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Abstract 

 

This paper applies the info-gap approach to the unconventional monetary policy of the Eurosystem and 

so takes into account the fundamental uncertainty on inflation shocks and the transmission mechanism. 

The outcomes show that a more demanding monetary strategy, in terms of lower tolerance for output 

and inflation gaps, entails less robustness against uncertainty, particularly if financial variables are taken 

into account. Augmenting the Taylor rule with a financial variable leads to a smaller loss of robustness 

than taking into account the effect of financial imbalances on the economy. However, in some 

situations, the augmented model is more robust than the baseline model. A conclusion from our 

framework is that including financial imbalances in the monetary policy objective does not necessarily 

increase policy robustness, and may even decrease it. 
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1. Introduction 

 

Central banks have used different types of unconventional monetary policy measures to support 

monetary transmission and raise inflation. As pointed out by Borio and Disyatat (2010), the 

distinguishing feature of these measures is that the central bank actively uses its balance sheet to affect 

market prices and conditions beyond a short-term interest rate. A crucial question is to what extent these 

measures are effective in supporting the central bank objectives. This depends on the working of the 

transmission channels of unconventional balance sheet policies and on the drivers of inflation.  

Both factors are surrounded by an unusual dose of uncertainty, in particular in the euro area. It 

faces major external shocks in a changing global macroeconomic and financial environment, a highly 

fragmented and changing monetary transmission mechanism, and an unprecedented combination of 

high private and public debt. The severe uncertainty on inflation dynamics and the untested impacts of 

new monetary tools may imply that the system no longer operates under measurable probabilistic 

uncertainty (risk) but under Knightian (fundamental) uncertainty where probability distributions are 

less informative or even lacking. In such a situation, an approach for managing Knightian uncertainty 

is more appropriate than aiming at an optimal outcome (e.g. a specific inflation target) based on 

probabilistic models. 

 Two uncertainty management strategies for managing Knightian uncertainty that have emerged 

in the literature are robust control and info-gap. The former insures against the maximally worst 

outcome as defined by the policy maker (min-max, see Hansen et al., 2006; Sargent and Hansen, 2008 

and Williams, 2007). Typically policies derived are more aggressive by comparison to those under no 

uncertainty. The ECB’s approach looks like a min-max strategy (to quote Draghi (2016), “there are no 

limits to how far we are willing to deploy our instruments within our mandate to achieve our objective 

…”). With little prior knowledge about mechanisms at work, proponents of this approach justify such 

aggressive action as the only way to learn. Two objections have been raised about such an approach; (i) 

policy makers do not like experimenting for the purposes of learning; (ii) worst events are rare and 

hence poorly known. It is odd therefore, to design a policy that is focussed precisely on those events 

about which one knows least (Sims, 2001). 

However, the most important drawback in our view is that robust control does not account for 

the fundamental choice between robustness against uncertainty on the one hand, and aspiration for high-

value outcomes, on the other. This is where the alternative approach, info-gap, makes an important 

contribution by mapping explicitly this trade-off (Ben-Haim, 2006, 2010). If the central bank adopts an 

ambitious inflation target, it needs to compromise on the degree of confidence in achieving it (Ben-

Haim and Demertzis, 2008). Conversely, if the central bank requires high confidence in achieving 

specified goals, it needs to moderate how ambitious these goals are. Info-gap theory quantifies this 

intuitive trade off. 

In this paper we apply the info-gap approach to the unconventional monetary policy as pursued 
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by the Eurosystem. Since the effectiveness of these policy measures depends to a large extent on 

financial channels, the reaction function of central banks has become increasingly oriented to financial 

variables. Estimations of a Taylor rule for the euro area indicate that since the 2007-08 crisis, 

unconventional monetary policy has significantly reacted to financial developments, next to the 

inflation and output gap (Pattipeilohy et al., 2016). The influence of balance sheet policies on financial 

markets also implies that monetary policy potentially has adverse side effects in the financial sphere. 

By encouraging financial risk taking for instance, quantitative easing may contribute to financial 

imbalances and excessive asset price developments (Van den End, 2015). Since such effects may 

become manifest in the long run, they are particularly uncertain. 

 We model both aspects of unconventional monetary policy in a macroeconomic framework. 

For that purpose, we define four semi-structural models. Rule 0, our benchmark model, is a standard 

macro model that has a Phillips curve, an aggregate demand curve and a traditional Taylor rule. Rule 1 

extends the benchmark model by augmenting the Taylor rule with a financial variable, by which 

monetary policy reacts to financial stress. In Rule 2 the concept of financial imbalances is introduced 

by including a debt variable in the demand curve. This takes into account the long-term implications of 

unconventional monetary policy for the economy that become manifest through the debt channel. Rule 

3 is the full model that includes both the augmented Taylor rule and financial imbalances. The models 

are used to simulate shocks to inflation that are uncertain in magnitude and time. Both the fundamental 

uncertainty on the shocks and on the transmission of unconventional monetary policy (as reflected in 

the model parameters) is assessed by the info-gap approach. This reveals which rule is most robust to 

uncertainty. 

Our paper relates to the ongoing debate in the literature on whether monetary policy should take 

into account financial stability objectives, or should leave these to macroprudential policy (see Smets, 

2014, for an overview). The different positions in this debate have been defended on theoretical and 

empirical grounds by augmenting macro-economic models, monetary policy rules in particular, with 

financial variables (e.g. by Svensson, 2016; Gambacorta and Signoretti, 2014; Gourio et al. (2016)). 

While according to Stein (2014), measures of risk premiums may be useful inputs into the monetary 

policy framework, he concludes that there is a way to go - in terms of modelling and calibration - before 

it can be used to make quantitative statements. This comes close to the starting point in our paper that 

the process that is being modelled is prone to Knightian uncertainty. Ajello et al. (2016) follow a similar 

reasoning in their standard new-Keynesian model augmented with an endogenous financial crisis event. 

They assume fundamental uncertainty on the model parameters (with regard to monetary transmission) 

and the shock (severity of crises). Based on a robust-control approach they conclude that optimal policy 

can call for larger adjustments to the policy rate than in a situation without financial stability concerns. 

This more aggressive policy is consistent with the min-max strategy as explained above. But the 

question that arises is whether policies derived are also robust to uncertainty, i.e. to a wide spectrum of 

driving events. Can these types of policies be shown to also do well under different circumstances to 
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the ones assumed? 

We address this research question by the info-gap approach, to take into account the 

fundamental choice between robustness against uncertainty versus the aspiration for high-value 

outcomes. This method accounts for the fact that more demanding performance (smaller acceptable 

output and inflation gaps) entails less robustness against uncertainty. Our results show that for all four 

policy rules, the cost of robustness increases significantly if the simulation horizon is extended, causing 

much lower robustness. This is natural because uncertainty propagates and magnifies over time. 

