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Abstract

We build a novel macro-finance model that combines a semi-structural macroeconomic

module with arbitrage-free yield-curve dynamics. We estimate it for the United States and

the euro area using a Bayesian approach and jointly infer the real equilibrium interest rate

(r∗), trend inflation (π∗), and term premia. Similar to Bauer and Rudebusch (2020, AER),

π∗ and r∗ constitute a time-varying trend for the nominal short-term rate in our model,

rendering estimated term premia more stable than standard yield curve models operating

with time-invariant means. In line with the literature, our r∗ estimates display a distinct

decline over the last four decades.
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1 Introduction

Since the 1980s short- and long-term bond yields in advanced economies have displayed a

protracted downward trend and slumped further in the wake of the global financial crisis. This

development is typically attributed to a decline in trend inflation (π∗) and in the natural or

equilibrium real rate of interest (r∗) – the latter commonly defined as the real rate consistent

with the economy operating at its potential level (in the absence of transitory shocks) or its

natural level (in the absence of nominal frictions).1

The empirical finance literature studying yield curve dynamics has by and large ignored low-

frequency macroeconomic trends relevant for equilibrium yields. Commonly used term structure

approaches specify short-rate dynamics as being stationary around a constant mean.2

Ignoring such trends has consequences for decompositions of long-term interest rates into

average short-rate expectations and term premia: the underestimation of short-rate persistence

induces models to attribute the trend in observed bond yields largely to a rise and fall in term

premia. Figure 1 illustrates this pattern.

Figure 1: 5-year 5-year forward rates of interest and common term premia estimates for the
United States

Note: The figure shows the 5-year, 5-year forward zero coupon bond yield in blue, together with term premium
estimates derived from a Dynamic Nelson-Siegel model (DNS) and arbitrage-free term structure models following
Adrian et al. (2013) (all authors’ calculations) and Kim and Wright (2005), which are taken from FRED.

In a recent paper, Bauer and Rudebusch (2020) address this shortcoming of mean rever-

1Inspired by Wicksell (1898), Woodford (2003) established its central role in today’s widely used New-Keynesian
modeling framework.

2Finance models, including those that rely on yield curve information (Dai and Singleton, 2000; Cochrane and
Piazzesi, 2005; Diebold and Li, 2006; Adrian et al., 2013) and those incorporating macroeconomic variables (Ang
and Piazzesi, 2003; Gürkaynak and Wright, 2012; Wright, 2011; Crump et al., 2018), but also structural macro
models, such as Kliem and Meyer-Gohde (2017) and references therein, typically do not take trends in equilibrium
rates into account.
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sion by constructing a no-arbitrage term-structure model that incorporates a stochastic trend

serving as a time-varying attractor for the short-term nominal interest rate. They capture the

time-varying trend (i∗t ) in the nominal short-term interest rate using two approaches: either the

sum of a survey-based proxy of trend inflation and an average of various (off-model) estimates

of the natural real rate (“observed shifting endpoints (OSE)” version of their model); or, they

estimate the trend purely based on yield curve information and (relatively tight) Bayesian pri-

ors helping the identification of this key latent variable (“estimated shifting endpoints (ESE)”

version). Their work importantly expands a sparse earlier literature taking initial steps towards

incorporating ‘shifting end points’ for short-term rate trajectories including Kozicki and Tinsley

(2001); Dewachter et al. (2014); Cieslak and Povala (2015); Christensen and Rudebusch (2019);

Ajevskis (2020). By incorporating explicitly a trend in the nominal short-term rate the model

of Bauer and Rudebusch (2020) attributes a larger share of trends in bond yields to average rate

expectations as opposed to the term premium.

Our paper takes the approach of Bauer and Rudebusch (2020) further by combining no-

arbitrage yield curve dynamics with a semi-structural macro model akin to Laubach and Williams

(2003). As a result the trend i∗t (the sum of r∗t and the low-frequency component of inflation

π∗t ) is a key driver of both the level of the yield curve and of the state of the macroeconomy.

Specifically, our term structure module is an arbitrage-free affine Nelson-Siegel (AFNS) model

with the level factor incorporating a stochastic trend determined by the equilibrium nominal

short-term rate i∗t . The slope and curvature factors, by contrast, are mean-reverting. While

trend inflation is specified as a simple random walk, the natural real rate is linked to the

expected growth rate of potential output as well as a non-growth component capturing other

determinants of r∗. The gap between the actual (model-consistent) real rate and the natural

real rate drives the output gap in the IS equation, and the Phillips curve equation links the

output gap and inflation.

We estimate the model using a Bayesian approach using quarterly data from 1961Q2 to

2019Q4 for the United States and from 1995Q1 to 2019Q4 for the euro area. We thereby

end the sample shortly before the pandemic crisis hit advanced economies: adapting the linear

modelling structure to discount highly volatile observations during the pandemic would have

taken us too far afield.

We also use survey information on long-run inflation expectations to help pin down trend

inflation π∗, as well as one-year ahead expectations of the nominal short rate to inform our

econometric model about the speed at which the short rate convergences to its time-varying

attractor i∗. For the euro area, we additionally include long-horizon expectations (i.e. 7-10
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years ahead) of long-term yields to further inform our estimates of the expectations component

in yields and the natural rate.

We find that by accounting for trends in equilibrium rates, term premia exhibit more cyclical

behavior, rather than a distinct trend decline as implied by term structure models with fixed

long-run means. This result is similar to Bauer and Rudebusch (2020) who report (for the

US) that their “term premium estimates exhibit only a modestly decreasing trend and more

pronounced cyclical swings”. We illustrate that the degree of mean reversion in term premia is

a bit more pronounced in our case than in their paper due to our term premium (and slope)

being stationary and not loading on the stochastic trend, while in their case it is driven by i∗.

Our r∗ estimates for the US and the euro area show a distinct decline from the end-1990s

to the end of the sample, a pattern that is shared by Holston et al. (2017) and several other

studies in the literature.3

Similar to most studies in the literature, r∗ is estimated with a sizeable degree of uncertainty.

However, while not directly comparable (especially due to using a Bayesian versus multi-stage

frequentist approach) our uncertainty bands appear to be narrower than those reported by

Holston et al. (2017).

During the 1970s and in the wake of the global financial crisis, our point estimates of r∗

are measurably below those from Holston et al. (2017), not unlike estimates in other important

econometric papers (see Del Negro et al., 2017, 2019; Fiorentini et al., 2018). Our point estimates

are also closer to the average of the model estimates that Bauer and Rudebusch (2020) use for

feeding the “OSE” version of their model.4

Our proposed macro-finance model responds to the “. . . need for further integration of finan-

cial and macroeconomic approaches to understanding trends in interest rates”, as recently called

for by Kiley (2020). In particular, our paper addresses both the empirical macro literature try-

ing to infer the trajectory of the natural real rate and the empirical finance literature studying

yield curve dynamics and its drivers.

The sizeable and expanding literature on estimating the natural real rate5 reflects the promi-

3The literature broadly agrees on a general downward trend in r∗ and its fall to levels around zero in the
wake of the financial crisis (as far as advanced economies are concerned). It is generally seen as caused by factors
including lower productivity and potential output growth, a rise in risk aversion, declining growth rates in the
working-age population, rising savings in anticipation of longer retirement periods (at global level), safe-asset
scarcity, and possibly increasing inequality and firm profits. See e.g. Gomme et al. (2011); Rachel and Smith
(2015); Caballero et al. (2017); Bielecki et al. (2018); Marx et al. (2017); Rannenberg (2018); Gourinchas and Rey
(2019); Papetti (2019); Rachel and Summers (2019); Mian et al. (2020) amongst a wide range of studies.

4See Panel B of Figure 2 in their paper.
5Econometric approaches typically focus on backing out low-frequency components in yields from macroeco-

nomic times series, as e.g. in Laubach and Williams (2003, 2016); Del Negro et al. (2017, 2019); Fiorentini et al.
(2018). Structural estimates yielding a contemporaneous stabilization of output gaps from DSGE models have
been provided by Edge et al. (2008); Barsky et al. (2014); Cúrdia et al. (2015), and Neri and Gerali (2019), just
to name a few. For a review of estimates, drivers and stabilizing properties (for the euro area and the United
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nence of r∗ in modern monetary macroeconomics and is further stimulated by the present ex-

ceptional macroeconomic situation, with policy and short-term money-market interest rates

persistently constrained by their effective lower bound. In particular, r∗ plays a key role for

monetary policy as the natural real rate affects the monetary policy stance:6 when the actual

real rate exceeds its natural counterpart, the resulting positive real rate gap has a contractionary

effect on the business cycle and in turn dampens inflation – and vice versa for a negative rate

gap.

