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Abstract 

 

This paper contributes to the discussion about mandatory participation in collective funded 

pension schemes. It explores under what circumstances individual participants exercise the 

option to exit such scheme if participation is voluntary. First, we show how the willingness to 

participate increases when there are more future exercise dates. Then, we show how the 

pension fund’s set of policy instruments can be designed to minimise the likelihood that 

cohorts exit the pension scheme. The instruments consist of contribution and indexation 

policies. Recovery of the funding ratio (ratio of assets over liabilities) to its regulatory target 

level may be based on uniform contributions or age-dependent contributions which are 

actuarially fair in expectation. Specifically, while the value of the exit-option deters younger 

workers from exiting the pension fund, a uniform contribution policy encourages older 

workers to stay in the pension scheme. 
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1 Introduction

The key contribution of this paper is the application of option pricing theory to explore
participation decisions in voluntary collective funded pension schemes. This approach
can be used to design contribution and beneϐit policy instruments of voluntary collective
pension schemes in such a way that participants have an incentive to stay in the scheme,
which can serve as an alternative for making participation in collective funded pension
schemes mandatory.
Participation in collective pension schemes can be either mandatory or voluntary. Many
countries feature pension arrangements with mandatory participation. Examples are the
sub-national civil servants’ pension schemes in the U.S. andmost occupational pension ar-
rangements in the Netherlands and Denmark. The funded pension schemes in Australia,
Chile, Iceland, Norway, Sweden and Switzerland, among others, are mandatory for all em-
ployees or even all wage earners (OECD, 2013). Mandatory participation may be beneϐi-
cial for several reasons. First, and most important, individuals are protected against the
consequences of their ownmyopia, which deters them from saving enough for their retire-
ment. Second, it allows for intergenerational risk-sharing. This is ex-ante welfare enhan-
cing as it allows shocks to be divided over a large group of subsequent generations. Con-
sequently, shocks have less impact on the disposable income of participants in a collect-
ive pension scheme compared to participants in individual schemes. (Gordon and Varian,
1988; Shiller, 1999; Ball and Mankiw, 2007; Gollier, 2008; Cui et al., 2011; Chen et al.,
2014). Finally, participants in a collective scheme avoid the need to take complex invest-
ment decisions.
Despite these advantages, mandatory participation is under pressure. Increasing labour
market mobility and self employment require more ϐlexible pension arrangements (Chen
and Beetsma, 2014). Furthermore the potential beneϐit of intergenerational risk sharing
may become smaller due to ageing of society. Also the quest for more individual free-
dom of choice has increased. We analyse this ϐlexibility by studying pension schemeswith
voluntary participation. The question is what this additional ϐlexibility implies for the sta-
bility of participation in collective pension schemes. This stability is important for the
remaining participants to continue to be able to reap the beneϐits from participation. It
may also be systemically important, because a run on the assets of a large pension fund
may have profound consequences on the ϐinancial markets in which it has invested.
This paper applies option pricing techniques to analyse the decision to participate in a vol-
untary collective funded pension scheme. Under voluntary participation a participant has
an option to (continue to) participate in, or oppositely, to exit the pension scheme. Spe-
ciϐically, we investigate how a pension fund can deploy its policy instruments to reduce the
likelihood that a cohort wants to leave the pension fund. Hence, the analysis in this paper
provides leads for meeting the quest for more individual freedom of choice (Bovenberg
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et al., 2007; Westerhout, 2011; Beetsma et al., 2012; Beetsma and Romp, 2013), while not
unnecessarily endangering the stability of pension schemes.
With mandatory participation under increasing pressure, it is important for the policy
authorities, such as pension fund supervisors, to understand the consequences of offering
pension fund participants an exit-option. In our analysis, we consider different design fea-
tures of the exit-option, ranging from a “European” option with a single pre-speciϐied exit
date to an “American” option that allows for the possibility to exit at anymoment until the
option expires. An example of the ϐirst type is when (only) at the moment of retirement
the participant can choose between taking out his accumulated balance or receiving an
annuity payment until death. This is the case for Australia, Chile, Denmark, Sweden and
Switzerland.1 By contrast, in the U.K. participants have the option towithdraw their entire
balance at any moment after the age of 55, while in the U.S. this option exists during the
entire working career. We capture these variants by modelling options with a ϐixed num-
ber of pre-speciϐied exercise dates or a continuum of exercise dates. An example of an
option with multiple exercise moments (a “Bermuda” option) concerns the recent intro-
duction in the U.K. of the obligation of employers to automatically enrol employees every
three years into an occupational pension scheme. Participants can withdraw their con-
tributions within a month after enrolment. Thereafter, contributions are locked in the
pension scheme until the age of 55. Depending on the pension scheme one might be able
to reduce or increase the level of contributions. In particular, the non-proϐit “NEST” pen-
sion scheme, which was set up as part of the government’s workplace pension reforms,
allows for a “contribution holiday”. The participant can keep his retirement pot and start
contributing again at a later date.
We set up a model with multiple overlapping generations, in which participants have the
option to stay in their pension fund or to once-and-for-all exit it. Upon exit, his pension
entitlements are converted into an individual deϐined-contribution retirement account.
This choicemight be optimal when the funding ratio, the value of the fund’s assets over its
liabilities, is low. By exiting the participant does not share in the future recovery burden.
Investment risks affect the ϐinancial position of the pension fund, which can deploy two in-
struments, the contribution and the indexation rate, to restore its ϐinancial position. This
recovery is required by regulation in our model and can be spread out over a longer or
shorter period. The types of pension contracts we consider range from collective deϐined-
beneϐit (DB), inwhichall the adjustment takesplace through the contributions, to a collect-
ive deϐined-contribution (DC) scheme, in which all adjustment occurs through indexation.
We also analyse hybrid contracts, with adjustments along both dimensions. In all contract
speciϐications the accrual and indexation rates are uniform for all participants. For the

1In Chile, the latter possibility only exists if the annuity exceeds some mandatory minimum. In Sweden, the
participant may choose between an annuity until death or an annuity with a ϐixed maturity of at least ϐive
years.
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contribution, on the other hand, we consider three cases: an actuarially fair contribution,
a uniform contribution (as is common in many collective pension arrangements through-
out the world) and an age-dependent contribution that puts a relatively large share of the
adjustment (in the case of underfunding as well as overfunding) on young cohorts. To ob-
tain our results, we apply the Least Squares Monte Carlo (LSMC) approach as proposed
by Longstaff and Schwartz (2001). By now, several other studies have applied the LSMC
approach to pensions and life insurance products, e.g. Pelsser et al. (2007); Bernard and
Lemieux (2008); Cathcart and Morrison (2009); Boyer and Stentoft (2013).
Our key ϐindings are the following. For realistic assumptions the likelihood of participants
exiting thevoluntary scheme is fairlyhigh. It increases for a longer recoveryperiod. Ceteris
paribus, young participants aremore inclined to exit a DB scheme or a hybrid scheme rely-
ing more on contribution adjustments for recovery. Older participants are more inclined
to exit a collective DC scheme or a hybrid scheme in which recovery relies more on index-
ation adjustments. Further, participants are more inclined to continue participation if the
number ofmoments that the exit-option can be exercised is high. Counterintuitively, more
freedomof choice to exit actually improves participation. Applying a uniform contribution
in thepresenceof anAmerican exit-optionhelps tokeepbothyoungandoldparticipants in
the pension fund and, as such, has an important stabilizing inϐluence on the pension fund.
The American exit-option is relatively valuable to the young cohorts as it gives themmany
potential exercise opportunities. The uniform contribution is relatively valuable to the old
cohorts. They are implicitly subsidized by the young through the uniform contributions:
as a result of the shorter period over which they are discounted, the newly accrued pen-
sion entitlements associated with an extra year’s work are more valuable for older than
for younger working cohorts. This pay-as-you-go effect is present in many collective funded
public sector pension plans, such as those in Australia, Canada, Germany, the Netherlands,
Norway, Switzerland, the U.K. and the sub-national civil servants’ plans in the U.S. (Ponds
et al., 2011).
Closest to the current paper is Chen (2015). This paper extends Chen (2015) into a num-
ber of directions. In contrast to Chen (2015) we consider hybrid pension schemes and we
introduce the indexation rate as an additional instrument to restore the pension fund’s ϐin-
ancial position. In addition, we allow for the contribution policy to be age-dependent. This
way we can explore what policy instrument settings are conducive to all cohorts continu-
ing their participation in the pension fund. This paper differs from other papers studying
the decision to participate in a collective pension fund by applying an option pricing ap-
proach based on risk-neutral valuation, rather than a utility-based framework. Siegmann
(2011) analyses funding ratio thresholds at which an individual would voluntarily parti-
cipate in a DB pension fund. Molenaar et al. (2011) analyse whether a low funding ratio
creates incentives for participants to exit a pension plan. In line with our results, they
ϐind that particularly the young and the old working cohorts are likely to exit the pension
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fund. The exit incentive of the young is driven by the pay-as-you-go effect, while the exit
incentive of the old is driven by the fact that indexation reductions affect their relatively
large accumulated pension beneϐits most. Other articles studying participation in collect-
ive pension funds are Van Hemert (2005), Van Bommel (2007), Beetsma et al. (2012) and
Beetsma and Romp (2013). Except for applying a utility-based approach, these papers
cast their analysis in a context with two overlapping generations, while we allow for a
more realistic setting with a continuum of overlapping generations and a potential con-
tinuum of exercise moments.
This paper also connects to the literature on the stability of pension schemes and actu-
arially fairness. Dufresne (1989) investigates to what extent ϐluctuations in contributions
and funding ratios can be reduced, by analysing themean and variance of the pension fund
variables. Hassler and Lindbeck (1997) show that a notional DC pension scheme is stable,
when actuarially fairness and a balanced budget are necessary conditions for stability in
a pay-as-you-go pension system. From this perspective the Swedish public pension pil-
lar, which is based on a pay-as-you-go notional DC scheme, looks attractive. However,
our paper considers funded pension schemes. Chen and Romp (2015) propose a method
to model the behaviour of funded pension schemes by distributing the required recov-
ery by regulation over the policy instruments, such that the pension system is globally
stable, as it is expected to converge to a unique steady state. This feature holds regardless
of the extent of risk-sharing and the type of ϐinancing (DB, DC or hybrid). We apply this
method to ensure non-exploding simulation paths, while we focus on improving stability
in terms of participation. Kleinow and Schumacher (2015) show that actuarial fairness
is not straightforward, when risk-sharing is implemented through conditional indexation.
They compute a recursive formula in the context of a model with two overlapping gen-
erations, such that contributions are actuarially fair for entry generations. We are not
concerned with actuarial fairness per se, but we focus on the setting of the instruments
that protects the pension fund’s stability in terms of participation to the maximum extent
possible.
The remainder of this paper is structured as follows. Section 2 presents the model, while
Section 3 presents the benchmark parameter settings. As a stepping stone for the ensu-
ing analysis, Section 4 explores the exit-option under a DB scheme when there is a ϐixed
exercise date, while Section 5 turns to the American exit-option. Section 6 explores how
stability in terms of participation can be enhanced by deploying a uniform contribution
policy, which is no longer actuarially fair. Finally, in Section 7 we conclude the main text
of this paper. Technical details are found in the Appendix.
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2 The Model

This section presents the model. Section 2.1 describes the underlying economy and the
individuals inhabiting the economy. Section 2.2 discusses the valuation of random cash-
ϐlows, while Section 2.3 explains the various pension schemes.

2.1 The Economy and its Agents

All processes in the model are speciϐied under the risk neutral measure Q. We assume
that the market is complete and that the only source of risk is investment return risk. The
value Pt of the pension fund’s investment portfolio follows a geometric Brownian motion

dPt =rPtdt+ σPtdWP,t, (1)

where the drift exactly equals the instantaneous risk-free rate r under the risk neutral
measure and where σ is the instantaneous volatility of the portfolio return.
A single period in the model corresponds to one year. An individual works from age t0 =

0 until his retirement age tR, while he is retired from age tR until the age at which he
dies, tD. The parameters t0, tR and tD are all constant. Moreover, the size of the new
cohort entering the workforce each period is constant over time and normalized to unity.
Hence, we abstract from demographic risks. We also abstract from unemployment risk
and inϐlation risk. In fact, we assume that the inϐlation rate is zero.2 The cohort entering
the labour market at time t = s is referred to as “cohort s”. Furthermore, we assume that
the wage proϐile is constant over an individual’s working life. We normalize the annual
wage rate to unity. Hence,

ws,t =

1, for t− s ∈ [0, tR] ,

0, otherwise,

where ws,t is the wage of a participant aged ν = t − s. At date t cohort s contributes a
fraction cs,t of its wage to the pension fund.

2.2 Valuation Method

Key to the analysis will be the participant’s option to exit a collective pension fund. At time
t, the price of any security or contract with random pay-offXu at u ≥ t is given byΠt (Xu).
According to themartingale representation theory, we can price securities with respect to

2Allowing for non-zero inϐlation would complicate the algebra, without affecting the main results.
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the expectation under the risk-neutral measureQ. Hence, we obtain

Πt (Xu) = exp [−r (u− t)]EQ
t (Xu) ,

whereEQ
t is the expectation under the risk-neutralmeasureQ conditional on the informa-

tion available at time t. We assume that themarket is complete and, therefore, the risk-free
interest rate can be used as the unique numéraire.

2.3 The Pension Schemes

In this subsection we deϐine the different pension schemes. We distinguish between in-
dividual DC schemes and collective schemes. Within the collective schemes we deϐine a
continuum of pension schemes ranging fromDB to collective DC. We end this section with
a description of the collective-to-individual pension option, i.c., the exit-option.

2.3.1 The Individual Deϐined-Contribution Pension Scheme

In the individual DC pension scheme a participant accumulates assets by paying contribu-
tions and earning investment returns. At retirement the accumulated assets are used to
buy an annuity. The accumulated pension assets of cohort s at time t are

ADC
s,t =

ˆ t

s

cDC Pt

Pu

du, for t− s ∈ [0, tR] ,

where cDC is the constant contribution. Assets at retirement, ADC
s,s+tR

, are used to buy an
annuity that yields a constant beneϐit BDC until death. This beneϐit is easily calculated as
(see Appendix A.1)

BDC =rADC
s,s+tR

/ {1− exp [−r (tD − tR)]} .