Comparing the rules, it appears that the benchmark model is most robust to uncertainty. Its parsimonious 

specification, that excludes the uncertain effects of financial stress and debt on the macroeconomy and 

monetary policy, reduces the vulnerability to modeling uncertainty. Augmenting the Taylor rule with a 

financial variable (Rule 1) leads to a loss of robustness, but less than in Rule 2, which includes financial 

imbalances in the demand equation. The preference reversals between the policy rules are generally 

similar with and without shocks and considering only parameter uncertainty. This holds for the 

preference reversal between Rules 2 and 3, and the robust dominance of the benchmark model. 

For central banks these outcomes imply that including financial stability considerations in the 

monetary policy framework is challenging, given the Knightian uncertainty on the dynamics of financial 

variables and their interaction with the real economy. Modelling such complexities requires deep 

knowledge of the underlying structures. However, taking into account uncertainty means that such 

knowledge by definition is incomplete or missing. So while complicated models may seem better in an 

optimal sense, more simple rules that manage uncertainty in small and concrete steps are preferable in 

a robust sense, in line with the literature on heuristics (e.g. Gigerenzer et al. 2011). For monetary policy 

this means that price stability should remain the primary objective of monetary policy, particularly 

given the uncertainties on the long run effects of financial imbalances on the economy. However, the 

central bank could consider including financial stress its reaction function, which de facto has been 

done by the Eurosystem since the crisis started in 2007. The simulations show that the loss of robustness 

is limited in that case, which may be acceptable for the policymaker given the gain in reaching his 

objectives. The clear loss of robustness in case a debt measure is taken into account calls for 

macroprudential policies that should address financial imbalances. 

Beyond these specific policy implications, this paper demonstrates a methodology that can be 

applied to policy evaluation and selection in a wide range of further studies. For example, one can 

explore the advantages (in terms of enhanced robustness to uncertainty) of different coefficients in the 

Taylor rule. Or, one can examine the implications of uncertain temporal behavior of shocks to inflation 

or to other variables. One can examine the robustness of larger and more comprehensive models. In 

short, the contribution is both policy-oriented and methodological. 

In the next section the framework underlying the rules is specified. In section 3 the putative 

outcomes of the model estimations are presented. Section 4 formulates the info-gap method, including 

the performance requirement, definitions of uncertainty and robustness. Section 5 shows the model 
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simulations and robustness curves for the benchmark model, including uncertainty on the value of the 

coefficients. This is extended in section 6 for all four Rules. Section 7 introduces uncertainty on the 

shocks to inflation in addition to parameter uncertainty. Section 8 discusses the results and section 9 

concludes. 

 

 

2. Model framework 

 

The benchmark Rule 0 is a standard macroeconomic model that summarizes the behavior of producers, 

households and the central bank. The model has a Phillips curve, an aggregate demand curve and a 

traditional Taylor rule. We assume that the policy rate is not bounded by zero and that below zero it 

reflects a shadow rate that captures the effect of unconventional monetary policy measures. The 

benchmark model is extended with an augmented Taylor rule (Rule 1), with debt in the demand equation 

(Rule 2) and with a combination of both extensions (Rule 3). The latter – most extended model - is 

presented by the following four basic equations, 

 

 �̂�𝑡 = 𝛼1 + 𝛽1�̂�𝑡−1 + 𝛽2�̂�𝑡   (1) 

2 3 1 4 6 5 2 6 4
ˆ ˆ

t t t t ty y r D                 (2) 

3 7 1 8 1 9
ˆ  ˆ

t t t ti y f            (3) 

 4 10 1 t t ti i         (4) 

 

These equations are augmented with the following supplemental equations to complete the full dynamic 

specification, 

 

n

t t tr i i      (5) 

ˆ
t t        (6) 

1

16

1

16

t

t j

j t

i i


 

     (7) 

1 if 2

0 else

tD
 

 


   (8) 

𝑓𝑡 = 𝛼5 + 𝛽11𝑓𝑡−1 (9) 

 

where 1ni   and 2   . 
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Eq. 1 is the Philips curve, with �̂�𝑡 the inflation gap and �̂�𝑡  the output gap. The former is the inflation 

rate 𝜋𝑡 as deviation from its target 𝜋∗. Eq. 2 links aggregate demand to the real interest rate 𝑟𝑡 (being 

the nominal policy rate 𝑖𝑡 - minus the inflation rate π - as deviation from the natural rate in as in eq. 5). 

We take a 6-quarters lagged interest rate, taking into account the usual lags in the monetary transmission 

process. A downward deviation of the policy rate from the natural rate has an expansionary effect on 

output and vice versa for an upward deviation. Beyond the lower bound, the policy rate i equals a 

shadow rate, as determined by Pattipeilohy et al (2016). The shadow rate is an indicator for the effect 

of unconventional monetary policy on the monetary stance (e.g. Krippner, 2013; Lombardi and Zhu, 

2014). It measures the effect of quantitative easing and forward guidance on the expectations component 

and the term premium component of bond yields. 

In Rules 2 and 3 the demand equation includes debt (𝜔𝑡), as defined in eq. 4 by the debt-to-

GDP gap (deviation of debt-to-GDP ratio from trend). An increasing debt relaxes the budget constraint 

(reflecting the credit channel of monetary transmission as in Guerrieriy and Iacoviello (2015)), but when 

the debt ratio rises beyond a critical level it can become a (non-monotonic) constraint on spending. Both 

features are included in eq. 2, with 𝐷𝜔𝑡 representing a critical high debt gap. Dummy variable D = 1 

when the absolute value of the credit-to-GDP gap is larger than a threshold value as in eq. 8. Our 

approach is based on Borio et al. (2011), who find that at a certain threshold of the credit-to-GDP gap, 

this variable performs best as early warning indicator of financial crises1. The early warning property 

is reflected in the 4-quarter lag of 𝐷𝜔𝑡. Borio et al (2016) also include the credit-to-GDP gap in an 

extended demand equation and find – in estimates for the US - that this variable is informative for the 

output gap. 

Eq. 3 is a backward-looking Taylor rule, which assumes that the Eurosystem reacts to the 

inflation gap and the output gap. In Rules 1 and 3, the Taylor rule is augmented with a financial stress 

variable (f) to which the central bank is assumed to react with its policy rate or with unconventional 

measures (variable f is modelled as a naïve autoregressive process of the financial sectors’ credit spread 

in eq. 9). Those measures are reflected in the shadow rate i. It is likely that monetary policy is relaxed 

when financial stress is high (e.g. non-performing loans or credit spreads in financial markets) and vice 

versa. In terms of the model, this represents the short-term response of the central bank to financial 

variables. The reason for the central bank to respond to financial stress is that stress may negatively 

impact on inflation through confidence or wealth effects. So the Taylor rule reflects the response of the 

central bank to cyclical, more short-term, developments in the economy and financial markets. In 

augmenting the Taylor rule with a credit spread variable we follow Woodford (2010) and Taylor and 

Zilberman (2016). 

