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Abstract

This paper investigates the prediction of Value-at-Risk (VaR) using option-implied information ob-

tained by the maximum entropy method. The maximum entropy method provides an estimate of

the risk-neutral distribution based on option prices. Besides commonly used implied volatility, we

obtain implied skewness, kurtosis and quantile from the estimated risk-neutral distribution. We find

that using the implied volatility and implied quantile as explanatory variables significantly outper-

forms considered benchmarks in predicting the VaR, including the commonly used GARCH(1,1)-

model. This holds for all considered VaR prediction models and VaR probability levels. Overall,

a simple quantile regression model performs best for all considered VaR probability levels and

forecast horizons.
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1 Introduction

Value-at-Risk (VaR), defined as a high quantile of future portfolio losses, is a standard risk measure

used by financial institutions to quantify market risk. Due to a growing risk awareness and the

tightening of regulatory requirements, there is a strong need for accurate risk estimation and con-

sequently, well-performing and reliable VaR prediction strategies. Most existing VaR prediction

models perform weakly in practice (see, e.g., Kuester et al., 2006; Bao et al., 2006). This chal-

lenge becomes even more pronounced when considering forecasting VaR for portfolio losses over

a longer horizon.

One potential reason for the difficulty in VaR prediction stems from the fact that the existing

approaches have mainly focused on using historical return information to predict the VaR in the fu-

ture. If the return distribution of the future differs significantly from the considered past, historical

return information might not be sufficient to accurately forecast the VaR. This situation is similar to

the prediction of future realized volatility using historical volatilities. To overcome this difficulty,

in the context of forecasting future stock volatility, several studies show that using forward-looking

information, such as the option-implied volatility, outperforms historical volatility (see, e.g., Latané

and Rendleman, 1976; Chiras and Manaster, 1978; Christensen and Prabhala, 1998). In a similar

spirit, we expect that option-implied information, such as implied quantile, can be valuable for fore-

casting VaR. Therefore, the aim of this paper is to investigate the improvement of VaR predictions

by using option-implied information, in particular, the implied quantile.

A few studies have considered various ways to incorporate option-implied information for pre-

dicting VaR. Aı̈t-Sahalia and Lo (2000) introduced an VaR prediction method that is based on

option information instead of historical return information only. They show that their option-based

VaR forecast captures certain market risk aspects that a conventional VaR prediction could not cap-

ture. Another method to predict the VaR based on option prices is to first estimate the quantile of

the corresponding parametric risk-neutral probability distribution and then change the risk-neutral

probability measure to the physical measure, as proposed by Barone Adesi (2016). Lastly, Giot

(2003, 2005), Jeon and Taylor (2013), Louzis et al. (2013) and Kim and Ryu (2015) incorporate

option-implied volatility into different established VaR prediction models. They show that the re-

sulting predictions are not worse and in some settings better than commonly used VaR prediction

approaches. Compared to these studies, we follow a similar approach by incorporating not only the

implied volatility, but also higher implied moments as well as implied quantiles into established

VaR prediction models and test whether they help to improve the performance of VaR prediction.

For that purpose, we need to extract these implied measures from the corresponding risk-neutral

probability distribution of returns. We achieve this goal by applying the maximum entropy method

(MEM).
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Based on market prices of European options, we use the MEM (see Jaynes, 1957) to estimate

the risk-neutral probability distribution of asset returns. The main advantage of this approach is

that it yields a non-parametric distribution with an unrestricted shape. Furthermore, it is com-

pletely determined by the available options traded in the market. Lastly, the method performs well

without requiring many options with different strike prices (Xiao and Zhou, 2016). The estimated

distribution allows us to extract implied moments and quantiles. Xiao and Zhou (2016) show that

MEM-implied moments are good predictors for future realized moments. Similarly, we investi-

gate whether the quantile of the estimated risk-neutral distribution can help to predict the realized

quantile in the future.

To estimate the risk-neutral probability distribution of asset returns, we follow the approach

by Buchen and Kelly (1996), which shows that applying the MEM on market prices of options

can reproduce the risk-neutral probability function. The MEM method is based on the concept

of entropy. A possible intuition behind entropy is the measurement of the amount of order and

disorder (Zhou et al., 2013). We maximize the entropy of the distribution subject to constraints

given by arbitrage-free derivative pricing. Solving this optimization problem yields the risk-neutral

probability measure, such that the expected value of the discounted option payoffs is equal to

the current option market price. This method yields a discrete distribution that is related to the

asset returns over the option’s remaining time to maturity. From this distribution we can derive

the implied moments as well as quantiles, which we then incorporate as explanatory variables in

different VaR prediction models, such as covariate, GARCH (see, e.g., Engle, 1982; Bollerslev,

1986) and quantile regression models (see, e.g., Koenker and Bassett, 1978; Engle and Manganelli,

2004).

We find that using option-implied information can significantly improve the VaR prediction

performance. The prediction performance across different models are compared by the compara-

tive backtest suggested by Nolde and Ziegel (2017). Prediction models based on implied volatility

and quantile significantly outperform considered benchmarks, which are commonly used models

solely based on historical return information. This is consistent for different model classes and VaR

probability levels. In addition, we find that when incorporating implied measures, a quantile regres-

sion model significantly outperforms the GARCH-type models for all considered VaR probability

levels.

Our study contributes to the literature in three ways. First, our study is related to the literature

on extracting forward-looking information from options and forecasting based on the information

extracted. We extract option-implied information based on the entropy concept. This method has

mainly been used for portfolio selection (see, e.g., Philippatos and Wilson, 1972; Ou, 2005; Huang,

2008) and asset pricing, e.g. pricing of stock options (Gulko, 1999) and bond options (Gulko,

2002). In the context of forecasting, the existing studies mostly use implied volatility (see, e.g.,
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Latané and Rendleman, 1976; Chiras and Manaster, 1978; Christensen and Prabhala, 1998; Guo,

1998; Bakshi and Kapadia, 2003). We consider other higher implied moments as well as implied

quantiles, and show that they can be beneficial for forecasting risk measures.

Second, we contribute to the literature of forecasting VaR. Our study provides a comprehen-

sive comparison across different VaR prediction models with and without incorporating implied

measures. Compared to the studies of Giot (2003, 2005), Jeon and Taylor (2013), Louzis et al.

