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Abstract 

 

We consider a multivariate unobserved component time series model to disentangle the short-

term and medium-term cycle for the G7 countries and the Netherlands using four key 

macroeconomic and financial time series. The novel aspect of our approach is that we 

simultaneously decompose the short-term and medium-term dynamics of these variables by 

means of a combination of their estimated cycles. Our results show that the cyclical movements 

of credit volumes and house prices are mostly driven by the medium-term cycle, while the 

macroeconomic variables are equally driven by the short-term and medium-term cycle. For 

most countries, the co-movement between the cycles of the financial and macroeconomic 

variables is mainly present in the medium-term. First, we find strong co-cyclicality between 

the medium-term cycles of house prices and GDP in all countries we analyzed. Second, the 

relation between the medium-term cycles of GDP and credit is more complex. We find strong 

concordance between both cycles in only three countries. However, in three other countries we 

find ‘indirect’ concordance, i.e. the medium-term cycles of credit and house prices share co-

cyclicality, while in turn the medium-term cycles of house prices and GDP share commonality. 

This outcome might indicate that the house price cycle is –at least partly– driven by the credit 

cycle. Lastly, the cross-country concordance of both the short-term cycles and the medium-

term cycles of GDP, house prices and credit is low. Hence, the bulk of the cyclical movements 

seem to be driven by domestic rather than global factors. 
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estimation, short-term and medium-term cycles. 
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1 Introduction

We present a novel approach for the simultaneous estimation and extraction of short-term and

medium-term cycles from a set of macroeconomic and financial variables. In recent years, many

contributions have emerged that investigate the existence of medium-term cyclical movements in

the economy. In a seminal paper, Comin and Gertler (2006) argue that medium-term oscillations

are typically not detected by conventional business cycle filters, which tend to capture them into

the long-term trend. They argue that medium-term business cycles are caused by high-frequency

shocks that influence the pace of research, development and technology adoption, producing

business cycles of greater length and volatility than conventionally analyzed. Further, Comin

et al. (2014) and Correa-López and de Blas (2012) describe another mechanism causing medium-

term cycles, i.e. the transmission of technology from countries that can be considered technology-

leaders to follower-countries. Examples of this propagation channel include the spread of the

steam-engine technology from the United Kingdom to Europe in the 19th century, and the

spread of ict-goods and services from the United States to the rest of the world at the turn of

the last millennium.

During the global financial crisis another explanation for the existence of medium-term cycles

emerged, that focuses on the medium-term fluctuations of financial variables. It is argued that

such fluctuations are associated with a so-called financial cycle. A important finding from this

literature is that peaks in the medium-term oscillations of financial variables coincide with onsets

of financial crises; see, for example, Drehmann et al. (2012) and Borio (2014). Furthermore, there

is evidence that booms and busts in the financial sector have macroeconomic consequences: the

excessive build-up of credit exerts a negative influence on economic growth and increases the

probability of remaining in a recession; see, for example, Gadea Rivas and Pérez-Quirós (2015)

and Schularick and Taylor (2012).

We aim to bridge these two research directions by studying a recently proposed approach that

decomposes a panel of macroeconomic and financial time series into four dynamic components:

the long-term trend, the medium-term cyclical dynamics, the short-term cyclical movements

and the irregular component (see Koopman and Lucas, 2005). The model belongs to the class of

unobserved components time series models (UCTSMs), which enable the dynamic decomposition

of a panel of time series; see, for example, Chen et al. (2012), De Bonis and Silvestrini (2014),

Galati et al. (2016), and Rünstler and Vlekke (2016). The main advantage of this approach

compared to traditional approaches, such as non-parametric one-sided and bandpass filters (see

e.g. Aikman et al., 2015, Schüler et al., 2015), is that it enables simultaneous extraction of

the short-term and medium-term cycles. Furthermore, the interrelations between the extracted

cycles can be modeled in a parsimonious manner. Finally, our approach does not require ex-

ante assumptions on the length of the duration of the cycle. In particular, compared to non-

parametric filters, the UCTSM does not need prior assumptions on the length of the cycles.

We make several contributions to the existing literature on medium-term cycles. First, we

decompose oscillations that have been documented in the literature into two components: a

short-term cycle and a medium-term cycle. The Kalman filter enables extracting the short-term

and medium-term cycles in a straightforward fashion. Second, we extend recent work on the
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international coherence of business and financial cycles (for example, Meller and Metiu, 2015),

by analyzing the international linkages of both the short-term and medium-term cycles using

the methodology of Mink et al. (2012). Third, we extend previous studies that have used

the UCTSM framework by using variables with both quarterly and monthly frequencies in a

parsimonious and joint modeling framework.

Our main results can be summarized as follows. First, we show that credit and house

prices are largely driven by the medium-term cycle, while the macroeconomic variables are

equally driven by the short-term and medium-term cycle. Second, for most countries, the co-

movement between the cycles of the financial- and macroeconomic variables is mainly present

in the medium-term. Third, we find strong correlation between the medium-term cyclical move-

ments house prices and gross domestic product (GDP). Fourth, we find no evidence for strong

concordance between the medium-term credit and house price cycles in four of the eight countries

in our sample. Finally, the cross-country concordance between the short-term and medium-term

cycles of the financial and macroeconomic variables is low. Hence, the short-term and medium-

term cycles seem to be largely driven by domestic factors instead of global factors.

