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Financial contagion and tests using
instrumental variables

Andreas Pick∗

University of Cambridge, CIMF

Abstract This paper considers empirical tests for the contagion of financial crises
that address the endogeneity of contagion by using instrumental variable estima-
tion techniques. Two complications in the application to contagion are that the
regression model is potentially incoherent and that it contains a parameter that
is not identified under the null of no contagion. Monte Carlo experiments suggest
that their influence is small in practice with the notable exception of similar tests,
where both size and power are affected. An application to stock market data for
the UK, USA, and Japan shows that ignoring the endogeneity of contagion leads
to highly significant contagion coefficients. However, tests for contagion that take
the endogeneity into account result in mixed evidence for financial contagion.

JEL classification C12, G10, G15
Keywords Financial crises, contagion, non-linear simultaneous equation models

1 Introduction

The possibility of the contagion of financial crises has received considerable
attention in the recent empirical literature in international finance. A reason
is that financial contagion has important implications for policy interven-
tions in financial markets and portfolio diversification of investors. Both
crucially depend on the nature of the transmission of shocks between fi-
nancial markets. While financial markets are interdependent at all times,
contagion implies that the correlation between markets increases at times of
financial crises. Changes in the transmission of shocks during crises imply
that a policy response to a crisis cannot rely on the lessons learned dur-
ing non-crises times. Furthermore, portfolios constructed based on correla-
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tions during non-crises times would potentially exhibit different properties
in crises times, which could lead to considerably larger losses than expected.

A canonical model of contagion has been developed by Pesaran and Pick
(2007). On the basis of this model Pesaran and Pick analyse the extant
literature on contagion and conclude that panel data analyses, such as those
by Eichengreen, Rose and Wyplosz (1996), Kruger, Osakwe and Page (1998),
or Kumar, Moorthy and Perraudin (2002), need to take the endogeneity
of contagion into account, and that failure to do so may lead to spurious
findings of contagion.1 The endogeneity of contagion requires the use of
instrumental variables techniques, and Pesaran and Pick give an example
which shows that the correction for endogeneity using two stage least square
estimation reduces the evidence for financial contagion.

This paper continues the development of tests of financial contagion
that use instrumental variables. The finite sample properties of instrumen-
tal variable methods when applied to financial contagion are investigated,
and a wide range of instrumental variable methods are considered, including
recently developed similar tests. In addition, two features of the canonical
model of contagion are addressed that require attention. The first is the
incoherence of the canonical model, that is, for certain values of the exoge-
nous variables and the error term the right hand side variables do not imply
a unique left hand side variable. While it is not necessary to resolve the
incoherence for the identification of the contagion parameter, the efficiency
of the estimation are unknown. Monte Carlo experiments investigate this
and the results suggest that the effect is small.

The second feature is that the canonical model of contagion contains a
parameter that is not identified under the null of no contagion. This is a well
known problem in other models such as the threshold auto-regressive model,
for which simulation methods have been developed to approximate the dis-
tribution of the parameters for inference. Here, the parameter in question
is embedded in the endogenous variable, and the simulation methods are
therefore invalid. In this paper I use Monte Carlo experiments to assess the
impact of the unidentified parameter on inference about contagion.

The instrumental variable techniques are then applied to stock market
indices from the UK, the USA, and Japan in order to test whether contagion
between these stock markets is present. However, I find that in practice the
limited predictability of stock market returns also limits the inference on
contagion.

In the next section I discuss the canonical model of contagion and its
econometric implications. Section 3 discusses instrumental variables meth-

1Another strand of the emprical literature on financial contagion assesses the difference
in correlation between markets at tranquil and at crises times. Examples include Forbes
and Rigobon (2002), Bae, Karolyi and Stulz (2003), and Corsetti, Pericoli and Sbracia
(2005). However, Pesaran and Pick (2007) point out that this approach suffers from a
sample selection problem and, therefore, I do not pursue this approach further.
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ods and their application to the canonical model. Their finite sample prop-
erties are assessed in Section 4. Section 5 applies the methods to the stock
market data for the UK, the USA, and Japan. Finally, Section 6 concludes.

2 A canonical model of contagion

Consider the following model of financial contagion introduced by Pesaran
and Pick (2007)

yit = α′ixit + βiCit + uit, i = 1, 2, . . . , N, t = 1, 2, . . . , T (1)

where i indicates cross-section units such as countries, markets, or assets, t
indicates time, yit is a performance indicator, for example a stock market
index or an exchange rate market pressure index, xit is a (K × 1) vector of
predetermined variables, αi is a (K × 1) vector of parameters, βi is a scalar
parameter. Define the (K + 1× 1) vector θi = (αi, βi). For simplicity
of exposition and without loss of generality I have dropped the common
regressor set zt included by Pesaran and Pick (2007).

The performance indicator, yit, is assumed to be in a crisis period if it
exceeds a given threshold value. A crisis is therefore defined to occur if

I(yit − ci) = 1,

where I(A) is an indicator function that takes the value of unity if A > 0 and
zero otherwise, ci is a crisis threshold. The contagion index, Cit, is defined
as

Cit = I




N∑

j=1,j 6=i

I(yjt − cj)


 . (2)

An alternative definition of contagion would be a weighted average of in-
dividual crises indicators. However, as formulation (2) is the definition of
contagion commonly found in the literature I will restrict attention to this
formulation. The general results carry over to alternative definitions dis-
cussed in Pesaran and Pick (2007).

The error term, uit, is assumed to be potentially contemporaneously
correlated across i, ut ∼ N(0,Σ), where Σ is a (N ×N) symmetric, positive
definite matrix. An example is a common factor structure of the form

uit = γift + εit, (3)

where γi is a scalar parameter, ft ∼ iidN(0, 1), is the common unobserved
factor, and εit ∼ iidN

(
0, σ2

ε

)
.

It is apparent that the system of equations in (1) represents a non-linear
simultaneous equation model, which is linear in the parameter of interest,
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βi, but non-linear in the endogenous variables. Pesaran and Pick (2007)
derive the reduced form for N = 2, which is

Yit = (1 + Wit) I(Wjt) (Region A)
+(1 + Wit) I(−Wjt) I(1 + Wjt) I(Wit) (Region B)
+Wit I(−1−Wjt) (Region C)
+Wit I(−Wjt) I(1 + Wjt) I(−1−Wit) (Region D)
+Y ∗

it(dt) I(−Wit) I(1 + Wjt) (Region E)
× I(−Wit) I(1 + Wit)

(4)

where Yit = yit−ci

βi
, Wit = α′ixit+uit−ci

βi
, i = 1, 2. The disjoint regions A–E are

defined by the value of Wit in the indicator functions. Y ∗
it(dt) = dtWit +(1−

dt)(1+Wit), that is, Y ∗
it(dt) is from a mean mixture of distributions with dt as

the selection parameter, and dt ∼ Bernoulli(πd), where πd is the probability
of Wit being chosen in the mixture. A reduced form can be obtained for
N > 2 as shown in Appendix A. However, it becomes increasingly complex
as N increases and it is in general not feasible to use the reduced form for
estimation.

