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Abstract:

Pension funds face macro-longevity risk or uncertainty about future mortality rates. We an-

alyze macro-longevity risk sharing between cohorts in a pension fund as a risk management

tool. We show that both the optimal risk-sharing rule and the welfare gains from risk sharing

depend on the retirement age policy. Welfare gains from sharing macro-longevity risk mea-

sured on a 10-year horizon in case of a fixed retirement age are between 0.2 and 0.3 percent

of certainty equivalent consumption after retirement. Cohorts experience a similar impact of

macro-longevity risk on post retirement consumption and it is not optimal for young cohorts

to absorb risk of older cohorts. However, in case the retirement age is fully linked to changes

in life expectancy, the welfare gains are substantially higher. The risk bearing capacity of

workers is larger when they use their labor supply as a hedge against macro-longevity risk.

As a result, workers absorb risk from retirees in the optimal risk-sharing rule, thereby increas-

ing the welfare gain up to 2.7 percent.
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1 Introduction

Macro-longevity risk is the uncertainty about future mortality rates. Mortality rates may, e.g.,

decrease as a consequence of medical improvements, or may increase because of new diseases.

Macro-longevity risk is a systematic risk. It affects the entire population. Macro-longevity

risk does not decrease by sharing it within a pool of participants of the same cohort. Nonethe-

less, sharing macro-longevity risk with other cohorts can be beneficial if cohorts are differently

affected by macro-longevity risk. Macro-longevity risk differs from micro-longevity risk or the

individual uncertainty about the time of death. Micro-longevity risk is an idiosyncratic risk

that can be fully diversified by pooling enough participants in a pension fund.

Macro-longevity risk can have a significant impact on pension benefits. The impact depends

on the configuration. In a defined benefit (DB) pension scheme macro-longevity risk increases

the uncertainty in the funding ratio. The risk is, e.g., borne by the employer and employees

that contribute to the pension scheme. In a defined contribution (DC) pension scheme with

a fixed annuity pension benefits are guaranteed after retirement and macro-longevity risk is

borne by the pension provider, for example the shareholders of an insurance company. In a DC

pension scheme with a variable annuity pension benefits can be adjusted to changes in future

mortality rates. As a consequence, the participants bear macro-longevity risk. Retirees are

especially vulnerable to macro-longevity risk because they cannot compensate lower pension

benefits by working longer or saving more. However, also future pension benefits of employees

may be negatively affected if mortality decreases. Either their benefits are reduced or their

contributions are increased to finance a decrease in mortality rates. Hence, macro-longevity

risk affects both retirees and employees. However, it does not affect all cohorts in the same

way. Medical progress or diseases may affect cohorts in a different way. Furthermore, workers

have more risk-absorbing capacity compared to retirees. They can adjust their labor supply.

These differences create a clear case for risk sharing. This is strengthened by the fact that

the market for macro-longevity risk is close to absent.

The economic problem central to this paper is optimal risk sharing between cohorts in a

pension fund. Collective risk sharing is a risk management method that allocates risks to

cohorts. We maximize aggregate expected utility of all generations in the situation where a

social planner is present. In this way we find the Pareto-efficient risk-sharing rule and calcu-

late the welfare gain of the Pareto improvement. All participants experience the same welfare

gain since we use a utility-based fairness criteria. We find that the design of the retirement

age policy has a large impact on the optimal risk-sharing rule and size of the welfare gains. If

the retirement age is fixed, the welfare gains from sharing macro-longevity risk measured on
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a 10-year horizon are between 0.2 and 0.3 percent of certainty equivalent consumption after

retirement. In this case, the impact of macro-longevity risk on consumption after retirement

is more or less equal for different cohorts. Young cohorts do not absorb macro-longevity risk

of other cohorts. As a result, the welfare gains from sharing macro-longevity risk are limited.

However, if the retirement age is linked to life expectancy, the welfare gains from sharing

macro-longevity risk are substantially higher up to 2.7 percent. The risk bearing capacity of

workers is larger, because they can use their labor supply as a hedge against macro-longevity

risk. As a result, workers absorb risk from retirees. After all, the human capital of workers

increases if they work longer.

This paper contributes to the literature on macro-longevity risk. We approach this actu-

arial topic from an economic perspective. It is to the best of our knowledge the first paper

to optimize the risk-sharing rule of macro-longevity risk based on welfare analyses. Related

works are De Waegenaere et al. (2017) and De Waegenaere et al. (2018). These papers inves-

tigate ad hoc risk-sharing rules for micro- and macro-longevity risk. Other related studies

(for example Piggott et al. (2005), Qiao and Sherris (2013) and Boon et al. (2017)) consider

group self-annuitisation schemes (GSAs). In these schemes both micro- and macro-longevity

risk are shared uniformly among all participants in the pool. Moreover, we are the first to

investigate the impact of different retirement age policies when sharing macro-longevity risk.

Investigating different retirement age policies is relevant as several countries have linked the

retirement age to life expectancy. Stevens (2017) investigates the impact of different retire-

ment age policies on the individual retirement age, expected remaining lifetime at retirement

and value of pension benefits but does not consider collective risk sharing.

Insurance is an alternative way to manage macro-longevity risk. Insurance is a risk manage-

ment method in which a third party guarantees to compensate specified losses in return for a

levy. For example, macro-longevity risk can be transferred to financial markets via financial

products, bought by for example investors. This is called securitization (Cairns et al. (2006a),

Blake et al. (2006a), Ngai and Sherris (2011), Hunt and Blake (2015)). Securitization can be

welfare improving because it achieves a more efficient risk allocation by distributing the risk

among market participants who can better bear the risk. Moreover, literature suggests that

governments can establish solutions to manage macro-longevity risk by issuing longevity bonds

(Brown and Orszag (2006), Blake et al. (2014)). In practice, the amount of financial products

that transfer macro-longevity risk is small (Basel Committee on Banking Supervision (2013))

and insurance companies and governments are reluctant to underwrite macro-longevity risk.

There are several reasons for the lack of a well-functioning market. Blake et al. (2006b) divide

these reasons into design issues, pricing issues and institutional issues. Finally, buy-outs and

buy-ins insure macro-longevity risk (Lin et al. (2015)). A disadvantage of pension buy-outs

and buy-ins is that they are expensive. Natural hedging is a third way to manage macro-
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longevity risk (Cox and Lin (2007)). Macro-longevity risk in annuity policies can be hedged

with mortality risk in life insurance policies.1 Participants living longer than expected have

a negative impact on annuity policies but a positive impact on life insurance products since

less participants die at a young age. However, mortality risk only provides a partial hedge to

longevity risk due to the different nature of both risks and the different age groups. More-

over, the mortality risk market is more than five times smaller than the longevity risk market

(EIOPA (2011)).

The remainder of this paper is organized as follows. Section 2 describes the modeling of

macro-longevity risk. Section 3 explains the concept of collective risk sharing. Section 4 de-

scribes the different retirement age policies. Section 5 presents the results. Section 6 concludes

and gives a policy evaluation.

2 Macro-longevity risk

We consider three sources of macro-longevity risk. These are visualized in Figure 1. The first

source is stochastic variation. This is the random variation in the aggregate realized number

of deaths. A stochastic mortality model captures stochastic variation.2 The second source is

parameter risk. It is the uncertainty about the true value of the parameters of the stochastic

model. The third source is model risk. This is the uncertainty about the appropriateness of

the mortality model. For instance, model risk can occur due to structural breaks that are not

captured by the model. Medical innovations or a rapid increase of obesity can cause these

structural breaks. All three sources of uncertainty can lead to mis-estimation of mortality

rates. A stochastic mortality model only takes into account stochastic variation while ignor-

ing the other sources of risk. Ideally, one wants to model macro-longevity risk including all

these sources of risk.

In this paper the main source of macro-longevity risk is stochastic variation. However, we also

consider a type of parameter risk. This will be discussed in more detail in Subsection 2.2. In

a sensitivity analysis in Subsection 5.1.3 we address model risk by considering an alternative

model for macro-longevity risk.

We employ the widely used Lee and Carter (1992) model which is a stochastic mortality

model that allows for stochastic variation in death rates. It is fitted to historical data to

forecast death rates and to quantify macro-longevity risk. Cairns et al. (2011) discuss the

suitability of six stochastic mortality models for forecasting mortality and conclude that the

Lee-Carter model is both reasonably robust relative to historical data and produces plausible

1 In this context mortality risk is the risk that people live shorter than expected.
2 Stochastic variation in death rates of individuals within cohorts, i.e. individual uncertainty about the time of

death, is excluded. We assume that cohorts are large enough so that micro-longevity risk is fully diversified.
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Figure 1: Sources of macro-longevity risk.

forecasts.3 Several academics use the Lee-Carter model to model macro-longevity risk, for ex-

ample Hari et al. (2008), Cocco and Gomes (2012), Stevens (2017) and De Waegenaere et al.

(2017). Moreover, the model is the basis of several mortality table forecasts in practice.4

We discuss the Lee-Carter model in Subsection 2.1 and elaborate on macro-longevity risk in

the Lee-Carter model in Subsection 2.2. In Subsection 4 we discuss different retirement age

policies.

2.1 Lee-Carter model

The central death rate µx,t for a cohort of age x in year t equals

µx,t =
Dx,t

Ex,t
, (1)

where Dx,t is the number of deaths in year t among the people in the cohort of age x and Ex,t

is the number of people in the cohort of age x in year t.

