Investeringen en kredietbeperking

Prof. Dr. H. van Ees, Prof. Dr. J.H. Garretsen, Dr. L. de Haan en Prof. Dr. E. Sterken

1 Inleiding

Modigliani en Miller (1958) hebben bewezen dat, indien onder andere kapitaalmarkten perfect werken, de waarde van de onderneming louter bepaald wordt door de gerealiseerde investeringen, waarbij de wijze van financiering irrelevant is. Sindsdien heeft een stroom van theoretische artikelen laten zien dat de veronderstelling van een perfect werkende kapitaalmarkt te ver voert om empirisch bezien van nut te zijn.2 Indien er bijvoorbeeld belastingen geheven worden die discrimineren tussen de verschillende financieringsbronnen waaruit de onderneming kan kiezen, of als de emissie van aandelen of obligaties gepaard gaat met transactiekosten, of als bedrijven niet kosteloos het leven zien of geliquideerd worden, doet deze veronderstelling geen opgelend meer. De moderne financieeltheorie hecht in dit kader veel belang aan het bestaan van kapitaalmarktmiskeneties die samenhangen met het optreden van asymmetrische informatie tussen de verschillende vragers en aanbieders op de kapitaalmarkt. In de praktijk is de beschikbare informatie ongelijk verdeeld over alle marktpartijen. Bedrijven hebben bijvoorbeeld meer informatie over het te financieren investeringsproject dan de externe vermogensverschaffers. De literatuur over het optreden van asymmetrische informatie laat zien dat dan diverse problemen (door ‘adverse selection’ en/of ‘moral hazard’) kunnen ontstaan, waardoor externe aangetrokken kapitaal duurder is dan intern verkregen financieringsmiddelen. Dit verklaart waarom veel bedrijven zich nauwelijks op de openbare kapitaalmarkt vertonen, zich bij voorkeur met interne middelen bekostigen, en hun investeringsactiviteit aldus afstemmen op de beschikbare winst.3

Sommige bedrijven zullen meer dan andere worden geconfronteerd met problemen van asymmetrische informatie op de kapitaalmarkt. Om deze categorieën bedrijven te identificeren, wordt gebruikgemaakt van gegevens van bedrijfsniveau (in de vorm van een ‘panel’). In de gangbare literatuur over de analyse van de invloed van kapitaalmarktbepalingen op het investeringsverdrag met behulp van panelgegevens worden twee methoden aangetroffen. De eerste methode, die is gevolgd door onder anderen Fazzari, Hubbard en Petersen (1988), bestaat uit het schatten van een gereduceerde-vorminvesteringsvergrijking waarbij als verklarende variabelen, naast Tobins Q, een aantal financiële grootheden (zoals de cashflow) wordt opgenomen. Volgens de uitkomsten van deze studies is de ontwikkeling van de investeringen overgevoelig voor cashflowfluctuaties. Dit hangt samen met het feit dat bedrijfssinvesteringen voornamelijk met interne middelen worden bekostigd. Van Ees en Garretsen (1994) bijvoorbeeld hebben de gereduceerde-vormbenedering toegepast op een panel van circa honderd

Prof. Dr. H. van Ees is directeur van het Universitaire Basis Onderwijs aan de economische faculteit van de Rijksuniversiteit Groningen.

Prof. Dr. J.H. Garretsen is als hoogleraar Economische theorie en economisch beleid verbonden aan de vakgroep Toegepaste Economie van de faculteit Beleidswetenschappen van de Katholieke Universiteit Nijmegen.

Dr. L. de Haan is werkzaam bij de afdeling Monetair en Economisch Beleid van De Nederlandsche Bank.

Prof. Dr. E. Sterken is verbonden aan de vakgroep Macroeconomie van de economische faculteit van de Rijksuniversiteit Groningen en tevens hoogleraar-directeur van het Landelijk Netwerk Bedrijfseconomie.

In dit artikel beproeven wij de structurele-modelbenadering voor Nederland. Daarbij wordt gebruikgemaakt van een panel waarin niet alleen beursgenoteerde maar ook niet-beursgenoteerde industriële bedrijven zitten. Wij vergelijken de aanpassing van een standaard neo-klassieke Euler-investeringsvergelijking, die uitgaat van een perfecte werking van de kapitaalmarkt, met die van een aangepaste versie waarin rekening wordt gehouden met kredietbeperking.

De opzet van dit artikel is als volgt. Paragraaf 2 bespreekt in globale termen het investeringsmodel. Meer gedetailleerde en technische informatie over het model te vinden in een drielijns box. Paragraaf 3 beschrijft de gebruikte data. Paragraaf 4 presenteert de schattingresultaten, waarna paragraaf 5 afsluit met de conclusies.

2 Het investeringsmodel

Het investeringsmodel veronderstelt dat de onderneming haar waarde voor de aandeelhouders maximaliseert, die gelijk aan de contante waarde van de toekomstige dividenduitkeringen. Zowel de investeringsuitgaven als de dividenden worden bekostigd uit de netto winst, eveneens aangevuld met een beroep op schuldfinanciering. De onderneming kiest dus onder andere een optimale omvang voor de kapitaalgoederenvoorraad en voor de schuld. Investeren gaat gepaard met kosten: de aankoop van de investeringsgoederen en de installatiekosten die nodig zijn om de kapitaalgoederen te implementeren. Tegenover deze kosten staan opbrengsten, namelijk de extra omzet die na de nieuwe investeringen kan worden gegenereerd. Het draait om de keuze van het moment van investeren:

investeren in dit jaar of in het volgende jaar. De optimale investeringsomvang wordt gevonden indien het saldo van de marginaal kosten en marginale opbrengsten van investeren in het huidige jaar en van investeringsuitstel tot het volgende jaar aan elkaar gelijk zijn. Dit kan wiskundig worden weergegeven door middel van de Euler-investeringenvergelijking (zie kader 1).