The formulation in Region E implies that the canonical model is incoher-
ent. While incoherence has been discussed in the literature, see for example
Gourieroux, Laffont and Monfort (1980), no general treatment of incoherent
system has emerged to date. It is clear that for the identification of βi the
assumption of an unbounded distribution of the xit is sufficient. However,
whether βi can be estimated with any precision is a priori unclear and will
be investigated in Monte Carlo experiments in Section 4.

A further complication for estimation is the presence of the parameters
cj , j = 1, 2, . . . , N , as they are not identified under the null hypothesis
βi = 0. Inference in the presence of parameters that are not identified
under the null have been studied by Andrews and Ploberger (1994) and
Hansen (1996). While the consistency of βi is not affected, the normal ap-
proximation to the distribution of the parameter is no longer valid. Hansen
(1996) proposes a simulation method to assess the distribution, which does,
however, exclude the presence of endogenous variables (Caner and Hansen
2004). The development of simulation methods for models with endogenous
variables is beyond the scope of the present paper. I assess the impact of
the uncertainty introduced by ĉj on the inference by comparing the results
from Monte Carlo experiments with known cj and with estimated ĉj .

Finally, the contemporaneous correlation of the error term needs to be
addressed. Pesaran and Pick (2007) show that integrating out the con-
temporaneous correlation using the common correlated effects estimator of
Pesaran (2006) results in an unidentified contagion index, and this result
appears to be of a general nature. Hence, below I use single equation tech-
niques. While this foregoes efficiency gains from combining the information
of different cross-section units, it allows the identification of the contagion
index.
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3 Instrumental variable estimation of the contagion
parameter

Non-linear simultaneous equation systems have been studied extensively in
the econometric literature. Rewrite Equation (1) as

fit = f(yt,Xt, θ) = uit,

where yt is a (N × 1) vector of endogenous variables, Xt is a (N ×K) ma-
trix of exogenous regressors. Amemiya (1977) showed that in principle the
optimal instrument would be E(∂fit/∂θi) . Unfortunately, in general this ex-
pression cannot be derived and this is also true for the contagion model (1).
However, Pesaran and Pick (2007) point out that the regressors in the equa-
tions for j = 1, 2, . . . , N , j 6= i can be used as instruments in the regression
for the ith equation as they are exogenous and correlated with the endoge-
nous variable.

Given that Cit is a non-linear transformation of the endogenous vari-
able yit, non-linear transformations of the instruments could improve the
efficiency of the estimation. Kelejian (1971) suggests to approximate a non-
linear function of endogenous variables by a polynomial, pit, of degree M in
the instruments,

pit =
N∑

j=1,j 6=i

(ξ′1ijxjt + ξ′2ijx
2
jt + . . . + ξ′Mijx

M
jt )

= ξ′iwit, (5)

where ξi is stacked vector with typical element ξmij and wit is a stacked
vector with typical element xm

jt , m = 1, 2, . . . , M , and define Wi as the
stacked (over t) counterparts of wit.

Kelejian shows that the polynomial pit approximates Cit arbitrarily closely
as M → ∞ and that the remainder is uncorrelated with pit. Newey (1990)
compared the polynomial approximation with non-parametric approxima-
tions and found that the polynomial approximation leads to a lower bias
and RMSE in instrumental variable estimations.

I consider two stage least square (2SLS), bias-adjusted two stage least
square (B2SLS), limited information maximum likelihood (LIML), and Fuller’s
(1977) modified limited information maximum likelihood (LIMLk) estima-
tors. They are special cases of the general k-class estimator, which is

θ̂i(k) = (Z′iPD,iZi − kZ′iZi)−1(Z′iPD,iyi − kZ′iyi), (6)

where Zi = (Xi, Ci), Di = (Xi,Wi), and PD,i = Di(D′
iDi)−1D′

i, Xi is
the (T ×K) matrix of predetermined regressors, Ci the (T × 1) vector of
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contagion coefficients, Wi is the (G× T ) matrix of instruments,

k =





0 for 2SLS
(G−K − 2)/T for B2SLS
k∗ for LIML
k∗ − 1/(T −K −G) for LIMLk

and k∗ is the minimum of (yi−θ′iZi)′PD,i(yi−θ′iZi)/(yi−θ′iZi)′(yi−θ′iZi).
It can be shown that the consistency of the k-class estimator (6) depends

on the concentration parameter (Rothenberg 1984), which is defined as

µi = ξ̃iW
′
iWiξ̃

′
i/σ̃2

η,i (7)

where ξ̃i and σ̃2
η,i are the parameter estimate and the variance of the distur-

bance term, ηi, in the first stage equation

Ci = ξ′iWi + ηi.

The concentration parameter assumes a role similar to T in the OLS esti-
mator and the k-class estimator will be consistent when µ →∞.

The recent literature has investigated the behaviour of the k-class esti-
mators under different assumption about the asymptotic behaviour of µi, T ,
and G. It has been established that for small µi the point estimate of βi is
biased towards the least squares estimate and that the normal approxima-
tion of the estimate is inappropriate, which can lead to incorrect inference
(Phillips 1983, Nelson and Starz 1990).

3.1 Instrument selection

In the context of the contagion model with polynomial approximation a
large number of instruments is available and it is not clear which of the
instruments to choose. Hence, in a first stage one may wish to select the
optimal set of instruments from the large pool of instruments.

A number of tests have been developed to select instruments. Donald and
Newey (2001) suggest minimising the approximate MSE of k-class estimators
using either cross-validation or the Mallows criterion. Alternatively, one
can consider the first stage F -test or, in case of more than one endogenous
right-hand side variable, the Cragg-Donald test statistic (Cragg and Donald
1993, Staiger and Stock 1997, Stock and Yogo 2005), g, which is the smallest
eigenvalue of GT ,

GT = Σ−1/2
v C∗′i PW ∗C∗i Σ−1/2

v /G, (8)

where for any matrix Π, Π∗ = MX,iΠ, MX,i = (I − Xi(X′
iXi)−1X′

i), and
Σv = C∗′i (I − PD,i)C∗i /(T − K − G). It is easy to establish that g is the
F -test statistic when G = 1.