The remainder of the paper is organized as follows. Section 2 describes the dataset and

highlights some stylized features of the macroeconomic and financial time series. Section 3

describes our modeling approach and discusses the estimation and signal extraction method.

Section 4 presents our main empirical results. Section 5 concludes.

2 Dataset and stylized facts

2.1 Dataset

We estimate short-term and medium-term cycles of four key macroeconomic and financial time

series for eight advanced economies, i.e. the so-called G7 countries (the United States, the

United Kingdom, Japan, Canada, Germany, France and Italy) and the Netherlands. Our sample

period is 1970–2015. We use quarterly data on real GDP and monthly data on real industrial

production as our macroeconomic variables. The advantage of adding the monthly industrial

production series is that our modeling framework can be formulated in terms of the higher

monthly frequency instead of the quarterly frequency. This enables updating the model on a

more timely, monthly, basis. In the business cycle literature it is well acknowledged that short-

term cycles of industrial production and GDP are closely aligned with each other (Burns and

Mitchell, 1946). Even though the share of industrial production in total output has been falling

since the seminal work of Burns and Mitchell (1946), this stylized fact is still relevant, also in

recent years (Astolfi et al., 2016). Our main financial time series are quarterly data on credit

volumes and house prices. These variables have been commonly used as proxies for the financial

cycle in earlier work of Borio et al. (2001), Drehmann et al. (2012), Schularick and Taylor (2012),

Igan and Loungani (2012) and Aikman et al. (2015), amongst others. We use the volume of

domestic bank credit to the private non-financial sector as our main credit variable.

The main sources of our time series are databases maintained by the OECD and the BIS.1

1 The time series from the OECD database are publicly available via https://data.oecd.org/economy.htm.
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Our GDP, industrial production and nominal house prices series are taken from the former.

All nominal credit variables are taken from the BIS-database. We use deflated series for all

variables. GDP and industrial production are deflated at the source. Our nominal credit and

house price series are deflated with the country-specific CPI-index in the OECD database. All

series are seasonally adjusted. GDP and industrial production are seasonally adjusted at the

source, while house prices and credit are seasonally adjusted using the Census X–12 method.

2.2 Stylized facts

Figure 1 presents the raw time series of the variables we analyzed, for the United States. The

large peaks and troughs in both credit and house prices stand out. Clearly visible are the large

increases in both credit and house prices starting in the mid 1990s, and the subsequent decrease

during and following the global financial crisis of 2008–2009. To keep the main text contained, we

included the time series for the other G7 countries and the Netherlands in Figure 4 to Figure 10

in Appendix A.2. Overall, the other country results all show periods of build-up and subsequent

downfalls in both house prices and credit. However, the timing and size of the rise and fall in

house prices seems to differ markedly between countries.

Figure 1: GDP, house prices, credit and industrial production in the United States. All series are deflated,
seasonally adjusted and in logs.
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To get more insight into the possibility of multiple cycles in our times series we analyzed

the spectral densities. Spectral density estimates originate from the periodograms of variables

(they are locally smooth estimates thereof), and offer insight into where the mass of the cyclical

oscillations in the data occurs. Analyzing the spectral densities can give further guidance on

whether it is sensible to extract a short-term and medium-term cyclical component. Figure 2

The times series from the BIS data area publicly available via http://www.bis.org/statistics/totcredit.htm.
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presents the spectral density estimates for the US variables. Since the spectral densities are

symmetric between -π and π, we only present the plots for the interval [0, π], where 1 on the

horizontal axis stands for π, 0.5 for 0.5π, etc.2 When interpreting the spectra it is often more

convenient to think in terms of the period rather than its frequency. If we define the frequency

of a cycle as λ, the average period of the cycle is 2π/λ. The area under the line can be viewed

as how much of the variability in the time series is due to a certain frequency.

Figure 2: Spectral densities United States for GDP, house prices, credit and industrial production. All
series are deflated, seasonally adjusted and in log-differences.

GDP 

0.00 0.25 0.50 0.75 1.00

0.2

0.4

0.6
GDP House Price 

0.00 0.25 0.50 0.75 1.00

0.5

1.0

1.5

House Price 

Credit Volume 

0.00 0.25 0.50 0.75 1.00

0.5

1.0

1.5 Credit Volume Industrial Production 

0.00 0.25 0.50 0.75 1.00

0.25

0.50

0.75
Industrial Production 

The first (visible) peak in the spectral density of US GDP is estimated at approximately

0.02π, which translates into a cycle with an average period of 2π
0.02π = 100 quarters, or 25 years.

This peak can be viewed as an indication of how much of the variability of GDP can be captured

by medium-term cycles. The second peak is at 0.08π, which translates to a period of 61
4 years.