(2013) and Kim and Ryu (2015), our result further improves on the VaR prediction performance by

incorporating option-implied information.

Third, our results point to the direction that quantile regression models are well suited for pre-

dicting the VaR when using option-implied information. Quantile regressions were introduced

for predicting the quantile of a dependent variable given the levels of the independent variables

(Koenker and Bassett, 1978). However, with historical information only, Kuester et al. (2006) and

Bao et al. (2006) show that GARCH-type models perform better than quantile regression models

for VaR prediction. We show that when adding option-implied information this ranking reverses.

This result re-establishes the usefulness of quantile regression in VaR prediction.

This paper is organized as follows. We explain the methodology to extract option-implied

information in Sections 2. Section 3 provides the models for VaR predictions. In Section 4 we

discuss the results of the empirical study conducted. We investigate the robustness of these results

in Section 5 and Section 6 concludes the paper.

2 Option-Implied Measures from Maximum Entropy Method

This section explains the methodology of the MEM. First, Section 2.1 explains the procedure used

to estimate the risk-neutral probability distribution. Second, the derivation of the considered im-

plied measures is described in Section 2.2.

2.1 Estimation Procedure

Following the approach described by Buchen and Kelly (1996), we use the MEM to estimate the

risk-neutral probability distribution of asset returns given market prices of corresponding Euro-

pean options. Based on the assumption of arbitrage-free derivative pricing, we use these prices to

formulate constraints for the distribution.

We consider the option prices on day t with a corresponding option maturity of h. In order to

determine the distribution of the gross asset returns over the time horizon t to t + h, denoted by

Rt:t+h ∈ R+, we use the market prices of m options at time t, denoted by ct, j, for j = 1, . . . ,m.
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Arbitrage-free pricing assumes that the current option price equals the expectation of its discounted

payoff at maturity under the risk neutral measure, which is given by

Call options: ct, j = E
[
max

(
St Rt:t+h −K j,0

)
/r f , t:t+h

]
, for j = 1, . . . ,m1 (1)

Put options: ct, j = E
[
max

(
K j −St Rt:t+h,0

)
/r f , t:t+h

]
, for j = m1 +1, . . . ,m1 +m2, (2)

where m1 and m2 denote the number of call and put options, respectively, such that m1 +m2 = m.

K j ∈ R is the strike price of option j, St is the underlying asset price at time t, r f , t:t+h ∈ R denotes

the gross risk-free rate over the considered time horizon and E denotes the expectation under the

risk-neutral measure.

For the implementation of this method, let wi ∈ R+, for i = 1, . . . ,S, be the possible values

of the gross returns over this horizon. We consider a range of such possible values as w1 = 0.5,

wi+1 = wi +0.001 for i = 1,2, . . . ,1000. Let pt,i ∈R+ denote the unknown risk neutral probability

corresponding to the considered future states, i.e. pt,i = Pr(Rt:t+h = wi), such that 0 < pt,i < 1 and

∑S
i=1 pt,i = 1. Then we can rewrite the pricing equations (1) and (2) as

Call options: ct, j =
S

∑
i=1

pt,i
(
max

(
St wi −K j,0

)
/r f , t:t+h

)
, for j = 1, . . . ,m1

⇔ 0 =
S

∑
i=1

pt,i
(
max

(
St wi −K j,0

)
/r f , t:t+h − ct, j

)
, for j = 1, . . . ,m1

Put options: ct, j =
S

∑
i=1

pt,i
(
max

(
K j −St wi,0

)
/r f , t:t+h

)
, for j = m1 +1, . . . ,m

⇔ 0 =
S

∑
i=1

pt,i
(
max

(
K j −St wi,0

)
/r f , t:t+h − ct, j

)
, for j = m1 +1, . . . ,m.

We summarize these equations in the following manner:

S

∑
i=1

pt,i g j (wi) = 0, for j = 1, . . . ,m.

Since usually S > m, there is no unique distribution that solves these constraints. We choose the

distribution that implies the maximum uncertainty and is least prejudiced under the given con-

straints (Buchen and Kelly, 1996). To estimate this distribution, we maximize the entropy l ∈ R+,

as defined by Shannon (1948):

l =−
S

∑
i=1

pt,i ln(pt,i) .

This method provides us with a unique optimal risk-neutral asset return distribution.

To find the maximum entropy for our optimization problem, we use the Lagrange multiplier

method. The optimum results from the stationary point of the corresponding Lagrange function,
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which is given by

L =
S

∑
i=1

pt,i ln(pt,i)+λ0

(
S

∑
i=1

pt,i −1

)
+λ ′

(
S

∑
i=1

pt,i g(wi)

)
,

where g(wi) = (g1 (wi) , . . . ,gm (wi))
′ and λ0 ∈ R and λ ∈ Rm are the Lagrange multipliers. From

the first order conditions of L , we can solve the optimization problem as

p̂t,i =
exp
(

λ̂ ′g(wi)
)

∑S
i=1 exp

(
λ̂ ′g(wi)

) , for i = 1, . . . ,S,

λ̂ ′ =
(

λ̂1, . . . , λ̂m

)
= argmin

S

∑
i=1

exp
(
λ ′g(wi)

)
, (3)

where ˆ indicates the optimized solution.

We solve the optimization problem in (3) numerically by applying a multidimensional Newton-

Raphson method, which follows the approach of Agmon et al. (1979). As a sum of strictly convex

functions, equation (3) is strictly convex and hence has a unique global minimum. Thus, the ob-

tained distribution based on MEM is unique.

2.2 Implied Measures for Value-at-Risk Forecasting

Having obtained the probability distribution using the MEM, we extract information that we use

for VaR forecasting. First, we derive the following moments of the estimated discrete probabilities

p̂t,i:

Implied mean: µMEM, t =
S

∑
i=1

p̂t,i ln(wi) ,

Implied volatility: σMEM, t =

√√√√ S

∑
i=1

p̂t,i (ln(wi)−µMEM, t)
2,

Implied skewness: sMEM, t =
1

σ3
MEM, t

S

∑
i=1

p̂t,i (ln(wi)−µMEM, t)
3 ,

Implied kurtosis: kMEM, t =
1

σ4
MEM, t

S

∑
i=1

p̂t,i (ln(wi)−µMEM, t)
4 .