Rules 2 and 3 also include eq. 4, describing the potential side-effects of monetary policy as 

                                                      

1 Based on a sample of 36 countries, Borio et al. (2011) find that a threshold of the credit-to-GDP gap is 2 to 2.5 percentage points has the 

highest prediction power for financial crises (credit-to-GDP gap based on deviation from HP filtered trend with lamda 1,600). 
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summarized in the credit-to-GDP gap 𝜔𝑡 (an alternative proxy would be an asset price gap). This 

reflects the debt overhang, as driven by the deviation of the nominal policy rate (or shadow rate) from 

its trend rate (𝑖,̅ which is defined in eq. 7). This deviation reflects the monetary policy stance, measured 

over a longer-term horizon. Following Borio and Disyatat (2011) and Borio et al (2016), we assume 

that a large and persistent gap of the policy rate from the equilibrium rate gives rise to an unsustainable 

expansion in credit in the longer run (i.e. the undesired effects of unconventional monetary policy). The 

central bank may want to prevent a large debt overhang, given its indicator properties for financial 

crisis. A sudden unwinding of such imbalances may go in tandem with financial stress, as reflected by 

variable f in the Taylor rule. In Rules 2 and 3 the financial imbalances are a determinant of the output 

gap in eq. 2, through which the central bank indirectly takes the side-effects of monetary policy into 

account in its strategy, as the output gap is part of the loss function in eq. 5. Here we depart from models 

that include debt in the Taylor rule (as in Gourio et al., 2016), assuming that monetary policy reacts 

foremost to debt developments that would affect the real economy. 

Based on the model, we specify the loss function that evaluates economic outcomes, 

 

2 2ˆ ˆ
t y tL y       (10) 

 

The central bank fulfills its mandate by choosing an interest rate (and/or unconventional monetary 

policy measures as reflected in the shadow rate) to obtain adequately low values for the quadratic loss 

function. It penalizes the inflation gap and the output gap, with coefficient λ being the relative weight 

that the central bank gives to the objectives. Monetary policy takes into account financial developments 

through its response to financial stress in the Taylor rule and through the effect of financial imbalances 

on the output gap, which enters the loss function. 

These equations, together with known values for ˆ
t , ˆ

ty , ωt and ti  for quarters 1, ,16t   enable 

computation of ˆ
t , ˆ

ty , 
ti  and t  for 17,18,19,t  . This is the basis for evaluating the robustness 

to uncertainty of an interest rate rule. The coefficient values used in eq. 10 are 1   and 0.5 y
. 

 

 

3. Putative estimation outcomes 

 

We estimate the model assuming no fundamental uncertainty on the parameters (“putative model”). 

Each model variant, Rules 0 to 3, is estimated as a system of equations by GMM. The system estimator 

uses more information than a single equation estimator (i.e. the contemporaneous correlation among 

the error terms across equations) and therefore will produce more precise estimates. We do not impose 

cross-equation restrictions. GMM takes into account the interdependencies among the equations in the 

model, while controlling for the endogeneity of regressors and for the correlation between the lagged 
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dependent variables and the error terms.2 The model is estimated for the euro area over the period 1990-

2015 (quarterly observations), see Appendix 1 for a detailed description of the data.  

 

3.1 Rule 0: benchmark model 

The estimation outcomes of Rule 0 (benchmark model) in column 1 of Appendix 2 show that most 

coefficients are significant and have the expected sign. The low J-statistic indicates that the model is 

well specified. In the Phillips curve, the inflation gap has a significant relationship with its own lag and 

with the output gap (the positive sign of the coefficient means that a more positive output gap leads to 

higher inflation and vice versa). The coefficient of the real interest rate in the demand curve (the interest 

rate channel) is negative as would have been expected, although not significant. The Taylor rule 

estimate shows that monetary policy reacts stronger to the inflation gap than to the output gap (given 

that the coefficient of the former is larger than the coefficient of the latter, which is insignificant). This 

is in line with the single inflation mandate of the Eurosystem. Parameter 𝛽7 is somewhat higher and 

parameter 𝛽8 is somewhat smaller than is generally assumed in the literature (coefficient for inflation 

gap 1.5 and for the output gap 0.5).  

 

3.2 Rule 1: augmented Taylor rule 

Rule 1 has a Taylor rule augmented with financial variable f. So in this model version the central bank 

reacts to the inflation gap, the output gap and to financial stress. Column 2 in Appendix 2 provides 

empirical evidence that the central banks indeed reacts to financial stress. The coefficient of variable ft 

is significantly negative, meaning that the interest rate (or shadow rate) is reduced in response to rising 

stress and vice versa. This reflects the short-term response of monetary policy to financial 

developments. 

 

3.3 Rule 2: financial imbalances 

Rule 2 includes the costs of side-effects, as captured by the credit gap 𝜔𝑡. Column 3 in Appendix 2 

shows that the debt variable 𝜔𝑡 has a significant positive effect on the output gap - in line with the credit 

channel - meaning that higher borrowing (driven by a lower interest rate in eq. 4) positively affects 

output and vice versa. The significant negative coefficient of the interaction term 𝐷𝜔𝑡 in the demand 

equation indicates that an excessively high debt ratio constrains spending. Compared to the benchmark 

model, the coefficient of the real interest rate in the demand curve is significant. The justification for 

this is that the impact of monetary policy on aggregate demand to an important extent runs through the 

credit channel. By including the debt variable 𝜔𝑡 in the model, the interest rate significantly affects 

aggregate demand. In eq. 4, the credit-to-GDP gap (𝜔𝑡) is significantly related to the interest rate gap, 

                                                      

2 The model is estimated by heteroskedasticity and autocorrelation consistent GMM (HAC), applying prewhitening to soak up the 

correlation in the moment conditions. 
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implying important side effects. The coefficient is negative, implying that a looser monetary stance 

goes in tandem with an increasing debt and vice versa. The credit-to-GDP gap affects the output gap in 

eq. 2, which captures the credit channel. 

 

3.4 Rule 3: augmented Taylor rule and financial imbalances 

Rule 3 is the most extended model, including a Taylor rule augmented with the financial variable and 

debt in the demand equation. The estimation outcomes in column 4 in Appendix 2 show that all 

coefficients in the demand equation and the Taylor rule are significant. The latter provides empirical 

evidence that the central bank reacts to the inflation and output gaps, as well as to financial stress. 

Through the shadow interest rate, this monetary policy also drives financial imbalances in eq. 4 (i.e. the 

debt ratio), which in their turn determine aggregate demand in eq. 2. Similar to Rule 2, the debt variable 

and the interaction term both have a significant effect on aggregate demand. 

 

 

4. Info-Gap formulation 

 

We use the model in the linear difference eqs. (1)-(4), with the supplemental eqs. (5)-(9), with uncertain 

inputs (shocks) on the inflation equation only. The output of the dynamic model is the loss function L, 

eq.(10), which depends on the coefficients, the shocks and the policy choice. 

 

4.1 Performance requirement 

The current time, in quarterly increments, is 1t t , and we require that the loss function in eq.(10) does 

not exceed a critical value, cL , at specified later time 2t  in the future:  

 𝐿(𝑡2) ≤ 𝐿𝑐  (11) 

 

In other words, given the current and past values of the state variables, our time horizon of interest is 

1 2, ,t t t  where 
1 17t  . 