Given the dating of economic recessions, the latter seems to be related to the business cycle

frequency. The third and fourth peak occur at 0.13π and 0.19π, which translate to 3.8 and 2.6

years, respectively. Both peaks are lower than the peak in the spectral density at 0.08π. This

indicates that most business cycle frequencies occur within an average period of 61
4 years, but

there are also shorter business cycle fluctuation. Furthermore, there are some local peaks in the

spectral density above approximately 0.25π (2 years). For our study these fluctuations are not

so much of interest. They can be seen as seasonality or noise in the data.

Figure 2 also shows the spectral densities for house prices (top-right panel), credit (bottom-

left panel) and industrial production (bottom-right panel). The spectral density for industrial

production is very similar to the spectral density of GDP. There is a small peak at an average

2 All sample spectral densities are based on a lag length of 96 quarters (24 years).
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cycle-length of approximately 25 years, and peaks at cycles of approximately 6, 4 and 3 years,

respectively. The spectral densities of the house prices and credit are quite different from the

aforementioned densities. Both show peaks at a cycle-length of approximately 13 years. In

contrast to GDP and industrial production there is not much cyclical movement at the higher

‘business cycle’ frequency. The only other visible peaks in the spectra are concentrated in the

cyclical frequency that we associate with seasonality or noise in the data.

Figure 11 to Figure 17 in Appendix A.3 present the estimated spectral densities for the other

G7 countries and the Netherlands. Overall, the estimated spectral densities are similar to the

results for the United States, i.e. the spectral densities of GDP and industrial show peaks at

medium-term frequencies of roughly 25 to 30 years, and peaks at short-term frequencies between

2 to 6 years. Generally, the spectral densities for house prices and credit are heavily skewed to

the right, with the mass of the cyclical oscillations concentrated between 13 to 25 years.

The literature on medium-term cycles typically decomposes the times series in a trend, one

(medium-term) cycle and an irregular component (see e.g. Comin and Gertler, 2006 and Rünstler

and Vlekke, 2016). Based on the results above, we decided to depart from the standard set-up

in the literature and add a component that captures the medium-term cycle, i.e. we decompose

our time series into a long-term trend, a short-term cycle, a medium-term cycle, and an irregular

components. Our main conjecture from analyzing the spectral densities for GDP, house prices,

credit and industrial production is that the medium-term frequencies are dominant in house

prices and credit, whereas the short-term fluctuations are dominant for GDP and industrial

production.

3 Modeling approach

3.1 Unobserved Components Time Series Models

We introduce a multivariate unobserved components time series model (UCTSM) to describe

the dynamic behavior of the four series and there interdependencies as described in Koopman

and Lucas (2005), i.e.:

yt = µt +Aγt +Bψt + εt, εt
i.i.d.∼ N (0,Σε), t = 1, . . . , T, (1)

where yt represents the time-series observation vector at time t, and is defined as follows:

yt =


yGDP
t

yHP
t

yCRED
t

yIPt

 =


real GDP (GDP)

real house price (HP)

real credit (CRED)

real industrial production (IP)

 , t = 1, . . . , T, (2)

where t is a monthly time index. All variables in the observation vector are in logs. The long-

term trend is represented by the vector µt and the cycle components by γt ( short-term cycle)

and ψt (medium-term cycle). We assume that εt is normally distributed, with mean zero and a

diagonal covariance matrix Σε. The irregular component εt in eq. (1) is introduced to allow for
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measurement noise in the observations. Following Valle e Azevedo et al. (2006) and Koopman

and Lucas (2005), the trend µt is specified as an integrated random walk process:

µt+1 = µt + βt, βt+1 = βt + ζt, ζt
i.i.d.∼ N (0,Σζ). (3)

The role of µt is to filter out the low-frequencies or long-term dynamics from the data.

The cycle components γt and ψt have the stochastic dynamic specification proposed by

Harvey (1989), and are defined as(
γt+1

γ∗t+1

)
= φγ

[
cosλγIN sinλγIN
− sinλγIN cosλγIN

] (
γt

γ∗t

)
+

(
κt

κ∗t

)
,

(
κt

κ∗t

)
i.i.d.∼ N (0, I2 ⊗ Σκ), (4)

and(
ψt+1

ψ∗t+1

)
= φψ

[
cosλψIN sinλψIN
− sinλψIN cosλψIN

] (
ψt

ψ∗t

)
+

(
ωt

ω∗t

)
,

(
ωt

ω∗t

)
i.i.d.∼ N (0, I2 ⊗ Σω), (5)

where the frequency λj is measured in radians, 0 ≤ λj ≤ π, and the persistence φj is the damping

factor, 0 < φj < 1, for j = γ, ψ. The average period or length of the stochastic cycles is given

by 2π/λj . The cycles γt and ψt are both stationary dynamic processes.

The unobserved components µt, γt, and ψt are assumed to represent unique dynamic pro-

cesses and are independent of each other. However, the covariances between the disturbances

driving a particular component are typically non-zero, and imply a dependence structure amongst

the variables and their dynamic characteristics. The matrices A and B are introduced to deter-

mine this dependence structure. The matrices A and B scale the cycles γt and ψt for each of

the individual series. By inspection of the ‘cycle loading’ matrices A and B we can test whether

the GDP cycle is the same as the credit and house price cycles. For identification of the cycle

disturbance variances (Σκ and Σω), the loading-matrices A and B in eq. (1) are restricted to be

lower triangular matrices with unity as diagonal elements. The model is completed with appro-

priate initial conditions for trend µ1 and cycles (γ1, ψ1), as discussed in Durbin and Koopman

(2012).