We incorporate these implied moments into VaR prediction models, which we describe in Section 3.

Since MEM estimates the risk-neutral probability distribution of asset returns, theoretically, its

mean approximately equals the risk-free rate over the considered time period. As the constraints

already contain the risk-free rate, the implied mean should not add additional information and

hence, we do not use it as an explanatory variable in the VaR prediction models.
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In order to make the implied moments of different option maturities comparable, we annualize

them by following the algorithm described by Meucci (2010) and assume 365 calendar days a year.

Meucci shows how to project moments of general distributions to arbitrary horizons.

In addition to the implied moments, we use the quantile of the obtained distribution for predict-

ing the VaR. The implied (1−α)-quantile of the distribution is given by

q(1−α)
MEM, t = inf

{
ln(wI)

∣∣∣∣∣ I

∑
i=1

p̂t,i ≥ 1−α, I ∈ N

}
,

which will also be used as an explanatory variable in VaR prediction models. This implied measure

uses the tail information contained in the MEM-estimated probability distribution and therefore

might be superior to the implied moments of the distribution for VaR prediction.

3 VaR Prediction Models Using Option-Implied Measures

We aim at predicting the h trading days ahead VaR at a probability level of α ∈ (0,1). The VaR

is defined as follows. Denote that, conditional on all available information until time period t, the

distribution function of an asset’s cumulative return over the next h trading days as FRt:t+h(r) =

Pr(Rt:t+h ≤ r |Ft). Then the corresponding VaR at time t at probability level α is given by

VaRα
t:t+h =− inf

{
ln(r)

∣∣ FRt:t+h(r)≥ 1−α
}
,

where Rt:t+h ∈ R+ denotes the asset return over a horizon of h, starting at time t, and Ft is the set

of available information until time t.

Furthermore, let rt ∈ R denote the daily return at time t, which is defined as rt = ln(St/St−1).

Similarly, cumulative returns over h trading days are defined as rt:t+h = ln(St+h/St) = ∑h
j=1 rt+ j.

The forecasting models are based on the time series of rt . To estimate the model parameters, we

use a moving window with a length of T = 1000 trading days preceding to the time period t, i.e.

approximately four years of daily data. To predict the VaR, we use implied measures obtained from

option prices. The general notation is given as follows. Let xt ∈RN be a set of the implied measures

at time t, where N denotes the number of measures used.

In the rest of this section, we introduce the different model families applied in VaR forecasting.

We also show how to incorporate the obtained implied measures as explanatory variables. Sec-

tion 3.1, Section 3.2 and Section 3.3 explain the model classes of covariate, GARCH and quantile

regression models, respectively. The methodology applied to evaluate and compare the perfor-

mance of the different VaR prediction models is described in Section 3.4.
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3.1 Covariate Models

3.1.1 Model Specification

The covariate model class uses a simple model specification, which describes daily returns by

an intercept and residuals with a possibly time-varying variance. This conditional variance, ht ,

is modeled by a regression model on lagged implied measures. Giot (2003, 2005) and Kim and

Ryu (2015) use this type of covariate model to incorporate implied volatility. We additionally

incorporate other implied measures to such a model. The model is given by

rt = µ +
√

htεt , for t = 2, . . . ,T,

ht = ω +θxt−1,

where µ ∈ R, ω ∈ R and θ ∈ R1×N are the model parameters to be estimated, εt ∈ R denotes the

residual at time t with mean of 0 and variance of 1. ht ∈ R+ is the (latent) conditional variance of

returns at time t, i.e. ht = Var(rt |Ft−1). Since the model does not include the lagged conditional

variance nor lagged innovations in the conditional variance, it is not a GARCH model. However, as

the conditional variance ht has to be positive for all t, we impose similar restrictions as in GARCH

models (Bollerslev, 1986). We require ω > 0 and θi ≥ 0 for i = 1, . . . ,N. Furthermore, the ex-

planatory variables have to be non-negative to ensure positivity of the conditional variance. Hence,

for this model we use implied variance, absolute implied skewness 1, implied kurtosis and negative

implied quantile as implied measures.

If no implied measures xt are added, the model simplifies to a simple independent and identi-

cally distributed univariate model for the distribution of rt . We use this simple model as a bench-

mark to investigate the improvement by adding implied measures as regressors.

3.1.2 Model Parameter Estimation

To obtain estimates of the model parameters, we apply the maximum likelihood method based on

the observations rt and xt−1 for t = 2, . . . ,T . Therefore, we assume that the residuals εt follow a

specific parametric distribution and are conditionally independent, i.e. given the history Ft−1, the

residuals εt are independent. We follow the studies of Giot (2003, 2005) and Louzis et al. (2013)

and opt for the skewed t-distribution (Fernández and Steel, 1998). The skewed t-distribution is

able to reproduce the stylized facts of asset returns, namely negative skewness and heavy tails.

Giot and Laurent (2003, 2004) and Giot (2003, 2005) show that using this distribution improves

the performance of VaR predictions by GARCH-type models compared to forecasts based on the

normal distribution. We assume that εt | Ft−1 ∼ skt(0,1,ξ ,ν), which has mean 0 and variance 1.

1 Higher skewness indicates a skewed perception of future returns, which potentially leads to a higher uncertainty,

irrespectively of its sign.
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The parameters ξ and ν are related to the distribution’s skewness and kurtosis, respectively. For

details of the density of the skewed t-distribution, see Appendix A.1.

The maximum likelihood method involves an optimization over a large number of parameters.

To decrease the number of parameters and to increase the convergence speed of the optimization

algorithm, we apply the variance targeting technique (see, e.g., Francq et al., 2011). For GARCH

models, variance targeting can be superior to the maximum likelihood method alone when predict-

ing VaR, especially when the model is misspecified, as shown by Francq et al. (2011). We adopt

the two-step variance targeting approach, introduced by Engle and Mezrich (1996). Firstly, we

estimate the intercept of the conditional variance, ω . Secondly, estimates the remaining parameters

by maximum likelihood. In the first step, we set the model’s unconditional variance E(ht) equal to

the sample variance of the residuals and obtain a closed form solution of ω , given by

E(ht) = ω +θ E(xt) ,

where we use the sample mean of regressors as the estimate for E(xt). As it depends on the value

of θ , we update this ω estimate in each iteration of the maximum likelihood procedure.