The individual DC scheme is actuarially fair by construction. By applying the valuation
method, we simply obtain

Πt

(
ADC

s,t

)
=ADC

s,t .

2.3.2 The Collective Pension Scheme

The collective schemes are more complex. We run through several steps in this section to
model them. First, we deϐine the participation setting in the collective scheme. Second, we
present the asset dynamics and the valuationof the liabilities. Third,we turn to the various
policy instruments available to the collective scheme. Fourth, we address the regulation of
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the pension scheme and deϐine the equilibrium targets. Fifth, we parametrise the various
collective pension schemes. We ϐinish this subsection with a description of the recovery
contribution policy.

Participation Setting Denote It as the set of participating cohorts in the collective pen-
sion scheme at time t. These cohorts must have entered the labour market at time s ∈
[t− tD, t]. Under “full participation” all cohorts currently alive participate in the pension
fund. Hence, in this case, It = {s : t− s ∈ [0, tD]} ,∀t, where t − s is the age of cohort
s. Under full participation the set of working cohorts in the collective pension scheme at
time t is

Iwt = {s : t− s ∈ [0, tR]} ∩ It,

while the set of retired cohorts participating at time t is

Irt = {s : t− s ∈ [tR, tD]} ∩ It.

Asset Dynamics The pension fund’s assetsAt evolve as

dAt =
dPt

Pt

At +
(
Ct −BTOT

t

)
dt.

Hence, the pension fund’s assets growaccording to the stochastic portfolio return (dPt/Pt)

as deϐined in equation (1) plus the total volume of contributions (Ct) minus the total
volume of beneϐit payments

(
BTOT

t

)
.

Valuation of the Liabilities The actuarially-fair price of the pension entitlements at
time t of cohort s is

Πt (Bs,t) =Rt−sBs,t,

where Rt−s is the discount factor of pension entitlements and Bs,t are the accumulated
pension entitlements of cohort s at time t. To derive the discount factor we distinguish
between the pre- and the post-retirement period. For a cohort of age ν = t−s the discount
factor is given by

Rν =

exp [−r (tR − ν)]
´ tD
tR

exp [−r (u− tR)] du, for ν ∈ [0, tR] ,´ tD
ν

exp [−r (u− ν)] du, for ν ∈ (tR, tD) ,

=
1

r
exp {−r [tR −min (tR, ν)]} (1− exp {−r [tD −max (tR, ν)]}) .
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The pension fund’s liabilities equal the discounted pension entitlements integrated over
all participating cohorts3

Lt =

ˆ
It

Rt−sBs,tds.

ThePolicy Instruments The collectivepension schemehas twopolicy instruments avail-
able to respond to ϐinancial shocks: the rate at which accrued pension entitlements are
indexed and the contribution. We refer to the policies associated with these instruments
as the “indexation policy” and the “contribution policy”.
The indexation policy is speciϐied as follows. Pension entitlements of cohort s at time t
evolve as

dBs,t = [ψws,t + (γt − 1)Bs,t] dt, for t− s ∈ (0, tD) ,

where ψ is the accrual rate as a constant fraction of the wage rate and γt is the (gross)
indexation rate. Note that the wage rate, and, hence, also accrual, is zero during retire-
ment, i.e. ws,t = 0 for t − s ̸∈ [0, tR]. Because entitlements are zero at the moment of
entry into the labour force, we haveBs,s = 0. The indexation rate allows the pension fund
to respond to the current funding ratio, which in turn is affected by the pension fund’s
investment returns. Hence, indexation policy is best understood as a correction to the
pension entitlements as a result of the pension fund’s investment returns. Because inϐla-
tion is zero, we calibrate the indexation policy such that the indexation rate is γt = 1when
the funding ratio is at its long-run target level (see below). Hence, in that case, retirement
beneϐits grow at rate zero. Integrating over all retired cohorts, the pension fund’s period-t
aggregate beneϐit payments are

BTOT
t =γt

ˆ
Irt

Bs,tds.

The second policy instrument concerns the contribution. The contribution by an indi-
vidual from cohort s at time t is the sum of an actuarially-fair contribution (c̄t−s) and a
recovery contribution (πs,t). Aggregate contributions over all working cohorts are given

3Note that the valuation of the liabilities does not include the value of a potential exit-option. The liabilities
are calculated under the implicit assumption that none of the current participantswill exit the pension fund.
This is in line with how liabilities are calculated in practice. Including the participation decision in the valu-
ation of the liabilities would complicate the model so substantially that it is beyond the scope of the current
paper. The speciϐic way of calculating the liabilities does not interfere with the optimality of an individual’s
participation decision given the policy followed by the pension fund. However, the pension fund’s policy
itself is based on the funding ratio and is therefore affected by the way the liabilities are calculated.
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by

Ct =

ˆ
Iwt

cs,tds =

ˆ
Iwt

(c̄t−s + πs,t) ds,

where the actuarially-fair component of the individual contribution is

c̄t−s =ψws,tRν =

ψRt−s, for t− s ∈ [0, tR] ,

0, otherwise.

This actuarially fair component ignores the potential value of the exit-option that an indi-
vidual may hold. The recovery contribution can be positive or negative, depending on the
pension fund’s ϐinancial position.

Regulation The collective pension schemes are regulated, for example by a supervisor
appointed by the government. The key input is the funding ratio

Ft =At/Lt.

The regulator requires pension funds to target a funding ratio of F̄ . Moreover, when the
actual funding ratio Ft deviates from the target funding ratio, it requires the pension fund
to close the gap between the two at a sufϐiciently high speed according to the following
equation

EQ
t

(
Ft+dt − F̄

)
=αdt

(
Ft − F̄

)
, 0 < α < 1, (2)

whereα denotes a regulatory smoothing parameter. This smoothing parameter allows for
a gradual adjustment to ϐinancial shocks. The smoothing parameter is crucial in determ-
ining the distribution of the adjustment burden across cohorts. For example, when the
parameter is high, recovery from a low funding ratio will be smoothed out over a long ho-
rizon, implying that the oldest cohorts will have died before the full adjustment has taken
place. In the sequel, we will refer to Ft − F̄ as the “funding gap”. Appendix A.2 shows that
the rule above can be rewritten as

EQ
t

(
Ft+u − F̄

)
=αu

(
Ft − F̄

)
, ∀u ≥ 0.

This implies that the funding ratio is expected to converge to F̄ in the long run

lim
u→∞

EQ
t (Ft+u) =F̄ . (3)
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Equilibrium Targets We deϐine the “equilibrium” value of the liabilities as their value
under full participation, while the funding ratio is at its regulatory target, i.e. Ft = F̄ .
Appendix A.4 derives the equilibrium liabilities

(
L̄
)
and target funding ratio as

L̄ =
ψ

r

(
tR (tD − tR)−

1

r2
{1− exp [r (tR − tD)]} [1− exp (−rtR)]

)
,

F̄ =1.

Classiϐicationof CollectivePensionArrangements Thepension fund thus uses its two
policy instruments, the recovery contribution (πs,t) and the indexation rate (γt), to man-
age a funding gap. These instruments have a different impact on the pension fund’s par-
ticipants. The recovery contribution is paid by the active members (the workers), while
the indexation rate affects both the active and retired participants. Its incidence differs by
the relative amount of accumulated pension entitlements.
We now can deϐine the “total correction”Ωt. It captures the part in period t resulting from
regulatory policy that has to be covered by additional contributions and deviations of the
gross indexation rate from unity. Appendix A.5 shows that

ˆ
Iwt

πs,tds+ (1− γt)

(
Λt +

ˆ
Irt

Bs,tds

)
=Ωt.

The pension fund’s board can now easily apply its policy instruments to navigate the fund-
ing ratio. We deϐine ω as the constant fraction of the correction Ωt that is to be achieved
through adjusting indexation. By deϐinition, the remainder (1− ω) of the correction is to
be achieved through contribution adjustments. Hence,

ωΩt =(1− γt)

(
Λt +

ˆ
Irt

Bs,tds

)
, (4)

(1− ω) Ωt =

ˆ
Iwt

πs,tds. (5)

This setting allows us to classify collective pension schemes according to their value for ω.
On the one end, if ω = 0, the scheme is of the collective DB type. There is no uncertainty
about the beneϐits, as γt = 1, ∀t. Instead, all investment risk is absorbed through changes
in current and future contributions. On the other hand, if ω = 1, the pension scheme is of
the collective DC type. None of the correction takes place through contributions. In this
case, all investment risk is allocated directly to the active participants through an adjust-
ment of their entitlements and to the retirees through an adjustment of their beneϐits. For
0 < ω < 1, we have a hybrid pension scheme. A hybrid scheme uses both beneϐit and con-
tribution adjustments to allocate investment risk to the participants. Table 1 summarizes

11



Table 1: Classiϐication of speciϐic collective pension schemes

Parameter: ω = 0 ω ∈ (0, 1) ω = 1
Pension scheme: DB hybrid collective DC

these cases. In the sequel we refer to ω as the “hybridity” parameter.

The Recovery Contribution Policy On top of the actuarially-fair contribution, parti-
cipants contribute to the pension fund’s recovery. To allow for ϐlexibility in the recovery
contribution policies, we weigh the part of the recovery contribution covered by a worker
of age ν by the factor (c̄tR − c̄ν)

θ , θ ≥ 0, which for θ > 0 is positive and decreasing in age,
since ∂(c̄tR−c̄ν)

∂ν
< 0. Appendix A.6 shows that the time t age-dependent recovery contri-

bution paid by a participant of age ν is

πt−ν,t =(1− ω) Ωt
(c̄tR − c̄ν)

θ

´
Iwt

(c̄tR − c̄t−s)
θ ds

.

Now we can distinguish between different recovery policies. For θ = 0, the recovery bur-
den through contributions is spread equally over all working cohorts. We refer to this
as the “uniform policy”. For θ > 0 a relatively larger part is absorbed by a worker when
he is younger. Figure 1 illustrates different age-dependent contributions for the case of
a DB pension scheme (ω = 0). The solid line represents the actuarially-fair contribution
(c̄ν), while the other lines illustrate how recovery is spread over theworking cohorts given
some θ. The lines above (below) the solid line are based on a funding ratio of 99% (101%).
Appendix A.6 also shows that ∂ct−ν,t

∂Ωt
≥ 0, hence the age-dependent recovery contribution

is increasing in the correction factor Ωt, and that ∂2ct−ν,t

∂Ωt∂ν
≤ 0 for θ > 0, implying that an

increase in the recovery burden has to be absorbed by the younger workers in particular.

2.3.3 The Option to Exit the Collective Scheme

We have now described the individual DC scheme and the full continuum of collective
schemes, ranging from DB to collective DC. In the DB scheme ϐinancial shocks are fully ab-
sorbed by adjusting contributions. In the collective DC scheme shocks are fully absorbed
by adjusting indexation. Now, as a ϐinal step to complete our model, we introduce the op-
tion for a participant to exit the collective scheme. Doing so means that he switches from
the collective scheme to the individual DC scheme.
For the sequel, we assume the following. By default an individual enters the labourmarket
as amember of a collective pension scheme. The individual holds an option, to be speciϐied
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Figure 1: Graphical illustration of the age-dependent contribution.

below for different cases, to exit the collective scheme.4 The option cannot be exercised
after retirement date. Hence, if it has not been exercised before or at the retirement date,
then at time t a participant of age ν ∈ (tR, tD) receives retirement beneϐits Bt−ν,t. If the
exit-option is exercised at some age ν ∈ [0, tR] during the accrual phase, then the accu-
mulated pension rights Bt−ν,t are converted into personal assets ADC

t−ν,t according to this
rule

ADC
t−ν,t =min (1, Ft)Πt (Bt−ν,t) .

This rule implies that in case of underfunding, Ft < 1, the amount of personal assets he
receives is the actuarial value of his entitlements reduced by a factor equal to the fraction
by which the current funding ratio falls below 100 percent. In the case of overfunding,
the individual simply receives the actuarial value of his entitlements. If he would receive
more, he would exit at the retirement age and buy an annuity that pays higher beneϐits
than the beneϐits he receives as a participant of the pension fund. Effectively, in the case of
overfunding the pension fund’s participants encounter a penaltywhen leaving the pension
fund. This penalty resembles a written put option on the pension fund’s assets.
After exiting the pension fund at age ν , the individual transfers his personal assets into
an individual DC account of which the value during the remaining part of his working life
evolves as

ADC
t−ν,τ = ADC

t−ν,t

Pτ

Pt

+

ˆ τ

t

cDC Pτ

Pu

du, for τ − t+ ν ∈ [ν, tR].

4A thorough analysis of default options for pension plans is provided by Madrian and Shea (2001). They ϐind
that only a small fraction of participants decides to opt out.
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Table 2: Benchmark parameter values

Description Symbol Value
Entry age t0 0
Retirement age tR 40
Age of death tD 60
Target funding ratio F̄ 1
Regulatory smoothing parameter α 0.5
Risk-free interest rate r 0.02
Portfolio return volatility σ 0.15
Wage w 1
Accrual rate ψ 0.7/tR

3 Parametrization and Simulation Setup

Nowwe turn to the numerical part of the analysis. Table 2 reports the choice of the bench-
mark parameter values. As a robustness check, we will later also explore other para-
meter settings. We assume a regulatory target funding ratio of 100% and we assume
that the pension scheme operates under full participation. Hence, we set F̄ = 1 and
It = {s : t− s ∈ [0, tD]}, ∀t. Thismeans that all cohorts who are alive at time t, i.e. cohorts
s ∈ [t− tD, t], participate in the collective pension scheme. Such a situation could be the
result of participation having beenmandatory so far or of a good investment performance
of the pension fund so far.
Our analysis is based on Q = 105 simulation runs, each with a “burn-in” period of 100
years, after which we start evaluating the simulation results.5 This way, we do not obtain
the results around an equilibrium state, but around a more realistic setting in which the
various cohorts have been confronted differently to the risks. Time steps in our simula-
tions need to be small to approximate continuous time. We set the time steps at δ = 0.1,
implying 10 possible dates per annum to exercise the exit-option when it is of the Amer-
ican type. For convenience, the benchmark calculations are based on a cohort that starts
working at time t0 = 0. Hence, for this cohort s = 0 time equals age.