In het kader van het onderhavige onderzoek gaat het met name om de disconteringsfactor waarmee de marginaal opbrengsten en kosten van investeringen contant worden gemaakt. In het model met een perfect werkende kapitaalmarkt is deze gewogen disconteringsfactor een functie van de marktrentetevoet, die voor alle bedrijven een gegeven is (kader 2 op pag. 560). Met andere woorden, indien er geen kredietrestricties zijn, rolt uit dit model dat ieder bedrijf een identieke afweging maakt tussen investeren vandaag en investeren morgen. De disconteringsfactor verandert indien sommige bedrijven meer dan andere geconfronteerd worden met financiële beperkingen. Een bedrijf dat tegen zijn kredietlimiet aan zit, zal de toekomstige opbrengsten van investeringen zo waarder disconteren, dus minder hoog waarderen, dan een bedrijf dat nog kredietruimte over heeft. De mate waarin een bedrijf hinder heeft van financiële beperkingen drukt zich derhalve uit in een hogere disconteringsvoet en een kleinere omvang van de investeringen in de huidige periode (zie kader 2).

De sleutel tot de empirische meting van de invloed van financiële beperkingen op de bedrijfsinvesteringen ligt dus in de disconteringsvoet die de bedrijven hanteren bij het contant maken van toekomstige opbrengsten. Over het algemeen zal een bedrijf dat een groter financieel risico vormt op de kapitaalmarkt ook geconfronteerd worden met een hogere risicopremie op de risicovrije marktrentevoet. De te volgen strategie om te bepalen of bedrijven bij hun investeringen geconfronteerd worden met kredietbeperkingen is nu als volgt. Eerst schatten wij het Euler-model waarbij voor elk bedrijf de marktrentevoet wordt ingevuld voor de disconteringsvoet: er wordt dus uitgegaan van een perfect werkende kapitaalmarkt. Vervolgens wordt onderzocht of de schatting verbetert indien bedrijfsspecifieke rentevoeten worden ingevuld in plaats van de marktrentevoet.

De empirische specificatie van het model vereist
Kader 1: Het neo-klassieke Euler-investeringsmodel

De basisveronderstelling is dat arbitrage op perfect werkende kapitaalmarkten ervoor zorgt dat de verwachte en de vereiste rendementen voor de aandeelhouders aan elkaar gelijk zijn. In dat geval kan het door de aandeelhouders vereiste rendement gedefinieerd worden als het verwachte koers- plus dividendrendement:

$$ R_i = \frac{E_i[V_{i+1}]}{V_o} - \frac{E_i[d_{i+1}]}{V_o} $$

waarbij de verwachtingsoperator $E_i[.]$ aangeeft dat het om een verwachte waarde voor de volgende periode gaat, d de dividenduitkering is, V de beurswaarde weergeeft, en de subscripts i en t het bedrijf respectievelijk de periode aanduiden. De ondernemingsleiding maximaliseert de waarde van de onderneming, die op basis van vergelijking (1) herschreven kan worden als de contante waarde van alle toekomstige dividenden:

$$ V_o = E_i[\sum_{t=t+1}^{T} \frac{d_t}{(1+R_i)}] $$

waarbij Π de productoperator is en $\beta_i = 1/(1+R_i)$ de samengestelde discountingsfactor. De dividenduitkering is datgene dat overblijft na betaling van lonen, belasting en rente en de uitgave aan nieuwe investeringen, evenwel aangevuld met veeleigen tekortkomingen:

$$ d_t = (1-\tau)[F(K_t, L_t, \lambda_t) - w_f l_t - G(U_t, K_t, \lambda_t)] + B_t - (1-\pi\tau)B_{t+1} - p_t \beta_i $$

waarbij τ het tarief van de vennootschapsbelasting is, $F(.)$ de omzet als functie van de kapitaalgoederenvoorraad K en arbeidsinzet L, w_f de loonskost, λ de nominale kosten van veeleigen vermogen, B de uitstaande schuld, en π de verwachte inflatie. I, de reële investering, gaat gepaard met twee soorten uitgaven: de aankoopkosten van de kapitaalgoederen, tegen de investeringsprijs p^*, en de installatiekosten, in dit model weergegeven als een functie $G(.)$ van de investering en de kapitaalgoederenvoorraad. In vergelijking (3) wordt verondersteld dat kapitaal pas na één periode productief is, Installatiekosten en rentebetalingen hebben betrekking op de kapitaalgoederenvoorraad respectievelijk de schuldomvang uit de vorige periode. De opbouw van de kapitaalgoederenvoorraad verloopt volgens de gebruikelijke identiteit:

$$ K_t = I_t + (1-\delta)K_{t+1} $$

waarbij δ de economische afschrijvingsvoet is. Onder de beperking dat dividenden nooit negatief kunnen zijn en de onderneming niet oneindig mag lenen om dividend uit te kunnen blijven keren, kan dit optimalisatieprobleem betrekkelijk eenvoudig worden opgelost. Voor de optimale omvang van de kapitaalgoederenvoorraad luidt de eerste-ordervoorwaarde:

$$ \lambda_i E_i \left[\left(\frac{1+\lambda_{i+1}}{1+\lambda_i} \right) (I_{i+1} E_i(K_{i+1}, L_{i+1}) - G_i(U_{i+1}, K_{i+1}) + (1-\delta)(G_i(U_{i+1}, K_{i+1} + p_t^*) / (1+\delta)) \right) = G_i(U_t, K_{i+1}) + p_t^* / (1+\delta) $$

waarbij subscripten K en I eerste afgeleiden naar de kapitaalgoederenvoorraad respectievelijk de investeringen aanduiden. λ is de Lagrangiaanse multiplier die verbonden is aan de beperking dat dividenden nooit negatief kunnen zijn. Conditie (5) staat bekend als de Euler-investeringsvergelijking. Deze versie is 'neo-klassiek' vanwege de inherente veronderstelling van perfecte kapitaalmarkten. De rechterkant van (5) staat voor de kosten van investeren in periode t: de marginale aankoopprijs plus installatiekosten. De linkerkant toont de alternatieve kosten bij uitstel van de investering tot de volgende periode $t+1$: de gemiste marginale opbrengst van de nieuwe investering in periode t plus de contante waarde van de aankoop- en installatiekosten in periode $t+1$.