Notwithstanding the prominence of r∗ for determining growth and inflation, the high degree

of model uncertainty and measurement issues has prompted some academic economists and

policymakers to characterize r∗ as a poor guide for policy, as exemplified in the statement by

former FOMC member Kevin Warsh asserting “r-star is not a beacon in the sky but a chimera

in the eye”.

Yet, trends and time variation in the natural real rate, even if difficult to observe, are a reality

and ignoring them gives rise to misleading model-based results in economics and finance. As a

case in point, slow-moving changes in the natural real rate together with potential shifts in the

long-run inflation outlook determine the level towards which nominal short-term interest rates

are expected to converge in the long run: disregarding such time-variable trends and instead

imposing time-invariant equilibria would bias the relative importance attributed to term premia

relative to interest rate expectations as determinants of long-term interest rates.

Our modelling approach allows to not only infer the natural short rate, but the whole natural

yield curve. We are the first – to the best of our knowledge – to estimate jointly a semi-structural

macroeconomic system and an arbitrage-free affine term structure model. By contrast, Brzoza-

Brzezina and Kot lowski (2014); Imakubo et al. (2018); Kopp and Williams (2018); Dufrénot

et al. (2019) all follow a multi-step approach in which yield curve factors are treated as observ-

ables. Moreover, Brzoza-Brzezina and Kot lowski (2014); Imakubo et al. (2018) and Dufrénot

et al. (2019) do not provide term-premia estimates. The paper most closely related to our work

is Kopp and Williams (2018), yet their approach differs in several aspects. Firstly, the authors

choose a model specification in which they replace output and its gap measure with unemploy-

ment. Consequently, the real rate trend is not linked to potential output growth, as in Laubach

and Williams (2003), but instead follows a simple random walk. Secondly, crucial macroeco-

nomic trends, such as the natural rate of unemployment are treated as observables (subject to

measurement error) instead of extracting them from the data. Thirdly, our term structure rules

States), see Brand et al. (2018).
6See, e.g., Weber et al. (2008) for a conceptual discussion regarding the usefulness of r∗ for monetary policy,

and Neiss and Nelson (2003) for a model-based evaluation of the natural rate gap as policy stance indicator.
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out riskless arbitrage across bond prices. Finally, we present estimation results for both the

United States and the euro area.

The main body of the paper is organized as follows. Section 2 describes the macro-finance

term structure model and compares it to the Bauer and Rudebusch (2020) setup; the Bayesian

estimation approach is explained in Section 3. Section 4 presents the empirical results; first for

the United States in Section 4.2 and then for the euro area in Section 4.3. Finally, Section 5

concludes.

2 The Model

2.1 A semi-structural macro model with a term structure

Our semi-structural macro-finance model incorporates a variation and extension of the ap-

proach by Holston et al. (2017) (henceforth HLW), which is in turn based on Laubach and

Williams (2003).7 The model is in discrete time and in our econometric set-up one period

corresponds to one quarter. The real rate gap, the output gap and inflation interact through

backward-looking IS and Phillips curves. In the IS curve

x̃t = a1x̃t−1 + a2x̃t−2 +
a3

2

(
r̃t−1 + r̃t−2

)
+ εx̃t , (1)

the output gap x̃t is defined as x̃t = xt−x∗t , with xt and x∗t denoting log actual and log potential

output, respectively, and the real interest rate gap r̃t = rt − r∗t is the difference between the

actual real rate rt and its natural counterpart r∗t . Potential output x∗t evolves according to

x∗t = x∗t−1 + gt−1 + εx
∗
t , (2)

where gt is the expected quarterly growth rate of potential output and εx
∗
t captures the unex-

pected part of potential growth. The real natural rate r∗t is the sum of the annualized expected

growth rate of potential output and a “catch-all”, non-growth component, denoted zt, i.e.

r∗t = 4gt + zt. (3)

Both gt and zt follow a random walk

gt = gt−1 + εgt , and zt = zt−1 + εzt . (4)

7Their model extends the unobserved components model by Clark (1987), decomposing macroeconomic vari-
ables into random-walk trends and stationary cycles.
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The zt component captures effects such as saving-investment imbalances arising from longer

retirement periods, as well as an increased demand for safe assets, (Del Negro et al., 2017,

2019), or other financial frictions.

For measuring actual real rates, the observed short-term nominal interest rate needs to

be deflated by a measure of expected inflation. Laubach and Williams (2003) proxy inflation

expectations by forecasts from an AR(3) estimated over a rolling window and HLW use a trailing

four-quarter average of inflation to approximate inflation expectations and construct ex ante real

rates. By contrast, we define the ex ante real rate in a model-consistent manner as

rt = it − Etπt+1, (5)

where it denotes the nominal short-term interest rate and Etπt+1 is the conditional expectation

of next period’s inflation based on model dynamics.8

Our second main equation, the Phillips curve, is given by

π̃t = b1π̃t−1 + b2x̃t−1 + επt , (6)

where π̃t = πt − π∗t , represents the inflation gap, i.e. the difference of inflation πt from its trend

π∗t that is also assumed to follow a random walk

π∗t = π∗t−1 + επ
∗
t . (7)

As a result, the real rate gap r̃t affects – via the output gap – the cyclical component of

inflation. This specification differs from Laubach and Williams (2003) and HLW who also impose

a unit root on inflation, but eschew an explicit expression for its stochastic trend. Specifically,

their Phillips curve is formulated for inflation in levels (rather than inflation gaps) and coefficients

of lagged inflation terms are constrained to sum to unity.

We close the model by specifying the dynamics of the nominal risk-free yield curve. At

each point in time, the cross section of yields of all maturities is assumed to be explained by

three factors (‘level’, Lt, ‘slope’, St, and ‘curvature’, Ct) with factor loadings across maturities

following the functional form of Nelson and Siegel (1987):

yt(τ) = A(τ) + Lt + θs(τ)St + θc(τ)Ct (8)

where yt(τ) denotes the τ -quarter bond yield, and factor loadings are given by θs(τ) = 1−exp(−λτ)
λτ

8For more details, see Annex A.
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and θc(τ) = 1−exp(−λτ)
λτ − exp(−λτ).

An increase in the level factor induces a parallel upward shift of the whole yield curve,

an increase in the slope factor increases the short end by more than the long end (hence,

strictly speaking, ‘negative slope factor’) and an increase in the curvature factor accentuates the

curvature at short- to medium-term maturities. The parameter λ governs how strongly a change

in the slope factor St affects the slope of the yield curve and at which maturity the curvature

factor has its maximum impact on the yield curve.

The intercept term A(τ) does not appear in the original Nelson-Siegel specification. It is

added to rule out arbitrage, as detailed further in Appendix B. Besides depending on maturity,

A(τ) is a function of the Nelson-Siegel factor loadings as well as of factor innovation variances.

If yield factor dynamics were constrained to be stationary, all yields would converge to a

constant mean. In particular, this convergence would imply that the long-horizon expectation

of the nominal one-period rate it ≡ yt(1) is constant, i.e. i∗t ≡ limh→∞Etit+h = i∗. However,

as our macro module specifies integrated processes for trend inflation and the natural real rate,

the long-run Fisher equation, i∗t = π∗t + r∗t , implies time-variation in the attractor for the

nominal short-term rate. We incorporate this time-variation by allowing the level factor to be

non-stationary, while imposing stationarity on the slope and curvature factors. Specifically, we

decompose the level factor as

Lt = L∗t + L̃t (9)

where L∗t is a non-stationary trend such that limh→∞EtL
∗
t+h = L∗t and L̃t is a zero-mean

stationary (or “cyclical” ) component. From (8), for the one-quarter short-term interest rate we

have

it = A(1) + Lt + θs(1)St + θc(1)Ct (10)

and hence for the limit

lim
h→∞

Etit+h ≡ i∗t = A(1) + L∗t + θs(1)S̄ + θc(1)C̄, (11)

where S̄ and C̄ denote the constant long-run means of the slope and curvature factor, respec-

tively. In combination with equation (11), the long-run Fisher equation i∗t = π∗t + r∗t pins down

the trend component of the level factor as L∗t = π∗t + r∗t − θs(1)S̄ − θc(1)C̄ − A(1). As L∗t is a

latent process and A(1) is a free parameter (see Appendix B) we set A(1) = −θs(1)S̄ − θc(1)C̄

so that the long-run level factor is equal to the nominal short-term natural rate

L∗t = i∗t ≡ r∗t + π∗t . (12)
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For the stationary zero-mean component of the level factor we specify an AR(1) process

L̃t = aLL̃t−1 + εL̃t ,

with |aL| < 1. Finally, slope St and curvature Ct are assumed to follow a bivariate, stationary

VAR that also includes the inflation and output gap as potential drivers:

St = a10 + a11St−1 + a12Ct−1 + a13π̃t−1 + a14x̃t−1 + εSt ,

Ct = a20 + a21St−1 + a22Ct−1 + a23π̃t−1 + a24x̃t−1 + εCt .