 

We note that eq.(11) is a satisficing requirement: it specifies a policy goal that must be reached (loss no 

greater than Lc). This is different from an outcome optimization, which would seek to minimize the loss. 

Simon (1997) stressed the importance of satisficing when facing uncertainty. Furthermore, solutions 

that satisfice are usually under-determined, precisely because they are sub-optimal. This means that 

multiple satisficing policies are available. The policy selection strategy advocated here is to choose the 

satisficing policy that maximizes the robustness. This robust-satisficing strategy thus optimizes 

something (the robustness) rather than optimizing the substantive outcome (the loss). 
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4.2 Info-gap models of uncertainty 

We consider uncertainty both in some of the coefficients of the difference equations, and in the time 

and magnitude of the shocks to the inflation equation. We first consider uncertainty in the coefficients 

of the difference equations. Let c  denote a vector of N  uncertain coefficients (e.g. 
1 4,  , etc.). Let nc  

denote the putative best estimate of nc , where  n  is the standard error of the estimate of nc  (the standard 

errors as shown in Appendix 2). A fractional-error info-gap model for uncertainty in the coefficients is: 

 

 ( ) : , for all 1: , 0


  
    
  

n n

n

c c
V h c h n N h   (12) 

 

This info-gap model is an unbounded family of nested sets, ( )V h , containing possible values of the 

vector c  of uncertain coefficients. In Rules 2 and 3 the coefficients α1, α2 and α4 (the elements of vector 

c) are treated as info-gap uncertain and in Rule 0 and 1 the coefficients α1 and α2 are treated like that. 

These coefficients are chosen because they have the highest standard error in the estimation. As an 

alternative to this data-driven approach, one could opt for choosing parameters that have the highest 

uncertainty from an economic viewpoint.  

Like all info-gap models, the model in eq. 12 displays the properties of contraction and nesting. 

Contraction asserts that  (0) V c . This means that, in the absence of uncertainty, namely when 0h

, the only possible coefficient vector is the best estimate, c . Nesting means that the uncertainty sets, 

( )V h , become more inclusive as the horizon of uncertain, h , gets larger: ( ) ( )   h h V h V h

. The property of nesting endows h  with its meaning as the horizon of uncertainty. 

Now we consider uncertainty in the inflation shocks. Our approach will be to consider a shock as an 

input of uncertain magnitude and time but of duration of only a single time step. The number of such 

shocks is also uncertain. The overall strategy will be to evaluate the robustness for a single shock of 

uncertain time and magnitude, and then to find the least-robust shock-times for this shock. A future 

shock occurring at time 
ct  is represented as a function of t of the form: 

 
0

|

, if

0, elsec

c

t t

t t


 
 


  (13) 

 

That is, 
0

| 
ct t at time  ct t and equals 0 at all other times. 

The putative best estimate of the shock amplitude is 0 0  . This would presumably be a typical 

historical value for shock amplitudes. For instance, it could equal the standard deviation of the shock in 

the inflation equation (0.278 in Table 1), or it could be taken as the historical standard deviation of the 

inflation series (1.13 in our series, which is the value we use subsequently). 
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The info-gap model for uncertainty in the amplitude of a single inflation shock at time ct  is: 

 
0 0

1 |( , ) : , 0
cc t tU h t h h

s

 

  

   
  

  (14) 

 

where | ct t  refers to the function in eq.(13) and s  is an error estimate of the shock amplitude. For 

example, s  could be a measure of typical deviation of historical inflation shock amplitudes, such as the 

standard deviation of the inflation series. We assume s to be one third of the estimated shock amplitude. 

 

 We now consider M  shocks at times ,1 ,, ,c c Mt t  where 
0m  is the uncertain amplitude of the 

thm  shock. The info-gap model for uncertainty in the amplitudes of these shocks is the following direct 

extension of eq.(14): 

 
,

0 0

,1 , |( , , , ) , 1, , : , 0
c m

m
M c c M t tU h t t m M h h

s

 

  

    
  

  (15) 

 

4.3 Robustness functions 

We now define several different robustness functions. First consider a single inflation shock at time tc. 

The robustness with respect to uncertainty in the coefficients, eq.(12), and uncertainty in the amplitude 

of a shock at time 
ct , eq.(14), is the greatest horizon of uncertainty, h , up to which the requirement in 

eq.(11) is always satisfied: 

 
| 1

1 |
( ), ( , )

ˆ ( , ) max : max ( , )
c

t t cc

c c t t c
c V h U h t

h L t h L c L



 

  
   

  
  (16) 

 

 

The time of the inflation shock is uncertain, so the robustness to a single shock at some unknown time 

is the minimum of 1
ˆ ( , )c ch L t  over the time horizon of concern: 

 
1 2

1 1
ˆ ˆ( ) min ( , )

c
c c c

t t t
h L h L t

 
   (17) 

 

We now consider the robustness to M  inflation shocks at times 1 ,1 ,2 ,c c c Mt t t t T     . In 

analogy to eq.(16) but using the info-gap model in eq.(15), we define the robustness as: 

 
,1 ,

| ,

,1 , | |
( ), ( )

ˆ ( , , , ) max : max ( , , , )
c c M

t t Mc m

M c c c M t t t t c
c V h U h

h L t t h L c L


 
 

  
   

  
  (18) 

 

The times of the M  inflation shocks are uncertain, so the robustness to these shocks at unknown times 
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,1 ,, ,c c Mt t  is the minimum of ,1 ,
ˆ ( , , , )M c c c Mh L t t  over the time horizon of concern: 

 
1 ,1 ,2 , 2

,1 ,
ˆ ˆ( ) min ( , , , )

c c c M
M c M c c c M

t t t t t
h L h L t t

    
   (19) 

 

Finally, we define the robustness to uncertainty in the coefficients assuming that no shock occurs. 

This is obtained from 
1
ˆ ( , )c ch L t  in eq.(16) by removing the shock: 

   0 |
( )

ˆ ( ) max : max ( , 0)
cc t t c

c V h
h L h L c L


     (20) 

 

 

5. No-shock robustness with uncertain coefficients 

 

We evaluate the robustness in eq.(20), using the full model (Rule 3), with estimated coefficients given 

in column 4 of Appendix 2, taking into account that the estimates are susceptible to Knightian 

uncertainty. 

        
Figure 1. Output and inflation gap, and loss  

function: putative values (Rule 3)                       Figure 2. Inflation and debt: putative values (Rule 3) 

 

 

Figure 1 shows the output and inflation gaps, ˆ
ty  and ˆ

t , and the loss function reduced by a factor of 

10, /10tL , vs. time, based on the putative coefficient values of Rule 3 and no shocks. These, and all 

subsequent figures in this section, are calculated for eight quarters, so 
1 17t   and 

1 7 24t   . Figure 2 

shows the putative interest rate and debt functions for eight quarters. These functions show substantial 

divergence from the initial values after the sixth quarter. 