As the model specification requires ω > 0, we obtain an additional restriction on θ from the

variance targeting approach: θ E(xt)
E(ht)

< 1. To ensure that ht is positive for all t = 2, . . . ,T , we impose

this additional restriction when estimating the model parameters θ by maximum likelihood.

3.1.3 Value-at-Risk Prediction

To forecast VaRα
T :T+h for h = 10, we predict a sample of future returns and then use their empirical

quantile as VaR forecast. We use the estimated model parameters to obtain multi-period forecasts

of returns by iteratively performing Monte-Carlo simulations. We obtain S = 10,000 predictions

for each rT+1, . . . ,rT+h by drawing samples of εT+1, . . . ,εT+h from the underlying probability dis-

tribution and plugging them into the estimated model. We calculate the cumulative returns cor-

responding to these simulated paths, r̂T :T+h,i = ∑h
t=1 r̂T+t,i , for i = 1, . . . ,S. Finally, we use the

negative of the empirical (1−α)-quantile of the obtained cumulative return sample as an estimate

for VaRα
T :T+h.

For this purpose, we need to predict ht for the next ten days by using the implied measures

xT ,xT+1, . . . ,xt+h−1, as we predict the VaR for the next ten trading days. Since only xT is observed,

we need to predict the implied measures for the other h− 1 days. For simplicity, we keep the

implied measures constant over the forecasting period, i.e. x̂T+1, . . . , x̂T+h−1 := xT .

3.2 GARCH Models

The second model class considered consists of GARCH models. We investigate the VaR prediction

performance improvement by adding option-implied measures to a GARCH model, which is com-
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monly used and performs well for VaR forecasting in practice (see, e.g., Kuester et al., 2006; Bao

et al., 2006). We follow the GARCH-type model studied by Giot (2003, 2005) and Kim and Ryu

(2015), who incorporate implied volatility into it. We adjust their models to include more implied

measures as explanatory variables.

We study an extended GARCH(1,1) model (Bollerslev, 1986), given by

rt = µ +
√

htεt , for t = 2, . . . ,T,

ht = ω + γht−1ε2
t−1 +δht−1 +θxt−1.

Compared to the covariate models, it has two additional autoregressive terms to describe the con-

ditional variance ht , which are essential for a GARCH-type model. Additionally, we estimate the

corresponding model parameters, γ , δ ∈ R, and impose restrictions on the parameters to ensure

positivity of ht . Following Bollerslev (1986), we require ω > 0 and γ , δ ≥ 0 and for stationarity,

γ +δ < 1. Furthermore, we impose that θi ≥ 0 for i = 1, . . . ,N.

We use the same non-negative explanatory variables as listed for the covariate models in Sec-

tion 3.1.1. We compare these models to the benchmark model in which no implied measures xt are

involved. The benchmark model is therefore the standard GARCH(1,1) model.

To estimate the model parameters, we recursively compute the conditional variance ht and fol-

low the same procedure as that for covariate models, explained in Section 3.1.2. There are three

technical differences. Firstly, we set the initial value of the conditional variance, h1, to the sample

variance of rt . Secondly, we adjust the variance targeting procedure to account for the fact that the

unconditional variance is different for the covariate models. Lastly, similar to the covariate models,

we obtain an additional parameter restriction, given by θ E(xt)
Var(rt)

+ γ +δ < 1.

Having obtained the parameter estimates for the models, we estimate the VaR by following the

same procedure as that for the covariate models, outlined in Section 3.1.3.

3.3 Quantile Regression Models

While the first two model classes are similar, the quantile regression models follow a different ap-

proach. Firstly, this model class does not assume a specific probability distribution of the residuals.

Secondly, in contrast to a typical (linear) regression model, which models the conditional mean of

the dependent variable, quantile regression estimates the (1−α)-quantile of the dependent variable

conditional on the explanatory variables. The main advantage of this approach is that some of the

considered implied measures might be better suited for explaining the quantile of a distribution

than its mean or variance. A downside of quantile regression models is the potentially large stan-

dard errors, especially for extreme quantiles close to zero or one (see, e.g., Krause, 2003) that are

determined by only a few observations.
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3.3.1 Model Specifications

We consider a simple quantile regression model proposed by Koenker and Bassett (1978), which

allows a simple incorporation of all considered option-implied measures. We model the conditional

(1−α)-quantile of the cumulative asset returns over the horizon of h trading days as follows

Qrt:t+h |xt (1−α) = µ +βxt ,

where µ ∈ R and β ∈ R1×N are the model parameters to be estimated to fit the linear relation-

ship between conditional quantile and implied measures. To our best knowledge, no existing study

considers incorporating option-implied information in a simple quantile regression model yet. Nev-

ertheless, Chen and Chen (2005) show that incorporating historical volatility into this quantile re-

gression yields better VaR predictions than parametric models, especially at a probability level of

99% and for holding periods of more than five days.

We incorporate the implied measures as described in Section 2.2. We set a benchmark model

using quantile regression by replacing xt by lagged return information available at time t, i.e. for

the benchmark model xt = rt−h:t .

3.3.2 Model Parameter Estimation

To estimate the model parameters, we follow the method explained by Koenker and Bassett (1978)

based on asymmetric penalties to the residuals. The parameter estimates are obtained from the

following optimization problem:

min
µ,β0,β

1
T −h

[
T−h

∑
t=1

(
(1−α)−I{

rt:t+h<Qrt:t+h |xt (1−α)
}) (rt:t+h −Qrt:t+h |xt (1−α)

)]
,

where I{
rt:t+h<Qrt:t+h |xt (1−α)

} = 1 if rt:t+h < Qrt:t+h |xt (1−α) and 0 otherwise.

3.3.3 Value-at-Risk Prediction

We use the out-of-sample forecast of the conditional quantile as a direct estimate, given as

V̂aR
α
T :T+h =−Q̂rT :T+h |xT (1−α) =−

(
µ̂ + β̂xT

)
.