The Lee-Carter model estimates the log central death rates with the following expression5

ln(µx,t) = αx + βxκt + εx,t, (2)

where αx is an age-specific constant, κt is a time trend and βx represents the sensitivity of the

log central death rates to the time trend. The time trend reflects the development of death

rates over time. This trend is generally downward implying an increasing life expectancy over

3 Alternative stochastic mortality models are for example the model of Renshaw and Haberman (2006) that

is an extension of the Lee-Carter model including a cohort effect and the two-factor model of Cairns et al.

(2006b).
4 For example the U.S. Census Bureau and the U.S. Social Security Administration. The Actuarial Society

in the Netherlands (‘Koninklijk Actuarieel Genootschap’) uses an alternative specification of this model.
5 The logarithm of µx,t ensures that death rates cannot be negative. However, death rates can exceed unity

but this is not a problem in practice. This can be avoided by modeling ln(µx,t/(1 − µx,t)), but in that case

a linear trend in k does not imply a constant geometric rate of decline for each age-specific death rate (Lee

(2000)).
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time. The error term εx,t is normally distributed with mean zero and age-dependent variance

σ2ε,x.

The Lee Carter model assumes that the central death rates are constant during a year, i.e.

µx+s,t+s = µx,t(0 ≤ s ≤ 1). Therefore, we can approximate the one-year death probability qx,t

in the following way

qx,t ≈ 1 − exp(−µx,t). (3)

The one-year death probability is the probability that an individual of age x and alive at the

beginning of year t dies before year t + 1. The one-year survival probability px,t equals

px,t = 1 − qx,t ≈ exp(−µx,t). (4)

One-year survival probabilities can be used to calculate the probability that an individual of

age x in year t is still alive after i years. This is called the cumulative survival probability cptx,i

cptx,i =
i−1
∏
j=0

px+j,t+j . (5)

The Lee-Carter model forecasts survival probabilities by estimating the time trend κt in (2)

with a standard univariate time series model. Lee and Carter (1992) conclude after testing

several ARIMA specifications that the ARIMA(0,1,0) model, a random walk with drift, is

most appropriate to fit the data. This model equals

κt = c + κt−1 + ηt, (6)

where c is the drift and ηt is the error term that is normally distributed with mean zero and

variance σ2η. The Lee-Carter model assumes that the error terms εx,t in (2) and ηt in (6) are

independent. This independency implies that for each cohort mortality develops at an own

age-specific exponential rate.

Calibration of the Lee-Carter model

In this paper we use mortality data of Dutch females from 1985 until 2014 from the Human

Mortality Database to calibrate the parameters of the Lee-Carter model.6,7 The central death

rates µx,t are calculated using the number of deaths Dx,t and number of people Ex,t as in (1).

For very high ages no death rates are available in the database. When excluding the death

rates beyond the age of 90 the expected remaining lifetime will be underestimated. We apply

6 Human Mortality Database (HMD). University of California, Berkeley (USA), and Max Planck Institute for

Demographic Research (Germany): http://www.mortality.org/.
7 A calibration period of 30 years is conventional. For statistical reliability, one would prefer a longer calibra-

tion period (HMD). However, a shorter calibration period leads to a better estimate of the current trend in

mortality improvements.
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the method of Kannisto (1994) to extrapolate the central death rates for ages x ∈ {91, ...,110}
using the death rates of younger cohorts. This method uses a logistic regression based on µx,t

for ages x ∈ {80,81, ...,90}. Death rates above age x = 110 are assumed to be equal to the

death rates at age x = 110.

We estimate parameters αx, βx and κt in (2) using a singular value decomposition. How-

ever, this method does not produce uniquely identified parameters. Therefore, we impose

restrictions to identify the model. We use the standard identification choice of Lee and Carter

(1992) that imposes the following constraints

110

∑
x=0

βx = 1

2014

∑
t=1985

κt = 0.

The age-specific constant αx is the average log central death rate of cohort of age x over time,

i.e. αx = 1
30

2014

∑
t=1985

ln(µx,t). Subsequently the drift c and variance σ2η in (6) are estimated using

the κt’s.

Figure 2 displays the estimates of the three key parameters in the Lee-Carter model in (2)

using mortality data of Dutch females from 1985 until 2014. The top graph shows that the

age-specific constant increases with age x. This implies higher death rates at higher ages.

This is intuitive as older people have a higher change of dying. The middle graph shows that

the sensitivity of death rates to the time trend in general decreases with age but in a non-

monotonic way. A decreasing sensitivity implies that death rates for high ages are less effected

by the time trend compared to death rates for young ages. The bottom graph shows that

the time trend kt decreases over time. This implies that death rates decrease over time. It

is result of for example medical innovations and better nutrition. The estimated drift equals

ĉ = −1.3. Each year the time trend κt decreases with 1.3 in expectation. The graph also

contains the expected future time trend including the 90% confidence interval that is a result

of the stochastic variation in the time trend.
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Figure 2: Parameter estimates of the Lee-Carter model using mortality data of Dutch females

from 1985 until 2014. The top graph shows the age-specific constant αx, the middle graph

shows the sensitivity of death rates to the time trend βx and the bottom graph shows the

time trend κt. The bottom graph also contains the expected future time trend including a

90% confidence interval.

2.2 Macro-longevity risk in Lee-Carter model

As already mentioned at the start of Section 2 the main source of macro-longevity risk in this

paper is stochastic variation. Macro-longevity risk in the Lee-Carter model arises from two

random variables:

• Uncertainty in time trend : random shock ηt in the time trend κt in (6). It reflects the

uncertainty in the time trend, i.e. development of death rates over time. The impact of

this shock on future death rates depends on the size of ση and βx.

• Uncertainty in death rates: random shock εx,t in the log central death rate µx,t in (2).

It reflects particular age-specific historical influences not captured by the model. The

impact of this shock on future death rates depends on the size of σε,x.

We model the first source of macro-longevity risk, stochastic variation, as the aggregate effect

of those two random variables. We assume that ηt and εx,t are independent and normally dis-
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tributed. The sum of two independent normal random variables is again normally distributed

ηt ∼ N(0, σ2η)

εx,t ∼ N(0, σ2ε,x)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⇒ βxηt + εx,t ∼ N(0, β2xσ2η + σ2ε,x). (7)

The trend risk ηt is multiplied with the sensitivity of to the time trend βx because the sensi-

tivity parameter βx determines the impact of the time trend on death rates. Macro-longevity

risk has zero mean because it is the risk that future mortality rates deviate from the best

estimate mortality rates.

In this research we do not consider yearly macro-longevity shocks but consider macro-longevity

risk on a 10-year horizon because a pension contract has a long horizon and we want to focus

on structural changes in life expectancy only. We determine macro-longevity shocks on a

10-year horizon by summing up the independent normal random variables in (7) over 10 years

9

∑
i=0

(βx+iηt+i + εx+i,t+i) ∼ N (0, σ2η

9

∑
i=0
β2x+i +

9

∑
i=0
σ2ε,x+i) . (8)

The second source of risk is parameter risk. We calibrate the parameters in the mortality

model using mortality data. When more recent mortality data are available we can recal-

ibrate the parameters. Recalibration changes the parameter estimates (Cairns (2013)). In

this paper we include recalibration risk. We use the realized death rates µx,t including the

trend shocks ηt and estimation shocks εx,t to recalibrate the parameters in (2) and (6). Sub-

sequently, we use these recalibrated parameters to forecast future death rates. By considering

recalibration risk we include the influence of parameter risk.8

The third source of macro-longevity risk is model risk. We initially exclude model risk in

our analysis and address this separately in Subsection 5.1.3.

Figure 3 visualizes the impact of macro-longevity risk measured on a 10-year horizon in the

Lee-Carter model on the expected remaining lifetime (top graphs) and the value of a (deferred)

variable annuity (bottom graphs) by displaying different percentiles of the distribution.9 Be-

sides the absolute impact on the expected remaining lifetime and the value of a (deferred)

annuity (lefthand graphs), it is also interesting to look at the relative change of these vari-

ables (righthand graphs). We assume that the interest rate - used to determine the value of a

(deferred) annuity - equals r = 2% and the retirement age equals R = 67. One can also make

the retirement age contingent on life expectancy which is the case in several countries. This

will be discussed in the next section.

8 A more formal way to include parameter risk is to use standard Bayesian methods (Cairns et al. (2006b)).
9 Negative (positive) macro-longevity shocks, i.e. negative (positive) random shocks in log central death rates,

have a positive (negative) impact on life expectancy and annuity values. To avoid confusion we denote

negative (positive) macro-longevity shocks by unexpected increases (decreases) in life expectancy.
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Figure 3: Impact of macro-longevity risk measured on a 10-year horizon in the Lee-Carter

model on the expected remaining lifetime and the value of a (deferred) variable annuity for

a Dutch female in 2014 in absolute terms (lefthand graphs) and relative change (righthand

graphs) assuming a constant interest rate r = 2% and fixed retirement age R = 67.

The top lefthand graph shows that the expected remaining lifetime decreases with age. E.g.

at age 25 it is 64 years and 11 years at age 80. This decrease is intuitive as older people

have a higher chance of dying. Moreover, we notice that the impact of macro-longevity risk

also decreases with age. E.g. the difference between the 5th and 95th percentile at age 25

is 21 years and 6 years at age 80. There are two reasons for this decreasing impact. First,

a longevity shock has an impact on all future death probabilities. The expected remaining

lifetime of young cohorts depends on more future death probabilities compared to the ex-

pected remaining lifetime of old cohorts. Second, the impact of both trend and estimation

risk decreases with age. The sensitivity of the death rates βx decreases with age implying

a decreasing impact of the trend risk. The variance of the estimation risk σ2ε,x generally de-

creases with age as there is less uncertainty at higher death rates. This implies a decreasing

impact of estimation risk.