The simulation outcomes indicate that the inflation and output gaps become positive over the 

simulation horizon, in response to very accommodative monetary conditions. At t1 -1 the policy (or 

shadow) rate is around -0.8% and the rate of inflation 0.9%. This implies a real interest rate of -1.7%, 

which is substantially below the assumed level of the natural rate of 1% (the policy or shadow rate is 

low because it responds to the negative output and inflation gaps at t1 -1 via the Taylor rule (eq. 3)). The 
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accommodative monetary policy stance stimulates output via the demand curve (eq. 2). As output rises, 

the inflation gap �̂�𝑡 is positively affected through the Philips curve (eq. 1). The central bank reacts via 

the Taylor rule to the positive developments in output and inflation, by raising the interest rate from t1 

+ 3 onward. This closes the gap between the policy rate and its trend level and so exerts downward 

pressure on credit gap 𝜔𝑡via eq. 4. 

 

     
Figure 3. No-shock robustness for 1st four quarters 

(Rule 3)     Figure 4. No-shock robustness for last 4 quarters (Rule 3) 

 

 
Figures 3 and 4 show the robustness against uncertainty in the dynamic coefficients with no shocks 

0
ˆ ( )ch L , vs. the maximum acceptable loss, 

cL . The time at which the performance requirement is 

imposed is specified in each curve.  

 

The positive slopes of the curves in Figures 3 and 4 express the irrevocable trade-off between 

robustness and performance. More demanding performance (smaller acceptable loss 
cL , meaning 

smaller output and inflation gaps) entails less robustness against uncertainty (smaller 
0

ˆ ( )ch L ). We also 

note that the robustness becomes zero precisely at the putative best estimate of the loss function. That 

is, 
0

ˆ ( ) 0ch L   when cL  is chosen as the value of the loss function, L , evaluated with the putative 

coefficients, as shown in Figure 1. The significance of this “zeroing” phenomenon is that the putative 

best estimate of the loss is not a reliable basis for policy selection because the robustness-against-

uncertainty for obtaining that value of loss is zero. 
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Figure 5. Expansion of Figure 3 (Rule 3) 

 

 

Figure 5 shows an expanded version of Figure 3, illustrating crossing of robustness curves of the first 

four quarters. The putative value of the loss is lowest in quarter 1 1t   and equals 1.30, which is the 

horizontal intercept of the red curve. One might obtain the impression, based on the putative best-

estimates of the loss function, that quarter 
1 1t   is better than quarter 1t ; that is, the situation seems to be 

improving. However, we stress two points. First, these best-estimates have no robustness against 

uncertainty so these predictions are unreliable; this is the zeroing property. Second, the slopes of the 

robustness curves decrease from quarter 1t  to quarter 1 3t  . 

Based on the trade-off property, the slope can be understood as a cost of robustness: low slope 

implies high cost of robustness. For the first quarter, 1t , for which the robustness curve is relatively 

steep, we see that an increase in robustness from 0 to 2 entails increasing the acceptable loss, cL , from 

1.37 to 1.66. In contrast, for quarter 
1 1t  , increasing the robustness from 0 to 2 entails increasing cL  

from 1.30 to 1.86. The cost of robustness is even higher for the latter two quarters. The intuition here is 

that robustness against uncertainty is more costly in the distant future than in the immediate future 

because of greater intervening uncertainty. The slopes of these curves quantify this intuition. 

 Finally, from Figure 4 we see that the robustness rapidly decreases as we consider quarters 
1 4t   

to 
1 7t  . Figure 3 shows that the robustness at quarter 

1 3t   reaches a value of 3 at 7.2cL  . In contrast, 

we see from Figure 4 that the robustness equals 3 at 16.9cL   in quarter 
1 4t  , and at 164cL   in quarter 

1 7t  . This seems to support the claim that predictions are not reliable, or even particularly useful, after 

about four or five quarters. It implies that a macroeconomic model including financial variables (as 

Rule 3) is increasingly less robust to parameter uncertainty if the forecasting horizon is extended. While 

this is a common feature of empirical models, in the next sections we test to what extent this holds for 

the other model specifications. 
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6. Policy rules for no-shock robustness with uncertain coefficients 

 

We continue the example from the previous section and now compare the four policy rules as given in 

Appendix 2. We consider only the first 4 quarters because we saw in the previous section that prediction 

becomes quite unreliable thereafter. 

 

6.1. Putative dynamics without shocks 

Figures 6 and 7 show the putative dynamics without shocks, based on the best estimates of the 

coefficients, for the three different policy rules beyond the baseline model (notice that the right panels 

- Rule 3 - are equal to Figures 1 and 2 up to t1 + 3). Compared to Rules 1 and 3, the dynamics of Rule 

2 are driven by a higher interest rate i. In Rule 2, the central bank does not react to financial stress via 

the Taylor rule (eq. 3). Since financial stress has been relatively high before t1 , the policy rate is lower 

in Rules 1 and 3 than in Rule 2. As a consequence, �̂�𝑡  develops less favorably in Rule 2 and 𝜔𝑡 is 

decreasing faster. The declining debt ratio also has a downward effect on the output gap via the demand 

equation (eq. 2). Note that in Rule 1 the debt function is identically zero, as defined by this rule. 

Moreover, the improvement of the output gap in Rule 1 lags behind its dynamics in Rule 3, which can 

be explained by the much lower coefficient of r the in the demand equation (eq. 2) in Rule 1. 

 

Figure 6. Putative dynamics: inflation and output gaps, and loss function 

 

 
 Figure 7. Putative dynamics: interest rate and debt 

 

  

  

Rule 3 

Rule 1 

Rule 3 
Rule 1 
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6.2 Robustness 

The four panels of Figure 8 show robustness functions for the four policy rules, taking into account 

uncertainty in the model parameters, each panel at a different quarter. That is, we are evaluating the 

robustness in eq. (20) based on the info-gap model in eq. (12). In the first quarter, 1t , we see that Rule 2 

is putatively better than the other rules, as implied by the zeroing property (horizontal intercept of Rule 

2 is to the left of that for the other rules). While Rule 2 is putatively better, its cost of robustness is 

greater resulting in crossing of the robustness curve of Rule 0. The curve crossing implies that the 

central bank should exclude debt (𝜔𝑡) in its monetary policy framework – and choose Rule 0 - if it 

prefers a high level of robustness. Rules 1 and 3 are very nearly the same, both putatively and in terms 

of robustness, although they are less robust than the benchmark model (Rule 0). 

 In the second step, 
1 1t  , we see that Rule 2 is putatively better than Rules 1 and 3 but its cost of 

robustness is greater resulting in crossing of the other robustness curves. For
cL exceeding approximately 

1.6 we see that both Rules 1 and 3 are clearly more robust than Rule 2. It shows that only including debt 

in the model makes the framework less robust to parameter uncertainty compared to a set up in which 

the central bank (also) reacts to financial stress models (models 1 and 3). However, not including any 

financial variables in the framework (Rule 0, the benchmark model) is always the most the robust rule 

at this time step. A similar picture emerges in quarter 
1 2t   and again in quarter

1 3t  , though in the latter 

case Rule 1 is substantially robust dominant over Rules 2 and 3. This underlines that including debt 

(𝜔𝑡) comes with the cost of lower robustness. 