Our model implies a “natural yield curve” at each point in time, i.e. a set of attractors for

all maturities. Taking limits on equation (8),

lim
h→∞

Etyt+h(τ) ≡ yt(τ)∗ = A(τ) + L∗t + θs(τ)S̄ + θc(τ)C̄ for all τ. (13)

The location of the natural yield curve varies over time with the stochastic drift in the level

factor that is, according to equation (12), pinned down by the natural real short-term rate and

trend inflation. At the same time, slope and curvature converge to constant means implying

that the long-run shape of the natural yield curve is time-invariant, while the long-run level can

change. In particular, the “natural yield spread” or slope

y∗t (τ)− y∗t (1) = A(τ) + θs(τ)S̄ + θc(τ)C̄ (14)

is time invariant. L∗t cancels from the slope expression: the short-term natural real rate and

trend inflation equally affect the short and the long end of the natural yield curve.

We compute the model-consistent term premium of maturity τ , TPt(τ), as the difference be-

tween the model-implied τ -period bond yield and its expectations component, i.e. the expected

average of future short rates over the respective maturity:

TPt(τ) = yt(τ)− 1

τ

τ−1∑
h=0

Et(it+h). (15)

For computing the expectations component recall from (10) that the nominal short-term rate is

a linear function of level, slope and curvature, where the level is in turn linked to the natural

real rate and the inflation trend. Given the dynamics of the yield curve factors model-consistent

expectations Et(it+h) can be computed for all relevant horizons h.

Like the slope, also the term premium is stationary and converges to a constant mean, i.e.
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the term structure of term premia has a time-invariant attractor. Expanding the expression for

the term premium in (15), we have

TPt(τ) = A(τ) + i∗t + L̃t + θs(τ)St + θc(τ)Ct (16)

− 1

τ

τ−1∑
h=0

Et
[
A(1) + i∗t+h + L̃t+h + θs(1)St+h + θc(1)Ct+h

]
. (17)

Noting that since Et(i
∗
t+h) = i∗t for all h, the i∗ terms cancel out from the above expression.

Moreover, Et(L̃t+h), Et(St+h) and Et(Ct+h) are all independent of i∗t or any trending variable.

Hence, limh→∞EtTPt+h(τ) is constant over time.

The stationarity of the slope of the yield curve and term premia differs from the setting of

Bauer and Rudebusch (2020). In both models, the natural nominal short rate i∗t serves as a

stochastic trend for the level of the yield curve. However, in their set-up the natural nominal

short rate affects also the slope and curvature, and term premia likewise incorporate a stochastic

trend.

HLW treat the short-term real rate as an exogenous variable. Accordingly their model does

not tie the evolution of the actual and natural real rate together, i.e. the real rate gap can

arbitrarily widen.

By contrast, in our model the yield curve equations pin down the dynamics of the short-term

nominal and real rate Our model, rendering the real rate gap r̃t = rt− r∗t , stationary. Formally,

we have

rt − r∗t = it − Etπt+1 − r∗t

= r∗t + π∗t + L̃t − Et(π̃t+1 + π∗t+1)− r∗t

= L̃t − Etπ̃t+1

i.e. the real rate gap is the difference between the cyclical components of the yield curve level

factor and inflation. As both of them are stationary mean-zero processes, limh→∞Etr̃t+h = 0

at any point in time. In other words, while the actual real rate and its natural counterpart are

both integrated processes, they share the same stochastic trend, so they are cointegrated and

their difference is stationary.

2.2 State-space representation

Writing all model equations in state-space representation, the state vector ξt comprises the

term structure factors (cyclical level component, slope and curvature), trend inflation, potential
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output, expected potential output growth, the non-growth driver of the natural rate, the cyclical

component of inflation, the output gap and some lagged variables (to cater for the dynamic

structure of our model):

ξt = (L̃t, St, Ct, π
∗
t , x
∗
t , gt, zt, π̃t, x̃t, L̃t−1, St−1, Ct−1, π̃t−1, x̃t−1)′.

Combining the IS curve (1), the Phillips (6) curve and the laws of motion for the latent variables

and is of the following form:

ξt = µ+ Fξt−1 + Get, et ∼ N (0, I), (18)

For the measurement variables, we assume that (log) output and inflation are measured without

error so that both are simply the sum of their respective trend and cyclical component:

xt = x∗t + x̃t (19)

πt = π∗t + π̃t (20)

We further include as measurement a set of zero-coupon bond yields of maturities ranging from

τ1=1 quarter to τK = 40 quarters. Observed yields yt(τi) equal their model-implied counterpart

in (8) plus a measurement error

yt(τi) = A(τi) + L̃t + L∗t + θs(τi)St + θc(τi)Ct + uτit , uτit ∼ N (0, σ2
τi), i = 1, . . . ,K (21)

Finally, we give the model a helping hand in identifying the latent variables by adding some

survey information to our measurements. In this context we note that Kim and Wright (2005)

and Geiger and Schupp (2018) have previously incorporated survey information into canonical

term-structure models with the effect of informing the degree of mean reversion of model-based

expected interest rates. Specifically, we include expectations of average inflation over long

horizons Esurvt πt+∞ from Consensus Economics. We match these expectations with the model’s

latent trend inflation plus a measurement error:

Esurvt πt+∞ = π∗t + us,πt , us,πt ∼ N (0, σ2
s,π). (22)

We also use survey information about near-term interest rate expectations. This approach helps

us to get a better handle on model-implied short-rate expectations over short– to medium-term

horizons and hence to obtain a more accurate grasp of corresponding term premia. Specifically,
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we match Consensus survey expectations of short-term rates four quarters ahead, Esurvt yt+4(1),

with the corresponding model-implied expectation plus a measurement error:

Esurvt yt+4(1) = A(1) +EtLt+4 + θS(1)EtSt+4 + θC(1)EtCt+4 + us,srt , us,srt ∼ N (0, σ2
s,sr). (23)

Additionally, for the euro-area version of the model (not for the US), we include survey infor-

mation about nominal interest rate expectations over longer horizons. This addition turned out

to be necessary to better identify low-frequency movements in the natural rate of interest that,

given the short sample available for the euro area with only few business cycles, are particularly

challenging to filter out.

For the euro area we would ideally want to use long-horizon expectations of short-term

interest rates constituting the direct survey counterpart to i∗, but such surveys are only available

as of 2016. We therefore use long-horizon expectations of long-term interest rates that are

available with a biannual frequency since at least 1995Q1, the start of our sample. These should

also be informative about i∗ because i∗ constitutes the level of the complete far-ahead yield

curve, but we need to take into account the relevant information about the slope of the yield

curve to match the long-rate-long-horizon surveys with the model. Accordingly, we equate the

survey expectation with the model-expectation of the ten-year rate plus a measurement error9:

Esurvt yt+∞(40) = lim
h→∞

Etyt+h(40) + us,lrt ,

= A(40) + L∗t + θS(40)S̄ + θC(40)C̄ + us,lrt , (24)

with us,lrt ∼ N (0, σ2
s,lr). Finally, collecting the observed yields, output, inflation and surveys in

the observation vector ζt,

ζt = (yt(τ1), . . . yt(τK), xt, πt, E
surv
t yt+4(1), Esurvt π∗t , E

surv
t yt+∞(40))′ ,

where the last element is absent for the US version. The measurement equation of the state

space model can be represented as

ζt = γ + Cξt + Dut with ut ∼ N (0, I). (25)

Appendix A lists the structure of the system matrices of the state space model (25) and (28) in

detail.