4 The “European”Exit-OptionunderaDBPensionScheme

We start our numerical analysis with recovery contributions that are equally spread over
all working cohorts by setting θ = 0. Later we consider other values for θ as well. We

5This burn-in period is intended to converge to the long-run distribution of our state variables. Given the
initial values under our benchmark parameter setting, the distribution of the variables converges in 30 to
40 years.
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now turn to the analysis of the exit-option. Exercising the option means a switch to the
individual DC scheme and not exercising the option means the participant remains in the
collective scheme. In this section we assume some simpliϐications that will be relaxed in
later sections. In particular, we allow for only one working age at which the participant
can exercise the option, i.e. the European exit-option. In the next section the option can be
exercised continuously. We also assume a contribution policy that is actuarially fair when
all variables are at their equilibrium values, an assumption that we will relax in Section 6.
Hence, under full participation and θ = 0we can write

ct−ν,t = c̄ν + πt−ν,t = c̄ν+
(1− ω)

tR
Ωt.

Finally, we conϐine ourselves to a DB pension scheme. In the following sectionswe explore
the exit-option also under the other schemes.
Under the DB scheme beneϐits are fully guaranteed, while all investment risks are ab-
sorbed through contribution adjustments. Hence, ω = 0 and γt = 1,∀t, so that pension
entitlements grow uniformly over an individual’s working career

Bs,t =


ψ (t− s) , for (t− s) ∈ [0, tR] ,

Bs,s+tR , for (t− s) ∈ (tR, tD) ,

0, otherwise.

=

ψmin (t− s, tR) , for (t− s) ∈ [0, tD) ,

0, otherwise.

Put alternatively, a retiree’s pension is simply the accrual rate multiplied by the years of
service (ψtR). The constant beneϐit during retirement and the full participation imply that
liabilities are always equal to their equilibrium value, i.e. dLt = 0. The only policy in-
strument available to the pension fund is the recovery contribution, which is derived in
Appendix A.7 as

πt−ν,t =
[r − (logα)]

(
L̄− At

)
tR

. (6)

This means that the recovery contribution is increasing in the shortfall of the pension
fund’s assets from its liabilities, decreasing in the number tR of working cohorts that need
to close this shortfall and increasing in the difference between the risk-free interest rate,
r, and the logarithm of the smoothing parameter. Note that − logα > 0. An increase in
the smoothing parameter implies that the funding gap needs to be closed less fast. Hence,
the recovery contribution can be reduced, while the recovery itself is stretched out over a
longer horizon. However, Appendix A.7 shows that the long-run expected recovery con-
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tribution equals zero.
Now we turn to the decision by the individual participant. There is only one age at which
he can decide to exit the collective scheme and this decision is irreversible. A cohort s
worker of age tM decides to continue his participation in the pension scheme when the
so-called “value of participation” is positive. This is the discounted value of his future pen-
sionbeneϐits, exp [−r (tR − tM)] Πs+tR (Bs,s+tR), minus the expecteddiscounted sumof the
contributions to be paid fromnowuntil retirement,EQ

s+tM

[´ tR
tM
cs+u exp [−r (u− tM)] du

]
,

minus the payout received upon exiting, min (1, Fs+tM )Πs+tM (Bs,s+tM ). Hence, the value
of participation is given by

Parts,s+tM = exp [−r (tR − tM )] Πs+tR (Bs,s+tR)

−EQ
s+tM

[ˆ tR

tM

cs+u exp [−r (u− tM )] du

]
−min (1, Fs+tM )Πs+tM (Bs,s+tM ) .

Appendix A.9 shows that for funding ratio Fs+tM = 1, we have that Parts,s+tM = 0 and
∂Parts,s+tM/∂Fs+tM> 0. Hence, the value of participation is strictly positive for funding
ratios above one and strictly negative for funding ratios below one. This way, due to the
actuarially-fair contribution, the participation threshold funding ratio is exactly 100% for
all ages when there is only a single age at which the exit-option can be exercised.

5 The “American” Exit-Option

Now we turn to the analysis of the exit-option given that the participant has the possib-
ility to exit at any moment until retirement. Because of the increased number of exer-
cise dates, this American exit-option is more valuable than the European exit-option con-
sidered in the previous section. This pushes the value of participation further upwards.
To approximate the value of participation under the American option, we choose a ϐinite
partition t ∈ {t0, t0 + δ, t0 + 2δ, . . . , tR} for the exercise dates. An analytical expression
for the value of participation would be cumbersome to derive algebraically, if this is at all
possible. Therefore, we use the so-called Least Squares Monte Carlo (LSMC) approxima-
tion method to determine the option value. We explain this method in Appendix B. In the
next sections we apply this method to analyse different pension schemes.

5.1 A Deϐined-Beneϐit Pension Scheme

We ϐirst consider the DB pension scheme with guaranteed beneϐits. Therefore, the only
variable relevant for the participation decision is the funding ratio. We approximate the
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value of participation for cohort s using the following regression model

Parts,t =
[
1Q Ft F 2

t max (1− Ft, 0)
]
βt−s + ε, (7)

This model ϐits the value of participation as a function of the funding ratio. In particular,
besides a linear term, we include a quadratic function of the funding ratio (Ft) and the
extent of underfunding, i.c., max (1− Ft, 0).
Figure 2(a) depicts the value of participation at age t0 = 0 as a function of the funding ratio
at entryF0. The value of participation is increasing inF0 and positive for large enough val-
ues of F0. Due to the right to exit at any age up to retirement, the participation threshold
has fallen to 81.93%, which is substantially below the original threshold of 100% for the
single exercise age. If the funding ratio increases the participant beneϐits from a reduction
in contributions, while if the funding ratio decreases the participant has the opportunity
to exit the pension fund and forego recovery contributions. The disadvantage of exercising
the exit option is that he loses a fraction (1− Ft) of his pension entitlements. However,
this loss is small when he is young, because he has barely accumulated any pension enti-
tlements. In fact, at entry participants have a call option on the assets of the pension fund,
because they obtain a zero pay-off when exiting at entry, while the value of participation
is positive when the funding ratio exceeds 81.93%. Hence, when underfunding at entry
is only limited, the beneϐit of staying in the pension fund outweighs the cost associated
with restoring the funding ratio. Further, an increase in α implies more smoothing and
dampens the restoration contribution (equation (6)) towards zero for two reasons: more
future cohorts contribute to the recovery, while, in addition, even without the inϐlow of
new cohorts a lengthening of the restoration period would dampen the recovery contri-
bution of all existingworking cohorts andwould enhance the future recovery contribution
of existing young cohorts. Notice that in themost extreme case, in whichαwould be equal
to unity (formally not possible under the model), the restoration contribution would be
the interest payment on a net debt (the difference between liabilities and assets) that is
permanently rolled over.
The solid line in Figure 2(b) shows the participation threshold as a function of age in the
case of the American exit-option. Because the value of the option is larger when there are
more future exercise dates, the threshold is lower at young ages.

5.2 Collective DC and Hybrid Pension Schemes

Now, we turn to collective DC and hybrid pension schemes. Under the former, the only
policy instrument is the indexation rate. Under the latter, the pension fund uses both re-
covery contributions and the indexation rate as instruments. Given the target funding
ratio of 100%and full participation, Appendix A.5 shows that the instruments are determ-
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Figure 2: Value of participation and the corresponding exercise thresholds in the DB pen-
sion scheme for the European and American exit-option.

ined through the following two expressions

(γt − 1)

(
1− ω

ω
Λt +

1

ω

ˆ tD

tR

Bt−s,tds

)
=At [r − (logα)]− FtE

Q
t

(
dLt

dt

)
+ (logα)Lt + . . .

. . .

ˆ tR

0
c̄sds−

ˆ tD

tR

Bt−s,tds,

ˆ tR

0
πt−s,tds =

1− ω

ω
(1− γt)

(
Λt +

ˆ tD

tR

Bt−s,tds

)
,

where, now,

exp (−rdt) Λt =Lt −
ˆ tD

tD−dt
RsBt−s,tds−

1− exp (−rdt)
r

ˆ tD−dt

tR−dt
Bt−s,tds.

The retirement beneϐits are uncertain, because the indexation rate is uncertain. While in
the case of the DB pension scheme the participation decision only depends on the funding
ratio, it nowdepends on awider set of variables. To see this, suppose, for example, that we
ϐix the funding ratio at 100% and vary the pension entitlements of the very old. If these
entitlements are relatively low, then the pension fund’s liabilities can be expected to in-
crease, because the average level of the entitlements will rise once the low entitlements of
the very old have dropped out. An increase in the (average) liabilities will lead to reduced
future indexation. Hence, it becomes relatively more attractive for active cohorts to exit.
The opposite is the case when the entitlements of the very old are relatively high.
We approximate the value of participation for cohort s by expanding the regression in
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equation (7) as follows

Parts,t =Xtβt−s + ε, (8)

withXt =

[
1Q Ft F 2

t max (1− Ft, 0) Lt L2
t FtLt︸︷︷︸

=At

Bt−10,t Bt−20,t . . . Bt−50,t

]
.

(9)

Note that the regression coefϐicient vector βt−s is age dependent. Hence, we expand the
previous regression model with linear and quadratic terms in the total liabilities (Lt), the
assets (At) and the entitlements of a limited number of cohorts. We do not include the
entitlements of all the cohorts, as the entitlements of cohorts close in age would be close,
possibly leading to multi-collinearity. In addition, we exclude Bt,t, since the pension enti-
tlements are zero at entry, while we also exclude the pension entitlements of the deceased
generation at time t,Bt−tD,t. We denote the vector of estimated regression coefϐicients by
β̂t−s.
Table 3 reports the coefϐicient estimates of equation (8) for different cohort ages and dif-
ferent values of the hybridity parameter ω. The estimates yield several interesting in-
sights. First, the coefϐicient on the degree of underfunding max (1− Ft, 0) increases with
age. In case of underfunding more pension entitlements are lost when the exit-option
is exercised at a higher age, because older participants have accumulated more pension
entitlements. Second, the coefϐicient on liabilities Lt is negative and is generally decreas-
ing with age, while the coefϐicient on assetsAt is positive and increasing with age. Hence,
the value of participation decreaseswith the liabilities and increaseswith the assets of the
pension fund. These effects become stronger at higher ages, because the participants have
accumulated more pension entitlements, so that the effects of lower indexation (when li-
abilities increase, ceteris paribus) and higher indexation (when assets increase, ceteris
paribus) become larger. Third, at young ages, the coefϐicients on liabilities and assets be-
come smaller in absolute value as the pension scheme relies more on recovery through
indexation adjustments (i.c., ω increases). The consequences of restoration are smaller
for the young, because they have accumulated fewer pension entitlements. The preced-
ing effect, that the indexation policy affects the participation decisionmore strongly when
pension entitlements are large, dominates at higher ages. Furthermore, the variation in
the liabilities and assets increaseswith the hybridity parameterω, as the recovery through
indexation adjustments has a persistent effect on the aggregate beneϐit payments. Fourth,
the coefϐicient on the pension entitlements of the cohort closest in age to cohort s has the
largest value, in line with the intuition that the value of participation for an individual is
affected most by his own pension entitlements.
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Table 3: Coefϐicient estimates of equation (8) for the approximation of the value of parti-
cipation under the American exit-option.

ω = 0.25 (hybrid) ω = 0.5 (hybrid)
Age 0 10 20 30 40 0 10 20 30 40

β1 0.606 -0.402 0.822 4.034 -4.864 1.332 -0.903 0.180 1.803 -4.423
βF -1.649 -1.139 -2.958 -3.503 3.691 -1.356 0.548 -3.081 -4.612 3.411
βF 2 0.941 0.592 1.567 0.136 0.373 0.631 -0.341 1.416 0.768 0.328

βmax(1−F,0) 0.357 2.347 3.368 7.479 11.323 -0.444 1.750 3.343 7.371 11.213
βL 0.011 -0.030 -0.106 -0.153 -0.028 -0.016 -0.029 -0.052 -0.082 -0.058

βL2 ∗ 106 0.150 -2.291 16.921 48.788 -1.201 1.679 -0.855 4.897 16.511 -0.004
βA 0.013 0.015 0.015 0.029 -0.006 0.006 0.009 0.011 0.024 0.004

βB10 -0.042 6.444 6.759 9.714 3.429 1.910 9.424 2.958 3.449 5.567
βB20 -3.558 1.193 18.050 8.153 4.004 -0.041 2.598 12.531 3.886 5.998
βB30 -1.902 2.422 10.173 22.371 4.835 1.099 2.251 6.042 15.791 7.741
βB40 -3.501 2.820 11.460 13.933 5.528 1.740 2.626 4.480 7.770 8.066
βB50 -2.335 1.785 8.722 9.433 3.827 0.723 2.318 4.295 4.117 6.144

ω = 0.75 (hybrid) ω = 1 (Collective DC)
Age 0 10 20 30 40 0 10 20 30 40

β1 0.614 -1.260 -0.026 1.439 -4.719 0.619 -1.340 -0.016 1.569 -5.827
βF 0.218 1.078 -3.228 -5.755 4.270 0.335 1.148 -3.579 -6.455 6.368
βF 2 -0.111 -0.248 1.611 1.402 -0.186 -0.125 -0.142 1.941 1.744 -1.172

βmax(1−F,0) -0.154 1.985 3.373 7.156 11.267 -0.107 2.120 3.268 7.036 11.546
βL -0.004 -0.011 -0.037 -0.065 -0.103 -0.002 -0.010 -0.039 -0.069 -0.156

βL2 ∗ 106 0.221 0.122 1.706 5.343 0.685 -0.082 -0.260 0.465 0.987 1.150
βA 0.002 0.004 0.008 0.023 0.014 0.000 0.002 0.008 0.026 0.023