The value of a deferred annuity (bottom lefthand graph) increases before retirement because

of two reasons:

• The probability that a participant reaches the retirement age increases with age.

• The value of a deferred annuity is lower for young cohorts compared to cohorts just
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before retirement because of a larger discounting effect.

The relative change of the value of a (deferred) annuity as a result of a macro-longevity shock is

in the same order of magnitude for all age cohorts. Later in this paper we will see that this ex-

plains the small welfare gains in case of collective risk sharing when the retirement age is fixed.

Another important observation in Figure 3 is that the impact of macro-longevity risk on

the expected remaining lifetime and (deferred) annuity value is asymmetric. Unexpected in-

creases in life expectancy have a smaller impact than unexpected decreases in life expectancy.

This can be explained by the exponential distribution of death rates. A consequence of this

asymmetry is that the expectations of future survival probabilities and therefore also the ex-

pected remaining lifetime and expected (deferred) annuity value are smaller than its forecasted

values. We present a derivation in Appendix A.1.

3 Sharing macro-longevity risk

The previous section discusses the modelling of macro-longevity risk. In this section we con-

sider the concept of collective risk sharing. Pension providers can create an internal market

for macro-longevity risk. We refer to this as collective risk sharing. Collective risk sharing

can be welfare enhancing because the risk is not traded on a liquid market and cohorts are

affected differently by the risk.10

We discuss the concept of collective risk sharing in Subsection 3.1. We use a stylized two-

agent model in Subsection 3.2, related to Gollier (2008), in which risk-sharing solutions can

be derived analytically and which gives economic intuition. Subsequently, we present a full

model that consists of many generations representing the population of a pension fund. In

this model risk-sharing solutions cannot be derived analytically anymore.

3.1 Pareto-efficient risk sharing

We investigate collective risk sharing under the notion of Pareto efficiency. Pareto efficiency

means that the utility of no agent can be improved without hurting the utility of any other

agent. The literature describes two ways to evaluate Pareto-efficient risk sharing: using a

social planer or looking for an equilibrium. In this paper we make use of a social planner

who maximizes total welfare of all agents and thereto reallocates risk across agents. This

method is used by, e.g., Gordon and Varian (1988), Gollier (2008), Cui et al. (2011) and

Bovenberg and Mehlkopf (2014). We determine the Pareto-efficient risk-sharing rule and cal-

culate the welfare gain of the Pareto improvement by maximizing the aggregate expected

10 Collective risk sharing can also be welfare enhancing if the risk is traded with future cohorts. In this paper

we abstract from this dimension.
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utility of all generations. We use a utility-based fairness criteria that yields a unique risk-

sharing solution within the set of Pareto-efficient solutions. It requires that all participants

experience the same welfare gain from risk sharing. An alternative way to achieve Pareto-

efficient risk-sharing is by looking for an equilibrium. In this approach the agents can trade in a

fictitious market. This method is used by, e.g., Krueger and Kubler (2006), Ball and Mankiw

(2007) and Gottardi and Kubler (2011). Collective risk sharing can be Pareto improving if

the risk is not traded on a liquid market. Pareto-efficient risk-sharing is often applied in the

context of pension scheme design and intergenerational risk sharing. Intergenerational risk

sharing is welfare improving since there is no market for risk sharing with future generations.

We focus on macro-longevity risk which is not traded on a liquid market.

3.2 Benefits of collective risk sharing: stylized two-agent model

We determine the welfare gains from ex-ante Pareto-efficient risk-sharing solutions. To un-

derstand how collective risk sharing can lead to welfare gains we first consider an overlapping-

generations model (OLG) consisting of two agents and two periods that we solve analytically.

This stylized modeling framework is an adjusted version of the two-agent model of Gollier

(2008). The difference is the nature of the risk. The total exposure to macro-longevity risk

in our model is exogenous for a pension fund while investment risk in the model of Gollier

(2008) is endogenous because an investor can choose the equity exposure.

Figure 4 visualizes our model featuring two agents. Agent 1 consumes in period 1 and

Period 1 Period 2

β1ỹ: risk

C1: consumption agent 1

β2ỹ: risk

C2: consumption agent 2

Figure 4: Stylized model in autarky.

agent 2 in period 2. Both agents are exposed to the same exogenous risk factor ỹ with mean

zero and variance σ2. Risk ỹ represents the unexpected component of a macro-longevity shock

that affects both agents but in different ways. The variables β1 and β2 determine the exposure

of each agent to ỹ. We first consider consumption in autarky, i.e. without risk sharing. In

autarky consumption consists of initial wealth and the exposure to the exogenous risk

Ca1 =W1 + β1ỹ (9)

Ca2 =W2 + β2ỹ.
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The agents have identical preferences given by the following power utility function with risk

aversion γ11

U(Ci) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

C1−γ
i

1 − γ
if γ ≠ 1

ln(Ci) if γ = 1.

(10)

Risk sharing implies a (partial) transfer of the risk t(ỹ) from agent 1 to agent 2 or vice versa.

We restrict ourselves to the following linear risk-sharing rules

t(ỹ) = t0 + ηỹ, (11)

where the risk transfer η is the amount of the risk that agent 1 transfers to agent 2 and t0

is a constant risk compensation that agent 1 pays up in front to agent 2 or vice versa.12 In

the rest of this paper we use the term risk-sharing rule to refer to t(ỹ) and risk transfer rule

to refer to η. The model does not allow non-linear functions such as put options. The model

imposes that the risk transfer fraction η is the same for negative and positive macro-longevity

shocks. In case agent 2 transfers risk to agent 1 η is negative. The risk transfer should satisfy

−β2 ≤ η ≤ β1 as agents cannot transfer more than the entire risk. Consumption in case of risk

sharing equals

Cs1 =W1 + β1ỹ − t(ỹ) (12)

Cs2 =W2 + β2ỹ + t(ỹ).

How much risk η should agent 1 optimally transfer to agent 2 and at what price? We solve this

using a welfare analysis. A common measure of welfare is certainty equivalent consumption.13

Risk sharing is Pareto improving if the welfare of at least one agent improves and all other

agents do not become worse off. We derive the optimal risk-sharing solution by maximizing

the expected utility of agent 1 under the condition that the expected utility of agent 2 does

not decrease, or formally

max
η,t0

E[U(Cs1)] such that E[U(Cs2)] ≥ E[U(Ca2 )]. (13)

This yields the following optimal risk transfer η∗ as shown in Appendix A.2

η∗ = β1W2 − β2W1

W1 +W2
. (14)

11 We justify the assumption that agents have the same risk aversion γ because collective risk sharing within

a pension fund often occurs within a group of participants with similar characteristics such as education,

salary, etc.
12 Similar to Gollier (2008). In a linear risk-sharing rule the risk compensation t0 can be interpreted as a risk

premium for absorbing risk. One could also consider non-linear risk-sharing rules. However, these are more

difficult to interpret.
13 The certainty equivalent consumption is equal to the constant certain consumption level that yields the same

ex-ante utility at retirement as the stochastic consumption.
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The risk transfer η∗ increases linear in β1 and decreases linear in β2.
14 In case β1W2 = β2W1,

risk sharing is not welfare improving. We apply Arrow-Pratt approximations to find η∗. This

solution can slightly deviate from the true optimal solution because of the remainder term

in the Taylor series. We do not matter too much about this inaccuracy because we use the

two-agent model to derive an analytical framework and get intuition but not for numerical

precision.

The optimal risk transfer η∗ can also be derived via alternative maximizations. One can

also maximize aggregate equivalent variation or aggregate expected utility. These derivations

are also presented in Appendix A.2.

The maximization does not deliver a unique solution for the risk compensation t0. The

risk compensation determines how the welfare gain from risk sharing is distributed among the

agents. There is a range of values for t0 that yield a Pareto improvement. However, not every

value for t0 yields a Pareto improvement. Requiring the risk-sharing solution to be Pareto

improving in comparison to autarky ensures that the welfare gain can be fully attributed to

gains from risk sharing and is not a result from ex-ante redistribution between agents. Under

the condition that the risk-sharing solution is Pareto improving the risk compensation should

lie between the following lower and upper bound

1

2

γ

W1
σ2η∗(2β1 − η∗) ≤ t0 ≤

1

2

γ

W2
σ2η∗(2β2 + η∗), (15)

that is shown in Appendix A.3. If t0 = 1
2
γ
W1
σ2η∗(2β1 − η∗), the full welfare gain from risk

sharing goes to agent 1 and if t0 = 1
2
γ
W2
σ2η∗(2β2 + η∗), the full welfare gain from risk sharing

goes to agent 2. There exist different fairness criteria that yield a unique risk-sharing solution

within the set of Pareto-efficient solutions. We use a utility-based fairness criterion (compa-

rable to Gollier (2008) and Bovenberg and Mehlkopf (2014))) which requires that all agents

experience the same increase in certainty equivalent consumption as a result of risk sharing

relative to autarky. Under the utility-based fairness criterion t0 equals

t0 =
1

4
γσ2η∗( 1

W1
(2β1 − η∗) +

1

W2
(2β2 + η∗)). (16)

The derivation is in Appendix A.3.