6



The set of instruments are chosen that maximise the F -statistic or the
Cragg-Donald test statistic. Alternatively, using critical values tabulated
by Stock and Yogo (2005) the power of the instruments can be assessed
with respect the bias of the parameter estimate or the coverage ratio of the
confidence interval.

However, Chao and Swanson (2005) argue that selecting instruments
may lead to a lower concentration parameter and therefore to inferior in-
ference. In particular, when strong instruments are not available using all
instruments may be a valid strategy.

3.2 µ-similar tests

Given that the properties of the k-class estimators depend on the concentra-
tion parameter, µ, tests that are similar with respect to µ would be desirable.
In contrast to k-class estimators such µ-similar tests have the same size inde-
pendent of µ, that is, independent of the strength of the instruments. This
can be achieved either by finding a statistic that does not depend on the
nuisance parameter, µ, or by conditioning the critical values on µ so that
the test will have the correct size independent of its value (Andrews and
Stock 2006).

The µ-similar tests are the Anderson and Rubin (1949) test, the LM
test of Moreira (2001) and Kleibergen (2002), and the conditional likelihood
ratio test (CLR) of Moreira (2003). Andrews and Stock (2006) compare
the power of the three µ-similar tests in a many weak instruments asymp-
totics framework. They find that the CLR test is on the asymptotic power
envelope.

The tests are defined as follows. Define the vectors a0 = [βi, 1]′ and
b0 = [1,−βi]′, and

Si =
(W̄′

iW̄i)−1/2W̄′
iC̄ib0

(b′0Ω̂b0)1/2
,

Vi =
(W̄′

iW̄i)−1/2W̄′
iC̄ia0

(a′0Ω̂a0)1/2
,

where Ω̂ = C̄iMDC̄i/(T − K − G) and W̄i = MXWi, C̄i = MXCi, with
MX = I−Xi(X′

iXi)−1X′
i, and MD defined analogously.

Then the Anderson and Rubin (1949) test is defined as

AR(βi) =
S′iSi

G
,

which is asymptotically distributed as χ2
G/G under the null. The LM-test

is defined as

LM(βi) =
(S′iVi)2

V′
iVi

,
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which is asymptotically distributed as χ2
1 under the null. The CLR test is

CLR(βi) =
1
2

(
S′iSi −V′

iVi +
√

(S′iSi + V′
iVi)2 − 4[(S′iSi)(V′

iVi)− (S′iVi)2]
)

,

which has no closed form distribution. However, conditional on G and V′
iVi

the distribution can be computed by Monte Carlo simulations.
I will refer to them as “µ-similar” tests instead of “similar” tests as in

the literature because the presence of the unknown threshold parameters, ci,
means that they are no longer similar when applied to the contagion model.
The Monte Carlo experiments below will investigate how far the estimators
are affected by the threshold parameter.

4 Monte Carlo evidence

4.1 Experimental design

The Monte Carlo experiments are based on artificial data with N = 3 and
T = 300. The advantage of small N is that the data with β 6= 0 can be
generated from the reduced form reported in Appendix A. It might seem
appealing to use the reduced form for the estimation of the system. This,
however, would reduce the scope of the estimation method to cases with
N = 2 and N = 3 as the reduced form becomes highly complex as N
increases. In order to obtain generally valid results, I use the instrumental
variable techniques discussed above.

The structural equation is

y
(r)
it = αix

(r)
it + βiC(r)

it + u
(r)
it . (9)

The exogenous variable is generated as x
(r)
it ∼ N(0, 1). The error term is

generated using the following standardised one-factor structure

u
(r)
it =

γ
(r)
i f

(r)
t + ε

(r)
it√

1 + γ
(r)2
i

where γ
(r)
i ∼ U

(
1
2γ, 3

2γ
)

is a scalar, U(a, b) denotes the uniform distri-
bution with lower bound a and upper bound b, f

(r)
t ∼ iid N(0, 1), and

ε
(r)
it ∼ iidN(0, 1), r = 1, 2, . . . , R, and R denotes the number of replica-

tions, which is set to R = 500 in the experiments reported below. Under
these assumptions the error term, u

(r)
it , has expected value of zero and a unit

variance. The pairwise correlation coefficient of the errors is given by

Corr
(
u

(r)
it , u

(r)
jt

)
=

γ
(r)
i γ

(r)
j√

(1 + γ
(r)2
i )(1 + γ

(r)2
j )

.
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In any application it is likely that contemporaneous correlation will be
present, and in the simulations γ is set to 1.

As discussed above, attempts to filter out the contemporaneous corre-
lation have the problem that contagion becomes unidentified. Hence, I use
single equation estimation methods and apply them to the first cross section
unit, i = 1.

Given that Var
(
u

(r)
it

)
= Var

(
x

(r)
it

)
= 1, the correlation between y

(r)
it

and x
(r)
it is αi/

√
α2

i + 1, that is, an increasing function in αi. As C(r)
it is

an increasing function in y
(r)
it , this implies that the instruments, i. e. the

N − 1 regressors x
(r)
jt , j = 1, 2, . . . , N, j 6= i, become stronger as the αj

increase. I set αi = 0.1, ∀i, to simulate estimation with weak instruments
and αi = 1, ∀i, to simulate estimation with stronger instruments.

In order to evaluate the effect of the incoherence of the system on the
estimations and the tests for contagion I use two specifications. In the first
specification, πd = 0, where πd is the probability of a crisis in region E in (4).
Hence, a crisis will always occur in the indeterminate region and the system
is coherent. In the second specification, πd = 0.5, that is the probability of
a crisis in the indeterminate region is 0.5, which is independent of the right
hand side variables and the system is therefore incoherent.

In the data generating process I set ci = c = 1.64, ∀i. This choice implies
that in the Monte Carlo experiment it is unlikely that the contagion index,
Cit, becomes a vector of ones or zeros, which happens if the proportion of
crises periods is too high or too low. In neither case would the contagion
index be identified.

In the first set of Monte Carlo experiments it is assumed that c is known.
This simplifies inference, and gives a useful benchmark to compare the re-
sults when this assumption is dropped. The contagion coefficient is esti-
mated using OLS, 2SLS, B2SLS, LIML, and LIMLk. The instruments are
a power series of the regressors of the cross section units i = 2, 3, where the
maximum power is M = 6. Additionally, optimal subsets of powers are se-
lected using the minimum approximate MSE of the IV estimators based on
cross validation criterion and Mallow’s criterion (Donald and Newey 2001),
and the first stage F -statistic (Stock and Yogo 2005).