βB10 1.393 7.646 2.092 0.894 9.780 2.333 7.230 2.698 -0.610 15.573
βB20 -0.552 1.996 10.916 3.233 9.277 -0.696 3.144 10.202 4.481 13.247
βB30 0.129 0.182 5.699 14.073 13.001 0.156 -0.129 7.611 12.898 19.868
βB40 0.425 0.915 2.648 7.812 12.268 0.481 1.098 2.526 10.831 17.218
βB50 0.132 0.851 3.241 2.724 10.240 0.220 0.933 3.542 2.653 15.463

We can gain additional insights from Figure 3, which presents the estimated value of par-
ticipation for different combinations of the independent variables in equation (8) and dif-
ferent values of the hybridity parameter ω. We always set the other explanatory variables
at their equilibriumvalues. For example, panel (a) of Figure 3 depicts the value of particip-
ation at age 10 as a function of the funding ratio and the pension entitlements of the cohort
of age 10, while we set Lt = L̄, Bt−20,t = 20ψ, Bt−30,t = 30ψ and Bt−40,t = Bt−50,t = tRψ.
First, we observe that the value of participation typically increases in the funding ratio6
and in the own entitlements. Second, we see that at a high age - see panel (d) for the age
of 40 - the more the pension fund relies on indexation (i.e., the higher is ω), the more the

6The full effect of the funding ratio is calculated as the effect of an increase inFt on the term βFFt+βF 2F 2
t +

βmax(1−F,0) max (1− Ft, 0) + βAL̄Ft.
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ϐigure surface rotates anti-clockwise for given own entitlements. For given above-target
funding ratio, the larger isω, the higher is the value of participation, because the older par-
ticipant has a larger claimonextra indexation in the future. For givenbelow-target funding
ratio, the value of participation is decreasing in ω. The reason is that a larger fraction of
the underfunding has to be worked away through reduced indexation when ω is higher.7
At low ages the value of participation rotates clockwise for given own entitlements when
ω increases. Since young generations have low pension entitlements, the higher index-
ation rate in the case of overfunding beneϐits the older cohorts at the expense of young
workers, because it leaves less room to reduce the contribution, which would beneϐit the
young. Now, for given below-target funding ratio, the value of participation is increasing in
ω. The higher degree of indexation allows for a smaller restoration contribution, because
it shifts a larger part of the restoration burden to the old cohorts who have relatively high
entitlements. Third, for the case of the DB pension scheme, we saw that exiting at the re-
tirement age would never be optimal. However, for the case of the DC pension scheme
and the hybrid pension schemes, it could be optimal to exit at the retirement age, as we
observe negative values of participation in panel (d). This particularly holds for combina-
tions of low funding ratios and lowownpension entitlements. In the case of underfunding,
the old participant can be expected to make a large contribution to restoring the pension
fund’s ϐinancial health through reduced indexation. This effect is compensated when his
own entitlements are high, but not when they are low – remember that the lump-sum that
he gets when he exits is linked to both his own entitlements and the funding ratio.

5.3 Exit Distribution under the Collective Pension Scheme

So far we focused on valuation of the exit-option. In this section we explore the likelihood
of participants from different cohorts to exercise their exit-option. Figure 4(a) presents
these probabilities as a function of age for different values of the hybridity parameter ω,
with the regulatory smoothing parameter α and the investment risk parameter σ at their
benchmark values. In each simulation run we checked for each cohort age after the burn-

7More formally, suppose that dLt = 0, then equation (12) from Appendix A.5 yields

(1− γt)

ˆ
Ir
t

Bs,tds =−At [r − (logα)]− (logα)Lt −
ˆ
Iw
t

c̄ds+

ˆ
Ir
t

Bs,tds−
ˆ
Iw
t

πs,tds

⇒


∂γt

∂At
= At

[r−(logα)]´
Irt

Bs,tds
> 0

∂γt

∂Lt
= (logα)´

Irt
Bs,tds

< 0

Hence, the indexation rate is positively affected by the funding ratio

∂γt
∂Ft

> 0.

When γt is low, then dLt is typically negative, which ampliϐies this effect. However, when dLt is positive, the
relation between γt and Ft becomes ambiguous.
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Figure 3: Approximated value of participation at various ages under the American exit-
option for different combinations of the explanatory variables in equation (8) and the hy-
bridity parameter ω.
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in period whether the value of participation was negative. A negative participation value
triggers the execution of the exit option. The ϐigure thus exhibits the frequency of negat-
ive participation values at each age. The exit probabilities under the DB pension scheme
(ω = 0), represented by the solid black lines, exhibit a peak around the age of 30. For
young participants, the value of the exit-option is relatively high due to the large number
of remaining exit possibilities. Hence, the very young are inclined not to exit. However,
the option loses value and, hence, the inclination to exit becomes stronger as one grows
older. However, beyond a certain point, the likelihood of exiting starts to decrease with
age, because the remaining period over which recovery contributionsmay have to be paid
shrinks. As we already saw, under the DB scheme exiting is never optimal at the retire-
ment age. For the hybrid pension schemes, the likelihood to exit is increasing with age,
because the contribution to recovery through indexation increases with the level of the
entitlements.
In panels (b)-(e) of Figure 4 we vary the regulatory smoothing parameter α and the in-
vestment risk parameter σ. The exit probabilities rise, ceteris paribus, with the smoothing
parameter. This is the net result of two opposite effects. On the one hand, a higher value of
the smoothing parameter implies that the funding ratio on average deviates more from its
target level. This implies a higher chance that it becomes so low that at least some cohorts
want to leave the scheme. On the other hand, a higher smoothing parameter means that
future entrants face a larger share of the recovery burden, which reduces the incentive to
exit the pension fund.
When the investment portfolio becomesmore risky youngworkers aremore likely to stay
in the pension fund, while older workers are more likely to exit ceteris paribus. The intu-
ition is as follows. The pension contract of the young resembles a call option on the pen-
sion fund’s assets. Higher return volatility raises both the expected degree of underfund-
ing in case underfunding happens and the expected degree of overfundingwhenoverfund-
ing takes place. Given the young’s limited pension entitlements, and similar to a standard
call option, the expected loss from the former is limited, while the expected beneϐit from
the latter rises. The pension contract of older workers, however, resembles a written put
option on the assets of the pension fund: they gain relatively little from overfunding, but
they can lose signiϐicantly in the case of underfunding by exiting and giving up a fraction
of the pension entitlements. The value of a written put option also decreases if the volat-
ility of the underlying asset increases. Ceteris paribus, in the case of a DB scheme or a
scheme that is close to DB (ω is low), the incentive to exit shortly before retirement is
weak. Only for very small degrees of underfunding the participant would want to exit.
When the degree of underfunding is more severe, the loss from given up entitlements by
exiting dominates the restoration contribution that will be incurred over the short period
until retirement. When ω is high, in the case of severe underfunding the almost-retired
worker will suffer from low indexation during his retirement period and has a stronger
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incentive to exit, ceteris paribus. Hence, close to retirement, the probability of exiting in-
creases with the volatility of the investment returns, σ. This particularly holds whenmore
adjustment occurs through indexation (ω is high), because the pension beneϐits will be
downgraded more during retirement in the case of underfunding.

6 Uniform Contribution Policies

So far, we have considered contributions that are actuarially fair when the funding ratio
is at its long-run target. However, in reality collective pension schemes usually rely on
uniform contributions, i.e. contributions that are independent of age in particular. These
contributions are not actuarially fair. Typically, the young pay relatively toomuch for their
pension accrual and the old pay too less. In this section we explore the stability of the
pension fund by varying the contribution policy between being actuarially fair (in equi-
librium) and uniform. Intuitively, a uniform contribution policy beneϐits older workers at
the expense of younger workers and, therefore, discourages the former group from exit-
ing the pension fund. However, the exit-option of the younger workers is more valuable
than that of the older workers, because the value of the American option is larger when
there are more future exercise dates. Therefore, younger workers are also discouraged
from exiting.
Appendix A.12 derives the uniform contribution for a general setting. However, as before,
we assume a target funding ratio of 100%and full participation. Appendix A.12 shows that
under these assumptions we can write the uniform contribution as

cs,t =c̄+ πunif
t ,

where c̄tR =ψ

ˆ tR

0

Rudu and πunif
t =

(1− ω)´
Iwt

1ds
Ωt. (10)

Hence, the total equilibrium contributions (c̄tR) are equal to the market price of the total
pension accrual.
Table 4 reports the actuarially fair and uniform contributions for a pension fund that op-
erates under full participation. The remainder of this section applies the uniform contri-
bution to ϐirst the DB scheme and second the collective DC and hybrid schemes. Finally,
we study a compromise between the uniform and actuarially-fair contribution policies,
thereby analysing what policy settings may be able to raise the probability that no parti-
cipant wants to exit the pension scheme.
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(a) Benchmark: α = 0.5 and σ = 15%
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(b) α = 0.25 and σ = 15%
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(c) α = 0.5 and σ = 10%
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(d) α = 0.75 and σ = 15%
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Figure 4: Probability of exercising the exit-option as a function of age for different values
of the hybridity parameter (ω), the smoothing parameter (α) and the investment risk level
(σ).
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Table 4: Contribution at time t for an agent of age ν under a target funding ratio of 100%
and full participation.

Policy Contribution (ct−ν,t)

Actuarially fair: c̄ν + (1− ω) Ωt
(c̄tR−c̄ν)

θ

´ tR
0 (c̄tR−c̄u)

θ
du

Uniform: c̄+ 1
tR

(1− ω) Ωt

6.1 The Deϐined-Beneϐit Pension Scheme

We start with the DB scheme, setting ω = 0 in equation (10), while the indexation policy
becomes γt = 1, ∀t, so that pension entitlements grow uniformly over an individual’s
working career:

Bs,t =

ψmin (t− s, tR) , for (t− s) ∈ [0, tD) .

0, otherwise.

Figure 5(a) depicts, as a function of the funding ratio, the values of participation under the
American option at entry into the labour force. Theparticipation threshold corresponds to
the point where the curved line crosses the dashed line, i.e. the horizontal axis. Appendix
A.13 analytically derives the participation thresholds as a function of age for the European
exit-option. These are depicted by the dashed line in panel (b). These thresholds are no
longer equal to 100% (recall Figure2(b)), because the uniform contribution beneϐits older
workers at the expense of younger workers. Instead, they decrease with age and exceed
100% for young workers and fall below 100% for older workers. For the American op-
tion, we again use our approximation method. The solid line in panel (b) represents the
participation thresholds under this option. Because the value of the American option is
larger when there are more future exercise dates, the difference between the dashed line
(a threshold funding ratio of 103.7%)and the solid line (a threshold funding ratio of 84.2%)
is largest at entry.

6.2 The Collective DC and Hybrid Pension Schemes

Next we turn to the other pension arrangements. Table 5 reports the coefϐicients from the
estimation of equation (8) for different ages and values of the hybridity parameter. The es-
timates yield several interesting insights. First, the impact of underfunding increaseswith
age, because older participants have accumulatedmore pension entitlements. Second, the
effect of higher liabilities is negative and decreasingwith age, while the effect of higher as-
sets is positive and increasing with age. Third, at low ages, the coefϐicients of the assets
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Figure 5: Value of participation and the corresponding exercise thresholds for the
European and American exit-options under the DB pension scheme with a uniform con-
tribution.

and the liabilities tend to zero when adjustment relies more on indexation policy, i.c., ω
increases. Young participants have fewer pension entitlements and, therefore, the con-
sequences of recovery through indexation are smaller for the young. Fourth, the value of
participation is mostly affected by the pension entitlements of the cohort closest in age
to the participant under consideration. These results are all in line with those discussed
earlier on the basis of Table 3.
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Table 5: Coefϐicient estimates of equation (8) under a uniform contribution policy for the
approximation of the value of participation under the American exit-option.

ω = 0.25 (hybrid) ω = 0.5 (hybrid)
Age 0 10 20 30 40 0 10 20 30 40

β1 1.269 -0.734 1.628 0.288 -4.864 1.162 -1.397 0.757 -0.228 -4.423
βF -3.104 -0.917 -4.951 -1.417 3.691 -2.562 1.122 -4.158 -2.874 3.411
βF 2 1.642 0.692 2.611 -0.212 0.373 1.347 -0.256 2.104 0.314 0.328

βmax(1−F,0) 1.298 2.733 2.788 7.547 11.323 0.659 2.144 3.055 7.601 11.213
βL -0.007 -0.054 -0.159 -0.172 -0.028 -0.001 -0.044 -0.076 -0.097 -0.058

βL2 ∗ 106 1.557 -1.175 14.542 31.085 -1.201 0.886 0.104 4.501 10.800 -0.004
βA 0.017 0.018 0.019 0.030 -0.006 0.011 0.014 0.016 0.029 0.004

βB10 1.397 9.667 13.145 12.665 3.429 0.312 10.239 4.877 5.554 5.567
βB20 -2.180 3.833 22.927 11.869 4.004 -1.952 3.882 15.170 5.235 5.998
βB30 -0.158 5.390 18.015 26.843 4.835 -0.931 3.698 8.224 18.492 7.741
βB40 -1.625 5.336 18.542 18.788 5.528 -1.200 4.090 7.643 9.944 8.066
βB50 -0.800 4.164 14.022 12.538 3.827 -1.113 3.376 6.111 5.669 6.144

ω = 0.75 (hybrid) ω = 1 (DC)
Age 0 10 20 30 40 0 10 20 30 40

β1 1.115 -1.131 0.487 0.156 -4.719 0.625 -1.216 -0.018 0.906 -5.827
βF -1.638 1.100 -3.860 -4.326 4.270 -0.301 1.133 -3.174 -5.738 6.368
βF 2 0.854 -0.245 2.041 1.021 -0.186 0.152 -0.072 1.891 1.669 -1.172

βmax(1−F,0) -0.373 1.991 3.117 7.444 11.267 -0.302 2.172 3.371 7.213 11.546
βL -0.004 -0.012 -0.053 -0.074 -0.103 0.000 -0.008 -0.038 -0.068 -0.156