In summary, the benchmark model (Rule 0) is robust-preferred almost always for the specific 

market situation of the first 16 quarters. Its parsimonious specification, that excludes the uncertain 

effects of financial stress and debt on the macroeconomy and monetary policy, reduces the vulnerability 

to parameter uncertainty. Augmenting the Taylor rule with a financial variable (Rules 1 and 3) leads to 

a loss of robustness, but less than in Rule 2, which includes financial imbalances in the demand 

equation. Rules 1 and 3 are quite similar in robustness (until t1 + 3) even though the model of Rule 3 

has more parameter uncertainty due to the debt function, t , whose coefficient, 4 , is highly uncertain. 

So, while this parsimony of Rule 1 impugns that realism of the model, it also reduces its vulnerability 

to modeling uncertainty. This perhaps explains the robust dominance of Rule 1 over Rule 3 in the fourth 

quarter. Finally, we note that the robustness decreases from the first to the fourth quarter, as reflected 

by the shifting of the robustness curves to the right. 
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Figure 8. No-shock robustness functions in 1st 4 quarters 

 

 

 

7. Policy rules for robustness to uncertain shock with uncertain coefficients 

 

7.1 Dynamics of economic variables 

We continue the previous section and introduce a single shock to inflation, where the amplitude of the 

shock (ɛt) is uncertain. We also consider three uncertain model coefficients, and evaluate the robustness 

in eq.(16) as discussed in Appendix 4. The putative amplitude of the shock, 0  in the info-gap model 

of eq. (14), is 1.13 (i.e. the standard deviation of the inflation series π). The uncertainty weight in the 

info-gap model is 0 / 3s  . In this section we present results for a single inflation shock of uncertain 

amplitude at time 1ct t . Since the system is causal, meaning that the future does not influence the past, 

a shock occurring at time 
1t k  does not alter the robustness function evaluated at an earlier time. 

Uncertainty in the underlying data process of inflation is both interesting and topical, given the 

‘unknowns’ with regard to the macroeconomic dynamics in a low inflation environment. 

Figures 9 and 10 show that the shock to the inflation gap reduces the loss function for Rules 1 

- 3. For example, compare the putative dynamics under Rule 3, with a shock at 1t  (Figures 9-10) to the 

no shock dynamics (Figures 6-7). With no shock, the inflation gap is about -1 percentage point 

throughout the first four quarters, while with a shock it is near zero for the first three quarters, rising 

slightly in the fourth quarter. The (positive) inflation shock thus brings inflation closer to its target rate, 

3 
Rule 1 

3 

Rule 1 

3 

1 

3 

1 
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which improves the economic outcome and so reduces the loss. The result is that the loss function is 

lower with the shock for the first three quarters (a less negative inflation gap results in a lower loss). 

The effect is even more dramatic with Rules 1 and 2, for which the no-shock loss is much larger than 

with a shock at 
1t .  

 The upward shock to �̂�𝑡 at 1t  leads to a rise in the policy rate at 1t +1 according to the backward 

looking Taylor rule. This counteracts the downward effect of the (upward) inflation shock on the real 

interest rate rt in demand eq.2. The increase of the policy rate it following the inflation shock causes 

much stronger downward effects on debt variable t than in the no-shock simulations and so drags on 

output via the credit channel (which is part of the demand equation in Rules 2 and 3). Similar effects 

are generated by a shock at 1 1ct t  .3 

 

 

Figure 9. Putative dynamics: inflation and output gaps, and loss function after shock 0 at 1ct t   

 

 

 Figure 10. Putative dynamics: interest rate and debt after shock 0 at 1ct t  

 

 
7.2 Robustness 

Uncertainty in the model coefficients is represented by the info-gap model of eq. (12) and uncertainty 

in the amplitude of a single shock, occurring at time tc, is represented by the info-gap model of eq. (14). 

We now consider robustness to uncertainty in the coefficients and uncertainty in the amplitude of a 

single shock at time t1, defined in eq. (16).  

                                                      
3 The plots for 

1 1ct t   are not shown to economize on the number of figures, but are available from the authors on request. 

1 

Rule  3 

Rule  3 Rule  1 Rule  3 
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The robustness curves in the case of a shock (Figure 11) show that robustness is zero at the 

putative value of the loss function, and increases monotonically as the critical value of loss (
cL ) 

increases (these are the zeroing and trade off properties, and they hold for all info-gap robustness 

functions as discussed earlier). We recall from our earlier discussion that a shock to the inflation gap, 

in the first quarter, tends to reduce the loss function. This, together with the zeroing property, implies 

that the robustness curve sprouts off the horizontal axis further left with a shock than without (compare 

Figures 11 and 8). The costs of robustness (slopes of the robustness curves) are similar in these two 

cases, or sometimes slightly greater with the shock. This holds for Rules 2 and 3 in particular; their 

relatively flatter robustness curves imply that the improvement of robustness is relatively small if a 

higher loss is tolerated. It shows that including financial imbalances (i.e. debt) in the model goes with 

a deteriorating trade-off between performance and robustness. In other words, uncertainty on the 

inflation process exacerbates the consequences of parameter uncertainty for the robustness of the model 

framework. 

The preference reversals between the four policy rules (as expressed by intersecting robustness 

curves) are generally similar with and without shocks. Compare, for instance, the robustness curves at 

time t1 + 1 without a shock (Figure 8) and with a shock at t1 + 1 (Figure 11). The relative distance 

between robustness curves for Rules 1 and 3 are comparable in these two cases, though the robustness 

for Rule 3 is somewhat flatter and the putative (zero-robustness) values differ. However, the preference 

reversal between Rules 2 and 3 at t1 + 2 and t1 + 3, and the robust dominance of Rule 0 (and Rule 1 over 

Rules 2 and 3), is much the same in both cases. 

Consider a shock in the first quarter, tc = t1. For all four policy rules, the cost of robustness 

increases significantly from 1t  to t1 + 3, causing much lower robustness at moderate and large values of 

critical loss
cL , and an expansion of the horizontal scale in the robustness plots for these four quarters at 

time t1. This phenomenon is observed also when the shock occurs at a later period.4It is also significant 

that Rule 0 and to a lesser extent Rule 1 have the lowest cost of robustness - i.e. the steepest robustness 

curve – especially in the third and fourth quarters. This gives both Rules their robust dominance in later 

quarters, and presumably results from their modeling parsimony. A complementary interpretation is 

that the impact of the Knightian uncertainty on the economic dynamics, both with regard to the 

estimated relationships and the shock dynamics, is especially large when debt (𝜔𝑡) is taken into account 

in the model framework. 