9The horizon asked in the Consensus Survey is 6 to 10 years ahead. We treat it as the horizon at which survey
panelists assume that variables have essentially converged to their (possibly time-varying) long-run means, hence
we equate the survey with the “infinite horizon” model counterpart.
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3 Estimation

In our Bayesian approach to estimating the state-space model we rely, to a great extent, on

largely uninformative priors. Our approach allows simultaneous estimation of all model parame-

ters and thereby eschews the multi-step maximum-likelihood approach adopted by Holston et al.

(2017). As common in Bayesian estimation of unobserved components models, we use conjugate

priors, the Gibbs sampler and the Durbin and Koopman (2002) simulation smoother to jointly

estimate potential output growth, output gaps, trend inflation and real equilibrium interest rates

for the United States and the euro area. The simulation smoother is initialized using HP-filtered

trends and OLS estimates for parameters. The exception is the Nelson-Siegel parameter λ that

we calibrate outside the Bayesian framework by estimating a yields-only Dynamic Nelson-Siegel

(DNS) model in the spirit of Diebold and Li (2006) using maximum likelihood and the Kalman

filter. Including survey data creates missing observations in the measurement equation, because

some of the surveys start only after the start of the sample and some surveys are initially only

available biannually. We therefore adapt the Durbin and Koopman simulation smoother to allow

for mixed frequencies and treat missing values as unobserved variables.10

The model is estimated using quarterly data. Appendix C describes the data in detail. We

estimate the US version of the model over the sample period 1961Q2–2019Q4 and the euro area

version over the period 1995Q1–2019Q4. As the euro was introduced in 1999, we use synthetic

data, i.e. aggregates of individual country data for the four years prior to 1999. However, we

decided to not go back as far as HLW who start in 1972: with separate monetary policies across

countries our linking of (synthetic aggregated) macro data and (synthetic aggregated) yield data

could lead to results that are difficult to interpret economically; and consistent euro-area yield

curve data are not available back into the 1970s.

4 Results

4.1 Parameter estimates

Table 1 presents posterior means of parameter estimates from the macro block of the model

and compares them with those published by HLW. Even though parameter estimates are broadly

consistent, the two studies differ across several dimensions, including Bayesian vs. multi-step

ML estimation, closing the model with nominal yield dynamics or not, specification of inflation

dynamics, using survey information or not, different samples.

The loading coefficients of the real rate gap, a3, in the IS equation and of the output gap,

10See Durbin and Koopman (2012), pp. 110-112, for details.
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Table 1: Prior and posterior densities of parameter estimates

Prior US posterior EA posterior
Distr. P1 P2 Mean Median 5% 95% HLW Mean Median 5% 95% HLW

a1 N 1.5 0.5 1.76 1.76 1.63 1.86 1.55 1.6 1.61 1.39 1.79 1.67
a2 ” N” -0.6 0.5 -0.8 -0.8 -0.9 -0.67 -0.61 -0.65 -0.66 -0.83 -0.45 -0.72
a3
2

” N” -0.1 0.05 -0.01 -0.01 -0.03 0 -0.06 -0.01 -0.01 -0.03 0 -0.04
b1 ” N” 0.6 1 0.8 0.83 0.54 0.92 0.67 0.81 0.82 0.65 0.92 0.69
b2 ” N” 0.15 0.05 0.13 0.12 0.01 0.27 0.08 0.06 0.05 0 0.15 0.06
aL ” N” 0.5 0.1 (0.025) 0.67 0.75 0.21 0.96 0.94 0.94 0.88 0.99
σ2
Lc Γ−1 4 2 0.39 0.38 0.27 0.56 0.24 0.24 0.19 0.33
σ2
S W−1 10 10 · I2

1.84 1.7 1.04 3.56 0.36 0.34 0.25 0.61
σ2
C 5.73 5.66 4.69 7.1 1.81 1.65 0.93 3.7

σ2
π∗ Γ−1 4 2 0.04 0.04 0.03 0.05 0.04 0.04 0.03 0.06
σ2
x∗ Γ−1 4 2 0.43 0.4 0.32 0.65 0.34 0.14 0.13 0.09 0.24 0.20
σ2
g Γ−1 14 0.02 0.001 0.001 0.0007 0.002 0.01 0.001 0.001 0.0006 0.0016 0.00
σ2
z Γ−1 4 2 0.11 0.1 0.07 0.21 0.04 0.07 0.07 0.05 0.09 0.05
σ2
π̃ Γ−1 4 2 0.44 0.42 0.32 0.65 0.64 0.14 0.14 0.1 0.18 0.94
σ2
x̃ Γ−1 4 2 0.13 0.11 0.07 0.25 0.11 0.13 0.13 0.08 0.19 0.08

σ2
s,π Γ−1 4 2 0.02 0.02 0.02 0.03 0.03 0.03 0.02 0.05

σ2
s,shsr Γ−1 4 2 0.02 0.02 0.01 0.04 0.29 0.27 0.1 0.72

σ2
s,lhlr Γ−1 4 2 0 0 0 0 0.04 0.04 0.03 0.06

Note: The table shows prior and posterior moments of the structural model parameters, based on 100,000
iterations of the Gibbs sampler of which we discarded the first 90,000 draws and subsequently kept each tenth
draw. Convergence is checked on the basis of recursive means as proposed by Geweke (1991). To ensure that the
loadings of the real rate gap and the output gap in the IS curve and the Phillips curve, respectively, have the
economically ‘correct’ sign, we discard those parameter draws in sampling from the posterior that violate those
sign conditions. The first and second prior parameters, P1 and P2, equal the mean and variance of the
distribution in case of the Normal distribution, and shape and scale in case of either inverse gamma or inverse
Wishart distribution. HLW refers to the published estimates from Holston et al. (2017) from the New York Fed.
Most inverse gamma priors for the variances are based on the Γ−1(4,2) parameterisation, which implies a mean
of 0.66 and a standard deviation of 0.47. We use conjugate priors for all model parameters and variances, i.e.
prior distributions are either normal inverse gamma or normal inverse Wishart. All priors are uninformative
with the exception of the variance of shocks to expected potential output growth σ2

g . Here, we choose shape and
scale parameters of the inverse gamma distribution such that the mean equals 0.0015 implying that, a priori, the
variance of the change in (quarterly) potential output growth over one century equals 0.6%. Table 1 summarizes
the priors of the main structural parameters.

b2, in the Phillips curve are small. In particular, the estimated slope of the IS curve (for both

the United States and the euro area) is below 0.1 (in absolute terms) – the critical threshold

beneath which filtering uncertainty rises dramatically, as reported in Fiorentini et al. (2018).

The corresponding IS curve estimates by HLW are a bit higher, yet not exceeding that threshold

either. By contrast, our estimates of the slope of the Phillips curve b2 are higher than in HLW

and above 0.1, probably owing to differences in the Phillips-curve specifications (as discussed

in Section 2.1). The variance of innovations to the Phillips curve, σ2
π̃, is estimated to be much

smaller, which is likely to reflect our explicit decomposition of inflation dynamics into a low-

frequency stochastic trend and a stationary component. We also estimate the variance of shocks

to the non-growth component, σ2
z to be higher, especially for the US. Closing the model with

nominal yield curve dynamics and rendering the real-rate gap stationary makes r∗ track the real

rate of interest more closely than in HLW. Accordingly the non-growth component needs to be

able to capture a larger wedge between expected potential output growth and the trend in the

natural real rate.

Finally, the estimated variance of measurement errors corresponding to the inflation surveys,
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σ2
s,π, is fairly tight (both for the United States and the euro area), hence keeping model-based

long-run inflation expectations relatively close to their survey-based counterparts. A similar

order of magnitude prevails for the measurement errors of long-rate-long-horizon interest rate

surveys deployed for the euro area, while the short-rate-short-horizon interest rate surveys are

matched with a larger measurement error on average – especially for the euro area. Nevertheless,

surveys seem to be helpful for informing parameter estimates: estimating a euro-area specifica-

tion for which the short-rate short-horizon surveys are dropped (but the rest of the specification

remains the same) leads to a distinctly lower estimated persistence of short-rate dynamics, in

turn implying excessively low and negative term premia.