NOVEMBER 1997 MAB 559
Kader 2: Disconteringsfactor en kredietbeperkingen

Een belangrijk element in de Euler-vergelijking (5) is de verhouding tussen de schaduwprijs van dividenden in de huidige respectievelijk de volgende periode \((1+\lambda_{r})/(1+\lambda_{s})\), waarmee de ‘opportunity costs’ van investeringsuitstel worden gewogen. Hiervoor biedt de eerste-ordevoorwaarde voor het optimale schuldniveau meer informatie:

\[
\beta_{r}E_{t}[\frac{1+\lambda_{r}t}{1+\lambda_{s}}] = \frac{1}{1+(1-\tau)(1-\eta)}
\]

(6)

Het blijkt dat de gewogen disconteringsfactor in het neo-klassieke model, gegeven de impliciete veronderstelling van risiconeutraliteit, een functie is van de marktrentevoet \(r\). Aangezien deze voor elk bedrijf dezelfde is, blijkt hieruit de belangrijke constatering dat de disconteringsfactor in het neo-klassieke model voor ieder bedrijf gelijk is. Dit ligt echter anders indien sommige bedrijven meer dan andere geconfronteerd worden met financiële beperkingen. Dit kan als volgt worden geïllustreerd.

Stel dat bedrijven te maken hebben met een kredietlimiet, \(B_s < B^*_s\). Dan wijst de eerste-ordevoorwaarde voor de schuld in:

\[
\beta_{r}E_{t}[\frac{1+\lambda_{r}t}{1+\lambda_{s}}] = \frac{1-\chi_{r}}{1+(1-\tau)(1-\eta)}
\]

(7)

waarbij \(\chi_{r}\) de Lagrangiaanse multiplier is die hoort bij de kredietbeperking. Voor een bedrijf dat tegen zijn kredietlimiet aan zit, is die hoger dan voor een bedrijf dat nog kredietruimte over heeft. Dat betekent dat bij kredietbeperking toekomstige opbrengsten zwaarder disconteerd worden dan zonder kredietbeperking. De mate waarin een bedrijf hinder heeft van financiële beperkingen drukt zich derhalve uit in een hogere disconteringsvoet en daarmee in lagere investeringen in de huidige periode.

nog een aantal veronderstellingen met betrekking tot de vorm van de productiefunctie, de concurrentiegraad op de goederenmarkt en de aard van de installatiekosten. Deze worden opgesomd in kader 3. Het zijn geen belangrijke veronderstellingen uit het oogpunt van de modellering van financiële beperkingen, maar ze zijn nodig om de empirische uitwerking van het model overzichtelijk te houden. Zo wordt verondersteld dat er sprake is van onvolledige concurrentie op de goederenmarkt, waardoor bedrijven hun prijzen zetten door middel van een opslag of mark-up op de gemiddelde kosten. Dit resulteert in een mark-up-parameter \(\mu\) in het model. Verder wordt voor de installatiekosten van de investeringsgoederen een in de literatuur vaak beproefde functie geanalyseerd, die twee extra te schatten parameters oplevert: de installatiekostenparameter \(\alpha_{c}\) respectievelijk constante \(\alpha_{s}\). Er zijn derhalve drie structurele parameters te schatten (zie kader 3).

3 Data

Het door ons gebruikte paneldatabestand is opgebouwd uit microgegevens uit de jaarlijkse sfgo-enquete van het Centraal Bureau voor de Statistiek (cbs). Het CBS consolideert cross-holdings, zodat de bedrijfseenheden in het panel een goede afspiegeling vormen van de beslissingseenheden. Wij selecteerden 427 bedrijven uit de verwerkende industrie waarvoor data beschikbaar waren voor de hele steekproefperiode 1983-1992. In paneldatustudies naar investeringsgedrag wordt meestal alleen naar de industrie gekeken teneinde een redelijk homogeen groep bedrijven qua kapitaalintensiteit en investeringsgedrag te verkrijgen. De kwaliteit en representativiteit van de sfgo-bestanden zijn goed, dankzij de nagenoeg volledige afwezigheid van non-response en de intensieve kwaliteitsbewaking door het CBS. De financiële opstelling is vrij gedetailleerd. Zo geeft sfgo tekenen bronnen van veranderingen in de boekwaarde van vaste activa, hetgeen een vrij accurate definitie van de kasuitgaven aan investeringen in kapitaalgoederen mogelijk maakt. De informatie in de dataverzameling stelt ons bovendien in staat om de bedrijfsspecifieke kostenvoeten van vreemd vermogen te benaderen door voor elk bedrijf te bepalen welk percentage de rentelasten in een bepaald jaar.
Kader 3: Aanvullende veronderstellingen ten behoeve van empirische specificatie

De empirische meting van de invloed van financiële beperkingen op de bedrijfsinvesteringen geschiedt aan de hand van de disconteringsvoet die de bedrijven hanteren bij het contant maken van toekomstige opbrengsten. Daartoe substitueren we de waargenomen rentevoeten van vreemd vermogen van de bedrijven i, in voorwaarde (7) voor de niet-waarnembare γᵢ, zodat de disconteringsfactor in principe in meetbare grootten luidt:

\[\frac{1 - \gamma_i (1 + \lambda_i)}{1 + (1 - \tau)^i \cdot \pi_i'} = \frac{1}{1 + (1 - \tau)^i \cdot \pi_i'} \]

waarbij \(i = i_t \) alleen geldt als \(\gamma_i = 0 \). Er wordt onvolledige mededeling verondersteld. Een bedrijf dat wordt geconfronteerd met een prijsselasticiteit van de vraag \(e_p \) heeft als markups:

\[\mu = \frac{1}{e_p} \cdot \frac{1}{1 - e_p} \]