βL2 ∗ 106 1.095 0.307 1.622 3.626 0.685 0.010 -0.053 0.404 0.651 1.150
βA 0.005 0.009 0.012 0.027 0.014 0.000 0.002 0.008 0.025 0.023

βB10 1.446 7.598 3.264 2.511 9.780 2.071 7.137 3.022 0.300 15.573
βB20 -1.035 1.443 12.643 3.936 9.277 -0.759 2.840 10.271 4.743 13.247
βB30 -0.323 -0.121 7.086 15.417 13.001 -0.204 -0.171 7.498 13.066 19.868
βB40 -0.091 0.085 4.476 8.928 12.268 0.222 0.707 2.505 10.756 17.218
βB50 -0.355 0.440 4.434 3.524 10.240 -0.013 0.754 3.528 2.737 15.463

6.3 Exit Distribution under the Collective Pension Scheme

It is also interesting to analyse the probabilities of exercising the exit-option under a uni-
form contribution policy. Analogous to Figure 4, Figure 6 depicts the likelihood that par-
ticipants exercise their exit-option.
In contrast to the case of the actuarially fair contribution policy, now the exit probabilities
are always decreasing with age under DB until they reach zero at a working age between
25 and 30, and after which they remain zero. This shows the attractiveness of the uniform
contribution policy for older workers as they are being subsidized by young workers. For
the hybrid schemes the exit likelihood is decreasing in age for relatively young workers
and increasing for relatively older workers. For younger workers the increasing beneϐit
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(a) Benchmark: α = 0.5 and σ = 0.15.
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(b) α = 0.25 and σ = 0.15
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(c) α = 0.5 and σ = 0.10
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(d) α = 0.75 and σ = 0.15
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(e) α = 0.5 and σ = 0.20

Figure 6: Probability of exercising the exit-option under a uniform contribution policy as
a function of age for different values of the hybridity parameter (ω), the smoothing para-
meter (α) and the investment risk level (σ).
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of the uniform contribution dominates the falling option value in combination with the
increasing burden of recovery through indexation when there is underfunding, while for
older workers it is the opposite. In fact, for the collective DC scheme, the exit likelihood
remains zero until a certain point after which it starts to increase sharply with age. As be-
fore, exit probabilities of older workers increase with investment risk (σ), while they also
have a general tendency to increase with the degree of regulatory smoothing (α). Finally,
compared to the case of an actuarially-fair contribution policy, depicted in Figure 4, exit
probabilities are generally higher for young workers, because they pay higher contribu-
tions under the uniform contribution policy.

6.4 Combining theActuariallyFair andUniformContributionPolicies

The American exit-option is relatively valuable for young workers due to the many exit-
opportunities, thereby discouraging them from exiting the pension scheme. By contrast, a
uniform contribution policy has the opposite effect on the young’s willingness to stay due
to the the fact they are subsidizing the old participants. Using a contribution policy that
forms a “compromise” between the uniform contribution policy and the actuarially fair
(in equilibrium) contribution policy would provide the pension fund additional ϐlexibility
in reducing the chances that any cohort wants to exit the pension fund. To explore this in
detailwedeϐine a general contributionpolicy. Under full participation and a target funding
ratio F̄ = 1 this more general contribution policy is formulated as a weighted average of
the above alternatives

ct−ν,t =(1− ζ)

[
c̄+

1

tR
(1− ω) Ωt

]
+ ζ

[
c̄ν + (1− ω) Ωt

(c̄tR − c̄ν)
θ

´ tR
0

(c̄tR − c̄u)
θ du

]
. (11)

We refer to ζ as the “actuarial fairness parameter”. If ζ = 1, the contribution policy is
actuarially fair in equilibrium, while if ζ = 0, it is uniform. For ζ ∈ (0, 1), the pension
fund applies a compromise between these two extremes. The remainder of this section
explores the stability of a DB pension scheme, a hybrid pension scheme (with ω = 0.5)
and a collective DC pension scheme for different values of the actuarial fairness parameter
(ζ), the reallocation of contribution risk across cohorts (θ), the extent of risk smoothing
(α) and the level of investment risk (σ). Note that the parameter θ is irrelevant under the
collective DC scheme (ω = 1) and under the uniform contribution policy (ζ = 0).
Table 6 reports the probability that no participant wants to exit (after the burn-in period).
The table yields several interesting insights. First, in the absence of investment risk, i.e.
σ = 0%, it is neveroptimal to exit thepension schemeunder an, in equilibrium, actuarially-
fair contribution policy. However, for values of ζ lower than one, the younger cohorts that
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are subsidizing the older cohorts through the pay-as-you-go element in the overall con-
tribution always want to exit, because in this case the exit-option has no value. Second,
(higher) investment risk generates a positive probability that the funding ratio becomes
so low that certain cohorts want to exit. At the same time, the exit-option becomes (more)
valuable, especially for the younger cohorts. The highest likelihood that all cohortswant to
stay in the pension fund is no longer attained under an actuarially-fair contribution policy,
but by introducing some degree of uniformity, i.e. by setting ζ < 1. Third, the likelihood
that no cohort exits under the DB pension scheme is higher when contribution risks are
spread equally across generations (θ = 0), while this likelihood under the hybrid pension
scheme is typically larger when young workers bear more risk (θ = 2). The reason is that
the indexation rate is mainly born by the older workers, who have the largest pension en-
titlements. Shifting more of the contribution risks to the young better balances the risks
among the cohorts, making it less likely that any one of them wants to exit. Fourth, as it
reduces the volatility of the funding ratio, a short smoothing period raises the likelihood
that no cohort exits under the DB scheme. However, under the hybrid schemes, the larger
indexation response to a given degree of underfunding raises the likelihood that cohorts
close to retirement exit. Overall, the likelihood that no cohort exits under a hybrid scheme
is highest for the combination of a short smoothing period and a high level of investment
risk. Finally, comparing the various pension schemes, we ϐind that the likelihood that no
cohort exits is highest under the DB pension scheme, where only the young workers have
an incentive to exit when the funding ratio falls below a certain threshold.
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Table 6: Likelihood that no cohort exists

ω = 0 (DB) ω = 0.5 (hybrid) ω = 1 (DC)

ζ 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1

θ = 0

σ = 0% α ∈ (0, 1) 0 0 0 0 100 0 0 0 0 100 0 0 0 0 100

σ = 5%

α = 0.1 84.7 87.7 90.9 93.6 48.4 40.3 40.5 40.8 40.2 39.4 45.0 36.5 35.7 34.6 33.5

α = 0.25 84.0 87.4 90.5 93.0 48.5 40.0 41.0 41.5 40.9 40.2 45.6 36.6 36.0 35.0 34.0

α = 0.5 82.2 85.5 88.8 91.4 48.0 40.1 42.2 42.8 42.4 41.6 46.6 37.7 37.1 36.2 35.3

α = 0.75 79.3 81.5 85.6 88.4 47.7 38.7 44.8 45.8 45.5 44.9 39.6 39.8 39.3 38.6 37.7

σ = 10%

α = 0.1 90.2 91.9 93.5 92.5 47.3 43.5 36.2 36.3 36.0 35.6 36.4 27.7 27.2 26.6 26.1

α = 0.25 89.5 91.5 92.7 91.2 47.3 44.2 36.6 36.9 36.6 36.2 36.6 27.8 27.3 26.8 26.2

α = 0.5 88.4 90.0 91.3 89.6 46.8 45.1 37.6 38.1 37.9 37.5 36.5 26.7 26.3 25.9 25.5

α = 0.75 86.3 87.0 88.3 86.5 45.7 45.9 40.5 41.5 41.3 41.0 36.6 25.5 25.3 25.0 24.7

σ = 15%

α = 0.1 91.8 93.2 93.1 90.2 46.3 42.5 32.7 32.8 32.7 32.5 29.4 21.5 21.1 20.8 20.5

α = 0.25 91.4 92.3 92.0 88.1 46.4 43.1 33.1 33.3 33.2 33.0 29.3 20.7 20.4 20.2 19.9

α = 0.5 89.9 90.9 90.3 84.3 45.6 43.7 34.0 34.4 34.4 34.2 28.6 19.4 19.4 19.2 19.0

α = 0.75 87.5 87.8 86.7 84.9 44.2 43.7 36.8 37.8 7.7 37.6 27.2 17.5 18.1 18.2 18.1

σ = 20%

α = 0.1 92.6 93.2 92.2 87.7 45.1 40.9 30.2 30.1 30.0 29.9 24.3 18.1 17.8 17.7 17.5

α = 0.25 91.8 91.9 90.7 85.3 45.6 41.1 30.5 30.6 30.4 30.3 24.3 17.7 17.7 17.5 17.4

α = 0.5 90.3 90.1 89.2 81.2 44.7 41.2 31.4 31.7 31.7 31.6 23.8 16.7 17.4 17.3 17.2

α = 0.75 87.3 86.3 85.2 81.2 42.3 39.0 32.9 33.9 33.9 33.9 21.7 10.8 13.3 14.8 15.2

θ = 2

σ = 0% α ∈ (0, 1) 0 0 0 0 100 0 0 0 0 100 0 0 0 0 100

σ = 5%

α = 0.1 84.7 89.8 91.9 92.2 47.9 40.3 40.8 41.6 41.5 41.1 45.0 36.5 35.7 34.6 33.5

α = 0.25 84.0 89.0 90.7 90.7 48.2 40.0 41.3 42.3 42.2 41.7 45.6 36.6 36.0 35.0 34.0

α = 0.5 82.2 87.2 89.6 89.0 48.1 40.1 42.4 43.6 43.5 43.0 46.6 37.7 37.1 36.2 35.3

α = 0.75 79.3 83.6 86.9 86.3 48.0 38.7 44.9 46.3 46.1 45.6 39.6 39.8 39.3 38.6 37.7

σ = 10%

α = 0.1 90.2 92.4 92.5 89.3 47.4 43.5 36.5 37.2 37.4 37.6 36.4 27.7 27.2 26.6 26.1

α = 0.25 89.5 91.4 91.4 88.3 47.4 44.2 36.9 37.7 37.9 38.1 36.6 27.8 27.3 26.8 26.2

α = 0.5 88.4 90.0 89.6 86.8 47.1 45.1 37.9 39.0 39.1 39.2 36.5 26.7 26.3 25.9 25.5

α = 0.75 86.3 87.2 86.8 83.6 46.2 45.9 40.6 42.0 42.0 41.8 36.6 25.5 25.3 25.0 24.7

σ = 15%

α = 0.1 91.8 92.6 90.8 88.3 46.8 42.5 33.1 33.7 34.1 34.6 29.4 21.5 21.1 20.8 20.5

α = 0.25 91.4 91.8 89.7 87.1 46.6 43.1 33.4 34.3 34.7 35.0 29.3 20.7 20.4 20.2 19.9

α = 0.5 89.9 89.9 88.4 84.7 46.1 43.7 34.3 35.4 35.7 36.0 28.6 19.4 19.4 19.2 19.0

α = 0.75 87.5 87.0 84.8 80.9 44.4 43.7 36.8 38.4 38.6 38.6 27.2 17.5 18.1 18.2 18.1

σ = 20%

α = 0.1 92.6 92.1 90.3 86.4 45.9 40.9 30.5 31.0 31.4 32.0 24.3 18.1 17.8 17.7 17.5

α = 0.25 91.8 90.6 88.8 85.4 45.8 41.1 30.8 31.4 31.9 32.5 24.3 17.7 17.7 17.5 17.4

α = 0.5 90.3 89.3 86.4 83.1 45.0 41.2 31.6 32.5 33.0 33.4 23.8 16.7 17.4 17.3 17.2

α = 0.75 87.3 85.2 82.7 77.6 42.7 39.0 33.0 34.5 34.8 35.1 21.7 10.8 13.3 14.8 15.2

7 Conclusion

Popular resistance against mandatory participation in collective pension schemes seems
to be increasing, a development that has been fuelled by deteriorating funding ratios as
a result of the recent crisis and rising life expectancy, increasing demand for freedom of
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choice and enhanced labour market mobility. This paper has explored the implications of
giving pension fund participants the option to exit the pension fund. We have considered
a DB pension fund, a collective DC pension fund and a hybrid pension fund. The value of
the option is highest for the youngest workers, because the number of remaining decision
moments is highest.
Ourmain ϐindings are the following. First, youngparticipants are, ceteris paribus,more in-
clined to exit a DB scheme or a hybrid scheme relying more on contribution adjustments
for recovery. Old participants, on the other hand, are more inclined to exit a collective
DC scheme or a hybrid scheme in which recovery relies more on indexation adjustments.
Second, participants aremore inclined to continue participation if the number ofmoments
that the exit-option can be exercised is high. Counterintuitively, more freedom of choice
to exit actually improves participation. Third, the likelihood of participants exiting the
voluntary scheme is fairly high for realistic assumptions. Fourth, higher investment risk
favours young cohorts through the value of their option, but at the expense of older work-
ers. Hence, reducing equity risk exposuremight stimulate young generations to exit. Fifth,
a longer smoothing period to bring the funding ratio back to its long-term target raises the
likelihood that the pension fund becomes ϐinancially distressed, leading to participants ex-
ercise the exit-option. Sixth, theDBpension scheme features the lowest likelihood that any
cohort wants to exit, because no cohort has an incentive to leave close to retirement. Fi-
nally, when investment risk is large, the value of the exit-option is large for youngworkers.
In this case, a uniform contribution policy can act as a stabilising force: youngworkers are
reluctant to exit, because they beneϐit from the value of the option, while the older work-
ers are reluctant to exit, because they are subsidized by the contributions of the young.
However, when investment risk is low, an age-dependent contribution policy enhances
participation stability.
The analysis in this paper can be extended into several directions. One extension would
be to consider more “reϐined” options, such as a partial withdrawal of accumulated assets
from a pension fund or the possibility to withdraw resources only at the cost of a ϐine.
The latter is quite common in the U.S. A second extension would be to include additional
sources of risk into the model, such as demographic, interest rate and wage risks. Using
the LSMC approach this may not be too complicated. However, not all types of these risks
are hedgeable, which contradicts the complete market assumption. This could be solved
by replacing the risk-neutral pricing approach by the utility indifference pricing approach.