4.2 United States

For the United States, Figure 2 displays inflation, the nominal short rate, and the real short

rate together with their estimated trends. For all three variables, the model-implied trend is

visibly in line with the low-frequency component of the corresponding observed variable. In

particular, the natural real rate tracks the trend of the actual real rate, a feature consistent with

the model-implied stationarity of the real rate gap.

Co-plotting our natural real rate trajectory with that by HLW in Figure 3 validates their

estimate of a fall in r∗ since the 1980s. Yet there are important differences. Until the 1980s, our

natural rate estimates are by up to two percentage points lower than the ones reported by HLW

and closer to the observed real interest rate, in their case implying a wider and more persistent

real interest rate gap. Likewise, at the end of the sample, our natural rate estimates are by more

than one percentage point lower than reported by HLW, with their gauge of r∗ being a touch

above zero while our estimate has fallen as low as up to minus one percent.

These discrepancies likely reflect that the specification by HLW does not impose the gap

between the natural and actual real rate to be stationary. At the same time our r∗ estimates

during the 1970s are close to the average of real-time model estimates reported in Bauer and

Rudebusch (2020).11 In any event, estimates in the literature are diverging widely from each

other, and there is a sizeable margin of model and specification uncertainty (besides estimation

uncertainty for a given model).12

Finally, our posterior-based uncertainty bands (5% to 95% range) span around two percent-

11See their Figure 2, Panel B.
12See, e.g., the cross-model ranges provided in Bauer and Rudebusch (2020) or in Williams et al. (2017). The

synopsis by Neri and Gerali (2019) focuses on natural-rate estimates obtained from structural (DSGE) models:
for the time from 2010 to 2016 (when their sample ends) most of the reported US results are ranging distinctly
sub-zero with some even well below minus two percent. Lopez-Salido et al. (2020) illustrate the sensitivity of
results to model specification within the Holston et al. (2017) approach: depending on the way that short- and
long-run inflation expectations enter the model, natural rate results can range between the reported positive levels
and around minus one percent.
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age points which is less than the c. 2.5 percentage points uncertainty band surrounding the HLW

estimates based on a one standard error deviation band (corresponding to a 68 percentage point

range for a normal distribution). However, ranges are not directly comparable as HLW only re-

port one-sided filtering uncertainty, while our ranges reflect parameter and filtering uncertainty,

throughout based on the full sample.

Figure 2: US macroeconomic variables and model-implied trends

Note: The figure shows the estimated trends (in red) and the observed macro-variables (in blue).

Figure 3: US natural rate estimates

Note: The figure shows our natural rate estimate in blue with the and 5%, 16%, 84% and 95% percentiles
depicted by the blue-shaded areas, respectively. For comparison, the black line depicts the official (one-sided) r∗t
estimate from Holston et al. (2017), which is updated by the New York Fed. The 68% confidence band (i.e.
plus/minus one standard deviation) is based on the average standard error and depicted by the gray-shaded area.

As regards the other latent factors, our results suggest that (quarterly) potential real out-

put growth fell over the sample period from 1.1% to around 0.4% in 2010 and has stayed low

ever since, see Figure 4. Inflation and output gap estimates are reported together with NBER

recessions. The cycles in these estimates match official recession dates rather well. Appendix D

also shows broad consistency between our model-based output gap estimates with estimates by

public policy agencies. Among the two components constituting the natural real rate, zt and
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gt, the “catch-all”contribution zt is less precisely estimated compared to potential growth (even

when annualised). As shown in Fiorentini et al. (2018), the relatively high level of statistical un-

certainty around the non-growth component of r∗ can be traced back to weak loading coefficients

of gap measures in the IS and the Phillips curves.

Figure 4: Further US latent macro variables

Note: The figure shows the estimated latent states of the model in blue together with their 5% and 95%
percentiles in red-dashed. Shaded areas represent NBER recessions.

Figure 5 plots the AFNS yield curve factors together with their 5% and 95% percentiles.

Three observations are in order. First, the path of these yield curve factors is close to what

would be obtained from a yields-only dynamic Nelson-Siegel specification (not shown), which

suggests a strong role for the cross-sectional yield curve information in pinning down these

factors. Second, the statistical uncertainty in the estimation of the level factor Lt is sizeably

higher than that of slope and curvature, possibly reflecting that the level factor plays a dual

role: it is the time-varying anchor point for the whole term structure; and its trend component

L∗t = i∗t = r∗t + π∗t plays a key role in the determination of macroeconomic dynamics. Third,

while the level factor exhibits a clear trend (sample autocorrelation of the estimated series equal

to 0.956), the estimated slope and curvature appear rather mean reverting (autocorrelations

of 0.877 and 0.617, respectively). This result supports – at least heuristically – our modeling

choice of having only the level factor being driven by the stochastic trend but modeling slope

and curvature as stationary.

Figure 6 displays decompositions of bond yields into the expectations component and the
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Figure 5: US yield curve factors

Note: The figure shows the yield curve factors in blue with respective 5% and 95% percentiles in red-dashed.

term premium (see (15)). On the left Figure 6 shows our decomposition of the 5-year forward

rate 5-years ahead into expectations (of the average short-term interest rate over that 5-year

maturity horizon) and the term premium. While the expectations component exhibits a distinct

rise and fall, the term premium estimates displays cyclical behaviour.

When plotting our term premia estimates against those commonly reported in the literature

(yellow line versus grey range in Figure 6), the timing of troughs and peaks largely coincides.

In particular, term premia have risen at the onset of the Global Financial Crisis and slumped

with the start of the Federal Reserve’s large-scale asset purchases at the end of 2008. They also

display a sharp rise following the ‘taper-tantrum’ in 2013.13

Yet, while term-premia estimates from the literature display a distinct trend, especially for

the long forward horizon, our term premia rather show cyclical dynamics, in line with economic

theory, rising with the onset of economic downturns, and subsequently falling. This pattern

reflects the underlying model mechanics: while the standard modeling approach is based on

stationary factor dynamics and a time-invariant long-run mean for the short rate, our model

features a time-varying attractor for the short-term interest rate. Accordingly, the expectations

component is able to soak up a relatively larger part of the trend in long-term bond yields in

our model, and the term premium does not have to incorporate a trend.

An important exception to findings of trending term premia (and a motivation for our work)

is Bauer and Rudebusch (2020) who also incorporate a trend for long-horizon short-rate ex-

pectations. Their term premia estimates (blue and orange lines in Figure 7) for long-horizon

forwards14 do not show such a strong trend as the constant-mean models, but they are somewhat

less cyclical than our term premia. This “inbetween” pattern of their estimates could arise from

13The 5-year, 5-year term premium increased markedly from 164bps to 204bps in 2013 Q2 (Fed Chair’s
Bernanke’s speech was in May 2013).

14They report two sets of term premia, one based on a model where the shifting endpoint is taken as an observed
(off-model) proxy, and one based on another model where the shifting endpoint is estimated within the model.
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the fact that our model specification enforces stationary term premia by construction, while in

their model the stochastic trend is allowed to also affect term premia.

Figure 6: Decomposition of US 5y5y rates

Note: The left figure shows the decomposition of the 5-year, 5-year forward yield in blue into the model-implied
expectation component (red) and the term premium (yellow). Authors’ calculations. NBER recessions in gray.
The right figure compares our term premium estimate for the 5-year, 5-year forward bond yield with a
min-max-range (grey area) of several estimates in the literature: Kim and Wright (2005) (taken from FRED),
Adrian et al. (2013) and a DNS model following Diebold and Li (2006) (all authors’ calculations).

Figure 7: Comparison to Bauer and Rudebusch (2020)

Note: The figure compares our term premium estimate of the 5-year, 5-year forward rate (in blue) with those
presented in Bauer and Rudebusch (2020). OSE (in red) denotes the model with observed shifting endpoint,
while ESE (in yellow) denotes the model with estimated shifting endpoint.