We houden er rekening mee dat zich schaalvoordelen kunnen voordoen. In dat geval is de marginale productiviteit van kapitaal gelijk aan:

\[F_d(K_{i, t}, L_{i, t}) = \eta \frac{Y_{i, t} \cdot \mu c_{i, t}}{K_{i, t}} \]

waarbij \(\eta \) de schaalparameter en \(C_{i, t} \) de variabele kosten zijn. Wij hebben geëxperimenteerd met zo'n schaalparameter maar kregen implausibele uitkomsten. Wij concludeerden, met Hubbard, Kashyap en Whited (1995), dat de data slechts een schatting mogelijk maken van een gezamenlijke parameter voor de markup en schaalfactoren. Derhalve werd bij de schatting \(\eta \) hooggedwongen op 1 gesteld waardoor eventuele schaalfactoren vanzelf terecht komen in \(\mu \). Schaalvoordelen leiden tot een onderschatting van \(\mu \).

Voor de installatiekostenfunctie wordt de volgende, door Whited (1995) voorgestelde, functie gehanteerd:

\[G(n, K) = (n_0 + \sum_{\eta=1}^{\infty} \frac{1}{\eta} \cdot n_\eta \cdot K_{\eta}) K_i \]

Experimenten tonden aan dat een tweede-derdebenadering \((M=2) \) voldoet, zodat de gekozen functie eigenlijk neerkomt op de bekende kwadratische installatiekostenfunctie van Summers (1981).

Substitutie van (8), (10), (11) in (5) levert uiteindelijk onze empirische specificatie van de Euler-investeringsvergelijking op:

\[\frac{1}{1 + (1 - \tau)^i \cdot \pi_i'} \cdot \mu \frac{c_{i, t}}{K_{i, t}} + \frac{\alpha_1}{2} \left(\frac{1}{\pi_i'} \right)^2 + \frac{2\alpha_2}{\alpha_1} + \frac{\alpha_3 (1 - \delta) \cdot \frac{1}{\pi_i' \cdot K_{i, t}}}{K_{i, t}} + (1 - \delta) \frac{p_{i, t}'}{K_{i, t}} - \frac{\alpha_4}{1 - \tau} \cdot \frac{1}{K_{i, t}} - \frac{\alpha_5}{1 - \tau} \cdot \frac{1}{K_{i, t}} \]

\[f_i + \tau_i = e_{i, i+1} \]

Zoals gebruikelijk bij paneldata-analyse, introduceren wij met de termen \(f_i \) niet-waarnembare bedrijfsspecifieke effecten. Dit zijn bedrijfsspecifieke constanten die rekening houden met het feit dat de gemiddelde waarden van de modellvariabelen tussen de bedrijven uiteenlopen. De jaarrechten, term \(s_{i, t} \), dient hetzelfde voor de verschillen tussen jaren en vangt derhalve eventuele macro-economische, conjuncturele factoren op. De bedrijfseffecten houden rekening met de mogelijkheid dat de waargenomen verschillen in risicopremies tussen bedrijven niet louter veroorzaakt worden door financiële risico's, maar deels ook door bedrijfsspecifieke risico's. Het bedrijfsrisico is in eerste instantie gerelateerd aan de variabiliteit van de omzet. Voorzover deze variabiliteit constant is in de tijd zal dit bedrijfseffect worden geneutraliseerd, omdat wordt geschat in eerste verschillen. Bovendien wordt, voorzover het bedrijfsrisico varieert in de tijd, met die variatie rekening gehouden door jaarrechten mee te schatten (zie ook Whited, 1992, p. 1449). Ten slotte is \(e_{i, i} \), de storingsterm.

Vergelijking (12) is het model met kredietbeperking. De neo-klassieke modelversies, dus zonder kredietbeperkingen, is het speciale geval van (12) waarvoor geldt dat de disconteringsvoet voor ieder bedrijf gelijk is aan de marktrente: \(i = i_t \). De te schatten structurele parameters zijn \(\mu \) en \(\alpha_0 \), de markups parameter respectievelijk de installatiekostenparameter, alsmede parameter \(\alpha_0 \) in het model met kredietbeperking.
uitmaken van de in dat jaar gemiddeld uitstaande rentedragende schuld. De aldus verkregen bedrijfsspecifieke kostenvoeten zullen bij het schatten van het model met kredietbeperking dienen als bedrijfsspecifieke disconteringsvoeten. Ter vergelijking schatten wij ook het neo-klassieke model met voor de marktrentevoet het rendement op middellange overheidsobligaties. De data-appendix in Van Ees et al. (1996) geeft nadere details over de data en de constructie van de modelvariabelen. Onze steekproef bevat niet alleen hele grote bedrijven, maar ook middelgrote (vanaf een balanstotaal van tien miljoen gulden). De meerderheid (80%) van de bedrijven is een besloten vennootschap (BV) (zie tabel 1). Deze zijn kleiner dan naamloze vennootschappen (NV's). De mediaanwaarde van de kapitaalgoederenvoorraad van de NV's is vier tot vijf keer zo groot als van BV's. Verder valt op dat BV's minder dividend uitkeren dan NV's.

4 Resultaten

4.1 Hele steekproef

Tabel 2 presenteert de schattingsergebnissen voor zowel het neo-klassieke model als het model met kredietbeperking. De geschatte waarden van de parameters van het neo-klassieke model zijn vrij plausibel. White (1992) vindt vergelijkbare waarden. De schatting voor de installatiekostenparameter impliceert dat de installatiekosten gemiddeld 12% van het totale investeringsbedrag omvatten. Dit verhoudt zich goed tot de 10% die White (1992) vond voor de VS. De gevonden waarde voor de markup is weinig groter dan 1 wat zou impliceren dat de vraagelasticiteit vrij hoog is, maar het is niet uitgesloten dat schaaleffecten er doorheen spelen omdat de parameter voor de markup ook een weergave is van mogelijke schaaleffecten (zie kader 3).