3.2 Similar cycles

In our analysis, we assume that the cycles are ‘similar’, following Galati et al (2016). Under

this assumption, the frequency λj and persistence φj in eqs. (4)–(5) have the same values for

the four variables in our estimation. However, the peaks, troughs and scales of the cycles, as

determined by the variances and covariances of the disturbances driving the components, can

still be different under these ‘similar’ restrictions. The implications for the properties of similar

cycles, both in the time- and frequency-domain analyses, are discussed in Harvey and Koopman

(1997).
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3.3 State space methodology

Multivariate UCTSMs can be formulated in the general linear state space model as given by

the observation equation yt = Zαt + εt, with state vector αt, and the state updating equation

αt+1 = Tαt + ηt, where Z and T are system matrices that determine the dynamic properties

of yt, and, together with the variance matrices for εt and ηt, contain the parameters of the

model. The state vector contains the unobserved components µt, γt and ψt, together with

auxiliary variables such as γ∗t and ψ∗t in eqs. (4)–(5). The various disturbances are placed in an

appropriate manner in the vectors εt and ηt. The state-space setup of the dynamic factor model

is outlined in Appendix A.1.

Once the model is represented in state space form, the Kalman filter and related state

space methods can be applied. We estimate the unknown static parameters by the method

of maximum likelihood; numerical maximization requires the Kalman filter to compute the

loglikelihood function. Given these estimates, we obtain prediction residuals for diagnostic

checking and model evaluation from the Kalman filter. We obtain the smoothed estimates of

the unobserved trend, short-term and medium-term cycle and the irregular component from a

smoothing method; see Durbin and Koopman (2012) and Harvey (1989) for further details on

the trend-cycle model and the state space methodology.

3.4 Estimation strategy

Following Harvey and Jaeger (1993) we restrict the signal-to-noise ratio, σ2ζ/σ
2
ε . The tightness

of the signal-to-noise ratio is a matter of choice. Harvey and Jaeger (1993) choose the signal-

to-noise ratio 6.25E−4 to ensure smoothness and some stickiness of the long-term trend µt.

They show this choice equals the preferred setting of the Hodrick and Prescott (1997) filter for

quarterly data. An alternative would be to choose an even tighter setting. We opted for an

alternative signal-to-noise ratio of 6.94E−5, equaling the monthly setting of the Hodrick and

Prescott filter. For each country analyzed, we choose the signal-to-noise setting with the highest

estimated likelihood value as our baseline .3

We estimate the model in four steps. First, we run the model by fixing the signal-to-noise

ratios to either the loose (6.25E−4) or tight (6.94E−5) signal-to-noise ratio. Second, we re-run

the model with the same signal-to-noise ratio and fix the damping factor for the short (φγ)

and medium-term (φψ) cycles at the values in the previous run. These restrictions assume

that the cycles are somewhat more volatile than the unrestricted estimates. Furthermore, it

insures against spurious estimates. We restrict the damping factors to lie within the unit circle

with a maximum value of 0.99. Third, we re-run the model with all coefficients fixed at the

estimates in the second step, except for the factor loadings. Fourth, we choose between the

models with a loose and tight signal-to-noise ratio based on their estimated likelihood value.

For most countries, this estimation strategy led to choosing the model with a loose signal-to-

noise ratio. In only two countries, i.e. the Netherlands and the United Kingdom, the UCTSM

with the tighter signal-to-noise ratio was chosen.

3 Alternatively, the estimated likelihood value could be maximized over a grid of signal-to-noise ratio’s. We
leave this for future research.
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4 Empirical results

In this section we discuss the outcome of the UCTSMs for the countries we analyzed. In order

to keep the main discussion contained, we limit our presentation to the estimated coefficients

in the UCTSMs in Table I. Figures 18–25 in Appendix A.4 show the raw data and the esti-

mated components (long-term trend, short-term cycle and medium-term cycle) for the variables

considered for the G7 countries and the Netherlands, respectively.

4.1 Short-term cycle

We start our discussion with the short-term cycles, γt. Panel A in Table I shows the average

duration (pγ) and persistence (φγ) of the short-term cycles. Note that γt consists of four separate

similar cycles. Furthermore, the variance of the cycles (the diagonal Dγ of the covariance matrix

Σγ) is shown. Finally, panel A shows the loading-matrices (A) for the short-term cycles. The

loading matrices A reveal whether there is any co-cyclicality between the short-term cycles. Grey

cells indicate the coefficients are statistically significant. We distinguish statistical significance

levels of 10%, 5% and 1%, which are denoted as ∗,∗∗ and ∗∗∗, respectively. Our empirical results

point to some interesting findings, that can be summarized as follows.