Note that with this approach, we obtain a direct forecast on the h−day VaR by running the quantile

regression based on h−day returns. Using cumulative returns over a horizon of multiple days

(e.g. ten trading days) leads to autocorrelated residuals, which may potentially yield large standard

errors in the estimates of the model parameters and hence imprecise forecasts. Alternatively, we

run the quantile regression based on daily returns to obtain a 1−day VaR forecast and then scale the
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forecast to the target horizon. The h−day VaR forecast is obtained by applying the square-root-rule

and given by

V̂aR
α
T :T+h = V̂aR

α
T :T+1

√
h.

Even though this method assumes identically distributed returns over the horizon, which is possibly

incorrect in practice (see, e.g., Diebold et al., 1997; Odening and Hinrichs, 2003), this method might

still improve the VaR predictions compared to using cumulative returns.

3.4 Forecast Evaluation

By using a moving time window for model estimations of T = 1000 trading days, we obtain out-of-

sample VaR predictions for the whole time period of the testing sample. To evaluate the prediction

performance of the VaR forecasting models, we apply two methods: the unconditional coverage

ratio and the comparative backtest approach. They are explained in Section 3.4.1 and Section 3.4.2,

respectively.

3.4.1 Unconditional Coverage Ratio

We follow the approach described by Christoffersen (1998) and count the number of occurrences

that the realized ten days cumulative loss is higher than the corresponding predicted VaR. Let

It(α) ∈ {0,1} be the indicator whether the VaR forecast at time t is violated. For a given model,

this indicator is defined as

It(α) = I{
rt:t+h<−V̂aR

α
t:t+h

}, for t = 1, . . . ,n,

where I{
rt:t+h<−V̂aR

α
t:t+h

} = 1 if rt:t+h < −V̂aR
α
t:t+h and 0 otherwise; and n ∈ N is the number of

out-of-sample predictions.

Let V ∈N be the total number of VaR violations of a given prediction model, i.e. V =∑n
t=1 It(α).

Under the assumption that the VaR forecasts have correct unconditional coverage ratio and the vi-

olations are identically and independently distributed, the number of violations, V , follows a bi-

nomial distribution with parameters n and 1−α (Christoffersen, 1998). Following Christoffersen

(1998), we test whether a model’s VaR predictions differ significantly from the accurate uncondi-

tional coverage ratio using the following likelihood ratio test:

LR = 2ln

((
1− V

n

)n−V (V
n

)V
αn−V (1−α)V

)
, (4)

which is asymptotically χ2(1) distributed.

Due to the multi-period VaR predictions studied in this paper, the VaR violation indicators It(α)

are autocorrelated. Hence, the assumption of independent forecasts does not hold and we cannot
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apply the test procedure directly on the entire series of It(α). Therefore, we follow Diebold et al.

(1998) and consider the h sub-series {I1(α), I1+h(α), I1+2h(α), . . .}, {I2(α), I2+h(α), I2+2h(α), . . .},

. . ., {Ih(α), I2h(α), I3h(α), . . .}. Using Bonferroni bounds, we obtain a formal unconditional cov-

erage ratio test by combining the h tests based on each sub-series. For a hypothesis test with size

p ∈ (0,1), we apply the described likelihood ratio test (equation (4)) on each sub-series individ-

ually. If any of the corresponding h p-values is smaller than p/h, we reject the hypothesis of an

accurate unconditional coverage ratio for the considered model (Diebold et al., 1998; Louzis et al.,

2013).

The unconditional coverage ratio gives a good indication of a model’s VaR prediction perfor-

mance, but cannot be applied to compare the performance of two different models. As it only tests

the frequency of violations but not the magnitude of VaR predictions, it could be that two models

have identical unconditional coverage ratios, but one of them yields more conservative risk fore-

casts than the other model in most time periods. This would lead to unequal capital requirements in

practice, but the coverage ratio test cannot distinguish the two models. Therefore, we consider com-

parative backtest for comparing the VaR prediction performance of two models, which is explained

in the following subsection.

3.4.2 Comparative Backtest

To account for both frequency of violations and the difference of VaR forecasts to realized losses

when evaluating models, we follow the comparative backtest approach of Nolde and Ziegel (2017).

Using a scoring function, this method assigns a score to each VaR prediction. Based on these

scores, we can then compare two different models.

Let S
(

V̂aR
α
t:t+h, lt:t+h

)
be a scoring function. By assigning a score to the forecast, it assesses

the VaR prediction of the examined model regarding the realized cumulative loss over the horizon h,

lt:t+h :=−rt:t+h. As proposed by Nolde and Ziegel (2017), we apply the classical 1-homogeneous

scoring function, given by

S
(

V̂aR
α
t:t+h, lt:t+h

)
= (1−α) V̂aR

α
t:t+h +I{

lt:t+h>V̂aR
α
t:t+h

}(lt:t+h − V̂aR
α
t:t+h

)
.

The first term of this scoring function penalizes for large VaR predictions and the second term for

the difference between VaR prediction and realized loss in the event of a violation. Hence, an

optimal model would yield VaR predictions with an unconditional coverage ratio equal to the target

probability level of 1−α , while being as low as possible.

We apply the following test statistic to evaluate whether one model significantly outperforms

the other:

Ψ =
∆S̄

σ̂∆S/
√

n
,

12



where ∆S̄ = 1
n ∑n

t=1

(
S
(

V̂aR
α
t:t+h, lt:t+h

)
−S
(

V̂aR
α, ∗
t:t+h, lt:t+h

))
is the average score difference,

where V̂aR
α, ∗
t:t+h denotes the VaR forecast of the model that we use as a reference model, n ∈ N

denotes the number of out-of-sample predictions and σ2
∆S = Var

(√
n ∆S̄

)
is the asymptotic variance

of the score differences. To correct for potential autocorrelation and heteroscedasticity, we use a

heteroscedasticity and autocorrelation consistent (HAC) estimator for this variance (see, e.g., An-

drews, 1991). Following Nolde and Ziegel (2017), we use the Parzen kernel density, which we

truncate at the rounded up square-root of n, to obtain the HAC estimate σ̂2
∆S.

Nolde and Ziegel (2017) show that Ψ asymptotically follows the standard normal distribution

and explain how to interpret this test statistic. Let Φ(·) be the distribution function of the standard

normal distribution and p ∈ (0,1) be the targeted significance level. Then we reject the hypothesis

that the examined model forecasts the VaR at least as well as the reference model if 1−Φ(Ψ)≤ p.