Maar het gaat ons vooral om de vraag of het model lijk onder de veronderstelling van een identieke disconteringsvoet voor alle bedrijven. Hoewel de Sargent-toets, die gebruikt wordt om eventuele misspecification op te sporen, erop duidt dat het model niet hoeft te worden verworpen (bij 95% betrouwbaarheid), gaan wij vervolgens na of het model significant verbeterd kan worden door de mogelijkheid van financiële restricties open te laten. De tweede kolom van tabel 2 geeft de resultaten voor het model met kredietbeperking. De Sargent-toets indicere een betere aanpassing van het aangepaste model in vergelijking tot het neo-klassieke model. De waarden van de geschatte

<table>
<thead>
<tr>
<th>Tabel 1: Beschrijvende statistieken</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aantal bedrijven</td>
</tr>
<tr>
<td>-----------------------</td>
</tr>
<tr>
<td>Investeringsovert</td>
</tr>
<tr>
<td>gemiddeld</td>
</tr>
<tr>
<td>mediaan</td>
</tr>
<tr>
<td>Cashflow/kapitaal</td>
</tr>
<tr>
<td>gemiddeld</td>
</tr>
<tr>
<td>mediaan</td>
</tr>
<tr>
<td>Kapitaalgoederenvoorraad (mln gld)</td>
</tr>
<tr>
<td>gemiddeld</td>
</tr>
<tr>
<td>mediaan</td>
</tr>
<tr>
<td>Schuldquote</td>
</tr>
<tr>
<td>gemiddeld</td>
</tr>
<tr>
<td>mediaan</td>
</tr>
<tr>
<td>Payout ratio</td>
</tr>
<tr>
<td>gemiddeld</td>
</tr>
<tr>
<td>mediaan</td>
</tr>
<tr>
<td>Rentedekking</td>
</tr>
<tr>
<td>gemiddeld</td>
</tr>
<tr>
<td>mediaan</td>
</tr>
<tr>
<td>Bron: Eigen berekeningen met behulp van microgegevens van het CBS.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tabel 2: GMM-schattingen van de Euler-investeringsvergelijking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neo-klassieke model</td>
</tr>
<tr>
<td>-------------------------</td>
</tr>
<tr>
<td>(\mu) (markup)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>(\alpha_1) (installatiekosten)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>(\alpha_0) (constante)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Sargant-toets ((\chi^2))</td>
</tr>
<tr>
<td>Vrijheidsgraden</td>
</tr>
<tr>
<td>(p)-waarde</td>
</tr>
<tr>
<td>Aantal bedrijven</td>
</tr>
</tbody>
</table>

\(p \)-waarden (tussen haakjes) zijn berekend op basis van Robust-White heteroscedastisch-constante schatters met behulp van een eerste-orde autocorrelatieschema. Alle jaarffecten (niet afgedrukt) zijn significant op het 5%-niveau.

\(^1\) Bij het neo-klassieke model wordt deze constante meegeteld in de jaarffecten.
parameters zijn weinig veranderd. De voornaamste conclusie op basis van deze schattingsresultaten is dat het model dat rekening houdt met financiële knelpunten het investeringsgedrag van de Nederlandse bedrijven in onze steekproef beter beschrijft dan het neo-klassieke investeringsmodel. Dit betekent dat (sommige) bedrijven bij hun investeringen geconfronteerd worden met schuldbeperkingen.

Als het neo-klassieke model het investeringsgedrag minder nauwkeurig beschrijft dan het model met een kredietbeperking, impliceert dit dat de disconteringsvoeten van de bedrijven verschillen ten gevolge van ongelijke financiële risico’s. Figuur 1 toont de gemiddelde kostenvoet op rentedragend vreemd vermogen voor elk van de 427 bedrijven uit de steekproef, gerangschikt van laag naar hoog. Tot het 70e percentiel is de kostenvoet vrij constant, circa 10%. Gegeven een gemiddeld rendement op staatsobligaties van 8% in deze periode, impliceert dit een risicopremie van ongeveer 2%.12 De bedrijven tussen het 70e en 100e percentiel betalen echter veel hogere, soms extreem hoge, rentevoeten op vreemd vermogen, hetgeen suggereert dat met name deze bedrijven (een derde van het totaal) geconfronteerd kunnen zijn geweest met kredietbeperkingen.13 Een hoge risicopremie wordt indicatief geacht voor problemen ten gevolge van asymmetrische informatie, omdat wij in de schattingsmethode corrigeren voor bedrijfsspecifieke en conjuncturale factoren (kader 3 op pag. 561).

4.2 Schattingen voor groepen

Om na te gaan welke typen bedrijven relatief veel hinder ondervinden van financiële beperkingen, schatten wij het model met schuldbeperking nogmaals voor verschillende groepen bedrijven uit onze steekproef. De groepen worden samengesteld op basis van een aantal bedrijfskenmerken, die als indicatief kunnen worden beschouwd voor de waarschijnlijkheid dat een bedrijf last heeft van financiële beperkingen. Tot dusver werd daartoe veelal gebruik gemaakt van indicatoren zoals de dividend-payout ratio (bijvoorbeeld Fazzari et al., 1988), de bedrijfsmarge of de schuldschuld c.q. rentedekking (bijvoorbeeld Whited, 1992). Een lage dividend-payout ratio wordt traditioneel gezien als een teken dat een bedrijf krap bij kas zit dan wel moeilijk aan extern vermogen kan komen, en een hoge schuldschuld en/of lage rentedekking als een signaal dat het bedrijf financieel in de knel zit. Van kleine bedrijven wordt verder vaak aangenomen dat ze bij het extern aantrekken van vermogen eerder geconfronteerd worden met problemen van asymmetrische informatie. De keuze van de proxy’s is natuurlijk vrij arbitrair. Zo troffen Kaplan en Zingales (1997) bij nader onderzoek van het door Fazzari et al. gebruikte bestand geen duidelijke aanwijzing dat de bedrijven in de lage-payoutklasse werkelijk hinder hadden gehad van financiële beperkingen.13