First, averaged over the countries in our sample, the average duration of the short-term

cycle is 5.3 years. We find the longest average duration of the short-term cycle (7.9 years)

for the Netherlands. The shortest duration (3.3 years) is estimated for Japan. All cycles are

statistically significant, as can be seen from the elements on the diagonal, Dγ , of the variance

matrix Σγ in Table I. Generally, the estimated cycle durations coincide with those based on the

more conventional band-pass filter frequency range setting of [12 ,8] years (see e.g. Baxter and

King, 1999 and Christiano and Fitzgerald, 2003).

Second, there is strong evidence for co-cyclicality between the short-term cycles of GDP

and industrial production, given the statistically significant loadings in all countries we con-

sidered.This seems to indicate that the short-term cycle of industrial production is a good

approximation for the short-term cycle of GDP.

Third, we find no empirical evidence for commonality between the short-term cycles of

housing and GDP. This implies that the short-term fluctuations in house prices are largely

independent of the short-term fluctuations of GDP.

Fourth, we find little evidence for co-cyclicality between the short-term cycles of credit and

GDP. For six out of the eight countries analyzed, we find no statistically significant entries for

the short-term credit cycles in the loading-matrices. However, we do find strong co-cyclicality

between the short-term credit and GDP cycles in Canada and the Netherlands. This might

indicate a more prominent role for credit as a means of financing businesses and households in

these economies.

In summary, for most of the countries in our sample we find little evidence of significant

linkages between the short-term GDP cycle on the one hand and the short-term credit and

house price cycle on the other hand.
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4.2 Medium-term cycle

Panel B of Table I shows the estimates for the medium-term cycles ψt, the average cycle durations

(pψ), cycle persistences (φψ), the diagonal Dψ of the covariance matrix Σψ and the loading

matrices B. The results can be summarized as follows.

First, the average duration of the medium-term cycle (pψ) varies from 9.2 years in Japan to

23.7 years in the Netherlands. All cycles are statistically significant given the elements in Dψ.

The estimated cycle lengths lie within the boundaries that are usually found for the so-called

‘financial cycle’ (see e.g. Borio, 2014 and Drehmann et al., 2012).

Second, for most countries, the variance of the medium-term cycles (ψt) of GDP and indus-

trial production are economically just as important as the variance of the short-term cycles (γt),

as can be seen from a comparison of Dψ and Dγ in Table I (Dψ ≈ Dγ). By contrast, for most

countries, we find the medium-term cycles of the financial variables are economically much more

important than the short-term cycle (Dψ >> Dγ). This implies that the medium-term cycle

is much more dominant than the short-term cycle in explaining the cyclical variability for the

financial variables.

Third, the loading matrices B reveal strong, and statistically significant co-cyclicality be-

tween house prices and GDP, for all countries considered. This outcome supports the idea that

medium-term fluctuations in GDP are partly caused by the boom-bust pattern in house prices.

Fourth, the direct relation between the medium-term cycles of GDP and credit is more

complex. In only three countries, i.e. the United States, Japan and France, we find strong

co-cyclicality between both cycles. In three of the other countries, i.e. Canada, Italy and the

Netherlands, we find strong evidence for ‘indirect’ commonality between the medium-term cycles

of credit and GDP. In these countries the medium-term cycles of house prices and credit share

co-cyclicality, while in turn the medium-term cycles of house prices and GDP share commonality.

This outcome might indicate that the house price cycle is –at least partly– driven by the credit

cycle. In the remaining two other countries, i.e. the United Kingdom and Germany, there is no

discernible direct or indirect co-cyclicality between the medium-term cycles of credit and GDP.

Overall, we find strong evidence for co-cyclicality between the medium-term cycles of GDP

and house prices. The evidence for co-cyclicality between the medium-term cycles of GDP and

credit is more complex. For some countries there is a direct relation, for some an indirect relation

(via the medium-term house price cycle), and for some countries there is no clear relation. Lastly,

we find only limited evidence for strong concordance between the medium-term cycles of credit

and house prices.

4.3 International concordance of short-term cycles and medium-term cycles

The intertwined nature of the medium-term cycles of credit, house prices and GDP on a country

level, naturally raises the question whether, and to what extend, these cycles are synchronized

across countries. This is an important question, especially for macro-prudential policy makers

that have to judge whether the build-up of excessive leverage in the global financial system

affects the domestic financial system and whether this should be mitigated by macro-prudential

measures (see e.g. Jeanne, 2014 and Beirne and Friedrich, 2014).
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In order to determine if the short-term and medium-term cycles have a high coherence we

use the so-called ‘synchronicity’ and ‘similarity’ measures proposed by Mink et al. (2012). The

idea is that the coherence of cycles at any point in time is driven by whether or not cycles are

simultaneously above or below trend level (synchronicity) and whether the cycles have the same

amplitude (similarity). The synchronicity measure captures whether the cycle of a country and

a predefined reference cycle coincide, regardless of their amplitudes. We denote the cycle of

country i, for variable j at time t by ci,jt and the reference cycle r for variable j at time t by

cr,jt . Following Mink et al. (2012), we define a synthetic reference cycle, that is defined as the

median cycle for the G7 countries and the Netherlands. The overall synchronicity measure for

variable j is defined as:

θjt =
1

n

n∑
i=1

ci,jt c
r,j
t

|ci,jt c
r,j
t |

, (6)

while overall similarity is defined as:

ζjt = 1−
∑n

i=1 |c
i,j
t c

r,j
t |∑n

i=1 |c
i,j
t |

. (7)

Both measures can vary between 0 and 1, where 0 means that there is no synchronicity/similarity

and 1 means that their is perfect synchronicity/similarity. Perfect synchronicity indicates that all

cycles are simultaneously above/below trend level. Perfect similarity indicates that the absolute

difference between the cycles is zero, meaning that the cycles have an identical amplitude.