References

Ball, L. and Mankiw, N. G. (2007). Intergenerational risk sharing in the spirit of Arrow,
Debreu and Rawls, with applications to social security design. Journal of Political Eco-

33



nomy, 115(4):523–547.

Beetsma, R. M. W. J. and Romp, W. E. (2013). Participation constraints in pension systems.
Discussion Paper DP 09/2013-030, Netspar.

Beetsma, R. M. W. J., Romp, W. E., and Vos, S. J. (2012). Voluntary participation and in-
tergenerational risk sharing in a funded pension system. European Economic Review,
56:p.1310–1324.

Bernard, C. and Lemieux, C. (2008). Fast simulation of equity-linked life insurance con-
tracts with a surrender option. Winter Simulation Conference.

Bommel, J. v. (2007). Intergenerational risk sharing and bank raids. Working paper, Uni-
versity of Oxford.

Bovenberg, A., Koijen, R., Nijman, T., and Teulings, C. (2007). Saving and investment over
the life cycle and the role of collective pension funds. De Economist, 155(4):347–415.

Boyer, M. and Stentoft, L. (2013). If we can simulate it, we can insure it: An application to
longevity risk management. Insurance: Mathematics and Economics, 52:35–45.

Cathcart, M. andMorrison, S. (2009). Variable annuity economic capital: the least-squares
Monte Carlo approach. Life and Pensions, pages 36–40.

Chen, D. H. J. (2015). Voluntary participation in a collective pension scheme: An option
pricing approach. Mimeo, University of Amsterdam.

Chen, D. H. J. and Beetsma, R. M. W. J. (2014). Mandatory participation in occupational
pension schemes in the Netherlands and other countries. CESifo Working Paper Series
4593, CESifo Group Munich.

Chen, D.H. J., Beetsma, R.M.W. J., Ponds, E. H.M., andRomp,W. E. (2014). Intergenerational
risk-sharing through fundedpensions andpublic debt. Forthcoming in Journal of Pension
Economics and Finance. An earlier version is available as CESifo Working Paper Series
No. 4624.

Chen, D.H. J. andRomp,W. (2015). Modellingpension fund regulation and stability. Mimeo,
University of Amsterdam.

Cui, J., De Jong, F. C. J. M., and Ponds, E. H. M. (2011). Intergenerational risk sharing within
funded pension schemes. Journal of Pension Economics and Finance, 10(1):1–29.

Dufresne, D. (1989). Stability of pension systems when rates of return are random. Insur-
ance: Mathematics and Economics, 8(1):71–76.

34



Gollier, C. (2008). Intergenerational risk-sharing and risk-taking of a pension fund. Journal
of Public Economics, 92(5-6):1463–1485.

Gordon, R. and Varian, H. (1988). Intergenerational risk sharing. Journal of Public Eco-
nomics, 37:185–202.

Hassler, J. and Lindbeck, A. (1997). Intergenerational risk sharing, stability and optimality
of alternative pension systems. Mimeo, Institute for International Economic Studies.

Hemert, O. v. (2005). Optimal intergenerational risk sharing. Discussion paper: UBS Pen-
sions Series, 037(541).

Kleinow, T. and Schumacher, H. (2015). Financial fairness and conditional indexation.
Netspar, forthcoming.

Longstaff, F. and Schwartz, E. (2001). Valuing American options by simulation: A simple
least-squares approach. Review of Financial Studies, 14(1):113–147.

Madrian, B. and Shea, D. (2001). The power of suggestion: Inertia in 401(k) participation
and savings behavior. The Quarterly Journal of Economics, 116(4).

Molenaar, R., Peijnenburg, J., and Ponds, E. (2011). Should I stay or should I go? break even
funding ratios forDBpension plan participants. NetsparDiscussion Paper, 04/2011-027.

OECD (2013). Pensions at a Glance 2013: OECD and G20 Indicators. OECD, Paris.

Pelsser, A., Cao, J., and Iseger, P. d. (2007). Pricing hybrid options by an efϐicient Monte
Carlo approach. Discussion Paper DP 12/2007-019, Netspar.

Ponds, E. H. M., Severinson, C., and Yermo, J. (2011). Funding in public sector pension
plans: International evidence. OECD Working Papers on Finance, Insurance and Private
Pensions, (8).

Shiller, R. (1999). Social security and institutions for intergenerational, intragenerational
and international risk-sharing. Carnegie-Rochester Conference Series on Public Policy,
50:165–204.

Siegmann, A. (2011). Minimum funding ratios for deϐined-beneϐit pension funds. Journal
of Pension Economics and Finance, 10(3):417–434.

Westerhout, E. (2011). Intergenerational risk sharing in time-consistent pension schemes.
CPB Discussion Paper, 176.

35



A Derivations

A.1 Derivation of the Annuity under Individual DC

The annuityBDC under the individual DC scheme is calculated from

ADC
s,s+tR

=EQ
s+tR

{ˆ s+tD

s+tR

exp [−r (u− s− tR)]B
DCdu

}
= BDCEQ

s+tR

[ˆ tD−tR

0
exp (−ru) du

]
⇐⇒ BDC =rADC

s,s+tR
/ {1− exp [−r (tD − tR)]} .

A.2 Regulation Policy

Suppose n ∈ N. Then, we can use equation (2) and the law of iterated expectations to
derive

EQ
t

(
Ft+ndt − F̄

)
=EQ

t

[
EQ

t+(n−1)dt

(
Ft+ndt − F̄

)]
=αdtEQ

t

(
Ft+(n−1)dt − F̄

)
=αdtEQ

t

[
EQ

t+(n−2)dt

(
Ft+(n−1)dt − F̄

)]
=α2dtEQ

t

(
Ft+(n−2)dt − F̄

)
= . . .

=αndtEQ
t

(
Ft − F̄

)
=αndt

(
Ft − F̄

)
⇒ EQ

t

(
Ft+s − F̄

)
=αs

(
Ft − F̄

)
.

A.3 Dynamics of the Liabilities

In order to determine EQ
t (dLt) = EQ

t (Lt+dt)− Lt, we ϐirst derive

Bs,t+dt =Bs,t + dBs,t

=Bs,t + [ψwt−s + (γt − 1)Bs,t] dt

=ψwt−sdt+Bs,t [1 + (γt − 1) dt]

and

Rν+dt =


´ tD
ν+dt

exp [−r (u− ν − dt)] du, for ν + dt ≥ tR,

exp [−r (tR − ν − dt)]
´ tD
tR

exp [−r (u− tR)] du, for ν + dt < tR,

⇐⇒ Rν+dt = exp (rdt)Rν +
1

r
[1− exp (rdt)] Iν+dt>tR ,

36



where the indicator function Iν+dt>tR is one if the condition in its subscript is fulϐilled and
zero, otherwise. Then, the liabilities at t+ dt can be written as

Lt+dt =

ˆ
It+dt

Rt+dt−sBs,t+dtds

=ψdt

ˆ
Iwt+dt

Rt+dt−swt−sds+ [1 + (γt − 1) dt]

ˆ
It+dt

Rt+dt−sBs,tds

=ψdt

ˆ
Iwt+dt

Rt+dt−sds+ [1 + (γt − 1) dt] ∗ . . .

. . .

ˆ
It+dt

{
exp (rdt)Rt−s +

1

r
[1− exp (rdt)] It−s+dt>tR

}
Bs,tds

=ψdt

ˆ
Iwt+dt

Rt+dt−sds+ exp (rdt) [1 + (γt − 1) dt] ∗ . . .

. . .

{ˆ
It+dt

Rt−sBs,tds−
1− exp (−rdt)

r

ˆ
Irt+dt

Bs,tds

}
=ψdt

ˆ
Iwt+dt

Rt+dt−sds+ Λt [1 + (γt − 1) dt] ,

where we denote Λt as

Λt = exp (rdt)
ˆ
It+dt

Rt−sBs,tds−
exp (rdt)− 1

r

ˆ
Irt+dt

Bs,tds

= exp (rdt)
ˆ
It+dt

Rt−sBs,tds−
ˆ dt

0

exp (ru) du
ˆ
Irt+dt

Bs,tds,

which is the compounded value of period t’s liabilities of the period t + dt’s participants,
minus the compounded value of period t’s pension payouts to period t+ dt’s retirees.

A.4 Equilibrium Liabilities and Funding Ratio

In equilibrium, we have Ft = F̄ ,At = Ā = F̄ L̄, γt = 1 and full participation ∀t. Hence, the
equilibrium pension entitlements at time t are

B̄s,t =

(t− s)ψ, for (t− s) ∈ [0, tR] ,

tRψ, for (t− s) ∈ (tR, tD) ,

=min (t− s, tR)ψ, for ν ∈ [0, tD) .
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The equilibrium liabilities are

L̄ =

ˆ tD

0

RuB̄t−u,tdu

=ψ

ˆ tD

0

Rumin (u, tR) du

=ψ

[ˆ tR

0

uRudu+ tR

ˆ tD

tR

Rudu

]
,

which can be further rewritten as follows

L̄ =ψ

[ˆ tR

0

uRudu+ tR

ˆ tD

tR

Rudu

]
=
ψ

r

(
{1− exp [r (tR − tD)]}

ˆ tR

0

u exp [r (u− tR)] du+ tR

ˆ tD

tR

{1− exp [r (u− tD)]} du
)

=
ψ

r
{1− exp [r (tR − tD)]} exp (−rtR)

1

r2
[1 + exp (rtR) (rtR − 1)] + . . .

. . .
ψ

r
tR

(
tD − tR +

1

r
{exp [r (tR − tD)]− 1}

)
=
ψ

r
{1− exp [r (tR − tD)]}

1

r2
[exp (−rtR) + rtR − 1] + . . .

. . .
ψ

r
tR

(
tD − tR +

1

r
{exp [r (tR − tD)]− 1}

)
=
ψ

r

(
tR (tD − tR)−

1

r2
{1− exp [r (tR − tD)]} [1− exp (−rtR)]

)
,

where we used
ˆ tR

0

s exp (rs) ds = 1

r2
[1 + (rtR − 1) exp (rtR)] .

There is no change in assets in equilibrium

0 =dĀ = rĀdt+
(
C̄ − B̄TOT

)
dt.
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Then, we can derive an expression for the funding ratio target as follows

0 =rĀ+ C̄ − B̄TOT

=rF̄ L̄+

ˆ tR

0

ψRudu−
ˆ tD

tR

ψtRdu

=rF̄ L̄+
ψ

r2
{1− exp [−r (tD − tR)]} [1− exp (−rtR)]− (tD − tR)ψtR

⇐⇒ F̄ L̄ =
ψ

r

(
(tD − tR) tR − 1

r2
{1− exp [−r (tD − tR)]} [1− exp (−rtR)]

)
⇐⇒ F̄ =1.

A.5 Policy Instruments

For the assets, we obtain

At+dt =At + dAt

=

(
1 +

dPt

Pt

)
At +

(
Ct −BTOT

t

)
dt

=

(
1 +

dPt

Pt

)
At +

(ˆ
Iwt

cs,tds− γt

ˆ
Irt

Bs,tds

)
dt

EQ
t (At+dt) = (1 + rdt)At +

(ˆ
Iwt

cs,tds− γt

ˆ
Irt

Bs,tds

)
dt.

Hence, we can write an expression for the expected change in the funding gap

EQ
t

(
At+dt − Lt+dt

dt

)
=

1 + rdt

dt
At +

ˆ
Iwt

cs,tds− γt

ˆ
Irt

Bs,tds− . . .

. . .ψ

ˆ
Iwt+dt

Rt+dt−sds− Λt

(
1

dt
+ γt − 1

)

⇐⇒ Ωt =

ˆ
Iwt

πs,tds+ (1− γt)

(
Λt +

ˆ
Irt

Bs,tds

)
,
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where

Ωt ≡
EQ

t (At+dt − Lt+dt)− (1 + rdt)At + Λt

dt
+ ψ

ˆ
Iw
t+dt

Rt+dt−sds−
ˆ
Iw
t

c̄t−sds+

ˆ
Ir
t

Bs,tds

=EQ
t

(
At+dt − Lt+dt

dt

)
+

1

dt

(
Λt + ψdt

ˆ
Iw
t+dt

Rt+dt−sds

)
︸ ︷︷ ︸

=
Lt+dt

dt +(1−γt)Λt

− . . .

. . .
1

dt

[
(1 + rdt)At + dt

ˆ
Iw
t

c̄t−sds− dt

ˆ
Ir
t

Bs,tds

]
︸ ︷︷ ︸

=EQ
t

(
At+dt

dt

)
−
´
Iwt

πs,tds−(1−γt)
´
Irt

Bs,tds

.

The ϐirst term on the right-hand side of the ϐirst line of the expression forΩt equals the ex-
pected funding gap, EQ

t (At+dt − Lt+dt), minus the compounded assets, (1 + rdt)At, plus
Λt, divided by the time step size dt. The second term is the period t + dtmarket price of
the aggregate pension accrual of period t + dt’s working cohorts. The third term repres-
ents the aggregate equilibrium contributions of period t’s working cohorts, while the last
term denotes the aggregate pension entitlements of period t’s retirees. Further, Λt is the
compounded value to period t+ dt of period t’s liabilities to the period t+ dt participants,
minus the aggregate compounded pension payouts to period t + dt’s retirees between t
and t+ dt.
To adhere to the regulatory policy, the pension fund can vary the amount of contributions
(Ct) and the gross indexation rate (γt). Using the policy imposed by the regulator, equation
(2), we derive

EQ
t

(
At + dAt

Lt + dLt

)
− F̄ =αdt

(
At

Lt
− F̄

)
⇐⇒ At + EQ

t (dAt)

Lt + EQ
t (dLt)

=αdt

(
At

Lt
− F̄

)
+ F̄

⇐⇒
(
rAt + Ct −BTOT

t

)
dt =

(
αdt − 1

) (
At − F̄Lt

)
+
[
αdt
(
Ft − F̄

)
+ F̄

]
EQ

t (dLt)

⇐⇒ rAt + Ct −BTOT
t =

(
αdt − 1

dt

)(
At − F̄Lt

)
+
[
αdt
(
Ft − F̄

)
+ F̄

]
EQ

t

(
dLt

dt

)
⇐⇒ rAt + Ct −BTOT

t =(logα)
(
At − F̄Lt

)
+ FtE

Q
t

(
dLt

dt

)
⇐⇒ Ct −BTOT

t =FtE
Q
t

(
dLt

dt

)
− [r − (logα)]At − (logα) F̄Lt

⇐⇒
ˆ
Iwt

πs,tds+ (1− γt)

ˆ
Irt

Bs,tds =FtE
Q
t

(
dLt

dt

)
−At [r − (logα)]− (logα) F̄Lt − . . .