Het lijkt ons daarom beter om niet bij voorbaat één classificerende variabele te kiezen, maar meerdere, en op een objectieve wijze een categorisatie in de bedrijven aan te brengen. Daarom passen wij factoranalyse toe op een ruime verzameling potentiële proxy-variabelen. Naast de genoemde traditionele proxy-variabelen uit de literatuur introduceren wij enkele nieuwe variabelen: de uitstaande obligatieschuld, als proxy voor toegang tot de openbare kapitaalmarkt, het aan-deel van bankkrediet in de totale schuld, als proxy voor bankafhankelijkheid, en verder de tweedeling die het databestand zelf biedt: tussen NV’s en BV’s en tussen internationale en nationale oriëntatie (in termen van buitenlands aandeelhouderschap en/of buitenlandse dochters). Het is denkbaar dat (met name beursgenoteerde) NV’s en multinationals makkelijker toegang tot de nationale en internationale kapitaalmarkten hebben en daarom minder vaak last ondervinden van binnenlandse kredietbeperkingen. Er werden aldus drie factoren gevonden (tabel 3 op pag. 564). De kapitaalgoederenoveroorraad heeft de hoogste lading in de eerste factor. Daarom labelen wij deze factor met ‘omvang’. De tweede factor wordt gedomineerd door de schuldschuld en de rentebedekking, en
Tabel 3: Factoranalyse

<table>
<thead>
<tr>
<th>Factorlabel</th>
<th>Factor 1</th>
<th>Factor 2</th>
<th>Factor 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Omvang</td>
<td>Schuldenlast</td>
<td>Payout</td>
</tr>
<tr>
<td>Variabele</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schuldquote</td>
<td>-0,03</td>
<td>0,51</td>
<td>0,06</td>
</tr>
<tr>
<td>Obligatieschuld</td>
<td>0,07</td>
<td>0,00</td>
<td>-0,01</td>
</tr>
<tr>
<td>Bankkrediet</td>
<td>-0,02</td>
<td>0,03</td>
<td>0,00</td>
</tr>
<tr>
<td>Payout ratio</td>
<td>-0,02</td>
<td>-0,03</td>
<td>1,01</td>
</tr>
<tr>
<td>Rentedekking</td>
<td>0,02</td>
<td>-0,42</td>
<td>-0,04</td>
</tr>
<tr>
<td>Kapitaalgoederenoorzaad</td>
<td>0,92</td>
<td>0,07</td>
<td>-0,09</td>
</tr>
<tr>
<td>NV/BV</td>
<td>-0,02</td>
<td>0,04</td>
<td>0,01</td>
</tr>
<tr>
<td>Internationaal/nationaal</td>
<td>-0,01</td>
<td>0,08</td>
<td>0,01</td>
</tr>
<tr>
<td>Verklarende variatie</td>
<td>1,62</td>
<td>1,25</td>
<td>1,09</td>
</tr>
</tbody>
</table>

wordt daarom aangeduid met 'schuldenlast'. Ten slotte is de payout ratio de enig signijicante lading in de derde factor, die wij daarom labelen met 'payout'.

In tabel 4 staan de uitkomsten van de herschatingen van het model met kredietbeperking voor vier groepen bedrijven. Deze maken telkens eenderde van de totale steekproefpopulatie uit en hebben 'extreme' karakteristieken (afgaande op de desbetreffende factorwaarden). De bedoeling is namelijk zoveel mogelijk bedrijven te selecteren, waarvan a priori mag worden verwacht dat ze relatief meer geconfronteerd worden met kredietbeperking. De eerste groep (in de eerste kolom) omvat eenderde van de steekproef waarvoor de factor 'omvang' de laagste waarde heeft. In deze groep zitten dus de kleinste bedrijven. Indien kleine bedrijven inderdaad meer geconfronteerd worden met kredietbeperking, zou het model met kredietbeperking het juist voor deze groep relatief goed moeten doen. De tweede groep bevat eenderde van de bedrijven met de hoogste waarden voor de 'schuldenlast'-factor, dat zijn dus bedrijven met relatief veel Schuldenlast. De derde groep betreft eenderde van de bedrijven met de laagste schuldenlast. Wij voeren beide extreem voor de schuldenlast op, omdat niet alleen hoge schuldenlast maar ook weinig vreemd vermogen een indicatie kan zijn van financiële knelpunten. Enerzijds kan een bedrijf door een hoge schuldenlast in de financiële problemen komen; anderzijds kan weinig vreemd vermogen het gevolg zijn van krediettrapsoenering (Kaplan en Zingales, 1997). Theoretisch is er dan ook een causaliteitsprobleem met het schuldkriterium, aangezien de hoeveelheid schuld die een bedrijf aantrekt een endogene variabele is in het investeringsmodel. Dit dient bij de interpretatie van de uitkomsten in het achterhoofd worden gehouden. De vierde groep bevat eenderde van de bedrijven met de laagste waarde voor de 'payout'-factor, dus de bedrijven die weinig dividend uitkeren. Naar verwachting houden zulke bedrijven zoveel mogelijk winst in om te voorkomen dat ze anders tegen hogere kosten extern kapitaal zouden moeten zien aan te trekken.