In this case we would conclude that the reference model significantly outperforms the examined

model. If Φ(Ψ)≤ p, we reject the hypothesis that the examined model predicts at most as well as

the reference model. This yields the conclusion that the examined model significantly outperforms

the reference model. There is no clear evidence for out-performance, if we cannot reject either of

the two hypotheses.

We use a color code to visualize the outcome of the model comparison. Green means that

the examined model outperforms the reference model, whereas red indicates the opposite. Yellow

shows that both models have a similar performance and do not differ significantly.

4 Empirical Study

To investigate whether incorporating implied measures improves the VaR prediction performance of

the considered models, we assess and compare different cases in an empirical study. For each model

class, we consider a benchmark model that does not use any implied measures and is solely based

on historical return information. We compare the VaR prediction performance of this benchmark to

the case of individually and simultaneously incorporating MEM-implied measures into the model.

Finally, we compare the prediction performance across the best model stemming from the different

model classes.

4.1 Constructing Implied Measures

For the empirical analysis, we use exchange-traded European equity options on the S&P 500, which

are amongst the most liquid options. We work with the option information provided by Option-

Metrics IvyDB US database. The data contains maturity date, open interest and strike, bid and ask

prices of options from 04 January 1996 to 29 April 2016.
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To choose the set of options we apply the MEM on, we follow the practical approach used

by Xiao and Zhou (2016). We consider out-of-the-money and at-the-money call and put options

within a moneyness 2 range from 0.85 to 1.15. Within this range we only consider the options that

are steps of 0.025 apart, i.e. having a moneyness of 0.850, 0.875, 0.900, 0.925 etc. This is done to

obtain a stable numerical solution for the optimization problem of the maximum entropy method.

Buchen and Kelly (1996) illustrate that closely spaced options can lead to an ill-conditioned 3 or

even singular Jacobian matrix, which is not suitable in the optimization procedure. As there are

usually no strike prices available that yield exactly those moneyness steps, we allow for an absolute

tolerance around those steps of 0.025
4 . The choice of this tolerance is a trade-off between numerical

stability and an equal distribution of used strike prices over the considered moneyness range. The

latter has a positive influence on the accuracy of the estimated distribution due to the incorporation

of more information. Furthermore, we only consider options that have a positive bid price and a

positive open interest, since this indicates active trading of those options 4. For all calculations we

use the option’s mid-price, which is defined as the average of bid and ask price at a given date.

We obtain daily close price information of the underlying asset over the same time period from

OptionMetrics IvyDB US database. Table 1 shows the summary statistics of the S&P 500 returns.

Due to the moving window with a length of T = 1000 trading days, we start the out-of-sample

period for VaR predictions in January 2000. The first prediction is estimated on 03 January 2000,

so that the first ten trading days ahead VaR forecasts corresponds to 18 January 2000. As the

last forecast corresponds to 29 April 2016, we obtain 4097 out-of-sample VaR predictions for

all considered models. The simulation study by Nolde and Ziegel (2017) suggests that this is a

sufficient sample size to obtain stable rankings of different model performances.

As a proxy for the risk-free rate we use the zero-coupon bond rate available in the OptionMetrics

IvyDB US database. If zero-coupon bond rates are not available at a specific trading day, we use

the rates of the last trading day they were available before. To obtain the risk-free rate, we select the

bond that has a maturity closest to the expiration date of the corresponding set of options. We then

scale the chosen bond rate to the same time horizon as the option maturity and use it as risk-free

rate, r f , t:t+h, in the described methods to obtain option-implied measures.

The obtained implied measures correspond to the market expectations until the maturity date of

the underlying options used in the MEM. Therefore, the time-to-maturity of the considered options

and the corresponding implied measures changes over time. We solve this issue by considering

2 Moneyness is defined as the option’s strike price over the current price of the underlying.
3 According to Süli and Mayers (2003), the condition number of a non-singular matrix A and a norm ∥·∥ is defined

as κ(A) = ∥A∥∥A−1∥. The matrix A is said to be ill-conditioned if κ(A)≫ 1. The condition number can be used to

measure how sensitive the output of a function is to changes or errors in the input values.
4 On three trading days in the considered time period all options in the database have an open interest of 0. We assume

that this is a data error and neglect the constraint of positive open interest in these cases.
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Table 1: Summary statistics of S&P 500 returns

Whole Sample Training Sample Testing Sample

Daily 10 Days Daily 10 Days Daily 10 Days

Mean 0.0003 0.0030 0.0009 0.0092 0.0002 0.0015

Volatility 0.0123 0.0335 0.0109 0.0310 0.0126 0.0339

Skewness −0.0536 −0.6641 −0.3595 −0.3377 0.0040 −0.7151

Kurtosis 10.7476 7.4742 7.1770 3.7539 11.1264 8.0734

Minimum −0.0903 −0.2588 −0.0687 −0.1166 −0.0903 −0.2588

Maximum 0.1158 0.2164 0.0512 0.1241 0.1158 0.2164

Start 03 Jan 1996 16 Jan 1996 03 Jan 1996 16 Jan 1996 04 Jan 2000 18 Jan 2000

End 29 Apr 2016 29 Apr 2016 03 Jan 2000 03 Jan 2000 29 Apr 2016 29 Apr 2016

Obs. 5117 5108 1011 1002 4106 4097

Note: This table shows the summary statistics for daily returns and cumulative returns over ten days. Start and end

denote the first and last day of the time series and obs. is the number of observations.

1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016
0

5

10

15

Calls
Puts

Figure 1: Time series of the number of options used for MEM. Plotted values are averages of numbers of

call and put options, respectively, over both considered option sets at each trading day.

two sets of options and linearly interpolating or extrapolating their implied measures to the target

horizon of h = 21 trading days. This approach is similar to the calculations of the well-known

volatility indexes VXO and VIX (see, e.g., Carr and Wu, 2006), which are interpolated to a target

of 30 calendar days. The horizon of h = 21 trading days matches the average number of trading

days per month. We choose a length of one month, as we prefer interpolation over extrapolation

and because options are mostly traded around this time to maturity. Due to less frequently traded

options and possible mispricing, a shorter horizon may lead to inaccurate estimates.