An alternative fairness criterion is financial fairness which sets ex-ante market values of risk

transfers between agents to zero (e.g. Teulings and De Vries (2006), Bovenberg and Mehlkopf

(2014) and Bao et al. (2017)). This criterion implies t0.

14 This linearity results from the Arrow-Pratt approximations and because we assume a linear risk-sharing

rules (11).

13



Numerical example

Suppose agent 1 is a retiree and agent 2 is a worker. Initial wealth of agent 1 equals W1 = 2,

the exposure of agent 1 to the risk is β1 = 1, initial wealth of agent 2 equals W2 = 4 and the

exposure of agent 2 to the risk is β2 = 0.5. The exposure to risk of agent 1 is thus higher

than the exposure of agent 2. This exogenous risk ỹ has mean µ = 0 and variance σ = 0.3. We

assume that all agents have identical preferences given by the power utility function with risk

aversion γ = 5. The welfare gain from risk sharing depends on the risk transfer η. Figure 5

(lefthand figure) visualizes this.
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Figure 5: Welfare gain in terms of relative increase in aggregate certainty equivalent con-

sumption (lefthand figure) and welfare gain in terms of absolute increase individual certainty

equivalent consumption (righthand figure).

Maximizing (13) yields the optimal risk transfer η∗ = 0.5. This risk transfer is only Pareto

improving if at least one agent benefits from risk sharing and the other agent does not become

worse off. This requires that the risk compensation, that is paid by agent 1 to agent 2, should

satisfy 0.04 ≤ t0 ≤ 0.1. Figure 5 (righthand graph) visualizes the individual welfare gain for

both agents, in terms of increase in individual certainty equivalent consumption. In case

t0 = 0.07 both agents benefit equally from risk sharing in terms of the increase in certainty

equivalent consumption as in (16).

3.3 Collective risk sharing of macro-longevity risk: full model

We extend the stylized two-agent model of Subsection 3.3 to a full model with many cohorts

representing the population of a pension fund. In the full model macro-longevity risk impacts

survival probabilities and therefore also retirement consumption in a non-linear way based on

the Lee-Carter model.

The full model is an OLG model consisting of N = 70 cohorts. Cohort 1 is aged 25 and
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cohort 70 is aged 94.15 We base the number of participants ni in cohort i on the cumulative

probability that a participant is still alive at age i + 24. So old cohorts consist of less partici-

pants compared to young cohorts. The lefthand graph in Figure 6 visualizes this population

composition. Participants have identical preferences given by a power utility function with

risk aversion γ = 5. The total wealth Wi of a participant in cohort i depends on his or her age.

The righthand graph in Figure 6 visualizes the development of wealth over the life-cycle of a

participant. Wealth increases during the working period as the participant contributes to the

pension fund. Wealth at the start of the working period is positive because wealth consists

of financial wealth and human wealth (i.e. future pension contributions).16 Furthermore, we

initially assume that the participants retire at age R = 67, the interest rate - used to determine

the value a (deferred) annuity - equals r = 2%.
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Figure 6: Population composition (lefthand graph) and development of wealth over the

life-cycle of a participant (righthand graph).

We consider a DC pension scheme. Consumption after retirement depends on the value of

an annuity. We assume that the participant buys a variable annuity which value varies with

future survival probabilities.17 If for example life expectancy increases the annuity value

increases. This has a negative effect on consumption after retirement and implies that macro-

longevity risk is borne by the participant. The value of a (deferred) variable annuity atx, that

pays 1 dollar annually during retirement, for an individual of age x in year t is calculated as

follows

atx =
M

∑
j=max (x,R)

1

(1 + r)j−x
cptx,j−x. (17)

15 We exclude cohorts older than age 94 because the number of participants in these cohorts is very small and

therefore do not influence the results significantly.
16 Human wealth is equal to the present value of future pension contributions and not the present value of

future labor income because the pension contributions are fixed in our model.
17 Variable annuities can also vary with realized investment returns. Because we exclude investment risk, this

is not the case in this paper.
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In this formula R equals the retirement age, M is the maximum age an individual can reach

and cptx,i is the probability of still being alive after i years as in (5). We assume a constant

interest rate r.

For ease of reference we denote the value of a (deferred) annuity in (17) by atx = ai. A

macro-longevity shock impacts future survival probabilities which influence the value of a

(deferred) annuity as stated in (17). The value of a (deferred) annuity changes for cohort i

from ai to ãi due to a macro-longevity shock in the Lee-Carter model. The expected annual

consumption after retirement in autarky Cai for cohort i after a shock is given by

Cai =
Wi

ãi
. (18)

To determine the impact of macro-longevity risk on consumption we calculate for each cohort

how much money is needed (or is left) to fully compensate the impact of a macro-longevity

shock.18 We denote this by ỹi

Wi

ai
= Wi + ỹi

ãi

ỹi =Wi(
ãi
ai
− 1). (19)

ỹi represents the amount of money to offset the effect of a macro-longevity shock on con-

sumption in autarky. If the annuity value increases (decreases) due to an unexpected increase

(decrease) in life expectancy, ỹi is positive (negative) and money is needed (left). ỹi is not the

same for each cohort i because the impact of a macro-longevity shock on future death rates

depends on age. We can calculate the total money needed (or left) to fully compensate the

impact of a macro-longevity shock for all N cohorts. We denote this by ỹT

ỹT =
N

∑
i=1
niỹi, (20)

where ni is the number of participants in cohort i. In this paper macro-longevity risk is

shared by distributing the total macro-longevity shock ỹT among cohorts. Similar to the

stylized two-agent model we restrict ourselves to linear risk sharing rules. Each participant

absorbs part of the total macro-longevity shock ηi and receives (or pays) a risk compensation

t0,i. Consumption after risk sharing equals

Csi =
Wi + ỹi − ηiỹT − t0,i

ãi
. (21)

We determine the optimal risk-sharing solution, similar to proof 2 in Appendix A.2, by max-

imizing aggregate equivalent variation

max
η1,η2,...ηN

t0,1,t0,2,...t0,N

N

∑
i=1
niEQVi =

N

∑
i=1
ni (E[U(Csi )] −E[U(Cai )]) , (22)

18 In this paper we assume that consumption before retirement is fixed, i.e. a macro-longevity shock can only

be absorbed by changing consumption after retirement. In case a participant can also change consumption

before retirement, the impact of a macro-longevity shock on the consumption level after retirement will be

smaller for workers.
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where the following restrictions should be satisfied

N

∑
i=1
niηi = 1 (23a)

N

∑
i=1
nit0,i = 0. (23b)

We do not make use of any Taylor expansions in the full model because we determine the

optimal solution numerically. The first restriction makes sure that the macro-longevity shock

is fully distributed among all participants. The second restriction guarantees that the total

risk compensation that participants receive is paid by the other participants. The direction

and size of the wealth transfer ỹi − ηiỹT − t0,i for cohort i depends on the direction and size

of the macro-longevity shock, the wealth of the participants and the population composition.

Similar to the stylized model we use the utility-based fairness criterion to determine the risk

compensations t0,i.

4 Retirement age policies

The significant increase in life expectancy during the last decades had a major impact on the

sustainability of pension systems. As a response several countries are linking the state pen-

sion age to life expectancy developments. In the United Kingdom for example the government

plans to link the state pension age at future dates to the projected longevity of the popula-

tion in such a way that people receive state pension during a fixed proportion of adult life

(Hammond et al. (2016)). Under this policy both the working and retirement period increase

if life expectancy increases. In the Netherlands the retirement age is linked to life expectancy

in a different way. The Dutch government implemented a law that links the retirement age

to the remaining life expectancy of the population at age 65. Under this policy the absolute

length of the retirement period is fixed and independent of life expectancy while the working

period increases if life expectancy increases.

In this paper we focus on occupational pension schemes. The retirement age in occupational

pension schemes is often equal to the state pension age. As a consequence, the retirement age

policy of the government also impacts the retirement age in occupational pension schemes and

thus the ability to share macro-longevity risk in occupational pension schemes. We consider

three policies:

1. Fixed retirement age (FRA): the retirement age is fixed, i.e. the retirement age does

not change after macro-longevity shocks. In this policy the length of the working period

is constant. This policy supports the belief that if people live longer, they extent their

retirement period. In most countries, for example in the United States and Australia,

the retirement age is not linked to life expectancy.
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2. Partial adjustment of the retirement age (PARA): the retirement age automati-

cally adjusts to life expectancy developments in a such a way that retirement consump-

tion remains the same.19 This means, e.g., that if life expectancy increases (decreases)

with 12 months, the retirement age should increase (decrease) with roughly 9 months.20

In this policy consumption after retirement is constant. The adjustment only holds for

working participants, since retirees cannot adjust their retirement age anymore. This

policy is close to the retirement age policy in the United Kingdom.21

3. Full adjustment of the retirement age (FARA): the retirement age automatically

keeps up fully with life expectancy changes. This means, e.g., that if the remaining life

expectancy at retirement increases (decreases) with 12 months, the retirement age also

increases (decreases) with 12 months. In this policy the length of the retirement period

is constant. The adjustment holds for working participants only, since retirees cannot

adjust their retirement age anymore. This policy supports the belief that if people live

longer, they increase their labor supply by extending their working period. This policy

is similar to the retirement age policy in the Netherlands.22

Stevens (2017) investigates the effect of different retirement age policies on the distribution

of the (forecasted) retirement age. He concludes that if the retirement age is linked to life

expectancy macro-longevity risk is effectively hedged. However, such a policy also leads to

substantial uncertainty in the retirement age and length of the retirement period.