We concentreren ons op de aanpakking (met name de Sargan-toets) van het model met kredietbeperking voor deze vier groepen bedrijven (zie tabel 4). Indien het model het beter doet voor de gespecificeerde groepen bedrijven dan voor de hele steekproef, dan interpreteren wij dat als een bewijs dat met name voor deze groepen bedrijven financiële beperkingen van invloed zijn op het investeringsgedrag. De aanpakking van het model blijkt niet beter te zijn voor de kleinste bedrijven. De p-waarde is 0,05, tegen 0,11 voor de hele steekproef (cf. tabel 2). Deze resultaten geven dus geen aanleiding te concluderen dat kleinere bedrijven meer te maken hebben met financiële beperkingen. Misschien zijn de kleinste bedrijven in onze steekproef niet klein genoeg - ze hebben immers nog altijd een balanstotaal van ten minste tien miljoen gulden (paragraaf 3) - zodat de variabiliteit in bedrijfsvolume misschien onvol doende groot is om een effectieve opsplitsing te kunnen maken tussen kleine en grote bedrijven. Whited (1992) stelde evenmin een onafhankelijke invloed van de bedrijfsvolume vast voor haar Amerikaanse panel, en concludeerde dat financiële beperkingen kennelijk zowel onder kleine als grote bedrijven voorkomen.

De fit is wel beter voor bedrijven met een hoge schuldenlast en slechter voor bedrijven met weinig schulden. De geschatte waarde van de installatiekostenparameter (\(\alpha\)) voor de groep bedrijven met weinig schuld verschilt echter niet significant van nul, zodat het investeringsmodel voor deze groep bedrijven niet vastgesteld kan worden. Mede gelet op het al genoemde theoretische bezwaar tegen het criterium van de schuldenlast, willen wij onze conclusie niet alleen baseren op de resultaten voor de schuldenlastgroepen.

De fit is duidelijk beter voor de bedrijven die weinig dividend uitkeren (0,40 tegen 0,11 voor de hele steekproef). Dit bevestigt de a priori veronderstelling, dat deze bedrijven meer te maken hebben met financiële beperkingen. Eene lage payout, ofwel een hoge mate van winstinhou-
Tabel 4: GMM-schattingen van de Euler-investeringsvergelijking met kredietbeperking: opsplitting naar groepen

<table>
<thead>
<tr>
<th>Factornummer/label</th>
<th>Factor 1 Omvang</th>
<th>Factor 2 Schuld</th>
<th>Factor 2 Schuld</th>
<th>Factor 3 Payout</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groep</td>
<td>Kleinst 33%</td>
<td>Hoogste 33%</td>
<td>Laagste 33%</td>
<td>Laagste 33,3%</td>
</tr>
<tr>
<td>μ (markup)</td>
<td>0,62 (4,1)</td>
<td>0,72 (5,1)</td>
<td>1,34 (30,0)</td>
<td>1,34 (23,7)</td>
</tr>
<tr>
<td>αₙ (installatiekosten)</td>
<td>0,36 (2,1)</td>
<td>0,42 (3,0)</td>
<td>0,15 (0,6)</td>
<td>0,36 (2,3)</td>
</tr>
<tr>
<td>αₖ (constante)</td>
<td>0,99 (0,3)</td>
<td>-1,36 (-0,5)</td>
<td>-3,40 (-1,6)</td>
<td>-2,33 (-1,0)</td>
</tr>
<tr>
<td>Sargan-toets (χ²)</td>
<td>40,0</td>
<td>31,3</td>
<td>38,9</td>
<td>28,2</td>
</tr>
<tr>
<td>Vrijheidsgraden</td>
<td>27</td>
<td>27</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>p-waarde</td>
<td>0,05</td>
<td>0,26</td>
<td>0,06</td>
<td>0,40</td>
</tr>
<tr>
<td>Aantal bedrijven</td>
<td>140</td>
<td>145</td>
<td>140</td>
<td>140</td>
</tr>
</tbody>
</table>

t-waarden (tussen haakjes) zijn berekend op basis van Robust-White heteroscedastisch-consistente schatters met behulp van een eerste-orde autocorrelatieschema. Alle jaareffecten (niet afgedrukt) zijn significant op het 5%-niveau.

ding, vormt blijkbaar een indicatie dat problemen van asymmetrische informatie op de kapitaalmarkt externe financiering relatief duur maken ten opzichte van interne bekostiging. Deze uitkomst bevestigt eerder onderzoek waaruit ook al bleek dat Nederlandse bedrijven zich zoveel mogelijk intern financieren (bijvoorbeeld De Haan, 1997) en streekt met de bevindingen van onder anderen Fazzari et al. (1988) voor de VS en Bond en Meghir (1994) voor het VK. Zoals blijkt uit figuur 2, betaalden bedrijven met een lage payout ratio in de beschouwde periode gemiddeld inderdaad een hogere kostenvoet op hun rentedragende vreemd vermogen. Deze resultaten bevestigen de theorie dat bedrijven die aantonen tegen financiële beperkingen geconfronteerd worden met hogere kosten van extern vermogen.

5 Conclusie

In dit artikel is de invloed onderzocht van eventuele knelpunten op de kapitaalmarkt op het investeringsgedrag van Nederlandse bedrijven. Daartoe is een Euler-investeringsmodel geschat voor een paneldatabase van ruim vierduizend Nederlandse industriële bedrijven in de periode 1983-1992. Twee specificaties van het Euler-investeringsmodel zijn geschat: een neo-klassieke versie die uitgaat van perfect werkende kapitaalmarkten en een aangepaste versie die is uitgebreid met een kredietlimiet. Blijkens onze schatterresultaten voor de hele steekproef is het model met kredietbeperking beter dan het neo-klassieke model in staat om het investeringsgedrag van de bedrijven te beschrijven.

Derhalve luidt de conclusie van dit onderzoek dat de beschikbaarheid van vreemd vermogen voor een deel van Nederlandse bedrijven een beperkende factor vormt bij de uitvoering van op zich rendabele investeringsprojecten. Een nadere analyse voor verschillende categorieën bedrijven leert dat financiële beperkingen vooral spelen bij...
ongeveer eenderde deel van de bedrijven dat een klein deel van de winst als dividend uitkeert. Dat zijn dus bedrijven die een groot deel van de winst gebruiken voor de financiering van investeringen. Een reden voor een hoge mate van interne financiering kan zijn dat externe financiering voor deze bedrijven moeilijk te krijgen en relatief duur is. Bedrijven met een lage payout ratio in onze steekproef betaalden inderdaad een hogere kostenvoet op hun rentendragende vreemd vermogen. Deze resultaten bevestigen de theorie dat bedrijven die aanlopen tegen financiële beperkingen als gevolg van problemen van asymmetrische informatie op de kapitaalmarkt, geconfronteerd worden met hogere kosten van extern vermogen.