We apply the MEM individually on two sets of options, which expire at the third Fridays of

the following months 5. Note that we do not use options with a time-to-maturity of less than ten

5 Most exchange-traded options expire on the third Friday of a month. Thus, compared to options with different
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Table 2: Correlation of implied measures

σV IX σBSIV σMEM sMEM kMEM q10%
MEM q5%

MEM q1%
MEM

σV IX 1 0.985 0.994 0.429 −0.437 −0.968 −0.976 −0.947

σBSIV 1 0.985 0.414 −0.408 −0.962 −0.966 −0.927

σMEM 1 0.400 −0.412 −0.970 −0.977 −0.959

sMEM 1 −0.902 −0.427 −0.403 −0.311

kMEM 1 0.423 0.419 0.393

q10%
MEM 1 0.970 0.912

q5%
MEM 1 0.933

q1%
MEM 1

Note: This table shows the correlation matrix of the considered option-implied measures. The BSIV and MEM

measures are interpolated for 21 trading days ahead. The statistics are based on 5116 observations of the period from

03 January 1996 to 29 April 2016.

trading days, as those are usually not frequently traded anymore. Figure 1 displays the time series

of the average number of call and put options over both considered sets used for the MEM. After

obtaining the two implied probability distributions based on these two option sets, we compute the

implied measures of both resulting distributions and interpolate or extrapolate them to the targeted

horizon of h = 21 trading days 6.

Table 2 shows the correlation of the obtained MEM-implied measures as well as commonly

used option-implied volatility measures, which are VIX and Black-Scholes formula based implied

volatility (BSIV). We obtain the closing prices of the VIX over the considered time period from

OptionMetrics IvyDB US database. The BSIV calculation (see, e.g., Hull, 2012) is based on the

same set of options selected for the MEM. Table 2 shows that the three considered implied volatility

measures and quantiles are highly correlated. The plots of their evolution over time in Figure 2

and 3 confirm their similarity. Figure 2 displays that the VIX and MEM-implied volatility are

almost identical, whereas BSIV differs slightly in some periods. Even though the VIX calculation

uses weekly options, which presumably improves the estimation and interpolation accuracy of the

implied volatility, it yields almost the same estimates as that of the MEM, which only uses monthly

options. The plot also shows that the MEM-implied volatility contains a few extreme values that

do not match the other two measures.

Figure 3 shows the evolution of the implied quantiles of the estimated risk-neutral probability

maturity, options expiring on the third Friday of a month cover a higher number of strike prices and a longer trading

period before maturity.
6 We use the following formula for linear interpolation and extrapolation: M(h) =M(h1)+(h−h1)

M(h2)−M(h1)
h2−h1

, where

h is the target horizon, h1 and h2 are the time to maturities of the two considered option sets and M(·) denotes the

implied measure for a given horizon.
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Figure 2: Time series of annualized option-implied volatility measures.
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Figure 3: Time series of MEM-implied quantiles.

function, q(1−α)
MEM, t , for different levels of α . The lower 1−α , the more fluctuating the implied

quantiles become. The changing differences between the quantiles over time also highlights the

change of the left distribution tail in some periods. As options closer to at-the-money are more

frequently traded, the accuracy of the MEM-estimated distribution is more accurate around the

mean. Options further out-of-the-money are traded less frequently and hence yield less precise

estimates for the distribution tails. To avoid potential inaccurate implied quantile estimates, we

only use the 10%-implied quantile as explanatory variable for the VaR prediction models regardless

of the VaR probability level.

4.2 Results

We investigate the VaR prediction performance of the considered implied measures and models in

three steps. First, in Section 4.2.1 we test whether the predicted VaR corresponds to the designated

unconditional coverage ratio for all models considered. A model is regarded as having a poor

performance, if the VaR violation frequency is significantly different from the target probability
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level. Second, in Section 4.2.2, we compare the prediction performance within each model class

between models with and without incorporating implied measures. Lastly, Section 4.2.3 compares

the VaR prediction performance across the considered model classes using the best performing

implied measures for each model class.

4.2.1 Unconditional Coverage Ratio Test

The first two panels of Table 3 show the VaR prediction performance for the covariate and GARCH

models, respectively. For most models the hypothesis of accurate conditional coverage ratio is not

rejected. However, for all considered covariate and GARCH models, the VaR predictions at a 95%

probability level are too conservative (i.e. overestimating the risk), whereas those at a 99% level

are too optimistic (i.e. underestimating the risk). There are at least two possible explanations for

such a result. First, the skewed t-distribution may not be able to capture the tail behavior of the

daily returns sufficiently, even though it allows for non-zero skewness and heavy tails. A possible

solution is to model the distribution tail individually, e.g. by Extreme Value Theory (EVT) (see,

e.g, McNeil and Frey, 2000; Longin, 2000). A second possible explanation follows from portfolio

theory. The potential negative autocorrelation of daily returns and the resulting mean reversion

may make stock investments less risky for a longer investment horizon (see, e.g., Campbell and

Viceira, 2002). Since the considered models are based on daily returns without capturing the au-

tocorrelation, they may result in an overestimation of tail risk. However, this does not explain the

underestimated tail risk for the most extreme quantile corresponding to a probability level of 99%.

The third panel of Table 3 displays the number of VaR violations for the considered simple

quantile regression model when using cumulative returns to forecast the VaR directly. The model

underestimates the risk: the number of VaR violations is too high for the considered target probabil-

ity levels. The high number of violations for the benchmark model does not substantially decrease

towards the target level when adding implied measures. For the 99% probability level, the devia-

tion from the target probability level is significant at a 5% level for all considered implied measures.

This poor performance is most likely caused by the autocorrelation among the cumulative returns.

In contrast, when using the alternative approach that scales the daily VaR obtained from the simple

quantile regression model to 10−day VaR, we obtain a better VaR prediction performance. This is

indicated by the fewer VaR violations, shown in the last panel of Table 3. Except for the benchmark

model at a 99% probability level, the number of violations does not differ significantly from the

targeted VaR probability level. It should be noted that, in contrast to the benchmark model, we do

not incorporate lagged returns when adding implied measures as explanatory variables 7.