Working Retirement Retirement Value Wealth at

period period consumption annuity retirement

FRA constant ++ - ++ constant

PARA + + constant + +

FARA ++ constant + - ++

Table 1: Impact of an unexpected increase in life expectancy on several variables for working

participants in case of different retirement age policies.

19 There are also countries in which the retirement age is not automatically linked to life expectancy but the

government decides to increase the retirement age based on life expectancy improvements incidentally. We

do not investigate such a policy.
20 The exact increase (decrease) does not only depend on the size of the longevity shock but also on the impact

of the longevity shock on survival probabilities at different ages and the life expectancy before the longevity

shock.
21 The retirement age adjustment in the UK proposal depends on the proportion of adult life that people

receive state pension.
22 The Dutch law states that the retirement age R is only adjusted in case the remaining life expectancy at

age 65 increases but it remains the same if it decreases. In this paper we assume a symmetric rule, i.e. the

retirement age is adjusted in case of both positive and negative shocks.
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Table 1 presents the impact of an unexpected increase in life expectancy on several variables

for the three retirement age policies. Consumption after retirement is determined by the value

of a (deferred) annuity and accumulated wealth at retirement (see (18)). The righthand graph

in Figure 6 shows the development of wealth over the life-cycle in case of a fixed retirement

age. If the retirement age is linked to life expectancy the development of wealth over the

life-cycle is different because the participant accrues more (less) wealth by paying pension

premia for a longer (shorter) period.23 The table presents the impact for working participants

only because retirees cannot adjust their retirement age as response to longevity shocks. In

case of an unexpected decrease in life expectancy, the signs in Table 1 revert.

In case of a fixed retirement age the length of the working period is constant. As a re-

sult the (expected) length of the retirement period increases in case of an unexpected increase

in life expectancy. The annuity value increases as a result of higher survival probabilities.

Wealth at retirement remains the same. As a result retirement consumption will decrease.

In case of a partial adjustment of the retirement age both the working and retirement period

are extended. The annuity value increases as a result of higher survival probabilities. The

wealth at retirement also increases because the participant will work longer. The annuity

value and wealth at retirement increase such that consumption after retirement remains the

same.

If the retirement age is fully adjusted the length of the retirement period is constant. The

(expected) length of the working period increases in case of an unexpected increase in life

expectancy. The annuity value is lower than before the longevity shock. Higher survival

probabilities have a positive impact on the annuity value, but later retirement has a negative

impact on the annuity value. It turns out that the latter effect outweighs. The wealth at

retirement increases because the participant will work longer. As a result, retirement con-

sumption will increase.

We use exogenous rules in the retirement age policies. An alternative is an endogenous re-

tirement age. The participant optimizes his retirement age based on realized life expectancy

improvements. In that case it is necessary to include leisure time besides consumption in the

utility function to take the labor-leisure trade-off into account. Otherwise a high retirement

age would always be optimal because a shorter retirement period implies a higher consump-

tion after retirement. Cocco and Gomes (2012) investigate the impact of macro-longevity

risk on the optimal saving and retirement decision in an individual life-cycle model. They

conclude that individuals decide to retire later even if this entails a utility cost in terms of

23 We assume that the labor market functions perfectly so participants do not experience any difficulties with

staying employed.
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foregone utility of (additional) leisure. Although we do not explicitly model the labor-leisure

trade-off in this paper, the retirement age policies represent different preferences regarding

consumption and leisure. In case of a fixed retirement age, a life expectancy increase implies

a lengthening of the retirement period (leisure) at the expense of the consumption level. In

case of a partial adjusted of the retirement age both consumption and leisure (relative to

labor) remain approximately equal. A full adjustment of the retirement age implies a higher

consumption level at the expense of leisure.

5 Results

In this research we quantify the welfare gains from collective risk sharing in terms of aggre-

gate certainty equivalent consumption after retirement. Table 2 presents the aggregate welfare

gains for the three retirement age policies in Section 4.

Fixed retirement age (FRA) 0.3%

Partial adjustment retirement age (PARA) 0.5%

Full adjustment retirement age (FARA) 2.7%

Table 2: Welfare gains in terms of aggregate certainty equivalent consumption after retire-

ment from sharing macro-longevity risk measured on a 10-year horizon.

We observe that for each retirement age policy collective risk sharing of macro-longevity risk

is welfare improving compared to autarky. The design of the retirement age policy impacts

the welfare gains from sharing macro-longevity risk. In case of a fixed retirement age, the

welfare gain equals 0.3 percent. This relatively small welfare gain is a result of the fact that in

this policy the impact of macro-longevity risk on retirement consumption for different cohorts

is more or less equal (Figure 3). As a result, the welfare gain from risk sharing is limited. In

case the retirement age is partially adjusted the welfare gain from risk sharing is higher. This

is a result of the fact that the expected retirement consumption of workers is not affected by

macro-longevity shocks. In case of a full adjustment of the retirement age the aggregate wel-

fare gain increases significantly. This is a result of the large risk bearing capacity of workers.

They adjust their labor supply as a hedge against macro-longevity shocks. This increases the

risk appetite of the workers to provide insurance to retirees.

In this research we measure the welfare gains of sharing macro-longevity risk and not the

welfare gains of different retirement age policies since the retirement age policy is given for

both autarky and risk sharing. We do not focus on the suitability of retirement age policies.

This is a different research question and requires the inclusion of leisure time besides con-

sumption in the utility function to take the labor-leisure trade-off into account.
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Figure 7 (lefthand graph) visualizes the optimal risk transfer relative to autarky for a par-

ticipant in cohort i as a percentage of total risk. A positive risk transfer for cohort i means

that participants in cohort i absorb risk of other cohorts. A negative risk transfer means

that the own exposure to macro-longevity risk is (partly) transferred to other cohorts.24 In

case of a fixed retirement age the risk transfer increases with age for the workers until re-

tirement and decreases with age for retirees. Macro-longevity risk of the young workers and

old retirees is (partly) absorbed by the other cohorts. The development of wealth over the

life-cycle (righthand graph in Figure 6) primarily explains this shape. Cohorts who have rel-

atively more wealth can absorb more risk. The risk transfer rule in case of a fixed retirement

age significantly differs from the risk transfer rule in case the retirement age is adjusted to

macro-longevity shocks. The risk transfer rule in case the retirement age is partially adjusted

is very similar to the risk transfer rule in case the retirement age is fully adjusted. The work-

ers absorb risk and the retirees transfer risk. This makes sense because the workers adjust

their labor supply to macro-longevity shocks. As a result, they are able to absorb risk of the

retirees.
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Figure 7: Optimal risk transfer relative to autarky for all cohorts as percentage of total risk

(lefthand graph) and corresponding risk compensation (righthand graph) in case of sharing

macro-longevity risk measured on a 10-year horizon. A positive (negative) risk transfer for

cohort i means that participants in cohort i absorb risk of (transfer risk to) other cohorts. A

positive (negative) risk compensation for cohort i means that participants receive (pay) a risk

compensation.

The righthand graph in Figure 7 displays the risk compensation t0,i corresponding to the

optimal risk transfer for a participant in cohort i under the utility-based fairness criterion

24 The sum of risk transfers in the graph is not exactly equal to zero because each cohort does not consist of

an equal number of participants.
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(lefthand graph).25 A positive risk compensation for cohort i means that participants receive

a risk compensation. A negative risk compensation for cohort i means that participants pay a

risk compensation. In general, cohorts who absorb risk from other cohorts receive a risk com-

pensation and cohorts who transfer risk have to pay a risk compensation. However, this does

not hold if the retirement age is fully adjusted. Young cohorts absorb risk from other cohorts

but do not receive a risk premium; the risk premium is even negative. Under this policy work-

ers adjust their labor supply as a hedge against macro-longevity shocks. This implies a reverse

effect of macro-longevity shocks for workers and retirees (Table 1). As a result, a positive risk

compensation is not required for young cohorts to absorb risk of retirees. A final observation

is the peak in the risk compensation around age 66 in case of a fully adjusted retirement

age. This peak is due to the fact that cohorts just before retirement cannot fully adjust their

retirement age in case of an unexpected decrease in life expectancy, i.e. the retirement age

cannot be lower than their current age. As a result, the certainty equivalent consumption of

these cohorts is relatively high in autarky so risk sharing is less welfare improving for these

cohorts. Therefore, these cohorts require a higher risk compensation.

We consider macro-longevity risk on a 10-year horizon. The welfare gains from sharing macro-

longevity risk over the whole life-cycle are most likely higher. Another sidenote is that this

paper applies a first-best risk-sharing solution as its benchmark for evaluating welfare effects.

In practice, however, the first-best risk-sharing solution may not always be feasible. Policy

makers might want to limit the maximum risk a participant can absorb to prevent very large

wealth transfers in case of extreme macro-longevity shocks.

5.1 Sensitivity analyses

In this section we verify whether the welfare gains and risk-sharing rules are sensitive to

mortality data and model assumptions by performing three types of sensitivity analyses:

1. Alternative mortality data: macro-longevity risk in the Lee-Carter model depends

on the parameters in (2) and (6) that are calibrated using historical mortality data.

We investigate the impact of alternative mortality data on the welfare gains from risk

sharing and corresponding risk-sharing rule.

2. Alternative population compositions: the welfare gains from sharing macro-longevity

risk also depend on the population composition. We will investigate the impact of alter-

native population compositions on the welfare gains from risk sharing and corresponding

risk-sharing rule.