LITERATUUR

investors do not have,' Journal of Financial Economics, vol. 13, pp. 187-221. ·
Templeaar, F.M., (1991), 'Theorie van de ondernemingsfinanciering,' Maandblad voor Accountancy en Bedrijfseconomie, jrg. 65, nr. 6, pp. 284-301.

NOTEN

1 De auteurs zijn erkentelijk voor het opbouwende commen
2 tara van Dr. D.P. Broer, Prof. R.S. Chintinko, Prof. S.
3 Gilchrist, Dr. F.C.J.M. de Jong, Prof. Dr. M.J.L. Jonkhart, Prof.
4 Dr. C.G. Koedijk, Prof. Dr. S.K. Kuipers, Dr. H.M.M. Peeters,
5 Prof. Dr. G.A. Pfann, Prof. T.M. Whited en de redactie van
6 MAB. Verder wordt het c.s bedacht voor het ter beschikking
7 stellen van de data, en Ph. de Wolf voor zijn computeraas-
8 sistentie daarbij.
9 Zie bijvoorbeeld de overzichtsartikelen van Templeaar
11 Er is inmiddels veel literatuur hierover verschenen.
12 Voorbeelden van theorie en aard zijn onder andere Myers en
16 Voor Nederland kunnen in dit verband ook de studies
17 door onder anderen Broer en Van Leeuwen (1994), De Haan,
18 Koedijk en De Vrijer (1992) en Sterken (1996) worden ge-
19 noemd.
20 In navolging van soortgelijk onderzoek wordt derhalve
21 geabstaard van de kwantitatief minder belangrijke emissie
22 van nieuwe aandelen. In onze steekproef is de mediaan van
23 het aandeel van aandelenkapitaal in het totale bedrijfsvorm-
24 gen slechts 5% en wordt in driekwart van de gevallen geen
25 aandelenemissies waargenomen.
26 Het c.s publiceert deze microgegevens niet. Ze zijn alleen
27 in geaggregeerde vorm verkrijgbaar in de publicatie Statistiek
28 Financiën van Grote Ondernemingen (sfo).
29 We corrigeren de gemiddelde rentevoeten voor verschil-
30 len in de samenstelling lang-kort vreemd vermogen door
31 rekening te houden met de looptijdstructuur van de rente. Zie
32 voor een volledige toelichting Van Ees et al. (1996).
33 De gemiddelde 'payout ratio' en bedrijfsovernames van
34 beursgenoteerde NV's ligt overigens doorgaans nog veel hoger
35 (zie bijvoorbeeld Van Ees en Garretsen, 1994, en De Haan,
36 1995).
37 Aangezien het gaat om een dynamisch panelmodel wordt
38 Hansens (1982) schatprocedures Generalized Method of
39 Moments (GMM) gebruikt. Doordat bij de schatting vertraag-
40 de en toekomstige waarden worden benut, is de effectieve
41 steekproefperiode 1985-1991. De zes gehanteerde instrument-
42 variabelen zijn: de waarden van de vier modelvariabelen
43 twee keer geleden (bedrijfseresultaat, variabele kosten, investe-
44 ringen en de prijzen van investeringen) alsmede de betaalde
45 vennootschapsbelasting en de uitkeringen uit hoofde van de
46 Wet op de Investeringsrekening.
47 In dit geval is het helaas niet mogelijk om de significan-
48 tie van de verbetering te toetsen, aangezien de rentevoeten in
49 beide modellen (kapitaalmarkten respectievelijk bedrijfspeci-
50 fieke rentes) verschillend zijn (met andere woorden de
51 modellen zijn niet 'genest').
52 Dit is hoger dan de gemiddelde premie van 1% die Boot
53 c.s. (1997) vinden voor 20 binnenlandse bedrijfsobligaties in
54 de periode 1991-1995. Onze cijfers zijn wellicht opwaarts beïnvloed
55 doordat er leningen uit het begin van de jaren tachtig inzitten,
56 toen in het algemeen sprake was van hogere risicopremies.
57 In het enquêteonderzoek van De Haan, Koedijk en De
58 Vrijer (1992) werd 1.800 bedrijven rechtstreeks gevraagd of ze
59 financiële knelpunten ondervonden bij het investeren. Het
60 antwoord van 45% van de bedrijven was bevestigend.
61 Fazzari, Hubbard en Petersen (1996) ontbraken de-
62 kritiek overigens grotendeels.
63 Bij nadere inspectie van de parameterschattingen voor
64 de groepen blijkt dat de installatiekostenparameter a_2 een
65 lagere waarde heeft dan bij schatting voor de hele steekproef
66 (cf. tabel 2), hetgeen wijst op een tragere aanpassing van de
67 kapitaalgoederenvoorraad aan het gewenste niveau. Verder is
68 de waarde van μ kleiner dan één voor de kleinere bedrijven en
69 de bedrijven met weinig schulden, hetgeen suggereert dat er
70 schaalvoordelen doorheen spelen.
71 Ook blijkt de enquête van De Haan et al. (1992) komen
72 financiële beperkingen ongeveer evenveel voor onder
73 kleine als grote bedrijven.
74 Alle variabelen luiden in reële termen, tenzij anders
75 vermeld. Eenvoudigheidsshalve wordt aangenomen dat vreemd
76 vermogen de enige bron van extern vermogen is.
77 De geldontvangering hoeft de reële waarde van de schuld
78 uit. Vandaar de opname van de term πR_t in de reële-
79 dividendendividendervorziening.
80 Blijktens empirisch onderzoek van De Haan (1996) lenen
81 Nederlandse beursgenoteerde ondernemingen normaaliter niet
82 om dividend uit te kunnen keren.