874</td>
<td>2742</td>
</tr>
<tr>
<td>Adjusted R-square</td>
<td>0.75</td>
<td>0.78</td>
<td>0.73</td>
</tr>
<tr>
<td>F-test statistic</td>
<td>697.5***</td>
<td>450.0***</td>
<td>1043.8***</td>
</tr>
<tr>
<td>F-test on dummies</td>
<td>6.9***</td>
<td>(1.1)</td>
<td></td>
</tr>
<tr>
<td>Durbin–Watson test</td>
<td>2.03</td>
<td>2.29</td>
<td>1.82</td>
</tr>
<tr>
<td>Breusch–Godfrey LM</td>
<td>12.6***</td>
<td>0.1</td>
<td>1.2</td>
</tr>
</tbody>
</table>

* Country dummies are not shown.

Based on Newey and West (1987). One, two and three asterisks indicate a level of confidence of 90%, 95% and 99%, respectively.

T&P is short for tax and provisions.

that emerge between the European and American stock of reserves are much clearer than in the case of gross provisions. In Europe, both GDP growth (business cycle) and unemployment (both business cycle and structural imbalances) have significant coefficients, whereas the business cycle does not affect reserves in the US. Income smoothing or dynamic provisioning on the level of reserves is found for the US but not for Europe. (However, for Europe it was found for the annual additions). The two credit risk proxies are highly significant in the US. For Europe, the loan share is significant too, but loan growth has no impact. A capital effect is lacking in all three data sets. These results confirm that reserve level behaviour is different across regions and most probably, across countries.

6. Concluding remarks

Provisioning appears to depend significantly on the business cycle, as evidenced by the direct negative relation between GDP growth and provisioning. This strong cyclical effect implies that banks’ provisioning behaviour might be procyclical: as their buffers need to grow (fast) during downturns, less profits are available to supplement the (rising required) capital, possibly forcing banks to reduce lending. The procyclical effect is

27 As the number of observations of LLR was low for the other countries, we did not estimate more country-specific models.

28 Because part of general loan loss provisions counts as BIS capital.
mitigated somewhat by the impact of the banks’ earnings on provisions. This ‘earnings’
effect might be due either to dubious income smoothing or to recommendable farsighted
dynamic provisioning. Finally, procyclicality is also mitigated somewhat by the positive
effect of loan growth on provisioning, supporting Borio et al. (2001) and Lowe (2002),
who state that credit risks are built up during a boom. This outcome challenges the result
of Cavallo and Majnoni (2002) and Laeven and Majnoni (2003), who found a significant
negative effect of loan growth. Choices regarding the model specification and, particularly,
the data are responsible for this shift in outcome. All in all, banks tend to build up (highly)
insufficient buffers in fat years as reserves for lean years, in terms of their ability to smooth
out the impact of the business cycle. Banks may not wish to build up such abundant reserves,
but it is also probable that a clear (far) forward-looking risk assessment over the business
cycle would be beyond their (or anyone’s) powers. Hence, the provisioning behaviour of
banks is potentially procyclical.

Our data also support the capital management hypothesis: banks provision more when
their capital ratio is low. Effects in individual countries may deviate from this general picture:
substantial differences exists in provisioning behaviour across countries and regions, as
might be expected given diverging legal, regulatory or institutional frameworks, including
tax and accounting regimes.

Loan loss reserves are determined by the same variables as are provisions, but the effects
are less strong. This is in line with expectations, as annual additions are more susceptible to
outside influences than large stocks. However, no clear evidence is found either of increased
provisioning during successive years of economic boom, resulting in substantially higher
loan loss reserves levels, or of persisting erosion of reserves after consecutive years of
recession. Apparently, the cyclical effects, which could contribute to procyclicality, are
weaker than is suggested by the provisioning results, as they do not cumulate systematically
over time. Remarkably, as a clear link between the recorded impaired loans and provisioning
appears to be lacking, banks’ loan loss risks are not consistently assessed as being higher
during cyclical troughs than during cyclical highs.

All in all, the results underline that greater scrutiny of forward-looking provisioning and
capital management will be needed, in particular with respect to cyclical fluctuations. Under
Basel II, because procyclical risks may increase, this need will be even stronger, calling for a
strict and adequate Supervisory Review. On the other hand, the tools currently developed by
banks in order to fulfil the requirements for the new IRB framework of Basel II, such as the
estimates of ‘Probability of Default’ and ‘Loss Given Default’, make excellent instruments
with which to systematically predict future losses on loans. Finally, more transparency on
provisioning might also help market discipline in order to enhance proper provisioning and
to counter procyclicality.

Acknowledgement

The views expressed in this paper are those of the authors and not necessarily those of
the Nederlandsche Bank. The authors are grateful to Klaas Knot, Marco Hoeberichts and
unknown referees for valuable comment and Miriam Holman-Rijken for excellent research
assistance.
References

Banque de France, 2001. The financial cycle, factors of amplification and possible policy implications for financial and monetary authorities, Bulletin no. 95, Banque de France.