3. Alternative model macro-longevity risk: instead of macro-longevity risk in the Lee-

Carter model we assess the impact of alternative shocks in death rates on the welfare

25 The sum of risk compensations in the graph is not exactly equal to zero because each cohort does not consist

of an equal number of participants.
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gains from risk sharing and corresponding risk-sharing rule.

5.1.1 Alternative mortality data

Macro-longevity risk in the Lee-Carter model depends on the parameters in (2) and (6). In

our main analysis we calibrate the parameters using historical mortality data of Dutch fe-

males. Using alternative mortality data changes the parameters and therefore also the size

and distribution of macro-longevity shocks.

Mortality data Dutch Dutch US US

females males females males

Fixed retirement age (FRA) 0.3% 0.2% 0.2% 0.3%

Partial adjustment retirement age (PARA) 0.5% 0.5% 0.2% 0.3%

Full adjustment retirement age (FARA) 2.7% 1.9% 0.7% 1.5%

Table 3: Welfare gains in terms of aggregate certainty equivalent consumption after re-

tirement from sharing macro-longevity risk measured on a 10-year horizon for alternative

mortality data.

The welfare gains from risk sharing using alternative mortality data are presented in Table

3. We look at Dutch males, US females and US males. In case of a fixed retirement age or

partial adjustment of the retirement age, the welfare gains do not change significantly. How-

ever, in case the retirement age is fully adjusted the welfare gains from risk sharing are lower

compared to the mortality data of Dutch females. This especially holds for mortality data of

US females. This lower welfare gain is caused primarily by lower volatility parameters in (7).

A lower volatility implies smaller risk and therefore lower welfare gains from risk sharing.

Figure 8 visualizes the optimal risk transfer relative to autarky as percentage of total risk.

The black lines represent the optimal risk transfer rule using the mortality data of Dutch

females and the grey lines for the alternative mortality data. We can conclude that for each

retirement age policy the optimal risk transfer rule is robust to the alternative mortality data

we consider.

5.1.2 Alternative population compositions

We determined the welfare gains in Table 2 and risk transfers and risk compensations in

Figure 7 for a population composition of an entire country (lefthand graph in Figure 6). In

practice the population composition of a pension fund is generally not equal to this standard

population composition. Therefore, it is interesting to also consider alternative population

compositions: a population composition of a green and grey pension fund. We assume that
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Figure 8: Optimal risk transfer relative to autarky as percentage of total risk in case of

sharing macro-longevity risk measured on a 10-year horizon. The black lines represent the

risk transfer rules based on Dutch females and the grey lines represent the risk transfer rules

using alternative mortality data.

the green pension fund has a relatively young population. We approximate this by assuming

that the number of participants in a cohort decreases with 1 percent per age year compared

to the standard population composition. In the grey pension fund the number of participants

in a cohort increases with 1 percent per age year compared to the standard population com-

position. The standard and alternative population compositions are displayed in Figure 9.
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Figure 9: Different population compositions: a standard, green and grey pension fund.

Table 4 presents the welfare gains from risk sharing using alternative population composi-

tions. The welfare gains are not significantly different from the welfare gains for the standard

population composition, even if the retirement age is fully adjusted. Figure 10 visualizes the

optimal risk transfer relative to autarky as percentage of total risk. The black lines represent

the optimal risk transfer rules using the original population composition and the grey lines

represent the risk transfer rules using alternative population compositions. The shape of the

risk transfer rule is reasonably robust to the population composition but the percentage of

total risk an individual participant absorbs or transfers can be different in case of alterna-

tive population compositions. A different population composition leads to a different ratio
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Population composition Standard Green Grey

Fixed retirement age (FRA) 0.3% 0.3% 0.3%

Partial adjustment retirement age (PARA) 0.5% 0.4% 0.7%

Full adjustment retirement age (FARA) 2.7% 2.2% 2.7%

Table 4: Welfare gains in terms of aggregate equivalent consumption after retirement from

sharing macro-longevity risk measured on a 10-year horizon for alternative population com-

positions.
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Figure 10: Optimal risk transfer relative to autarky for each cohort as percentage of total

risk in case of sharing macro-longevity risk measured on a 10-year horizon. The black lines

represent the original risk transfers and the grey lines represent the optimal risk transfers

using alternative population compositions.

between the individual macro-longevity shock and total macro-longevity shock. This impacts

the optimal risk transfer as percentage of total risk.

5.1.3 Alternative model macro-longevity risk

Several academics use the Lee-Carter model to model macro-longevity risk. Moreover, it is

the basis of several mortality table forecasts in practice. However, the model is not a perfect

representation of reality because there is uncertainty about structural breaks. For example,

medical innovations can cause structural breaks that are not captured by the Lee-Carter

model. Therefore it is interesting to also look at the impact of alternative shocks in the death

rates.

There is no scientific consensus on the development of future survival probability at old ages.

Buettner (2002) suggests that there are two alternative views about the future survival prob-

ability at old ages: compression versus expansion. In case of mortality compression mortality

continues to decline over a widening range of adult ages, but meets natural limits for very

advanced ages. This development implies that the survival probability approaches a rectangle
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(Figure 11). Einmahl et al. (2017) and Dong et al. (2016) find evidence for the existence of

a maximum age. In case of mortality expansion mortality continues to decline for all ages,

i.e. there is no maximum age. Wilmoth (2000) and Oeppen and Vaupel (2002) argue that

there is indeed no maximum age. Wilmoth (2000) states that, based on available demographic

evidence, the human life span shows no sign of approaching a certain limit imposed by biology

or other factors. There are even scientists who believe in the possible realization of longevity

escape velocity. In this scenario death rates fall so fast that people’s remaining life expectancy

increases with time because therapies restore health faster than the rate of body deterioration

due to biological ageing (De Grey (2004)).

Age

Compression

Age

Expansion

Figure 11: Different views of future survival probability: compression (lefthand graph) and

expansion (righthand graph).

The development of future mortality in the Lee-Carter model is in line with the mortality

compression view. The sensitivity of the death rates to the time trend decreases in age x

to almost zero at very high ages. An alternative shock in death rates is the macro-longevity

shock in the Solvency II framework for insurers. The Solvency II capital requirements for

longevity risk are determined by applying a uniform shock, i.e. a 20 percent decrease, to all

future death probabilities qx,t.
26 For mortality risk the capital requirements are determined

by applying an increase of 15 percent to all future death probabilities. The longevity shock in

the Solvency II framework is in line with the expansion view because all death probabilities

decrease at the same rate. Figure 12 visualizes both types of shocks, i.e. macro-longevity

shocks in the Lee-Carter model and in the Solvency II framework. The graphs show that the

development of future mortality in the Lee-Carter model is in line with the compression view

and the Solvency II framework is in line with the expansion view.

The shocks for longevity and mortality risk in the Solvency II framework are deterministic,

i.e. no stochastic mortality model is used to determine the distribution of future death rates.

Because we have to make an assumption about the distribution of future death rates when

26 These capital requirements are based on the 99.5% VaR of the available capital over a one-year horizon.

26



Age
0 50 100 150

S
u

rv
iv

a
l 
p

ro
b

a
b

ili
ty

  0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

100%
Lee-Carter model

Age
0 50 100 150

S
u

rv
iv

a
l 
p

ro
b

a
b

ili
ty

  0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

100%
Solvency II framework

Figure 12: Impact of several consecutive macro-longevity shocks in the Lee-Carter model

(lefthand graph) and in the Solvency II framework (righthand graph) on the survival proba-

bility.
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Figure 13: Impact of macro-longevity risk in the Solvency II framework on the expected

remaining lifetime and the value of a (deferred) variable annuity for a Dutch female in 2014 in

absolute terms (lefthand graphs) and relative change (righthand graphs) assuming a constant

interest rate of 2% and fixed retirement age R = 67.

sharing macro-longevity risk, we assume that the shocks for longevity and mortality risk both

occur with probability 50%. Figure 13 visualizes the impact of those shocks on the expected

remaining lifetime and the value of a (deferred) variable annuity.
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We cannot compare the size of the impact of macro-longevity risk in the Lee-Carter model

(Figure 3) and Solvency II framework (Figure 13) directly, because the shocks in the Lee-

Carter model are on a 10-year horizon while the shocks in the Solvency II framework are

one-off shocks. However, we can still compare the distribution of macro-longevity risk over

different cohorts in both models. We notice that the relative change of the expected remaining

lifetime and (deferred) annuity value per cohort (righthand figures) differ significantly. While

the relative change in the Lee-Carter model decreases with age, it increases with age in the

Solvency II framework. This is due to the fact that the impact of a uniform improvement of

death probabilities on survival probabilities is much higher at high ages compared to low ages

because death probabilities are higher at high ages. As a result, the relative change increases

with age in the Solvency II framework. In the Lee-Carter model the impact of macro-longevity

risk on death probabilities decreases with age.

Model LC SII

Fixed retirement age (FRA) 0.3% 0.3%

Partial adjustment retirement age (PARA) 0.5% 0.3%

Full adjustment retirement age (FARA) 2.7% 0.4%

Table 5: Welfare gains from sharing macro-longevity risk in terms of aggregate certainty

equivalent consumption after retirement in the Lee-Carter model and in the Solvency II frame-

work.