Furthermore, inference is made using the Anderson-Rubin (1949) test,
the LM-test of Moreira (2001) and Kleibergen (2002), and the CLR test of
Moreira (2003) described in Section 3.2. The instruments for the µ-similar
tests are again the power series of regressors up to power M = 6 and the
optimal subset of powers selected by the first-stage F -statistic.

In a second set of Monte Carlo experiments c is assumed to be unknown
and estimated using a grid search over the grid {1.4, 1.52, 1.56, 1.6, 1.64, 1.68,
1.72, 1.76, 1.88}. The grid ensures that crises remain a tail event and that a
sufficient number of observations is available for estimation. The value of ĉ is
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estimated by minimising the squared errors estimations using all instruments
for each estimator. For the µ-similar tests, the ĉ obtained from GIVE is used
with all instruments. Subject to the estimated ĉ, the instrumental variable
estimators and robust tests are used as above.

Reported are the median bias, median(β̂i
(r) − βi), the median absolute

bias (MAB), median(abs(β̂(r)
i −βi)), and the rejection probability of the null

hypothesis H0 : βi = 0, 1
R

∑R
r=1(abs(t(r)) > 1.64), where t denotes the t-

statistic of the contagion parameter obtained from the respective estimator.

4.2 Results

Table 1 reports the median bias and the MAB and Table 2 the size and
power for OLS and 2SLS, B2SLS, LIML, LIMLk using different instrument
selection methods and different parameter combinations and under the as-
sumption that c is known. The first three columns give the results for
α = 0.1, i. e. weak instruments, and the fourth to sixth column the results
for α = 1, i. e. stronger instruments. When α = 0.1 the F -statistics for the
instrument set selected based on the maximum F -statistic are between 2 and
3 for the different parameter constellations. When α = 1 the F -statistic is
greater than 20.

In the first column are the results for weak instruments and no contagion.
OLS has a large bias and MAB, and the null of no contagion is rejected with
near certainty. The median bias of instrumental variable estimators is also
considerable, which confirms the well known results from the literature, e. g.
Nelson and Starz (1990). When the instruments are selected by maximising
the first state F -test statistic, the bias of 2SLS and B2SLS are even larger
than that of OLS. The smallest bias is achieved using all instruments and
LIML or LIMLk.

The MAB for many of the instrumental variables techniques is larger
than that of OLS. Only the MAB of 2SLS using the instruments that min-
imise the MSE based on Mallow’s criterion and that of LIML based on the
MSE using cross-validation are smaller than that of OLS. The small bias of
using LIML or LIMLk with all instruments is bought at the expense of a
large MAB. Using 2SLS and B2SLS with all instruments may be a reason-
able compromise as their bias is considerably smaller than that of OLS but
there MAB only somewhat larger.

The size of the test for contagion based on the instrumental variable
methods is much better than that of OLS, yet quite far from the nominal
size of 5%. 2SLS and B2SLS with all instruments have the best size, which,
however, is still about twice the nominal size.

In the presence of contagion the bias and MAB of OLS increase and the
power is 1. The conclusions from the case of βi = 0 for the instrumental
variable techniques carries over. LIML and LIMLk with all instruments
have the smallest bias but considerable MAB and 2SLS and B2SLS with all
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Table 1: Median bias and median absolute bias in Monte Carlo, given c

α = 0.1 α = 1
β = 0 β = 1 β = 1 β = 0 β = 1 β = 1

πd = 0 πd = 0.5 πd = 0 πd = 0.5

Median bias

OLS 1.034 1.147 1.124 0.707 0.865 0.829

2SLS CV 0.876 1.019 1.054 0.167 0.069 0.097
Mallow 0.910 1.072 1.082 0.220 0.098 0.126
F 1.256 1.034 1.087 0.129 −0.030 0.006
all 0.633 0.501 0.515 0.142 −0.016 0.012

B2SLS CV 0.934 1.030 1.095 0.204 0.064 0.084
Mallow 0.786 0.986 1.035 0.119 0.014 0.045
F 1.256 1.034 1.088 0.129 −0.030 0.006
all 0.575 0.502 0.586 0.111 −0.031 −0.017

LIML CV 0.858 0.992 1.044 0.135 0.000 0.024
Mallow 0.882 0.962 0.946 0.150 0.013 0.035
F 0.776 0.921 0.990 0.115 0.001 0.027
all 0.410 0.306 0.418 0.111 −0.063 −0.028

LIMLk CV 0.910 1.072 1.082 0.220 0.098 0.126
Mallow 0.729 0.972 1.040 0.131 0.000 0.024
F 0.835 0.905 0.915 0.143 −0.002 0.024
all 0.410 0.306 0.418 0.111 −0.063 −0.028

Median absolute bias

OLS 1.034 1.147 1.124 0.707 0.865 0.829

2SLS CV 1.166 1.023 1.135 0.306 0.189 0.182
Mallow 1.025 1.073 1.100 0.320 0.191 0.185
F 2.205 1.714 1.963 0.303 0.200 0.188
all 1.246 0.794 0.900 0.295 0.187 0.179

B2SLS CV 1.195 1.057 1.139 0.321 0.191 0.177
Mallow 1.520 1.042 1.193 0.312 0.183 0.172
F 2.205 1.714 1.963 0.303 0.200 0.188
all 1.240 0.796 0.922 0.302 0.205 0.191

LIML CV 1.184 1.023 1.142 0.316 0.204 0.184
Mallow 1.366 1.045 1.140 0.305 0.183 0.173
F 1.861 1.169 1.378 0.304 0.194 0.187
all 2.111 1.279 1.465 0.290 0.203 0.191

LIMLk CV 1.025 1.073 1.100 0.320 0.191 0.185
Mallow 1.352 1.042 1.222 0.315 0.204 0.184
F 1.719 1.138 1.261 0.299 0.191 0.185
all 2.111 1.279 1.465 0.290 0.203 0.191

CV denotes the estimates obtained using the instruments selected using the minimum
MSE based on the cross-validation criterion, Mallow denotes those obtained using the in-
struments selected using the minimum MSE based on Mallow’s criterion, F those obtained
using the instruments selected based on the first stage F -statistic, and all those using all
instruments.
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Table 2: Size and power in Monte Carlo, given c