. . .

ˆ
Iwt

c̄t−sds+

ˆ
Irt

Bs,tds (12)

where, going from the ϐirst to the second line, we have used the independence of the
change in assets from the change in liabilities conditional on period t information, and,
going from the fourth to the ϐifth line, we have used that dt ↓ 0 as well as l’Hôpital’s rule to
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get αdt−1
dt

= limx↓0
αx−1

x
= logα. Note that logα < 0, since α ∈ (0, 1). Hence, we can write

the policies as

(γt − 1)

(
1− ω

ω
Λt +

1

ω

ˆ
Irt

Bs,tds

)
=At [r − (logα)]− FtE

Q
t

(
dLt

dt

)
+ . . .

. . . (logα) F̄Lt +

ˆ
Iwt

c̄t−sds−
ˆ
Irt

Bs,tds,

ˆ
Iwt

πs,tds =
1− ω

ω
(1− γt)

(
Λt +

ˆ
Irt

Bs,tds

)
,

where the last expression follows directly by combining equations (4) and (5), while the
next-to-last line follows from substituting the last line back into equation (12).

A.6 Age-Dependent Recovery Contribution

The recovery contributions are weighed by the agent’s actuarially fair contribution level,
(c̄tR − c̄ν) ,which decreases with age, since ∂(c̄tR−c̄ν)

∂ν
< 0. Then, using equation (5) we can

derive

(1− ω) Ωt =

ˆ
Iwt

πs,tds =

ˆ
Iwt

(c̄tR − c̄t−s)
θ Θtds

⇐⇒ Θt =
(1− ω) Ωt´

Iwt
(c̄tR − c̄t−s)

θ ds

⇒ πt−ν,t =(1− ω) Ωt
(c̄tR − c̄ν)

θ

´
Iwt

(c̄tR − c̄t−s)
θ ds

.

Hence, the age-dependent contribution at time t for a participant with age ν is

ct−ν,t =c̄ν + (1− ω) Ωt
(c̄tR − c̄ν)

θ

´
Iwt

(c̄tR − c̄t−s)
θ ds

.

If we assume that the pension fund operates under full participation, i.e. It =

{
s : t −

s ∈[0, tD]
}
, ∀t, then the following holds

ct−ν,t =c̄ν + (1− ω) Ωt
(c̄tR − c̄ν)

θ

´ tR
0

(c̄tR − c̄u)
θ du

.
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We can derive the following comparative statics

∂ct−ν,t

∂Ωt

=(1− ω)
(c̄tR − c̄ν)

θ

´ tR
0

(c̄tR − c̄u)
θ du

≥ 0

⇒ ∂2ct−ν,t

∂Ωt∂ν
=
− (1− ω) θ (c̄tR − c̄ν)

−θ

´ tR
0

(c̄tR − c̄u)
θ du

∂c̄ν
∂ν

≤ 0, for θ ≥ 0.

Hence, the recovery contribution increaseswith the restorationparameterΩt, since ∂ct−ν,t

∂Ωt
≥

0. However, the restoration particularly relies on the youngworkers when θ > 0, since the
required restoration part falls with age

(
∂2ct−ν,t

∂Ωt∂ν
< 0
)
.

A.7 Recovery Contribution under the DB Pension Scheme

Under theDBpension schemewehave thatω = 0, so fromequations (4) and (5)we obtain
γt = 1 and Ωt =

´
Iwt
πs,tds. Hence, we can write equation (12) as

Ωt =FtE
Q
t

(
dLt

dt

)
− At [r − (logα)]− (logα) F̄Lt −

ˆ
Iwt

c̄t−sds+

ˆ
Irt

Bs,tds.

Under full participation we have that dLt = 0 and Lt = L̄, so we can write the above
equation as

Ωt =− At [r − (logα)]− (logα) L̄−
ˆ tR

0

c̄udu+

ˆ tD

tR

Bs,s+udu

=− At [r − (logα)]− (logα) L̄−
ˆ tR

0

ψRudu+ ψtR (tD − tR)

=− At [r − (logα)]− (logα) L̄− ψtR (tD − tR) +
ψ {1− exp [r (tR − tD)]} [1− exp (−rtR)]

r2

= [r − (logα)]
(
L̄− At

)
.

Hence, the recovery contribution becomes

πt−ν,t = [r − (logα)]
(
L̄− At

) (c̄tR − c̄ν)
θ

´ tR
0

(c̄tR − c̄u)
θ du

.
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Using equation (3), we can show that the long-run expected recovery contribution equals
zero:

lim
u→∞

EQ
t (Ft+u) =F̄ = 1

⇐⇒ lim
u→∞

EQ
t (At+u) =L̄,

⇐⇒ lim
u→∞

EQ
t (πt+u−ν,t+u) = lim

u→∞
[r − (logα)]EQ

t

(
L̄− At+u

) (c̄tR − c̄ν)
θ

´ tR
0

(c̄tR − c̄s)
θ ds

= 0.

Note that

∂πt−ν,t

∂α
=
∂ (logα)
∂α

∂πt−ν,t

∂ (logα) =
At − L̄

α

(c̄tR − c̄ν)
θ

´ tR
0

(c̄tR − c̄u)
θ du

.

This is negative in the case of underfunding, i.e. L̄ > At. A higher value of α ∈ (0, 1)

implies more smoothing and, hence, the effect on the recovery contribution is mitigated if
there is underfunding.

A.8 Discounted Funding Ratios

We can use the result from Appendix A.2 to derive

EQ
t

[ˆ T

t

Fu exp (−ru) du
]

=EQ
t

[ˆ T

t

(
Fu − F̄ + F̄

)
exp (−ru) du

]
=

ˆ T

t

[
EQ

t

(
Fu − F̄

)
exp (−ru) + F̄ exp (−ru)

]
du

=

ˆ T

t

[
αu−t

(
Fu − F̄

)
exp (−ru) + F̄ exp (−ru)

]
du

= exp (−rt)
ˆ T−t

0

[
αu
(
Ft − F̄

)
+ F̄

]
exp (−ru) du

= exp (−rt)
{(
Ft − F̄

)ˆ T−t

0

αu exp (−ru) du+ F̄

ˆ T−t

0

exp (−ru) du
}

= exp (−rt)
[(
Ft − F̄

)ˆ T−t

0

exp {−u [r − (logα)]} du+ F̄

ˆ T−t

0

exp (−ru) du
]

=
(
Ft − F̄

) exp (−rt)
r − (logα) (1− exp {(t− T ) [r − (logα)]}) + F̄

r
[exp (−rt)− exp (−rT )] .

Hence, EQ
t

[´ T

t
Fu exp (−ru) du

]
satisϐies the Markov property, as its value depends only

on time t’s funding ratio Ft.
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A.9 Participation Under the DB Pension Scheme

Under full participation we have that dLt = 0 and Lt = L̄. Hence, we can write

EQ
s+tM

[ˆ tR

tM

cs,s+u exp [−r (u− tM )] du

]
=

ˆ tR

tM

{
c̄u + [r − (logα)]EQ

s+tM

(
L̄−As+u

) (c̄tR − c̄u)
θ

´ tR
0 (c̄tR − c̄s)

θ ds

}
exp [−r (u− tM )] du

=

ˆ tR

tM

{
ψRu + [r − (logα)]EQ

s+tM

(
L̄−As+u

) (c̄tR − c̄u)
θ

´ tR
0 (c̄tR − c̄s)

θ ds

}
exp [−r (u− tM )] du

=

ˆ tR

tM

ψRu exp [−r (u− tM )] du+ . . .

. . .
r − (logα)´ tR

0 (c̄tR − c̄s)
θ ds

EQ
s+tM

{ˆ tR

tM

(
L̄−As+u

)
(c̄tR − c̄u)

θ exp [−r (u− tM )] du

}
=

ˆ tR

tM

ψ

r
exp [−r (tR − tM )] {1− exp [−r (tD − tR)]} du+ . . .

. . .
[r − (logα)] L̄´ tR
0 (c̄tR − c̄s)

θ ds

ˆ tR

tM

EQ
s+tM

(1− Fs+u) (c̄tR − c̄u)
θ exp [−r (u− tM )] du

=
ψ

r
(tR − tM ) exp [−r (tR − tM )] {1− exp [−r (tD − tR)]}+ . . .

. . . (1− Fs+tM )
[r − (logα)] L̄´ tR
0 (c̄tR − c̄s)

θ ds

ˆ tR−tM

0
αu (c̄tR − c̄tM+u)

θ exp (−ru) du,

wherewe used the last equation of Appendix A.2 to go from the next-to-last line to the last
line.
A rational participant of arbitrary age tM who has started working at time s decides to
stay in the pension schemewhen the value of participation is positive. When the particip-
ation decision is irreversible, then the latter is given by the discounted value of his future
pension beneϐits during retirement minus the payout obtained from exiting minus the ex-
pected discounted sum of the contributions to be paid from now until retirement:

Parts,s+tM = exp [−r (tR − tM)] Πs+tR (Bs,s+tR)−min (1, Fs+tM )Πs+tM (Bs,s+tM )− . . .

. . .EQ
s+tM

[ˆ tR

tM

cs+u exp [−r (u− tM)] du

]
= exp [−r (tR − tM)] Πs+tR (Bs,s+tR)−min (1, Fs+tM )Πs+tM (Bs,s+tM )−

. . .
ψ

r
(tR − tM) exp [−r (tR − tM)] {1− exp [−r (tD − tR)]}+ . . .

. . . (Fs+tM − 1)
[r − (logα)] L̄´ tR
0

(c̄tR − c̄u)
θ du

ˆ tR−tM

0

αu (c̄tR − c̄tM+u)
θ exp (−ru) du.
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Then, we have that

∂Parts,s+tM

∂Fs+tM

=


[r−(logα)]L̄´ tR

0 (c̄tR−c̄u)
θ
du

´ tR−tM
0 αu (c̄tR − c̄tM+u)

θ exp (−ru) du > 0, for Fs+tM ≥ 1,

[r−(logα)]L̄´ tR
0 (c̄tR−c̄u)

θ
du

´ tR−tM
0 αu (c̄tR − c̄tM+u)

θ exp (−ru) du− . . .

. . .Πs+tM (Bs,s+tM ) , for Fs+tM < 1.

Furthermore, suppose that Fs+tM = 1, then

Parts,s+tM = exp [−r (tR − tM)] Πs+tR (Bs,s+tR)− Πs+tM (Bs,s+tM )− . . .

. . .
ψ

r
(tR − tM) exp [−r (tR − tM)] {1− exp [−r (tD − tR)]}

= exp [−r (tR − tM)]RtRψtR −RtMψtM − . . .

. . .
ψ

r
(tR − tM) exp [−r (tR − tM)] {1− exp [−r (tD − tR)]}

=(tR − tM − tR + tM) exp [−r (tR − tM)]
ψ

r
{1− exp [−r (tD − tR)]}

=0.

Hence, the participation threshold is exactly at a funding ratio of 100%when the contribu-
tion policy is actuarially fair in equilibrium and the participation decision is irreversible.
The value of participation at the retirement age is obtained by tM = tR

Parts,s+tR =Πs+tR (Bs,s+tR)−min (1, Fs+tR)Πs+tM (Bs,s+tR)

=max (0, 1− Fs+tR)Πs+tM (Bs,s+tR) ≥ 0.

Hence, the value of participation at the retirement age is always positive.

A.10 Indexation Rate under Full Participation

Under full participation, we obtain

EQ
t (dLt) =Lt+dt − Lt = ψdt

ˆ tR

0

Rsds+ Λt [1 + (γt − 1) dt]− Lt,
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which can be used to derive an expression for (γt − 1) under full participation and F̄ = 1:

(γt − 1)

(
1− ω

ω
Λt +

1

ω

ˆ tD

tR

Bt−s,tds

)
= . . .

. . .At [r − (logα)]− FtE
Q
t

(
dLt

dt

)
+ (logα)Lt +

ˆ tR

0

c̄udu−
ˆ tD

tR

Bt−s,tds

⇐⇒ (γt − 1)

[
Λt

(
1− ω

ω
+ Ft

)
+

1

ω

ˆ tD

tR

Bt−s,tds

]
= . . .

. . .

ˆ tR

0

c̄udu− Ftψ

ˆ tR

0

Rsds−
ˆ tD

tR

Bt−s,tds+ Lt (logα) +At

[
1

dt
+ r − (logα)

]
− FtΛt

dt

⇐⇒ (γt − 1)

[
Λt

(
1− ω

ω
+ Ft

)
+

1

ω

ˆ tD

tR

Bt−s,tds

]
= . . .

. . .ψ (1− Ft)

ˆ tR

0

Rsds−
ˆ tD

tR

Bt−s,tds+ Lt (logα) +At

[
1

dt
+ r − (logα)

]
− FtΛt

dt

⇐⇒ (γt − 1) = ω

{
ψ (1− Ft)

ˆ tR

0

Rsds−
ˆ tD

tR

Bt−s,tds+ Lt (logα) +At

[
1

dt
+ r − (logα)

]
− . . .

. . .
FtΛt

dt

}
/

[
Λt (1− ω + ωFt) +

ˆ tD

tR

Bt−s,tds

]
,

where going from the ϐirst to the second expression we have used the above expression
for EQ

t (dLt) and going from the second to the third expression we have used c̄s = ψRs.