Table 5 shows the welfare gains from risk sharing in the Solvency II framework for the three

retirement age policies. We cannot compare the size of the welfare gains in the Lee-Carter

model and Solvency II framework directly because both shocks have a different interpretation

as mentioned above. In the Solvency II framework the welfare gain does not increase signif-

icantly in case of a full adjustment of the retirement age. Recall that the high welfare gain

in case the retirement age is fully adjusted in the Lee-Carter model is a result of the hedge

effect of the adjusted labor supply to macro-longevity shocks for workers. In the Solvency II

framework the impact of macro-longevity risk on the expected remaining lifetime (Figure 13)

is small for workers. As a result, the hedge effect is much smaller in the Solvency II framework

compared to the Lee-Carter model.

Figure 14 visualizes the optimal risk transfer relative to autarky for a participant in cohort i

as percentage of total risk. We can conclude that for each retirement age policy the optimal

risk transfer rule is reasonably robust to the alternative mortality model.
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Figure 14: Optimal risk transfer relative to autarky as percentage of total risk for different

retirement age policies. The black lines represent the original risk transfers in the Lee-Carter

model and the grey lines represent the optimal risk transfers in the Solvency II framework.

6 Conclusion and policy evaluation

Pension funds face macro-longevity risk or uncertainty about future mortality rates. We an-

alyze macro-longevity risk sharing between cohorts in a pension fund as a risk management

tool. We explore this economic problem as macro-longevity risk is not traded on a liquid

market and cohorts are affected differently by macro-longevity risk. We derive the optimal

risk-sharing rule and the welfare gains from ex-ante Pareto efficient risk-sharing solutions for

different retirement age policies.

The retirement age policy impacts both the optimal risk-sharing rule and the welfare gains

from sharing macro-longevity risk. In case the retirement age is fixed, the welfare gains from

sharing macro-longevity risk are between 0.2 percent and 0.3 percent of certainty equivalent

consumption after retirement. Under this policy, the impact of macro-longevity risk on retire-

ment consumption for different cohorts is more or less equal. Young cohorts do not absorb

macro-longevity risk of other cohorts in the optimal risk transfer rule. As a result, the welfare

gains from risk sharing are limited. The risk transfer rules and corresponding welfare gains

are reasonably robust to the alternative mortality data and model assumptions we consider

in the sensitivity analyses.

Some countries link the retirement age to life expectancy developments. In case of a full ad-

justment of the retirement age the welfare gains from sharing macro-longevity risk measured

on a 10-year horizon are substantially higher up to 2.7 percent. The risk bearing capacity of

workers is larger, because they can use their labor supply as a hedge against macro-longevity

shocks. As a result, workers absorb risk from retirees in the optimal risk transfer rule, thereby

increasing the welfare gain from risk sharing. The size of the welfare gains from risk sharing

is sensitive to the mortality data and model assumptions. For example, the welfare gains are
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lower in case of US mortality data. However, the optimal risk transfer rules are reasonably

robust to the alternative mortality data and model assumptions.

The findings in this paper are relevant for pension policy, especially because of the gen-

eral trend of transferring risks to pension participants. First, we determine the optimal

risk-sharing rule. In practice macro-longevity risk is shared in different ways. In the first

pillar macro-longevity risk is shared between retirees and active participants. In DC schemes

macro-longevity risk is usually not shared before retirement and in pooled annuity schemes

retirees share macro-longevity risk uniformly. In DB schemes macro-longevity risk impacts

the funding ratio. This implies that all cohorts share macro-longevity risk uniformly. The

results in this paper show that uniform risk sharing is suboptimal. Moreover, it is sometimes

argued that workers can provide insurance to macro-longevity risk of retirees. The results

in this paper show that such a risk distribution is optimal only in case the retirement age is

linked to life expectancy. If the retirement age is fixed it is not optimal for young cohorts to

absorb risk of retirees. Second, we determine a fair risk compensation for cohorts who absorb

macro-longevity risk of other cohorts using a utility-based fairness criterion. In practice, there

is usually no risk compensation for absorbing macro-longevity risk.

Sharing macro-longevity risk results in high welfare gains in case of a full adjustment of

the retirement age. However, we do not want to make a statement about the suitability of

retirement age policies in this paper. This is a different research question and requires the

inclusion of leisure time besides consumption in the utility function to take the labor-leisure

trade-off into account. Moreover, it is up to policy makers to decide whether it is appropriate

to link the retirement age to life expectancy. The suitability of a retirement age policy involves

a broader perspective. For example, healthy life expectancy and practical implementation are

relevant but outside the scope of this paper.

Sensitivity analyses show that the size of the welfare gains depends on the population compo-

sition and the mortality data. For example, welfare gains from sharing macro-longevity risk

are smaller for US compared to Dutch mortality data. An interesting area for future research

is to investigate sharing macro-longevity risk between pension funds or between countries.

For example, Van Binsbergen et al. (2014) propose to share risks between heterogeneous pen-

sion funds by trading pension guarantees. Bodie and Merton (2002) propose swaps to achieve

risk-sharing benefits of broad international diversification.
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A Appendix

A.1 Expected survival probability

The random shocks in (7) in the log central death rates are normally distributed with mean

zero, i.e. E[βxηt + εx,t] = 0. The following holds for the expected survival probability

E[px,t] ≈ E[exp(−µx,t)] = E[exp(− exp(αx + βxκt + εx,t))] (24)

≤ E[exp(− exp(αx + βxc + βxκt−1 + βxηt + εx,t))]

= exp(− exp(αx + βxc + βxκt−1 +E[βxηt + εx,t]))

≤ exp(− exp(αx + βxc + βxκt−1) = p̂x,t,

using Jensen’s inequality E[f(x)] ≤ f(E[x]) with f(x) = exp(− exp(x)) being a concave

function for x ≤ 0.

A.2 Proof Pareto-efficient risk-sharing rule

The Pareto-efficient risk-sharing rule can be derived in three different ways. First, the opti-

mal risk-sharing solution can be found by maximizing individual expected utility. Second, the

solution can be found by maximizing aggregate equivalent variation. Third, it can be found

by maximizing aggregate expected utility. All three maximizations lead to the same optimal

risk-sharing rule. We present the derivations below. In our full model we maximize aggregate

equivalent variation because it is most easy to implement.

Proof 1: maximizing individual expected utility

Risk sharing is Pareto improving in comparison to autarky if the welfare of at least one agent

improves and all other agents do not become worse off. Therefore, we maximize the expected

utility of agent 1 under the condition that the expected utility of agent 2 does not decrease

(similar to Gottardi and Kubler (2011))

max
η,t0

E[U(Cs1)] such that E[U(Cs2)] ≥ E[U(Ca2 )]. (25)

By using the power utility function and applying the Arrow-Pratt approximation we get the

following expression for the expected utility of agent 1

E[U(Cs1)] = E [(W1 + β1ỹ − t(ỹ))1−γ

1 − γ
] (26)

= E [(W1 + (β1 − η)ỹ − t0)1−γ

1 − γ
]

≈
(W1 − 1

2
γ
W1
σ2(β1 − η)2 − t0)1−γ

1 − γ
.
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In the Arrow-Pratt approximation27 we determine z in E[U(W + ỹ)] ≈ U(W + z) by applying

a Taylor expansion to both sides of the equation.28 We apply a second-order Taylor expansion

to U(W + ỹ) around W and take the expectation

E[U(W + ỹ)] ≈ E[U(W ) +U ′(W )ỹ + 1

2
ỹ2U ′′(W )] = U(W ) + 1

2
σ2U ′′(W ). (27)

We apply a first-order Taylor expansion to U(W + y) around W

U(W + z) ≈ U(W ) +U ′(W )z, (28)

which implies

z = 1

2
σ2
U ′′(W )
U ′(W )

= 1

2
σ2
−γW−γ−1

W −γ = 1

2
σ2

γ

W
. (29)

In the same way we derive an expression for the expected utility of agent 2

E[U(Cs2)] = E [(W2 + β2ỹ + t(ỹ))1−γ

1 − γ
] (30)

= E [(W2 + (β2 + η)ỹ + t0)1−γ

1 − γ
]

≈
(W2 − 1

2
γ
W2
σ2(β2 + η)2 + t0)1−γ

1 − γ
.

Maximizing individual expected utility in (25) is equivalent to maximizing certainty equivalent

consumption

max
η,t0

(W1 −
1

2

γ

W1
σ2(β1 − η)2 − t0) such that W2 −

1

2

γ

W2
σ2(β2 + η)2 + t0 ≥W2 −

1

2

γ

W2
σ2β22 .

(31)

The Lagrange function of this maximization problem equals

L =W1 −
1

2

γ

W1
σ2(β1 − η)2 − t0 − λ(−1

2

γ

W2
σ2((β2 + η)2 − β22) + t0) , (32)

with first order conditions

∂L
∂η

= γ

W1
σ2(β1 − η) + λ

γ

W2
σ2β2 + λ

γ

W2
σ2η = 0 (33)

∂L
∂t0

= −1 − λ = 0 ⇐⇒ λ = −1.

Solving the first order conditions leads to the optimal risk transfer η∗

γ

W1
σ2β1 −

γ

W2
σ2β2 = ( γ

W1
σ2 + γ

W2
σ2)η (34)

β1
W1
− β2
W2

= η ( 1

W1
+ 1

W2
)

η∗ = β1W2 − β2W1

W1 +W2
.

27 An Arrow-Pratt approximation can be used under the condition that the risk is small.
28 For the sake of simplicity we exclude t0 from the Taylor expansion. This is allowed because t0 is small

relative to W .
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The risk transfer η∗ increases linear in β1 and decreases linear in β2.
29 In case β1W2 = β2W1,

risk sharing is not welfare improving. We apply Arrow-Pratt approximations to find η∗. This

solution can slightly deviate from the true optimal solution because of the remainder term

in the Taylor series. We do not matter too much about this inaccuracy because we use the

two-agent model to derive an analytical framework and get intuition but not for numerical

precision.