α = 0.1 α = 1
β = 0 β = 1 β = 1 β = 0 β = 1 β = 1

πd = 0 πd = 0.5 πd = 0 πd = 0.5

OLS 0.992 1.000 1.000 0.946 1.000 1.000

2SLS CV 0.164 0.746 0.684 0.120 0.970 0.978
Mallow 0.260 0.928 0.878 0.140 0.982 0.988
F 0.172 0.484 0.462 0.128 0.880 0.922
all 0.102 0.410 0.352 0.110 0.916 0.944

B2SLS CV 0.190 0.794 0.730 0.142 0.970 0.976
Mallow 0.116 0.586 0.520 0.104 0.938 0.952
F 0.172 0.484 0.462 0.128 0.880 0.922
all 0.082 0.456 0.400 0.086 0.868 0.908

LIML CV 0.144 0.716 0.630 0.098 0.890 0.920
Mallow 0.138 0.618 0.534 0.112 0.940 0.954
F 0.108 0.494 0.458 0.106 0.926 0.948
all 0.148 0.396 0.354 0.126 0.860 0.910

LIMLk CV 0.260 0.928 0.878 0.140 0.982 0.988
Mallow 0.124 0.640 0.570 0.098 0.892 0.920
F 0.130 0.526 0.472 0.116 0.924 0.948
all 0.148 0.396 0.354 0.126 0.860 0.910

See footnote of Table 1.

instruments have a small bias and MAB. The power of the tests with the
best size is about 0.4-0.5.

When comparing the results for the coherent system with those of the
incoherent system, it can be observed that nearly uniformly the bias and
the MAB is larger and the power lower in the incoherent system. However,
the differences are relatively small.

The right hand side of Tables 1 and 2 suggest that the bias and MAB
are substantially reduced as the strength of the instruments increases. In
the presence of contagion, the parameter estimates are essentially unbiased.
The bias and MAB for the instrumental variable estimation are much smaller
that that of OLS. While closer to the nominal size, the tests still have size
of around 10% instead of the nominal 5%. The power of the tests increases
to around 90%.

In the above experiments, it was assumed that the threshold level for a
crisis, c, was known. This assumption is now dropped and c is estimated by
grid search. Figure 1 shows the frequencies of the estimated ĉ for each point
in the grid for each of the instrument selection criteria and for all instruments
in the case of 2SLS. The two top graphs show the frequency of ĉ under a

12



Figure 1: Estimation of ĉ in the Monte Carlo experiments using 2SLS

The probabilities are 1
R

PR
r=1 I(ĉ(r) = ci), where ci ∈ {1.4, 1.52, 1.56, 1.6, 1.64, 1.68, 1.72,

1.76, 1.88}, ĉ(r) was estimated using grid search over ci minimising the squared errors
of 2SLS estimations: the blue, solid line is for 2SLS-CV, the red, dashed line for 2SLS-
Mallow, the black, dotted line for 2SLS-F, and the green, dash-dotted line for 2SLS-all.

data generating process (DGP) with β = 0. In this case c is not identified,
and as a consequence the estimates are fairly evenly distributed with the
extreme values somewhat more often selected. The other four graphs show
the estimated ĉ under a DGP with β = 1, in which case c is identified, and
for all instrument selection criteria the ĉ that is estimated most frequently
is now the correct value of 1.64. It can also be seen that the estimation of
ĉ is relatively similar for the instrument selection criteria, although using
all instruments yields marginally better estimates for three out of the four
cases with βi = 1.

The median bias, MAB, and the size and power with estimated ĉ are
reported in Tables 3 and 4. The theoretical results from the literature men-
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tioned above suggest that the point estimates remains consistent but that
the normal approximation of the parameter distribution is no longer valid.
The results reflect this.

The bias under weak instruments is only slightly larger in most cases.
The exception is the bias for the estimators that use all instruments, which
no longer have a smaller bias than the estimations with subset of the in-
struments but are of similar magnitude. Interestingly, the MAB is generally
smaller in the case of estimated c. When the instruments are strong, the
estimates are no longer unbiased even if the bias is small it is now clearly
positive for all estimators and instrument selection methods.

A further interesting result is that the size of the test under weak in-
struments is close to the nominal size. This does, however, not suggest that
the test is now the right one but that the effect of the weak instruments is
in this case counter-acted by deviation from normality. That the test is not
correct is demonstrated by the case of strong instruments, where the results
are similar to the case where c is assumed to be known.

Table 5 reports the results for the three similar tests. The simulation
results in the top panel assume that c is known. The instruments are selected
either using the first-stage F -statistic or all instruments are used. The size
of the test is approximately the correct 5% under all scenarios. The power
of the tests, however, depends crucially on the strength of the instruments.
Under weak instruments, the power of the tests is low, while under strong
instruments the test has good power.

Comparing the instrument selection methods, it appears that the power
of the tests that use the instruments based on the first-stage F -statistic is
slightly higher than that of tests that use all instruments. When comparing
the three similar tests it is apparent that the CLR test and the LM test
have very similar power, whereas the AR test has relatively lower power.
Incoherence of the model reduces the power of all three tests only slightly.

The lower half of the table reports the results with an estimated thresh-
old. Compared to the results of the tests with known c, the size and power
of the tests decreases when instruments are weak. When the instruments
are strong the test is still undersized whereas the power is not affected.

5 Contagion between stock markets

The techniques discussed are now used to test for contagion between the
stock markets in the USA, the UK, and Japan. A first consideration is
the frequency of data to be analysed. Ideally, the frequency would be as
high as possible so that crises observations are not mixed with non-crises
observations. However, it has been established in the literature that financial
variables are very difficult to forecast over short horizons. In order to have
instruments with some power forecastability is important and I will therefore
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Table 3: Median bias and median absolute bias in Monte Carlo, estimated ĉ

α = 0.1 α = 1
β = 0 β = 1 β = 1 β = 0 β = 1 β = 1

πd = 0 πd = 0.5 πd = 0 πd = 0.5

Median bias
OLS 1.012 1.137 1.136 0.783 0.869 0.864

2SLS CV 0.912 1.069 1.036 0.211 0.117 0.122
Mallow 0.919 1.088 1.118 0.250 0.155 0.159
F 1.013 1.193 1.300 0.143 0.005 0.030
all 0.842 1.037 1.044 0.169 0.051 0.074

B2SLS CV 0.939 1.060 1.076 0.325 0.195 0.214
Mallow 1.067 1.079 1.116 0.308 0.192 0.204
F 1.405 1.576 1.577 0.296 0.197 0.209
all 0.966 1.086 1.076 0.355 0.192 0.230