 

                                                      

4 The robustness curves for shocks at times t1 + 1, t1 + 2 and t1 + 3 are not shown to economize on the number of figures, but are available 

from the authors on request. 
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Figure 11. Robustness functions in 1st 4 quarters with shock in 1st quarter 

 

 

8. Discussion 

 

There are several explanations for our main finding that a macroeconomic model excluding financial 

variables (i.e. Rule 0) is, in most but not all circumstances, most robust to parameter and shock 

uncertainty (for the specific initial market conditions we examined). The info-gap robust satisficing 

analysis identifies those situations in which financial variables can be included without loss of 

robustness. A technical or structural, but not substantively economic, explanation is that Rule 0 is 

simpler: it has fewer parameters that can err. Even though Rule 0 starts out ‘more wrong’ than Rule 2, 

which is putatively better, the benchmark model nonetheless manages uncertainty better than the other 

rules, in almost all cases. Hence Rule 0 is more robust. Robustness (often) is a proxy for probability of 

success and so the greater robustness of Rule 0 makes it more likely to lead to policy success. 

 Another explanation of the outperformance of Rule 0 relates to the literature on heuristics, 

which asserts that simple rules turn out to be more robust and accurate in complex environments (e.g. 

Simon, 1995; Gigerenzer et al. 2011). In such conditions agents have limited capacity to understand the 

system and are not able to describe the statistical distribution of economic shocks. As a result they use 

simple rules (“heuristics”) to guide their behavior. De Grauwe (2011) introduces heuristics into 

macroeconomic models and monetary policy. He concludes that very simple rules fit the data process 

well. Aikman et al. (2010) show that this also holds for modelling the financial system, which has 
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become more complex due to interactions between the real and financial sphere.  

Adding complexity may seem to be a good thing as it makes the models more ‘realistic’. However, 

modelling such complexities requires deep knowledge of the underlying structures. Taking into account 

uncertainty means that such knowledge by definition is incomplete or missing. So while complicated 

models may seem better in a putative modelling sense, simpler rules are preferable in a robust sense. 

Simple rules tend to be better at managing uncertainty. More complex, augmented models – like Rules 

1, 2 and 3 - can break down once uncertainty is introduced into the system. This explains why our 

simpler benchmark model is most robust and preferable. 

 

 

9. Conclusion 

 

Based on info-gap theory we assess the impact of Knightian uncertainty, both with regard to model 

parameters and the shock (uncertainty on the inflation process), on macroeconomic models that include 

financial variables. The info-gap approach takes into account the fundamental choice between 

robustness against uncertainty versus the aspiration for high-value outcomes. 

 The main conclusions are that a macroeconomic model including financial variables is 

increasingly less robust to parameter and shock uncertainty as the forecasting horizon is extended. We 

found that excluding all financial variables from the framework is usually, but not always, the most the 

robust policy rule. The info-gap analysis of robustness allows the analyst to identify those situations in 

which financial variables can be included without loss of robustness. Knightian uncertainty on the 

economic dynamics, both with regard to the estimated relationships and the shock dynamics, is 

especially large when a measure of debt is taken into account in the model framework. Less robustness 

is sacrificed if the central banks reacts to financial stress, by augmenting the Taylor rule with a credit 

spread variable. 

For central banks these outcomes imply that including financial stability considerations in the 

monetary policy framework is challenging, given the Knightian uncertainty on the dynamics of financial 

variables and their interaction with the real economy. This would call for keeping price stability the 

primary objective of monetary policy, particularly given the uncertainties on the long run effects of 

financial imbalances on the economy. However, the central bank could consider including financial 

stress in the reaction function of the central bank. The info-gap simulations show that the loss of 

robustness is limited in that case, which may be acceptable for the policymaker given the gain in 

reaching his objectives. The clear loss of robustness when a debt measure is taken into account indicates 

that including financial imbalances in the monetary policy objective does not necessarily increase policy 

robustness, and may even decrease it. This does not say that the central bank should not include financial 

variables in its information set, to gauge risks to price stability from a wide spectrum of factors. 

Finally, our contribution is methodological. The analysis can be applied to explore other 
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uncertainties, and other policy interventions can be evaluated with respect to their robustness against 

Knightian uncertainty.  
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Appendix 1. Definition of model variables 

 

 

�̂�𝑡 = inflation gap (realized inflation rate – inflation objective of 2%) 

�̂�𝑡 = output gap (realized real GDP – HP filtered trend of real GDP) 

𝑖𝑡 = relevant policy rate (Eonia rate until 2008, shadow rate from 2008 onward)  

𝑖𝑛 = natural real interest rate (proxied by a constant value of 1%)  

𝑖 ̅= trend rate of interest (4 years moving average of 𝑖𝑡) 

𝑟𝑡 = real interest rate (𝑖𝑡 - π- in) 

𝑓𝑡 = financial stress (proxied by CDS spread financials (log)) 

𝜔𝑡 = credit-to-GDP ratio (total credit euro area, households, firms, governments) as deviation from HP 

filtered trend 

D = dummy, which equals 1 if the absolute value of the deviation of the credit-to-GDP ratio from 

trend is higher than 2 percentage points (critical threshold level)  
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Appendix 2. Estimation outcomes 

 

Rule 0 Rule 1 Rule 2 Rule 3

Benchmark 

model

Model with augmented 

Taylor rule

Model with financial 

imbalances Full model

Philips curve    

α1 0.000 -0.003 0.018 -0.054**

(0.023) (0.027) (0.024) (0.026)

β1 0.963*** 0.963*** 0.953*** 0.958***

(0.026) (0.025) (0.025) (0.026)

β2 0.100*** 0.118*** 0.125*** 0.124***

(0.024) (0.026) (0.020) (0.020)

IS curve

α2 0.051 0.058 -0.031 -0.252**

(0.110) (0.081) (0.140) (0.112)

β3 0.892*** 0.904*** 1.230*** 1.312***

(0.044) (0.047) (0.095) (0.060)

β4 -0.030 -0.015 -0.131*** -0.187***

(0.026) (0.034) (0.047) (0.035)

β5 0.383*** 0.045***

(0.098) (0.056)

β6 -0.183*** -0.252***

(0.065) (0.055)

Taylor rule

α3 3.299*** 8.575*** 2.995*** 8.251***

(0.750) (1.228) (0.552) (0.839)

β7 2.280*** 1.915** 2.480*** 1.899***

(0.550) (0.792) (0.424) (0.253)

β8 0.421 0.383 0.322* 0.213**

(0.270) (0.325) (0.178) (0.105)

β9 -1.262*** -1.267***

(0.249) (0.167)

Debt equation

α4 -0.919** -0.436

(0.464) (0.443)

β10 -1.425*** -0.997***

(0.328) (0.367)

N 337 302 357 322

J stat 0.024 0.022 0.057 0.067

Outcomes of GMM estimation of system of equations 1, 2,3 and 4, with data for the euro area.