Alternatively, we could have used the correlation between the cycles as a measure of cyclical

coherence, using conventional Pearson’s correlation coefficients. However, the correlation coef-

ficient does not properly take into account that cycles can be in different phases (below/above

trend level) or have different amplitudes. Moreover, the correlation coefficients are often not

very discriminative. For example, in our sample almost all pairwise country correlations are

high and significant, while the cycles show very little similarity in terms of being above/below

trend level or amplitude.4

Figure 3 shows the 10–year moving average overall synchronicity and similarity measures

for the short-term cycles (left-hand panel) and long-term cycles (right-hand panel). The Figure

points to several interesting results.

First, the similarity and synchronicity measures are relatively low. The overall synchronicity

measure is usually lower than 0.5 and the similarity measure is lower than 0.3. This means

that the short-term (and medium-term) cycles are only simultaneously above trend level in all

countries less than half of the time. The amplitude of the cycles is only roughly equivalent

33 percent of the time. This limited concordance is in line with the low pairwise international

cross-correlations of macroeconomic aggregates found by Ambler et al. (2004).

Second, the overall cross-country co-movement of the medium-term cycles of GDP, credit

and house prices has hardly changed since the 1980s. This seems to indicate that the medium-

term credit and house price cycles depend more on country specificities than on global factors.

4 Results available upon request from the authors.
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Figure 3: Overall synchronicity (θt) and similarity (ζt) measures for the short-term and medium-term
cycles of GDP, house prices and credit, G7 countries and the Netherlands
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The picture is quite different for the short-term cycle of GDP. According to the similarity

and synchronicity measures, the international co-movement of the short-term GDP cycle has

increased since 2000, coinciding with the most recent wave of increased globalization starting in

the mid-1990s with the integration of China in the global economy. Note that we are analyzing

10-year moving averages, so the synchronicity and similarity measures in 2000.I tell us something

about these measures in the period 1990.I–2000.I.

Overall, our findings seem to contradict with previous research that claims that global finan-

cial factors are important drivers of country-specific financial cycles (see e.g. Bruno and Shin,

2015 and Bekaert et al., 2013). We do find evidence for stronger international co-movement of

the short-term cycles of the G7 countries. Admittedly, our sample of countries and time period

are relatively short. We leave it to future research to investigate the international co-movement

of the short-term and medium-term financial cycles in more depth.

4.4 Alternative credit variables

This section presents the outcome of our model when two alternative credit variables are used

instead of our main variable, the volume of domestic bank credit to the private non-financial

sector. The first alternative measure is credit from all sectors to the private non-financial sector.

This credit variable includes cross-border-bank-lending and lending to the private sector by

institutions (e.g. pension funds). The second alternative measure is credit from all sectors

to households and non-profit institutions serving households. This variable excludes credit to
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private non-financial corporations, but includes lending by non-domestic banks and institutions.

Tables of the parameter estimates using these alternative credit variables are shown in Table II

and Table III in Appendix A.5, respectively.

Overall, the model outcomes using the alternative credit variables are in line with the main

results presented in Table I. Minor differences occur mainly in the loading matrices B of the

medium-term cycle. It would be interesting to see how recently proposed indicators of credit-

imbalances, such as leverage and the debt service ratios (see e.g. Juselius and Drehmann, 2015),

would influence the results. However, the length of the available time-series is currently too

short to reliably apply our method.5

4.5 Alternative synchronicity and similarity measures

We conducted two checks to corroborate our results on the synchronicity and similarity measures.

The first check calculates the synchronicity and similarity measures leaving out Germany and

Japan, because these countries have a relatively small duration or amplitude of the medium-

term credit and house price cycles. However, the results are not very sensitive to excluding these

countries. The outcomes are qualitatively the same, as shown in Figure 26 in Appendix A.5.

The second check analyzes whether the synchronicity and similarity measures for the first-

differenced cyclical measures, which we refer to as the ‘swing’-synchronicity and ‘swing’-similarity

(see e.g. Meller and Metiu, 2015), differ from the outcomes described in Section 4.3. The swing

measures indicate the directional change (swing synchronicity) and the absolute value of the size

of the directional change (swing similarity), respectively. The results are shown in Figure 27 in

Appendix A.5. Overall, the results are comparable to the outcome presented in Figure 3. The

main difference is that the swing measures are more compressed. This indicates that the dif-

ferences in the overall swing-synchronicity and swing-similarity between GDP, house prices and

credit are smaller than the differences for the ‘normal’ synchronicity and similarity measures.