LIML CV 0.921 1.078 1.067 0.207 0.038 0.075
Mallow 0.856 1.032 1.033 0.176 0.047 0.074
F 0.693 1.034 1.011 0.142 0.047 0.063
all 0.706 1.029 1.054 0.118 0.012 0.040

LIMLk CV 0.919 1.088 1.118 0.250 0.155 0.159
Mallow 0.892 1.077 1.051 0.201 0.038 0.075
F 0.799 1.005 1.034 0.159 0.038 0.064
all 0.706 1.029 1.054 0.118 0.012 0.040

Median absolute bias
OLS 1.012 1.137 1.136 0.783 0.869 0.864

2SLS CV 0.953 1.072 1.045 0.322 0.195 0.198
Mallow 0.922 1.088 1.121 0.316 0.208 0.213
F 1.405 1.576 1.577 0.296 0.197 0.209
all 0.988 1.051 1.085 0.294 0.188 0.203

B2SLS CV 0.939 1.060 1.076 0.325 0.195 0.214
Mallow 1.067 1.079 1.116 0.308 0.192 0.204
F 1.405 1.576 1.577 0.296 0.197 0.209
all 0.966 1.086 1.076 0.355 0.192 0.230

LIML CV 0.933 1.078 1.074 0.361 0.196 0.230
Mallow 1.041 1.061 1.099 0.305 0.197 0.208
F 1.311 1.197 1.227 0.307 0.186 0.197
all 1.234 1.211 1.286 0.281 0.202 0.198

LIMLk CV 0.922 1.088 1.121 0.316 0.208 0.213
Mallow 0.975 1.100 1.091 0.362 0.196 0.230
F 1.224 1.185 1.205 0.299 0.187 0.198
all 1.234 1.211 1.286 0.281 0.202 0.198

The threshold c is estimated by minimising the squared errors of 2SLS using all instru-
ments. For the notation see footnote to Table 1.
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Table 4: Size and power in Monte Carlo, estimated ĉ

α = 0.1 α = 1
β = 0 β = 1 β = 1 β = 0 β = 1 β = 1

πd = 0 πd = 0.5 πd = 0 πd = 0.5

OLS 1.000 1.000 1.000 0.986 1.000 1.000

2SLS CV 0.118 0.828 0.760 0.124 0.976 0.978
Mallow 0.194 0.954 0.930 0.136 0.990 0.982
F 0.070 0.510 0.526 0.108 0.910 0.928
all 0.064 0.566 0.500 0.118 0.944 0.946

B2SLS CV 0.124 0.862 0.798 0.138 0.976 0.974
Mallow 0.082 0.644 0.536 0.108 0.946 0.956
F 0.070 0.510 0.526 0.108 0.910 0.928
all 0.044 0.608 0.546 0.108 0.912 0.896

LIML CV 0.058 0.792 0.720 0.114 0.924 0.906
Mallow 0.074 0.648 0.576 0.122 0.950 0.956
F 0.078 0.542 0.480 0.102 0.948 0.950
all 0.080 0.418 0.414 0.112 0.916 0.904

LIMLk CV 0.194 0.954 0.930 0.136 0.990 0.982
Mallow 0.048 0.704 0.622 0.114 0.924 0.908
F 0.064 0.566 0.500 0.118 0.944 0.946
all 0.080 0.418 0.414 0.112 0.916 0.904

See footnote of Table 3.

use quarterly stock market returns.
More precisely, the data are quarterly growth rates of the stock market

indices in the UK, the USA, and Japan on a monthly frequency for the
period between March 1971 and May 2006 as reported in the OECD Main
Economic Indicators. I use the growth rate of industrial production, the
growth rate of the short term interest rate, and the growth rate of the price
of crude oil as explanatory variables. These variables are lagged by four
month to ensure exogeneity. Details of the data are in Appendix B.

The regression equation is

∆sit = α0i + δi∆oil t−4 + α1i∆ipi,t−4 + α2i∆ri,t−4 + βiCit + εit (10)

where ∆ denotes growth rates, sit is the stock market index, oil it is the price
of crude oil, ipit is the index of industrial production, and rit is the short
term interest rate. The contagion index, Cit, is defined in (2).

In the instrumental variable estimations the instruments are

Wit = (∆ipj,t−4,∆rj,t−4, ∆ipl,t−4,∆rl,t−4),
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Table 5: Rejection probability of µ-similar tests in Monte Carlo

α = 0.1 α = 1
β = 0 β = 1 β = 1 β = 0 β = 1 β = 1

πd = 0 πd = 0.5 πd = 0 πd = 0.5

given c

CLR F 0.064 0.120 0.110 0.048 0.766 0.772
all 0.062 0.064 0.054 0.052 0.720 0.694

LM F 0.066 0.130 0.114 0.048 0.752 0.766
all 0.064 0.074 0.062 0.052 0.712 0.688

AR F 0.048 0.102 0.104 0.044 0.598 0.588
all 0.050 0.046 0.058 0.042 0.376 0.334

estimated ĉ

CLR F 0.024 0.098 0.098 0.048 0.756 0.778
all 0.040 0.034 0.056 0.028 0.768 0.734

LM F 0.024 0.108 0.104 0.046 0.746 0.730
all 0.050 0.046 0.054 0.028 0.762 0.730

AR F 0.034 0.074 0.080 0.040 0.602 0.588
all 0.052 0.056 0.072 0.040 0.368 0.328

CLR denotes the conditional likelihood ratio test (Moreira 2003), LM the La-
grange multiplier test of Moreira (2001) and Kleibergen (2002), and AR the
Anderson-Rubin (1949) test. F indicates that the instruments were selected by
the first stage F -test, all that all instruments were used.

where l, j = {UK, USA, Japan}, j 6= l, j, l 6= i, and powers of Wit. The
growth rate of the oil price is common in the regressions for the three stock
markets and can therefore not function as an instrument for the contagion
index.