4.3 Euro area

For the euro area, Figure 8 shows inflation, the nominal short-term rate and the real rate

together with their estimated trends. Trend inflation is relatively stable around 2%, in line with

the evolution of the respective survey expectations and the fact that the measurement error

for the survey is estimated to have a relatively small standard deviation (see Table 1). The

natural nominal and real rate display a downward trend over the sample with the natural real

rate having fallen to around zero percent and eventually into negative territory over the last few
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years. The corresponding HLW estimate of r∗ follows a similar downward trend, but remains

above zero at sample end, see Figure 9.

While the model specifies the real rate gap (r − r∗) to be stationary, the realisation of the

model-implied r and smoothed r∗ in the right-panel of Figure 8 display a fairly protracted

distance of both measures from each other for the euro area. For interpreting this outcome

it is important to recall that the estimated r∗ path is a result of both the stipulated model

dynamics and the measurement variables. For the case at hand, the long-horizon survey expec-

tations of long-term yields turn out to be particularly influential,15 steering the inference about

i∗ and in turn (given the survey-aided π∗ estimates) the natural rate estimate r∗. Dropping

the long-horizon survey on long-term yields from the measurement variables would lower the

corresponding i∗ and r∗ estimates and make the gap between r and r∗ look more stationary.

However, without the survey information, the (even) lower level of r∗ and i∗ at the sample end

would imply extremely low long-horizon expectations of future nominal short-term rates, push-

ing the expectations component of long-term yields down to implausible levels: the expectations

component of the 10-year interest rate at sample end would otherwise have amounted to −1%,

below the lowest level of the short-term rate of interest observed so far in the euro area.16 For

these reasons we favour a specification with long-term interest rate survey expectations for the

euro area, even if this choice comes at the cost of rendering the real rate gap less stationary –

as reflected in our smoothed (small-sample) estimates.

Figure 8: Euro area macroeconomic observables and trends

Note: The figure shows the estimated trends (in red) and the observed macro-variables (in blue). The black

solid line reports our own Bayesian estimates of the specification in Holston et al. (2017).

Our uncertainty band around the estimated natural rate path in Figure 9 is considerably

15See especially the small measurement error variance in the last row of Table 1.
16By contrast, our current specification implies relatively plausible long-horizon expectations of short-term rates

as is evident from comparing our estimates of i∗ with long-horizon (six to ten years ahead) surveys of the short-
term (three-month) interest rate. These survey data have not been used for the estimation as they are available
only as of late 2016, so they can only serve as a yardstick for the end of the sample. These survey-implied rate
expectations amount to around 2% until 2019, before declining by around half a percentage point, thus being
close to our model estimates, compare our i∗ estimates in the middle panel of Figure 8. If the model-implied
inflation trend (a bit below 2% and in turn close to our survey variables) is considered to be reasonable as well,
the proximity of i∗ and π∗ to their survey proxies suggests that our r∗ estimates for the euro area over the last
few years of the sample are also relatively reasonable.
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Figure 9: Euro area natural rate estimates

Note: The figure shows our natural rate estimate in blue with 5%, 16%, 84% and 95% percentiles depicted by
the blue-shaded areas. For comparison, the black line shows the (one-sided) estimate of Holston et al. (2017),
which is updated by the New York Fed. The 68% confidence band (i.e. plus/minus one standard deviation) is
based on the average standard error and depicted by the gray-shaded area.

narrower than that around the HLW estimates. However, as discussed for the US case, the

differences in modeling and estimation approaches imply a limited comparability of these bands.

As regards the other latent macroeconomic variables, Figure 10 shows that quarterly poten-

tial growth is estimated to have fallen from around 0.6% in the mid 1990s to about 0.2% in 2010,

and recovering only marginally to 0.3% since then. Both the inflation and output gap show a

consistent cyclical pattern, and the output gap estimate aligns relatively well with published

estimates from the IMF and the European Commission (see Annex D).

Similar to the United States, the yield curve factors in the euro area line up tightly with their

counterparts from a Nelson-Siegel model that is estimated solely with yield curve data, with the

estimation uncertainty for the level factor being larger than for either the slope or curvature

factor (see Figure 11). Again, the level factor displays a clear downward trend, in contrast to

slope and curvature.

The left-hand side of Figure 12 shows the decomposition of 5-year-5-year forward rates into

their expectations and term-premium components. It is primarily the expectations component

that picks up the trend decline in interest rates, while the term premium exhibits a much less

pronounced fall. The fall in the expectations component explains a large part of the fall in yields

prior to the introduction of the euro in 1999 and after global financial crisis of 2008. During the

intervening years our model attributes most of the falling trend in yield to the term premium, in

line with commonly available estimates from the literature and as shown on the right-hand side
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Figure 10: Euro area latent macro variables

Note: The figure shows the estimated latent states of the model in blue together with their 5% and 95%
percentiles in red. Shaded areas represent CEPR recessions.

Figure 11: Euro area yield curve factors

Note: The figure shows the yield curve factors in blue with respective 5% and 95% percentiles in red. For
comparison, the black-dashed lines represent yield curve factors obtained from a yields-only AFNS model.

of Figure 12. Specifically, our estimates also posit a clear decline in term premia during summer

2014, when market expectations were intensifying that the ECB will embark on a major asset

purchase program.17

5 Conclusion

In this paper, we join two strands of the literature: arbitrage-free models of bond yield

dynamics incorporating a time-varying attractor (“shifting end point”) for short rate expecta-

17See also Lemke and Werner (2020).
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Figure 12: Decomposition of euro area 5y5y rates

Note: The left figure shows the decomposition of the 5-year, 5-year forward bond yield (blue) into the
model-implied expectation component (red) and the term premium (yellow). Authors’ calculations. Shaded
areas represent CEPR recessions. The right figure compares our term premium estimate for the 5-year, 5-year
forward bond yield with a min-max-range of several estimates in the literature, including estimates from Geiger
and Schupp (2018), and estimates from Adrian et al. (2013) and Diebold and Li (2006) (both own estimates).

tions over long horizons – most recently exemplified by the frontier contribution of Bauer and

Rudebusch (2020); and semi-structural macro models inferring the location and dynamics of the

natural real rate of interest – the most prominent example being Holston et al. (2017). Our

proposed model captures the joint dynamics of key macroeconomic variables following Holston

et al. (2017). Different from Bauer and Rudebusch (2020), we do not treat the short-term nom-

inal interest rate as exogenous, but rather endogenise it by modeling its dynamics as part of a

complete arbitrage-free specification of the term structure. The nexus between the macro and

the term structure building blocks of our model is the natural real rate. Relative to its position

the actual real rate drives the business cycle; at the same time – together with trend inflation –

it constitutes the underlying trend of the level of the yield curve.

Paired with a Bayesian estimation approach, our framework allows for simultaneous estima-

tion of key unobservable macro objects like the natural real rate of interest, trend inflation and

the output gap, as well as unobservable term premia incorporated in long-term bonds. The joint

estimation and quantification of uncertainty distinguishes our method from most other studies

in the aforementioned literature that tend to rather rely on multi-step approaches or treating

estimates of latent factors as observables.

Consistent with Bauer and Rudebusch (2020), we find that taking into account the secular

fall in equilibrium rates, term premia exhibit cyclical behavior over the business cycle, rather

than the trend decline reported when using term structure models with a constant steady state.

We validate evidence of a recent decline in the natural rate of interest in advanced economies

to levels around zero or into negative territory as reported, e.g. in Fiorentini et al. (2018);

Gourinchas and Rey (2019); Jorda and Taylor (2019); Kiley (2020). But our estimates of the
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natural real rate deviate at times from those reported in Holston et al. (2017), inter alia due to

our closing of the model via the yield curve dynamics and due to our inclusion of interest rate

surveys.