Proof 2: maximizing aggregate equivalent variation

The optimal risk transfer can also be found by maximizing aggregate equivalent variation

(similar to Bovenberg and Mehlkopf (2014))

max
η,t0

EQV1 +EQV2. (35)

The equivalent variation EQVi is defined as the amount of wealth which agent i should be

given ex-ante in autarky to obtain the same ex-ante welfare in case of risk sharing. This is

equal to the certainty equivalent consumption in case of risk sharing minus the certainty

equivalent consumption in autarky. Risk sharing is potentially Pareto improving only if

EQV1+EQV2 > 0. Equivalent variation is an attractive welfare measure in the context of risk

sharing, because it is unaffected by redistribution between agents. The derivation below shows

that the maximization is unaffected by the deterministic risk compensation t0 between agents.

Using (26) and (30) the sum of EQV1 and EQV2 approximately equals

EQV1 +EQV2 ≈ W1 −
1

2

γ

W1
σ2(β1 − η)2 − t0 −W1 +

1

2

γ

W1
σ2β21 (36)

+W2 −
1

2

γ

W2
σ2(β2 + η)2 + t0 −W2 +

1

2

γ

W2
σ2β22

= − 1

2

γ

W1
σ2(β1 − η)2 +

1

2

γ

W1
σ2β21 −

1

2

γ

W2
σ2(β2 + η)2 +

1

2

γ

W2
σ2β22

=1

2

γ

W1
σ2(2β1η − η2) −

1

2

γ

W2
σ2(β2 + η)2.

The first order condition with respect to η equals

γ

W1
σ2(β1 − η) −

γ

W2
σ2(β2 + η) = 0, (37)

which leads to the optimal risk transfer η∗

β1
W1
− β2
W2

= η ( 1

W1
+ 1

W2
) (38)

β1W2 − β2W1

W1W2
= ηW1 +W2

W1W2

η∗ = β1W2 − β2W1

W1 +W2
.

29 This linearity results from the Arrow-Pratt approximations and because we assume a linear risk-sharing

rules (11).
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Proof 3: maximizing aggregate expected utility

Finally, the optimal risk transfer can also be obtained by taking a social planner’s view and

maximizing a weighted sum of the expected utility of agents

max
η,t0

E[U(Cs1)] + δE[U(Cs2)]. (39)

The social planner chooses parameter δ that weights the relative importance of the agents. A

low δ means that the utility of future generations is less important.

E[U(Cs1)] + δE[U(Cs2)] =E [(W1 + (β1 − η)ỹ − t0)1−γ

1 − γ
] + δE [(W2 + (β2 + η)ỹ + t0)1−γ

1 − γ
]

≈
(W1 − 1

2
γ
W1
σ2(β1 − η)2 − t0)1−γ

1 − γ
+
δ(W2 − 1

2
γ
W2
σ2(β2 + η)2 + t0)1−γ

1 − γ
.

The first order condition with respect to t0 equals

− (W1 −
1

2

γ

W1
σ2(β1 − η)2 − t0)

−γ
+ δ (W2 −

1

2

γ

W2
σ2(β2 + η)2 + t0)

−γ
= 0 (40)

(W1 −
1

2

γ

W1
σ2(β1 − η)2 − t0)

−γ
= δ (W2 −

1

2

γ

W2
σ2(β2 + η)2 + t0)

−γ
.

The first order condition with respect to η equals

(W1 −
1

2

γ

W1
σ2(β1 − η)2 − t0)

−γ γ

W1
σ2(β1 − η) + δ (W2 −

1

2

γ

W2
σ2(β2 + η)2 + t0)

−γ −γ
W2

σ2(β2 + η) = 0

(W1 −
1

2

γ

W1
σ2(β1 − η)2 − t0)

−γ β1 − η
W1

= δ (W2 −
1

2

1

W2
(β2 + η)2 + t0)

−γ β2 + η
W2

,

where plugging in (41) yields

(W1 −
1

2

γ

W1
σ2(β1 − η)2 − t0)

−γ β1 − η
W1

= (W1 −
1

2

γ

W1
σ2(β1 − η)2 − t0)

−γ β2 + η
W2

(41)

β1 − η
W1

= β2 + η
W2

β1W2 − ηW2 =W1β2 + ηW1

η∗ = β1W2 − β2W1

W1 +W2
.

A.3 Proof of optimal risk compensation

Maximizing individual expected utility (proof 1) or aggregate equivalent variation (proof 2)

does not deliver a unique solution for the risk compensation t0. The risk compensation

determines how the welfare gain from risk sharing is distributed among the agents. Requiring

the risk-sharing solution to be Pareto improving in comparison to autarky ensures that the

welfare gain can be fully attributed to gains from risk sharing and is not a result from ex-ante

redistribution between agents. Under the condition that the risk-sharing solution is Pareto
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improving the risk compensation should lie between the following upper bound

CEQs1 ≥ CEQa1 (42)

W1 −
1

2

γ

W1
σ2(β1 − η∗)2 − t0 ≥W1 −

1

2

γ

W1
σ2β21

− 1

2

γ

W1
σ2(β1 − η∗)2 +

1

2

γ

W1
σ2β21 ≥ t0

1

2

γ

W1
σ2η∗(2β1 − η∗) ≥ t0,

and lower bound

CEQs2 ≥ CEQa2 (43)

W2 −
1

2

γ

W2
σ2(β2 + η∗)2 + t0 ≥W2 −

1

2

γ

W2
σ2β22

t0 ≥
1

2

γ

W2
σ2(β2 + η∗)2 −

1

2

γ

W2
σ2β22

t0 ≥
1

2

γ

W2
σ2η∗(2β2 + η∗).

So risk sharing is Pareto improving if t0 satisfies the following condition

1

2

γ

W1
σ2η∗(2β1 − η∗) ≤ t0 ≤

1

2

γ

W2
σ2η∗(2β2 + η∗). (44)

We use a utility-based fairness criterion which yields a unique risk-sharing solution within the

set of Pareto-efficient solutions. This requires that all agents experience the same increase in

certainty equivalent consumption as a result of risk sharing relative to autarky

CEQs1 −CEQa1 = CEQs2 −CEQa2 (45)

1

2

γ

W1
σ2(β21 − (β1 − η∗)2) − t0 = −

1

2

γ

W2
σ2((β2 + η∗)2 − β22) + t0

t0 =
1

4

γ

W1
σ2η∗(2β1 − η∗) +

1

4

γ

W2
σ2η∗(2β2 + η∗)

t0 =
1

4
γσ2η∗( 1

W1
(2β1 − η∗) +

1

W2
(2β2 + η∗)).

Maximizing aggregate expected utility (proof 3) does deliver a unique solution t0 which de-

pends on δ. In this case the parameter δ can be chosen such that the risk-sharing solution is

Pareto improving compared to autarky. Because we maximize aggregate equivalent variation

in our full model we do not elaborate further on δ here.
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A.4 Definitions

Parameter Definition

αx Age-specific constant in log central death rates

Annuity value (atx) Value of an annuity that pays 1 dollar annually during retirement for an

individual of age x in year t

Autarky Situation without risk sharing

Cai Consumption after retirement in autarky for a participant in cohort i

Csi Consumption after retirement after risk sharing for a participant in cohort i

Certainty equivalent Guaranteed consumption level that someone would accept rather than a

consumption higher uncertain consumption

Central death rate (µx,t) Average yearly death rate of an individual of age x in year t

Cumulative survival Probability that an individual of age x in year t is still alive after i years

probability (cptx,i)

c Drift in time trend

Equivalent variation (EQVi) Amount of wealth which agent i should be given ex-ante in autarky to

obtain the same ex-ante welfare in case of risk sharing

Uncertainty in death rates (εx,t) Random variation in log central death rates

Fixed retirement age (FRA) Constant retirement age

Full adjustment retirement Retirement age keeps up fully with life expectancy

age (FARA)

Longevity risk Risk that people live longer than expected

Macro-longevity risk Uncertainty about future mortality rates

Micro-longevity risk Uncertainty about individual time of death

Mortality risk Risk that people live shorter than expected

One-year death Probability that an individual of age x and alive in year t dies before

probability (qx,t) year t + 1

One-year survival Probability that an individual of age x and alive in year t is still alive

probability (px,t) in year t + 1

Parameter risk Uncertainty in the true value of the parameters

Partial adjustment Retirement age adjusts to life expectancy such that the value of an

retirement age (PARA) annuity remains the same

βx Sensitivity of log central death rates to time trend

Risk compensation (t0,i) Financial compensation for absorbing risk for a participant in cohort i

Risk sharing Allocate risks to cohorts via a predetermined rule

Risk-sharing rule (t(ỹ)) Risk transfer plus risk compensation

Risk transfer (ηi) Part of total macro-longevity shock a participant in cohort i absorbs

Stochastic variation Random variation in the aggregate realized number of deaths

Time trend (κt) Development of death rates over time

Uncertainty in trend (ηt) Random variation in the time trend

σ2ε Variance death rates

σ2η Variance trend

Wi Wealth of a participant in cohort i

Welfare gain Relative increase certainty equivalent consumption after retirement

ỹi Amount of money needed to offset effect of macro-longevity shock

for a participant in cohort i

ỹT Amount of money needed to offset effect of macro-longevity shock

for all cohorts
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