The crisis thresholds cij and clt were allowed to vary between the coun-
tries,

Cit = I(I(yjt − cij) + I(ylt − cil)) .

for each i, j, and l. The thresholds were estimated by minimising the squared
errors from 2SLS estimations using all instruments, which performed slightly
better than the selection methods in the Monte Carlo experiments. The grid
was chosen such that for each country between 2.5% and 10% of observa-
tions are crisis observations and the grid points were set such that all possible
combination of crises were covered. Alternatively, the thresholds could be
estimated using either one of the instrumental selection methods or a differ-
ent estimator. The results from using these methods are very similar to the
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Table 6: Threshold values

ci,UK ci,USA ci,Japan

UK −6.6 −10.4
USA −11.0 −10.6
Japan −14.0 −6.8
Each row gives the thresholds for the
regression for the respective stock-
market.

one from 2SLS with all instruments and are therefore not reported here.
Table 6 reports the estimated thresholds. The first row gives the thresh-

olds for the US and the Japanese stock markets in the equation for the UK
stock market. Assuming that the contagion index enters the regression equa-
tion significantly, contagion occurs if the US stock markets falls by at least
6.6% or if the Japanese stock market falls by at least 10.4%. The thresholds
for the US and Japanese stock markets are similar in each of the equations
they enter. In contrast, the value of the UK stock market is smaller for
the regression for the US stock market than for the Japanese stock market,
which would imply that a larger fall in the UK stock market is necessary
to cause contagion to the Japanese stock market than to that in the USA.
This could be interpreted as a larger financial distance between the UK and
Japan than the UK and the USA. However, these interpretations are subject
to the finding of a significant contagion coefficient.

Conditional on the thresholds the contagion coefficient was estimated
using OLS, 2SLS, B2SLS, LIML, and LIMLk, with the instruments selected
by the different instrument selection methods. Table 7 reports the results
for the three countries. The OLS estimates are all highly significant with
absolute t-values of 8.909, 6.904, and 8.168, which as discussed above can
be the result of actual contagion as well as contemporaneous correlation.

For the UK stock market, the point estimates vary dramatically between
the estimation methods, which is likely to be a result of the weakness of
the instruments with a maximum first-stage F -test statistic of 3.610. The
parameters are significant for a subset of the estimation methods. However,
as the Monte Carlo experiments showed that the tests are oversized this
finding is therefore not conclusive.

The maximum first-stage F -test statistic is 6.599 for the US stock mar-
ket, which is still well below the level of about 20 achieved in the Monte
Carlo experiments with αi = 1. The point estimates are however all nega-
tive and, except for those where the instruments were selected by the F -test
statistics and B2SLS with all instruments, significant.

The parameters for the Japanese stock market are also all negative but
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Table 7: Results for estimation using stock market data

CV Mallow F all

UK (F = 3.610)
OLS −11.374

(8.909)
2SLS 0.362 0.362 3.571 −14.784

(0.723) (0.723) (0.436) (2.178)
B2SLS −11.703 4.050 6.017 −19.108

(0.894) (0.117) (0.659) (6.356)
LIML −11.151 −11.151 25.563 −12.414

(4.270) (4.270) (1.359) (3.703)
LIMLk −11.153 −11.153 20.293 −12.406

(4.291) (4.291) (1.279) (3.731)

USA (F = 6.599)
OLS −8.552

(6.904)
2SLS −7.852 −7.852 −4.003 −9.688

(3.027) (3.027) (1.011) (2.310)
B2SLS −7.617 −7.617 −3.612 −3.483

(2.556) (2.556) (0.877) (0.649)
LIML −7.295 −7.295 −3.735 −8.472

(2.174) (2.174) (0.921) (4.387)
LIMLk −7.330 −7.330 −3.929 −8.472

(2.213) (2.213) (0.991) (4.409)

Japan (F = 7.490)
OLS −10.278

( 4.850)
2SLS −6.183 −6.183 −6.183 −10.769

(1.083) (1.083) (1.083) (2.191)
B2SLS −10.802 −5.957 −5.957 −11.166

(1.982) (1.014) (1.014) (1.991)
LIML −11.492 −5.715 −5.715 −11.492

(1.919) (0.946) (0.946) (1.919)
LIMLk −11.426 −5.846 −5.846 −11.426

(1.938) (0.984) (0.984) (1.938)
The threshold value, ĉ, was estimated by minimising the
squared errors of the regression equation with parameters
estimated by 2SLS using all instruments. For notation see
the footnote of Table 1.
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Table 8: Results for similar tests using stock market data

F all
UK USA Japan UK USA Japan

CLR 1.601 0.700 2.671 0.154 2.627 1.488
(3.930) (3.710) (3.710) (3.845) (3.710) (3.545)

LM 1.577 0.700 2.669 0.150 2.606 1.479
(3.841) (3.841) (3.841) (3.841) (3.841) (3.841)

AR 3.015 0.481 1.249 3.553 1.521 1.675
(2.372) (2.372) (2.372) (1.517) (1.517) (1.517)

The table reports the statistic for the stock market data with the critical values
in brackets in the row below. ĉ was estimated by minimising the squared errors
of Equation (1) using 2SLS using all powers. For notation see the footnote of
Table 5.

only significant for 2SLS with all instruments and B2SLS for the instru-
ments selected minimising the MSE using cross-validation and all instru-
ments. While still small in absolute terms, the first-stage F -test statistic is
the highest among the three stock markets at 7.490.

Table 8 reports the results of the similar tests. The table gives the results
from using the instruments selected with the first stage F -test on the left
hand side and the results obtained using all instruments on the right hand
side. For each test the statistic is reported in the top line and the critical
value in brackets below.

The CLR-test and the LM-test cannot reject the null of no contagion for
all markets and instrument selection methods. The AR-test rejects the null
of no contagion for the UK stock market using the instruments suggested by
the first stage F -test, and for all markets using all instruments. However,
given that in the Monte Carlo experiments the size and power properties of
the tests have been demonstrated to be poor, the results cannot be given
much weight.

Based on the evidence from the instrumental variables test the case for
contagion is a weak one. However, this may as much be due to the weakness
of the instruments, and therefore implicitly due to the well known difficulty
to forecast the stock market even over longer horizons.

6 Conclusion

This paper considers the estimation of a contagion coefficient, where the
contagion index in the canonical model of Pesaran and Pick (2007) is en-
dogenous. A number of issues arise that need to be addressed. The first issue
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is the quality of the estimates obtained from instrumental variable estima-
tors under weak instruments. Monte Carlo experiments suggest that weak
instruments can lead to serious bias and incorrect inference when standard
instrumental variable techniques are used. New robust tests do, however,
have the correct size even if instruments are weak.

Second, the canonical model of contagion is incoherent. Finally, the
canonical model of contagion contains a parameter that is only identified
under the alternative hypothesis, which has implications for the distribution
of the contagion parameter. Monte Carlo experiments indicate that standard
tests are not overly affected by these issues and that the strength of the
instruments remains the key to valid inference.