5 Conclusion

This paper presents a novel method for extracting the long-term trend, short-term and medium-

term cycles and irregular component from a mixed frequency dataset in a multivariate setting.

The model structure allows us to analyze the concordance of cycles associated with different

variables and countries. The international concordance of the extracted cycles is analyzed using

the synchronicity and similarity measures proposed by Mink et al. (2012).

The main findings of our paper can be summarized as follows. First, the cyclical movement of

credit volumes and house prices are largely driven by the medium-term cycle. Second, for most

countries, the co-movement between the cycles of the financial and macroeconomic variables is

limited to the medium-term. Third, for all countries considered, we find strong concordance

between the medium-term cycles of house prices and GDP. The relation between the medium-

term cycles of GDP and credit is more complex. We find strong concordance between both

cycles in only three countries. However, in three other countries we find indirect concordance,

5 The BIS-database contains time series of the debt service ratios, but these only start in 1999.I.
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i.e. the medium-term cycles of credit and house prices share co-cyclicality, while in turn the

medium-term cycles of house prices and GDP share commonality. This outcome might indicate

that the house price cycle is –at least partly– driven by the credit cycle. Lastly, the cross-country

concordance of both the short-term and medium-term cycles of GDP, house prices and credit

is low. Hence, the bulk of the cyclical movements seems to be driven by domestic rather than

global factors.
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A Appendix

A.1 State space representation unobserved components time series model

The equations of our multivariate UCTSM, eqs. (1)–(5), can be cast in the general state space

form. Below we illustrate the setup for four variables (N = 4). The measurement and transition

equations are defined in eq. (8) and eq. (9), respectively:

yt = Zαt + εt, εt ∼ N(0, H), (8)

αt+1 = Tαt + νt, νt ∼ N(0, Q), (9)

where yt = (y1,t, . . . , yN,t)
′, εt = (ε1,t, . . . , εN,t)

′, and H = diag(σ2ε1 , . . . , σ
2
εN

). The state vector

αt is given by the (6N × 1) vector

αt = (µt, βt, γt, γ
∗
t , ψt, ψ

∗
t )
′,

where µt = (µ1,t, . . . , µN,t)
′ is the long-term trend, βt = (β1,t, . . . , βN,t)

′ is the slope, (γt, γ
∗
t )′ =

(γ1,t, . . . , γN,t, γ
∗
1,t, . . . , γ

∗
N,t)

′ is the short-term cycle, and (ψt, ψ
∗
t )
′ = (ψ1,t, . . . , ψN,t, ψ

∗
1,t, . . . , ψ

∗
N,t)

′

is the medium-term cycle. The measurement-transition Z matrix is given by

Z =
[
IN 0N×N A 0N×N B 0N×N

]
,

with A and B are (N × N) lower triangular matrices with ones on the diagonal. The state-

transition matrix T is given by

T =


IN IN 0N×2N 0N×2N

0N×N IN 0N×2N 0N×2N

02N×N 02N×N S 02N×2N

02N×N 02N×N 02N×2N L

 ,

with S and L are (2N × 2N) matrices defined as follow

S = φγ

[
cosλγIN sinλγIN

− sinλγIN cosλγIN

]
, L = φψ

[
cosλψIN sinλψIN

− sinλψIN cosλψIN

]
.

The state-disturbance vector νt is given by

νt =



0N×1

ζt

κt

κ∗t

ωt

ω∗t


,

where ζt = (ζ1,t, . . . , ζN,t)
′ are the slope-disturbances, (κt, κ

∗
t )
′ = (κ1,t, . . . , κN,t, κ

∗
1,t, . . . , κ

∗
N,t, )

′

are the short-term cycle disturbances, and (ωt, ω
∗
t )
′ = (ω1,t, . . . , ωN,t, ω

∗
1,t, . . . , ω

∗
N,t, )

′ are the
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medium-term cycle disturbances.

Lastly, the (6N × 6N) disturbance matrix Q in the transition equation is defined as:

Q = diag
[
0N×N Σζ I2 ⊗ Σκ I2 ⊗ Σω

]
,

where Σζ is the variance matrix of the slope-disturbances, Σκ is the variance matrix of the short-

term cycle disturbances, and Σω is the variance matrix of the medium-term cycle disturbances.

In the paper Σζ is restricted to be diagonal, i.e. Σζ = diag(σ2ζ1 , . . . , σ
2
ζN

)′ and that the signal-

to-noise ratio (σ2ζi/σ
2
εi) is fixed to a certain number for each i = 1, . . . , N .
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A.2 Figures raw data

Figure 4: GDP, house prices, credit and industrial production in the United Kingdom. All series are
deflated, seasonally adjusted and in logs.
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Figure 5: GDP, house prices, credit and industrial production in Japan. All series are deflated, seasonally
adjusted and in logs.
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Figure 6: GDP, house prices, credit and industrial production in Canada. All series are deflated, season-
ally adjusted and in logs.
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Figure 7: GDP, house prices, credit and industrial production in Germany. All series are deflated,
seasonally adjusted and in logs.
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Figure 8: GDP, house prices, credit and industrial production in France. All series are deflated, seasonally
adjusted and in logs.
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Figure 9: GDP, house prices, credit and industrial production in Italy. All series are deflated, seasonally
adjusted and in logs.
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Figure 10: GDP, house prices, credit and industrial production in the Netherlands. All series are deflated,
seasonally adjusted and in logs.
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A.3 Spectral densities

Figure 11: Spectral densities United Kingdom for GDP, house prices, credit and industrial production.
All series are deflated, seasonally adjusted and in log-differences.