Sample period 1990-2015 (quarterly observations). The model is estimated by heteroskedasticity

and autocorrelation consistent GMM (HAC), applying prewhitening to soak up the

correlation in the moment conditions. Standard errors in parentheses, where *** indicates

significance at the 1% level, ** at the 5% level, and * at the 10% level.
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Appendix 3. Efficient computation of no-shock robustness with 3 uncertain coefficients 

 

The robustness 0
ˆ ( )ch L , defined in eq.(20), is a function of the time, 2t , at which the performance 

requirement, eq.(11), must be satisficed. We now formulate the computation of the inverse of 0
ˆ ( )ch L

, denoted ( , )m h t , which is the inner maximum in eq.(20). We consider 3 uncertain coefficients, so 

3N  in the info-gap model of eq.(12).  

In order to evaluate the inner maximum in eq.(20) we need to sample the values of the uncertain 

coefficients in the info-gap model. Let , 1, ,kh k K  denote the horizon of uncertainty values at 

which we will calculate ( , )m h t , where 1k kh h  , and define max Kh h . Let cJ  denote the number of 

evenly spaced values of nc  that we will sample from max( )V h . The step size for increments of each nc  

is: 

 max2

1
n

n

c

h
d

J





  (21) 

The sampled values of nc  are: 

 
, max ( 1)n j n n nc c h j d      (22) 

for 1, ,n N  and 1, , cj J . We require that cJ  be an odd integer to assure that the value of 
,n jc  

at the middle value of j  equals the putative estimate, nc . 

The basic procedure is that, for each value of kh , we calculate the system dynamics from time step 

from 1t  to 2t . At each time step, t , we calculate the inner maximum in eq.(20), ( , )km h t , which is the 

maximum on ( )kV h . This uncertainty set is the hypercube of coefficients satisfying: 

 
,n k n n j n k nc h c c h       (23) 

which, using eq.(22), implies: 

 max ( 1)k n n n k nh h j d h          (24) 

and this implies: 

 
  

   max max( ) ( )
1 1k n k n

n n

h h h h
j

d d
  (25) 

Denote the quantities on the left and right of eq.(25) by ,minnj  and ,maxnj , respectively. Thus the 

coefficient samples from ( )kV h  are the coefficients 
,n jc  in eq.(22) for 1, ,n N  and for 

,min ,max n nj j j . 
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 However, each time we increment the value of kh  we don't have to re-calculate the dynamics for 

coefficient values that are in the interior of the info-gap model (corresponding to horizons of uncertainty 

1 1, , kh h ). We only need to compare the maximum obtained with coefficients in the new "outer layer" 

that has been added to the hypercube ( )kV h , to the maximum obtained previously. An N-tuple of 

coefficients, 
11, ,, ,

Nj N jc c , is on the new outer layer of ( )kV h  if and only if at least one of these 

coefficients is at an extreme value. That is, the N-tuple 
11, ,, ,

Nj N jc c  is on the boundary of ( )kV h  if and 

only if there is an n such that 
,minn nj j  or 

,maxn nj j . 

We can now summarize the algorithm for evaluating the inverse of 0
ˆ ( )ch L . 

Loop on horizon of uncertainty, 1 max, ,kh h h . 

Loop on 1 1,min 1,max, ,j j j . 

Loop on 2 2,min 2,max, ,j j j  

Loop on 3 3,min 3,max, ,j j j  

If the triplet 
1 31, 3,, ,j jc c  is on the boundary of ( )kV h  then: 

- Loop on t  from 1t  to 2t . 

- Calculate the performance function, L in eq.(10), for each t  and for the triplet 

of coefficients. Call this value 
1 31, 3,( , , , )j jL t c c . 

Find the maximum of the values of 
1 31, 3,( , , , )j jL t c c  on the boundary triplets. Call this 

temp ( , )km h t . 

Calculate ( , )km h t by comparing temp ( , )km h t  against 1( , )km h t . Specifically: 

  temp 1( , ) max ( , ), ( , )k k km h t m h t m h t   (26) 

 

 

Appendix 4. Efficient computation of 1-shock robustness with 3 uncertain coefficients 

 

The algorithm of the previous section is directly extendable when adding a shock at a single time step, 

ct . We need only define analogs of the quantities in eqs.(21)-(25), as follows, and then add a loop on 

the shock-amplitude index j .  

Let J  denote the number of evenly spaced values of the shock amplitude,  , that we will sample 
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from 1 max( , )cU h t  in eq.(14). The step size for increments of   is: 

 max2

1

sh
d

J







  (27) 

The sampled values of   are: 

 
0

max ( 1)j sh j d
         (28) 

for 1, , j J . We require that J  be an odd integer to assure that the middle value of 
j

  equals 

the putative estimate, 0 . 

The basic procedure is that, for each value of kh , we calculate the system dynamics from time step 

from 1t  to 2t . At each time step, t , we calculate the inner maximum in eq.(16), ( , )km h t , which is the 

maximum on ( )kV h  and 1( , )k cU h t . The second of these uncertainty sets is the interval of shock 

amplitudes satisfying: 

 
0

k j kh s h s


        (29) 

which, using eq.(28), implies: 

 max ( 1)k kh s sh j d h s         (30) 

and this implies: 

 max max( ) ( )
1 1k kh h s h h s

j
d d



 

 
      (31) 

Denote the quantities on the left and right of eq.(31) by ,minj  and ,maxj , respectively. Thus the shock-

amplitude samples from 1( , )k cU h t  are the amplitudes 
j  in eq.(28) for ,min ,max   j j j . 

 We are considering uncertainty in both the coefficients and the shock amplitude, so the info-

gap model is actually the Cartesian product of the info-gap models in eqs.(12) and (14): 

 1( ) ( ) ( , )cU h V h U h t    (32) 

This is a 4-dimensional hypercube. Thus, each time we increment the horizon of uncertainty, we don't 

need to re-calculate the dynamics for the coefficients and shock amplitudes that are in the interior of 

this hypercube. We add a loop to the algorithm in the previous section and check if we are on a 

boundary. Thus the algorithm for calculating the inverse of 
1
ˆ ( , )c ch L t  is: 

Loop on horizon of uncertainty, 1 max, ,kh h h . 

Loop on 1 1,min 1,max, ,j j j . 

Loop on 2 2,min 2,max, ,j j j  

Loop on 3 3,min 3,max, ,j j j  

 Loop on 
,min ,max, ,j j j    
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If the quadruplet 
1 31, 3,, , ,j j jc c


  is on the boundary of ( )U h  in eq.(32) then: 

- Loop on t  from 1t  to 2t . 

- Calculate the performance function, L in eq.(10), for each t  and for the 

quadruplet. Call this value 
1 31, 3,( , , , , )


j j jL t c c . 

Find the maximum of the values of 
1 31, 3,( , , , , )


j j jL t c c  on the boundary quadruplets. Call 

this maximum temp ( , )km h t . 

Calculate ( , )km h t by comparing temp ( , )km h t  against 1( , )km h t . Specifically: 

  temp 1( , ) max ( , ), ( , )k k km h t m h t m h t   (33) 
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