Contagion was then tested using stock market data from the UK, the
USA, and Japan. Tests based on OLS, i. e. without correction for the en-
dogeneity of the contagion index, are highly significant, which mirrors the
results in the empirical literature on financial contagion. Using the instru-
mental variable methods the results are mixed, which may largely be at-
tributed to the weakness of the instruments. However, financial variables
are known to be difficult to forecast and strong instruments are therefore
difficult to find. Future research will hopefully fill this gap and supply in-
struments that can successfully be used in tests of contagion.
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A Appendix: Reduced form for N > 2

When N = 3 and using definition (2) of the contagion index, the system of
equations is

y1t = α′1x1t + β1I(I(y2t > c2) + I(y3t > c3)) + u1t,

y2t = α′2x2t + β2I(I(y1t > c1) + I(y3t > c3)) + u2t,

y3t = α′3x3t + β3I(I(y1t > c1) + I(y2t > c2)) + u3t,

which can be written equivalently as

Y1 = W1 + I(I(Y2) + I(Y3)), (11)
Y2 = W2 + I(I(Y1) + I(Y3)), (12)
Y3 = W3 + I(I(Y1) + I(Y2)), (13)

where Yi = yit−ci

βi
, Wi = wit−ci

βi
, and wit = α′ixit + uit, i = 1, 2, 3, and the

time subscript has been suppressed for simplicity of notation.
Given that the system of equations (11) through (13) is symmetric, the

reduced form will take the same form for each country and attention can be
restricted to Y1. The reduced form consists of the following subcases.

[A] if W2 > 0 and/or W3 > 0, then Y1 = W1 + 1;

[B] if W2 ≤ −1 and W3 ≤ −1, then Y1 = W1;

[C,D,E] if W2 ≤ −1 and −1 < W3 ≤ 0, then the system becomes

Y1 = W1 + I(I(Y3))
Y2 = W2 + I(I(Y1) + I(Y3)) ≤ 0
Y3 = W3 + I(I(Y1));

and Y2 is not important for the solution of Y1. The system reduces to
a two equation system for Y1 and Y3. For the solution here regions B,
D, and E in Equation (4) are relevant;

[F,G,H] if −1 < W2 ≤ 0 and W3 ≤ −1, then the solution is symmetric to
the case above (C,D,E) as Y3 is unimportant for the solution of Y1,
and the system reduces to a two equations system for Y1 and Y2;

[I,J,K] if −1 < W2 ≤ 0 and −1 < W3 ≤ 0 has three sub-cases

[I] if W1 > 0, then Y1 = W1 + 1;

[J] if −1 < W1 ≤ 0 then this is the three country equivalent of the
two country case with no unique solution, and Y1 = dJW1 + (1−
dJ)(W1 + 1), where dJ is a selection parameter as in the case of
two countries discussed in Section 2;
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Table 9: Sources of the data

Variable Country Data series
Stock market index UK FT Ordinary ind. share price (MEI)

USA NYSE Composite (MEI)
Japan TSE Topix all shares (MEI)

Short interest rate UK T-bill rate (IFS: 60C)
USA T-bill rate (IFS 60C)
Japan Lending rate (IFS: 60P)

Industrial production UK not seasonally adj.(IFS: 66)
USA not seasonally adj.(IFS: 66)
Japan not seasonally adj.(IFS: 66)

Oil price Average crude price (IFS: 176)
MEI indicates series taken from the OECD’s Main Economic Indicator data base
and IFS series taken from the IMF’s International Financial Statistics data base,
which are given with their respective codes.

[K] if W1 ≤ −1 then the system is still not unique as equations (12)
and (13) reduce to the two country system with no unique solu-
tion, i. e. region E in Equation (4). Hence, Y1 = dKW1 + (1 −
dK)(W1 + 1).

A system with N = 4 can be solved similarly for country i by considering
the cases where at least one Wj > 0, j 6= i, the case where all Wj ≤ −1, and
the other cases can then be reduced to the system with N = 3 or solutions
that are not unique. Systems with any N can be solved recursively this
way.

B Appendix: The data

The stock market indices are taken from the OECD Main Economic Indica-
tors data base and the explanatory variables from the IMF’s International
Financial Statistics data bases with details given in Table 9. For the share
price I take the time series available from the OECD Main Economic In-
dicator data base, and in the case of the UK, the longer of the two time
series. The short rate is the 3-month T-bill rate. In the case of Japan the
T-bill rate is not available and I take the lending rate, which unlike other
Japanese interest rates is not zero in the deflation period in the 1990’s—in
that case the growth rate would not be defined. Industrial production is
taken non-seasonally adjusted to avoid problems of endogeneity. The oil
price is the average crude oil price.
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Table 10: ADF test statistics

Variable UK USA Japan
Stock market index 6.313 5.816 5.314
Industrial prod. 6.115 4.257 4.427
Short rate 6.452 3.832 6.391
Oil price 6.049
Each variable is in growth rates, and the absolute
test statistic of Augmented Dickey-Fuller (ADF)
test are reported, where the optimal lag length was
determined using AIC.

The data are transformed into growth rates

∆xt =
xt − xt−l

xt−l
,

where xt is the variable in levels and l is 3 for the stock market index, the
short rate and oil prices and 12 for industrial production. The annual growth
rate for industrial production is necessary in order to eliminate seasonal
variation in industrial production, which is not present in the other time
series.

Table 10 contains the results testing for a unit root in the data using
the ADF test (Dickey and Fuller 1979), where the optimal lag length was
determined using AIC. The results show that a unit root can clearly be
rejected for all the time series.

24



References

Amemiya, Takeshi (1977) ‘The maximum likelihood and the nonlinear three-
stage least squares estimator in the general nonlinear simultaneous equa-
tion model.’ Econometrica 45(4), 955–968.

Anderson, T. W., and H. Rubin (1949) ‘Estimation of parameters of a single
equation in a complete set of stochastic equations.’ Annals of Mathemat-
ical Statistics 21, 570–582.

Andrews, Donald W. K., and James H. Stock (2006) ‘Inference with weak
instruments.’ In Advances in Economics and Econometrics: Theory and
Applications: Ninth World Congress of the Econometric Society, Vol. III,
ed. Richard Blundell, Whitney K. Newey, and Torsten Persson (Cam-
bridge: Cambridge University Press).

Andrews, Donald W. K., and Werner Ploberger (1994) ‘Optimal tests when
a nuisance parameter is present only under the alternative.’ Econometrica
62(6), 1383–1414.

Bae, Kee-Hong, G. Andrew Karolyi, and René Stulz (2003) ‘A new approach
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