GDP 

0.00 0.25 0.50 0.75 1.00

0.2

0.4

0.6 GDP House Price 

0.00 0.25 0.50 0.75 1.00

0.5

1.0

House Price 

Credit Volume 

0.00 0.25 0.50 0.75 1.00

0.5

1.0

1.5
Credit Volume Industrial Production 

0.00 0.25 0.50 0.75 1.00

0.1

0.2

0.3

0.4 Industrial Production 

Figure 12: Spectral densities Japan for GDP, house prices, credit and industrial production. All series
are deflated, seasonally adjusted and in log-differences.
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Figure 13: Spectral densities Canada for GDP, house prices, credit and industrial production. All series
are deflated, seasonally adjusted and in log-differences.
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Figure 14: Spectral densities Germany for GDP, house prices, credit and industrial production. All series
are deflated, seasonally adjusted and in log-differences
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Figure 15: Spectral densities France for GDP, house prices, credit and industrial production. All series
are deflated, seasonally adjusted and in log-differences
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Figure 16: Spectral densities Italy for GDP, house prices, credit and industrial production. All series are
deflated, seasonally adjusted and in log-differences
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Figure 17: Spectral densities the Netherlands for GDP, house prices, credit and industrial production.
All series are deflated, seasonally adjusted and in log-differences
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A.4 Figures on UCTSM decomposition

Figure 18: Time series United States with trend (µt), short-term cycle (γt) and medium-term cycle (ψt)
components in GDP, house prices, credit and industrial production. All series are deflated, seasonally
adjusted and in logs.
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The figure presents the fit (smoothed estimates) of the model estimated in Table I for the United States. The

top row shows the raw data (blue line) and trend (µt, red line) for GDP, house prices, credit and industrial

production. The middle row presents the short-term cycle (γt) of the four series considered. The bottom row

presents the medium-term cycle (ψt) of the four series considered.
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Figure 19: Time series United Kingdom with trend (µt), short-term cycle (γt) and medium-term cycle (ψt) com-
ponents in GDP, house prices, credit and industrial production. All series are deflated, seasonally adjusted and in
logs.
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See notes on Figure 18.
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Figure 20: Time series Japan with trend (µt), short-term cycle (γt) and medium-term cycle (ψt) components in
GDP, house prices, credit and industrial production. All series are deflated, seasonally adjusted and in logs.
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Figure 21: Time series Canada with trend (µt), short-term cycle (γt) and medium-term cycle (ψt) components in
GDP, house prices, credit and industrial production. All series are deflated, seasonally adjusted and in logs.
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Figure 22: Time series Germany with trend (µt), short-term cycle (γt) and medium-term cycle (ψt) components in
GDP, house prices, credit and industrial production. All series are deflated, seasonally adjusted and in logs.
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Figure 23: Time series France with trend (µt), short-term cycle (γt) and medium-term cycle (ψt) components in
GDP, house prices, credit and industrial production. All series are deflated and in logs.
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Figure 24: Time series Italy with trend (µt), short-term cycle (γt) and medium-term cycle (ψt) components in GDP,
house prices, credit and industrial production. All series are deflated, seasonally adjusted and in logs.

GDP µt 

1980 2000

13.75

14.25
GDP µt House Price 

1980 2000

4.00

4.25

4.50

4.75
House Price Credit Volume 

1980 2000

6.0

6.5

7.0

7.5
Credit Volume 

Industrial Production 

1980 2000

4.25

4.50

4.75

Industrial Production 

γt 

1980 2000

-0.025

0.000

0.025

0.050
γt 

1980 2000

-0.1

0.0

0.1

1980 2000

-0.01

0.00

0.01

1980 2000
-0.1

0.0

0.1

ψt 

1980 2000
-0.01

0.00

0.01
ψt 

1980 2000
-0.2

0.0

0.2

1980 2000

-0.1

0.0

0.1

0.2

1980 2000

-0.025

0.000

0.025

0.050

See notes on Figure 18.

35



Figure 25: Time series the Netherlands with trend (µt), short-term cycle (γt) and medium-term cycle (ψt) compo-
nents in GDP, house prices, credit volume and industrial production. All series are deflated, seasonally adjusted
and in logs.
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A.5 Alternative measures of concordance and credit variables

Figure 26: Overall synchronicity (θ) and similarity (ζ) measures for the short-term and medium-term
GDP, house price and credit cycle, G7 countries and the Netherlands excluding Germany and Japan
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Figure 27: Overall swing synchronicity (θ) and swing similarity (ζ) measures for the short-term and
medium-term GDP, house price and credit cycle, G7 countries and the Netherlands
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