Our model makes strides towards a better integration of macro and yield curve dynamics, here

with a focus on the natural real rate of interest. Yet, two important further challenges require

further research. First, incorporating the effective-lower bound constraint on interest rates and

easing effects of central-bank asset purchase programs into our new macro-finance framework:

Within the commonly used semi-structural approach (without yield curve) González-Astudillo

and Laforte (2020) use information in long-term yields in estimating r∗ to deal with the lower-

bound constraint – but incorporating a suitable non-linear approach in a framework seeking to

decompose yields into expectations and term premia remains an additional challenge. Second,

updating our proposed modelling framework with data covering the pandemic crisis: Lenza and

Primiceri (2020) argue that, in a VAR context, such data are better discounted for estimation,

but not to be ignored for forecasting. In our context, we would observe that an update would

not be necessary for model estimation, but extremely volatile data during the pandemic are

bound to translate into large and equally volatile gyrations in filtered r∗ estimates, making the

interpretation of such estimates extremely challenging. A robust approach to discounting the

impact of extreme data volatility on filtered r∗ estimates is therefore still to be developed.
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Annex

A The state space model

The observation equations are given by:

yt(τi) =A(τi) + L̃t + L∗t + θs(τi)St + θc(τi)Ct + uτit , uτit ∼ N (0, σ2
τi), i = 1, . . . ,K

xt =x∗t + x̃t,

πt =π∗t + π̃t,

Esurvt yt+4(1) =A(1) + EtLt+4 + θs(1)EtSt+4 + θc(1)EtCt+4 + us,srt , us,srt ∼ N (0, σ2
s,sr)

Esurvt πt+∞ =π∗t + us,πt , us,πt ∼ N (0, σ2
s,π),

Esurvt yt+∞(40) =A(40) + θs(40)S̄ + θc(40)C̄ + L∗t + us,lrt , us,lrt ∼ N (0, σ2
s,lr)

where θs(τ) and θc(τ) are the Nelson-Siegel loadings defined in the main text, A(τ) is defined

in the next section, and L∗t = r∗t +π∗t . We allow for different measurement error variances across

observed yields, but assume the one-quarter short-term rate it ≡ yt(1) to be matched without

error, i.e. σ2
τ1 = 0. The last three equations describe how surveys are mapped into unobserved

trends subject to a measurement error. First, we use Consensus expectations of the short rate

in one year time to inform our econometric model about the speed at which the short rate

convergences to its time-varying attractor i∗t . Second, we use Consensus expectations of long-

term inflation as a noisy measure of trend inflation. Lastly, we incorporate long-term Consensus

expectations of the 10-year rate 6-10 years in the future, denoted Êsurvt yt+∞(40), to inform

estimation of L∗t . As explained in the main text, treating the 6-10 year horizon as ‘very long’

the model-implied counterpart to the survey data is A(40) + θs(40)S̄ + θc(40)C̄ + L∗t .

The state equations are given by:

L̃t = aLL̃t−1 + εL̃t ,

St = a10 + a11St−1 + a12Ct−1 + a13π̃t−1 + a14x̃t−1 + εSt ,

Ct = a20 + a21St−1 + a22Ct−1 + a23π̃t−1 + a24x̃t−1 + εCt ,

π∗t = π∗t−1 + επ
∗
t ,

x∗t = x∗t−1 + gt−1 + εx
∗
t

gt = gt−1 + εgt ,

zt = zt−1 + εzt ,

π̃t = b1π̃t−1 + b2x̃t−1 + επt ,
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x̃t = a1x̃t−1 + a2x̃t−2 +
a3

2

(
r̃t−1 + r̃t−2

)
+ εx̃t .

Given that both the inflation π̃t and output gap ỹt are mean-zero by construction, we have

S̄
C̄

 =

I2 −

a11 a12

a21 a22

−1a10

a20

 .

To calculate the real rate, rt = it −Etπt+1, we assume expectations to be model-consistent.

Taking conditional expectations of (6) gives

Etπt+1 = Et[π
∗
t+1 + π̃t+1] = π∗t + b1π̃t + b2x̃t.

Substitution yields

rt ≡ yt(1)− Etπt+1 = yt(1)− π∗t − b1π̃t − b2x̃t.

Using equation (8) and A(1) = −θs(1)S̄ − θc(1)C̄ the real rate gap is given by

r̃t =rt − r∗t

=yt(1)− π∗t − b1π̃t − b2x̃t − r∗t

=r∗t + π∗t + L̃t + θs(1)[St − S̄] + θc(1)[Ct − C̄]− π∗t − b1π̃t − b2x̃t − r∗t

=L̃t + θs(1)[St − S̄] + θc(1)[Ct − C̄]− b1π̃t − b2x̃t. (26)

Finally, substituting the latter equation into the IS curve, we have

x̃t =a1x̃t−1 + a2x̃t−2 +
a3

2

(
r̃t−1 + r̃t−2

)
+ εx̃t

=a1x̃t−1 + a2x̃t−2 +
a3

2

(
L̃t−1 + θs(1)[St−1 − S̄] + θc(1)[Ct−1 − C̄]− b1π̃t−1 − b2x̃t−1

)
+
a3

2

(
L̃t−2 + θs(1)[St−2 − S̄] + θc(1)[Ct−2 − C̄]− b1π̃t−2 − b2x̃t−2

)
+ εx̃t

=
(
a1 −

a3b2
2

)
x̃t−1 +

(
a2 −

a3b2
2

)
x̃t−2

+
a3

2

(
L̃t−1 + θs(1)[St−1 − S̄] + θc(1)[Ct−1 − C̄]− b1π̃t−1

)
+
a3

2

(
L̃t−2 + θs(1)[St−2 − S̄] + θc(1)[Ct−2 − C̄]− b1π̃t−2

)
+ εx̃t .

In compact state-space representation, the model can be written as18

ζt = γ + Cξt + Dut with ut ∼ N (0, I) (27)

18For the US version of the model, for which we do not use long-horizon/long-rate surveys, the last measurement
equation is absent and dimensions adjust accordingly.

30



ξt = µ+ Fξt−1 + Get with et ∼ N (0, I), (28)

where

ζt =
(
yt(τ1) . . . yt(τK) xt πt Esurvt yt+4(1) Esurvt πt+∞ Esurvt yt+∞(40)

)′
,

and

ξt =
(
L̃t St Ct π∗t x∗t gt zt π̃t x̃t L̃t−1 St−1 Ct−1 π̃t−1 x̃t−1

)′
.

The corresponding matrices of the state space model are

C =



1 θs(1) θc(1) 1 0 4 1
...

...
...

...
...

...
... 0K×7

1 θs(τK) θc(τK) 1 0 4 1

0 0 0 0 1 0 0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 1 0 0 0 0 0 0

C1F
4

0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 4 1 0 0 0 0 0 0 0


and

F =



aL 0 0 0 0 0 0 0 0

0 a11 a12 0 0 0 0 a13 a14 03×5

0 a21 a22 0 0 0 0 a23 a24

1 0 0 0

04×3 0 1 1 0 04×7

0 0 1 0

0 0 0 1

0 0 0 0 0 0 0 b1 b2 0 0 0 0 0

a3
2

a3
2
θs(1) a3

2
θc(1) 0 0 0 0 −a3b1

2
a1 − a3b2

2
a3
2

a3
2
θs(1) a3

2
θc(1) −a3b1

2
a2 − a3b2

2

I3×3 03×6

05×5

02×7 I2×2



,

where C1 denotes the first row of C. The matrices D and G are assumed to be diagonal

with standard deviations of state and measurement innovations on their diagonal. Lastly, noting

31



equations (27) and (28) the column vectors for the constants γ and µ are given by

γ =
(
A(τ1) . . . A(τK) 0 0 γshsr 0 γlhlr

)′
, (29)

where γshsr = A(τ1) + C1(I + F + F2 + F3)µ and γlhlr = A(40) + θs(40)S̄ + θc(40)C̄ and

µ =
(

0 a10 a20 0 0 0 0 0 −a3[θs(1)S̄ + θc(1)C̄] 0 0 0 0 0
)′
,

respectively.

B Parameter restrictions to rule out arbitrage in the dynamic

Nelson-Siegel model

In this Annex we explain the no-arbitrage adjustment term A(τ) in the yield equation (8).

As shown by Christensen et al. (2011) and, in a discrete-time setting, Li et al. (2012), pricing

bonds under a specific choice of risk-neutral factor dynamics renders the joint dynamics of bond

yields arbitrage-free, gives rise to factor loadings having the Nelson-Siegel functional form, but

implies an additional intercept term that is not present in the standard – statistically motivated

– Nelson-Siegel formulation.