A.11 Condition for Participation at Retirement under Full Particip-
ation

During retirement, the pension entitlements evolve as

dBs,t =(γt − 1)Bs,tdt,

hence

Bs,t+dt =Bs,t + (γt − 1)Bs,tdt

=Bs,t [1 + (γt − 1) dt]

Bs,t+2dt =Bs,t+dt [1 + (γt+dt − 1) dt]

=Bs,t [1 + (γt − 1) dt] [1 + (γt+dt − 1) dt]

...

Bs,t+ndt =Bs,t

n−1∏
i=0

[1 + (γt+idt − 1) dt] .
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At retirement date, an individual decides to stay in the pension fund if and only if

min (1, Fs+tR)Πs+tR (Bs,s+tR)

≤
ˆ tD

tR

exp [−r (u− tR)]E
Q
s+tR

(Bs,s+u) du

=

ˆ tD−tR

0
exp (−ru)EQ

s+tR
(Bs,s+tR+u) du

=Bs,s+tR

ˆ tD−tR

0
EQ

s+tR


(u/dt)−1∏

i=0

[1 + (γs+tR+idt − 1) dt]

 exp (−ru) du

⇐⇒
ˆ tD−tR

0
EQ

s+tR


(u/dt)−1∏

i=0

[1 + (γs+tR+idt − 1) dt]

 exp (−ru) du

≥min (1, Fs+tR)RtR =
1− exp [−r (tD − tR)]

r
min (1, Fs+tR) ,

where the indexation rate follows from the last equation in Appendix A.10.

A.12 Uniform Contribution Policy

Under the uniform contribution policy, the contribution is independent of age

cs,t =c̄+ πunif
t ,

where c̄ is the equilibriumcontribution andπunif
t is the time t recovery contribution. There

is no change in assets in equilibrium

0 =dĀ = rĀdt+
(
C̄ − B̄TOT

)
dt.

Then, we can derive an expression for the equilibrium contribution as follows

0 =rĀ+ C̄ − B̄TOT

=rF̄ L̄+

ˆ tR

0

c̄du−
ˆ tD

tR

ψtRdu

=rF̄ L̄+ tRc̄− (tD − tR)ψtR

⇐⇒ c̄ =ψ (tD − tR)−
rF̄ L̄

tR

=ψ

{(
1− F̄

)
(tD − tR) +

F̄

tRr2
{1− exp [−r (tD − tR)]} [1− exp (−rtR)]

}
=ψ

[(
1− F̄

)
(tD − tR) +

F̄

tR

ˆ tR

0

Rudu

]
.

47



Hence, for F̄ = 1, the aggregate equilibrium contributions are equal to the market price
for the aggregate pension accrual

c̄tR =ψ

ˆ tR

0

Rudu.

Using equation (5), the uniform recovery policy can be written as

(1− ω) Ωt =

ˆ
Iwt

πunif
t ds

⇐⇒ πunif
t =

(1− ω)´
Iwt

1ds
Ωt.

A.13 IrreversibleParticipationDecisionwith theDBPensionScheme
and Uniform Contributions

Under theDBpension schemewehave thatω = 0, so fromequations (4) and (5)we obtain
γt = 1 and Ωt =

´
Iwt
πs,tds. Hence, we can write equation (12) as

Ωt =FtE
Q
t

(
dLt

dt

)
− At [r − (logα)]− (logα) F̄Lt −

ˆ
Iwt

c̄ds+

ˆ
Irt

Bs,tds.

Under full participation and F̄ = 1we have that dLt = 0 and Lt = L̄, so we can write the
above equation as

Ωt =− At [r − (logα)]− (logα) L̄−
ˆ tR

0

c̄ds+

ˆ tD

tR

Bs,s+udu

=At [r − (logα)]− (logα) L̄− tRc̄+ ψtR (tD − tR)

= [r − (logα)]
(
L̄− At

)
.
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This way, we can write

EQ
s+tM

{ˆ tR

tM

cs,s+u exp [−r (u− tM )] du

}
=EQ

s+tM

{ˆ tR

tM

(
c̄+

1

tR
Ωs+u

)
exp [−r (u− tM )] du

}
=EQ

s+tM

(ˆ tR

tM

{
ψ (tD − tR)−

[r − (logα)]As+u + (logα) L̄
tR

}
exp [−r (u− tM )] du

)
=

[
ψ (tD − tR)−

(logα) L̄
tR

]ˆ tR

tM

exp [−r (u− tM )] du− . . .

. . .
[r − (logα)] L̄

tR
EQ

s+tM

[ˆ tR

tM

As+u

L̄
exp [−r (u− tM )] du

]
=
1− exp [−r (tR − tM )]

r

[
ψ (tD − tR)−

(logα) L̄
tR

]
− . . .

. . .
[r − (logα)] L̄

tR
EQ

s+tM

[ˆ tR

tM

Fs+u exp [−r (u− tM )] du

]
.

From Appendix A.8 and F̄ = 1we obtain

EQ
s+tM

[ˆ tR

tM

Fs+u exp [−r (u− tM)] du

]
=EQ

s+tM

[ˆ s+tR

s+tM

Fu exp [−r (u− s− tM)] du

]
= exp [r (s+ tM)]EQ

s+tM

[ˆ s+tR

s+tM

Fu exp (−ru) du
]

=(Fs+tM − 1)
1− exp {(tM − tR) [r − (logα)]}

r − (logα) +
1− exp [−r (tR − tM)]

r
.

A rational participant of arbitrary age tM whohas startedworking at time s decides to stay
in the pension scheme when the value of participation is positive. The latter is given by
the discounted value of his future pension beneϐits during retirement, minus the expec-
ted discounted sum of the contributions to be paid from now until retirement, minus the
payout obtained from exiting

Parts,s+tM = exp [−r (tR − tM )] Πs+tR (Bs,s+tR)− EQ
s+tM

[ˆ tR

tM

cs+u exp [−r (u− tM )] du

]
− . . .

. . .min (1, Fs+tM )Πs+tM (Bs,s+tM ) .

49



Using the above derivations, we can write the latter equation as follows

Parts,s+tM = exp [−r (tR − tM )] Πs+tR (Bs,s+tR)− EQ
s+tM

[ˆ tR

tM

cs+u exp [−r (u− tM )] du

]
− . . .

. . .min (1, Fs+tM )Πs+tM (Bs,s+tM )

= exp [−r (tR − tM )] Πs+tR (Bs,s+tR)−
1− exp [−r (tR − tM )]

r

[
ψ (tD − tR)−

(logα) L̄
tR

]
+ . . .

. . .
[r − (logα)] L̄

tR
EQ

s+tM

[ˆ tR

tM

Fs+u exp [−r (u− tM )] du

]
−min (1, Fs+tM )Πs+tM (Bs,s+tM )

= exp [−r (tR − tM )] Πs+tR (Bs,s+tR)−
1− exp [−r (tR − tM )]

r

[
ψ (tD − tR)−

rL̄

tR

]
+ . . .

. . . (Fs+tM − 1)
L̄

tR
(1− exp {(tM − tR) [r − (logα)]})−min (1, Fs+tM )Πs+tM (Bs,s+tM )

=
L̄

tR
(Fs+tM − 1) (1− exp {(tM − tR) [r − (logα)]})−min (1, Fs+tM )Πs+tM (Bs,s+tM )− . . .

. . .
1− exp [−r (tR − tM )]

r

[
ψ (tD − tR)−

rL̄

tR

]
+ exp [−r (tR − tM )] Πs+tR (Bs,s+tR) .

A.14 Compromise Between Actuarially Fair and Uniform Contribu-
tion Policy

Now, the age-dependent contribution at time t for a participant with age ν is

ct−ν,t =(1− ζ)

[
c̄+

(1− ω)´
Iwt

1ds
Ωt

]
+ ζ

[
c̄ν + (1− ω) Ωt

(c̄tR − c̄ν)
θ

´
Iwt

(c̄tR − c̄t−s)
θ ds

]
,

where the parameter ζ determines whether the contribution policy is actuarially fair in
equilibrium (ζ = 1), uniform (ζ = 0) or a compromise (ζ ∈ (0, 1)). If we assume a target
funding ratio of 100% and we assume that the pension fund operates under full particip-
ation, i.e. F̄ = 1 and It = {s : t− s ∈ [0, tD]}, ∀t, then the contribution becomes

ct−ν,t =(1− ζ)

[
c̄+

(1− ω)

tR
Ωt

]
+ ζ

[
c̄ν + (1− ω) Ωt

(c̄tR − c̄ν)
θ

´ tR
0

(c̄tR − c̄s)
θ ds

]
.

We can derive the following comparative statics

∂ct−ν,t

∂Ωt

=
(1− ζ) (1− ω)

tR
+ ζ (1− ω)

(c̄tR − c̄ν)
θ

´ tR
0

(c̄tR − c̄s)
θ ds

≥ 0

⇒ ∂2ct−ν,t

∂Ωt∂ν
=
−ζθ (1− ω) (c̄tR − c̄ν)

θ−1

´ tR
0

(c̄tR − c̄s)
θ ds

∂c̄ν
∂ν

≤ 0, for θ ≥ 0.

Hence, the contribution increases with the restoration parameter Ωt, since ∂ct−ν,t

∂Ωt
≥ 0.

However, the restoration particularly relies on the young workers, since the required res-
toration part falls with age

(
∂2ct−ν,t

∂Ωt∂ν
≤ 0
)
.
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Table 7: Summary statistics of the funding ratio

Percentile or statistic min 5% 10% 50% mean 90% 95% max
Ft 0.60 0.81 0.84 0.99 1.00 1.17 1.23 1.69

A.15 Summary Statistics of the Funding Ratio

An overview of the statistics of Ft is shown in Table 7. Hence, 90% of the funding ratio
simulations are within 81% and 123%.

B Approximation Method American Exit-Option

We use the Least Squares Monte Carlo (LSMC) approximation method to solve for the val-
ues of participation at each exercise date using backward recursion. The American exit-
option is approximated by choosing a ϐine partition ν ∈ {t0, t0 + δ, t0 + 2δ, . . . , tR} for the
set of exercise ages. Here we describe the approximation method.

Step 1: run burn-in period We evaluate Q simulations after a “burn-in” period of 100
years. This way, we do not obtain the results around an equilibrium state, but around a
more realistic setting whereby generations have been confronted differently to the risks.
Depending on the initial values under our benchmark parameter setting, the distribution
of the variables converges in 30 to 40 years.

Step 2: run an individual’s working period After the burn-in simulations, we run an-
other tR years, which resembles the working period of an individual entering the labour
market at time t = 100. During this working period, we register the values ofXt, which is
the matrix with control variables at time t as given by equation (9). Hence, we do this for
the following dates: t = 100, t = 100 + δ, t = 100 + 2δ, . . ., t = 100 + tR.

Step 3: run an individual’s retirement period Similarly, we run the retirement period
of the individual and register the value of continuation at the retirement age. The value of
continuation for simulation run i for generation s = 100 at time t = 100 + tR is obtained
by

Conts,t,i =

ˆ tD−tR

0

exp (−ru)Bs,t+u,idu.
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Step 4: approximate value of participation at retirement Wemodel the value of par-
ticipation at retirement by the following regression model

Contt−tR,t =XtβtR + ε.

Using the estimated regression coefϐicient vector β̂tR , we calculate the regression ϐit for
the value of continuation as

ˆContt−tR,t =Xtβ̂tR .

Step 5: deϐine values atmaturity Weneed to determine the optimal exercise decisions
using backward recursion. We start at the maturity date for the option to exit, which is
the retirement age tR, i.e. at time t = 100 + tR, and register the corresponding payout.
Then, we runQ simulation paths and set up a [Q× 1]−vectorExAge, where each element
equals tR. Similarly, we deϐine a [Q× 1]−pay out vector Payout. We initialize by setting
it equal to max

(
Stopt−tR,t,i, ˆContt−tR,t,i

)
, where Stopt−tR,t is the [Q× 1]−vector of values

of stopping and ˆContt−tR,t is the [Q× 1]−vector of values of continuation at time t for the
generation of age tR, and i denotes the i’th element (run) in these vectors. Initially, we also
set νold = tR.

Step 6: move one step back in time with step size δ We now consider the simulation
values at age ν = νold − δ and apply following regression model

Contt−ν,t =Xtβν + ε,

where the left-hand side is the vector of continuation values and Xt is the matrix with
control variables at time t, as given by equation (9).
The value of continuation for a cohort of age ν at time t for simulation run i is given by

Contt−ν,t,i =Payouti exp [−r (ExAgei − ν)]−
ˆ ExAgei

ν

ct−s,t+s−ν,i exp [−r (s− ν)] ds,

i.e., the discounted payout at the exercise age, minus the discounted future contribution
payments along this simulated path. Using the estimated regression coefϐicient vector β̂ν ,
we calculate the regression ϐit for the value of continuation as

ˆContt−ν,t =Xtβ̂ν .
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Step 7: update vectors when stopping is optimal The value of stopping for a cohort
of age ν at time t is obtained by

Stopt−ν,t =min (1, Ft)Πt (Bt−ν,t) .

Then, for each simulation path i at time t, we can determinewhether the value of stopping
is larger than the approximated value of continuation, i.e. we check whether Stopt−ν,t,i >
ˆContt−ν,t,i. For each simulation run where stopping is optimal, the corresponding ele-

ments inExAge are updated to ν and the corresponding elements in Payout are updated
toStopt−ν,t. For example, ifStopt−ν,t,i > ˆContt−ν,t,i, we update the elements for simulation
run i by setting ExAgei := ν and Payouti := Stopt−ν,t,i.

Step 8: backward recursion If ν > t0 = 0, then we set νold := ν and go back to Step 6.
If ν = t0 = 0, then we go to Step 9.

Step 9: determine the value of participation Given the current state Xt we have the
approximated value of participation at age ν at time t, which is given by

ˆPartt−ν,t = ˆContt−ν,t − Stopt−ν,t

=Xtβ̂ν −min
(
1, F̂t

)
Πt (Bt−ν,t) .
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