Starting from the definition of the state variable ξt as in Annex A, we define a factor vector

Ft = [Lt, ξ̄t], where ξ̄t equals our state vector ξt except that the first three elements are re-

shuffled so that L̃ appears after the slope and curvature factor S and C. The so-constructed

factor vector Ft has the three Nelson-Siegel factors Lt, St and Ct lining up upfront. Note

further that L results as a linear combination of the states L̃, g, z and π∗.19 We further group

Ft = [F ut F
o
t ] with F ut = [Lt, St, Ct] and F ot capturing the rest of the variables. Based on that

partitioning of factors we represent the short-rate equation as

it = δ0 + δ′uF
u
t + δ′mF

m
t = δ0 + δ′Ft

with obvious notation. Let Pt(τ) denote the time-t price of a zero-coupon bond with residual

maturity τ . If there are risk-neutral factor dynamics (labelled by Q)

Ft = cQ + ΦQFt−1 + vQt , vQt ∼ N (0,Ω) (30)

19As Lt = L̃t + i∗t = L̃t + 4gt + zt + π∗t .
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so that bond prices satisfy

Pt(τ) = e−itEQt Pt+1(τ − 1), Pt(0) = 1,

then the joint evolution of bond prices is arbitrage-free. Moreover, the solution to the pricing

equation is exponentially affine in factors

Pt(τ) = exp
(
a(τ) + b(τ)′Ft

)
where coefficients a(τ) and b(τ) satisfy the well-known difference equations

a(τ + 1) = a(τ) + b(τ)′cQ +
1

2
b(τ)′Ωb(τ)− δ0

b(τ + 1)′ = b(τ)′ΦQ − δ′,

with a(1) = −δ0 and b(1) = −δ. Moreover, as shown by Li et al. (2012), if ΦQ is of the form

ΦQ =

 ΦQ
uu 0

ΦQ
mu ΦQ

mm

 , ΦQ
uu =


1 0 0

0 e−λ λe−λ

0 0 e−λ

 ,

then b(τ) exhibits the specific Nelson-Siegel loadings (in price space) for the first three factors

L, S and C, and zero on the other factors,

b(τ) =

[
− n,−1− e−λn

λ
, ne−λn − 1− e−λn

λ
, 0, . . . , 0

]′
.

In addition, the zero restrictions on ΦQ imply that the expression for a(τ) simplifies to

a(τ + 1) = a(τ) + b(τ)′cQ +
1

2
bu(τ)′Ωuubu(τ)− δ0, (31)

where bu(τ) contains the first three elements of b(τ) and Ωuu is the upper 3-by-3 block of Ω.

Recalling that Ft = [Lt, ξ̄t] is just an extension of our state vector ξt, the transition equation

for Ft is readily derived from that of ξt described in Annex A. It is affine, as the stipulated

(unobserved) risk-neutral dynamics in (30) above, but depends on the physical (no Q label)

parameters:

Ft = c+ ΦFt−1 + vt, vt ∼ N (0,Ω)

The variance-covariance matrix Ω of state innovations is the same under both the risk-neutral
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and the physical measure. For our factor vector Ft = [Lt, ξt] it follows from the dynamics of ξt

and the link of Lt to L̃, zt, gt and π∗t that Ωuu in (31) is given by

Ωuu = diag(σ2
L̃

+ σ2
π∗ + 16σ2

g + σ2
z , σ

2
s , σ

2
c ),

where σ2
i denotes the variance of the innovation εit of variable i in our model. Parameters

governing the risk-neutral and physical dynamics are linked as

cQ = c− Ω
1
2λ0, ΦQ = Φ− Ω

1
2 Λ

where λ0 and Λ (‘market prices of risk’) are a vector and a matrix, respectively, of appropriate

dimension.

Mapping bond prices into yields using yt(τ) = − 1
τ lnPt(τ), we have

yt(τ) = A(τ) + B(τ)′Ft

where A(τ) = − 1
τ a(τ) and B(τ) = − 1

τ b(τ) . That is, B(τ) has now the Nelson-Siegel loadings

for bond yields as the first three entries, and A(τ) is the intercept appearing in (8).

The risk-neutral dynamics and cross-sectional pricing equations are parsimoniously param-

eterized. The Nelson-Siegel tuning parameter λ is calibrated as described in the main text.

The relevant variance-covariance matrix Ωuu is implied by the time series estimates under the

physical measure as explained above. As we are working with latent factors, the parameter

δ0 in the short-rate equation is not identified and can be arbitrarily calibrated. While it is

common to set it to zero, we choose to set δ0 = −θs(1)S̄ − θc(1)C̄ so that (as a(1) = −δ0)

A(1) = −a(1) = −θs(1)S̄− θc(1)C̄ as specified in the main text. Finally, we set the risk-neutral

VAR intercept cQ equal to zero. This is a somewhat ad-hoc choice to prevent additional param-

eters to enter our setup and is tantamount to imposing a restriction on the market price of risk

vector λ0, given the estimates of c and Ω of the physical dynamics. While under that specific

choice of cQ model-implied bond yield dynamics are arbitrage-free, it is eventually an empirical

question, whether cQ = 0 is an overly restrictive assumption. Via its impact on A(τ), the choice

of cQ affects the (average) slope of the yield curve as argued in the main text. It turns out

empirically that the model fits the average slope in the data fairly well so that the parameter

restriction appears non-problematic from this perspective.20

20The mean absolute fitting errors for the 2-, 5- and 10-year maturities are, respectively, 5bps, 9bps and 12bps
for the US and 8bps, 10bps and 7bps for the euro area.
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C Data

The following table provides an overview of the quarterly data used in this study. For the United States, inflation and GDP data are taken from

the FRED-database of the Federal Reserve Bank of St. Louis and yields from Gürkaynak et al. (2007). Sources for euro area data are the ECB’s

Statistical Data Warehouse, Deutsche Bundesbank, Bloomberg, and Consensus Economics. ACRONYMS refer to codes in the respective databases.

Synthetic, pre-1999 euro area data are in fixed composition of member countries (except for HICP which is in full composition for completing the

series over the sample period starting 1995-97). The overall sample period covers 1961 Q2–2019 Q4 for the United States and 1995 Q1–2019 Q4 for

the euro area.

Table 2: Data used in this study

Variable US EA

GDP GDPC1 MNA.Q.Y.I8.W2.S1.S1.B.B1GQ. Z. Z. Z.EUR.LR.N

Consumer Prices, all items CPIAUCSL which is seasonally adjusted HICP – ICP.M.U2.N.000000.4.INX seasonally adjusted using X-12-ARIMA for data 1995 Q1–

1997 Q1, subsequently seasonally adjusted series ICP.M.U2.Y.000000.3.INX.

Quarter-end zero-coupon yields Data by Gürkaynak et al. (2007) Zero-coupon yields on German government bonds up to 2005 Q4, subse-

quently midquotes from OIS bid and ask: FM.B.U2.EUR.RT.SI.EUREON3M .ask or

FM.B.U2.EUR.RT.SI.EUREON3M .bid, etc. (Sources: Deutsche Bundesbank, ECB Sta-

tistical Data Warehouse) .

Short-horizon short-term interest rates

expectations

Consensus Economics forecasts of the 3-

months T-Bill, 1-year ahead (as of 1989 Q2)

Consensus Economics forecasts of the 3-months Euribor, 1-year ahead (as of 1995 Q2)

Long-horizon long-term interest rates

expectations

Consensus Economics forecasts of the 10-

year Treasury bond, 6-10 years ahead (as of

1989 Q2)

Consensus Economics forecasts of the 10-year German bund, 6-10 years ahead (as of 1995 Q2)
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D Comparison with institutional output gap estimates

Figure 13 plots model-specific output gap estimates against institutional ones. Generally, the

model-specific estimates co-move with institutional ones and, by and large, there is a high degree

of consistency in the timing of business cycle turning points. While our model-based estimate

for the United States lies mostly between the institutional estimates from the IMF and CBO,

slack in the aftermath of the Global Financial crisis is more swiftly absorbed in our model-based

estimate of our benchmark model than in the official estimates. In contrast, adding long-horizon

long term interest rate expectations as an additionally observable to inform the model about

the low frequency component of yields seems to negatively affect the output gap estimate. For

the euro area, our model-based output gap estimates closely follow those estimated by the IMF

or the European Commission.

Figure 13: Output gaps compared to official estimates

Note: The left panel shows institutional output gap measures for the United States from the Congressional
Budget Office (CBO) and the IMF against our model-based estimates. NBER recessions in gray. The right
panel shows institutional output gap measures for the euro area from the European Commission (EC) and the
IMF against our model-based estimates. CEPR recessions in gray.
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