7 For each considered quantile regression model, the performance without lagged returns is superior. The correspond-

ing results when including lagged returns are worse and are available upon request.
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Table 3: Value-at-Risk violations of estimated models

Incorporated Implied Measures
α

in
%
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m
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E

M
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M
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%
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E
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E

M
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M
,

k M
E

M
,

q10
%

M
E

M

σ M
E

M
,

q10
%

M
E

M

C
ov

ar
ia

te

95.0
# 189 158 158 158 190 188 157 153 154 151* 156*

% 4.61 3.86 3.86 3.86 4.64 4.59 3.83 3.73 3.76 3.69 3.81

97.5
# 114 86 93 89 113 114 90 88 90 89 90

% 2.78 2.10 2.27 2.17 2.76 2.78 2.20 2.15 2.20 2.17 2.20

99.0
# 72* 50 48 49 73* 71 51 48 49 49 49

% 1.76 1.22 1.17 1.20 1.78 1.73 1.24 1.17 1.20 1.20 1.20

G
A

R
C

H

95.0
# 180 158 158 158 184 184 156 153 154 150* 156*

% 4.39 3.86 3.86 3.86 4.49 4.49 3.81 3.73 3.76 3.66 3.81

97.5
# 103 86 93 89 103 108 91 88 90 87 89

% 2.51 2.10 2.27 2.17 2.51 2.64 2.22 2.15 2.20 2.12 2.17

99.0
# 61 50 47 49 62 61 51 48 49 49 48

% 1.49 1.22 1.15 1.20 1.51 1.49 1.24 1.17 1.20 1.20 1.17

Q
ua

nt
ile

R
eg

re
ss

io
n

(c
um

ul
at

iv
e

re
tu

rn
s) 95.0

# 255 260 248 259 274 283 255 281 276 273 265

% 6.22 6.35 6.05 6.32 6.69 6.91 6.22 6.86 6.74 6.66 6.47

97.5
# 164** 148 147 153 169** 169** 146 163 173* 161* 152

% 4.00 3.61 3.59 3.73 4.12 4.12 3.56 3.98 4.22 3.93 3.71

99.0
# 91** 101* 91* 96* 92** 89** 86* 103** 112** 100** 92*

% 2.22 2.47 2.22 2.34 2.25 2.17 2.10 2.51 2.73 2.44 2.25

Q
ua

nt
ile

R
eg

re
ss

io
n

(d
ai

ly
re

tu
rn

s)

95.0
# 193 182 178 178 194 199 169 173 180 184 181

% 4.71 4.44 4.34 4.34 4.74 4.86 4.12 4.22 4.39 4.49 4.42

97.5
# 114 98 87 89 113 112 89 90 109 105 91

% 2.78 2.39 2.12 2.17 2.76 2.73 2.17 2.20 2.66 2.56 2.22

99.0
# 62* 55 49 54 59 59 48 54 56 53 51

% 1.51 1.34 1.20 1.32 1.44 1.44 1.17 1.32 1.37 1.29 1.24

Note: This table shows the absolute (#) and relative number (%) of violations among 4097 out-of-sample ten trading

days ahead VaR predictions for different probability levels α and model classes.

*, ** Hypothesis of accurate unconditional coverage ratio is rejected at 5% and 1% significance level, respectively.
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Due to its importance for financial institutions (see, e.g., Basle Committee on Banking Su-

pervision, 1996), we only consider the prediction of VaR at the probability level of 99% for the

remainder of Section 4. For the analysis of the other probability levels of 95% and 97.5%, we refer

to the robustness check in Section 5.1.

4.2.2 Comparison Within Model Classes

First, we evaluate the VaR prediction performance when adding implied volatility measures as ex-

planatory variables into the covariate and GARCH models. In line with the findings of Giot (2003,

2005) and Kim and Ryu (2015), we find that adding implied volatility measures as explanatory

variables yields better VaR prediction than the benchmark model, as indicated by fewer VaR vio-

lations in Table 3. All three considered implied volatility measures yield similar VaR prediction

performances and the comparative backtest results in Figures 4 and 5 show that all of these mea-

sures improve the VaR prediction performance compared to the corresponding benchmark models.

Likely due to their high correlation, not only the number of violations but also their comparative

backtest results do not differ significantly.

The good performance of the implied volatility measures shows that they are able to describe

the conditional variance of returns well. However, this is not the case for the implied skewness and

kurtosis: incorporating them yields the highest number of violations for all considered covariate

models. Moreover, their VaR forecasts are not better than the benchmark as shown in Figures 4

and 5. As these implied measures appear to be good predictors of the corresponding realized mo-

ments in the future (Xiao and Zhou, 2016), we expect that they will improve VaR predictions.

However, the linear relationship used to explain the conditional variance does not seem to be suit-

able for incorporating these implied information. We conduct a robustness check in Section 5.4 to

further examine this issue.

Different from incorporating the implied moments, incorporating the implied 10%-quantile as

an explanatory variable in the covariate and GARCH model leads to an out-performance of the

benchmark at a 6% significance level. Based on the comparative backtests and the number of

violations, it does not perform better than the individual implied volatility measures.

Next, we investigate the performance of combining different MEM-implied measures for pre-

dicting the VaR at a probability level of 99%. We cannot draw a conclusion solely based on the

number of violations shown in Table 3, since they are similar for all considered combinations and

also similar to the implied volatility only. The comparative backtests in Figures 4 and 5 provide

more insights. All considered combinations outperform the benchmark at a similar significance

level. The combinations containing both implied volatility and the implied quantile perform best.

The comparative backtests show that the performance of VaR predictions do not differ sig-
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Figure 4: Comparative backtest results of covariate models for the VaR probability level of α = 99%. The

plotted values correspond to Φ(Ψ), which can be used to determine p-values regarding the test hypothesis.

If Φ(Ψ)≤ p, then the examined model significantly outperforms the reference model. If 1−Φ(Ψ)≤ p, then

the reference model significantly outperforms the examined model.

nificantly between the combination of all implied measures and the combination of only implied

volatility and quantile. We investigate this finding further by plotting the estimated coefficients

of the covariate model. Figure 6 shows that the estimated model parameters θi, corresponding to

skewness and kurtosis, do not differ significantly from zero for almost all moving windows over the

testing sample period. The estimated coefficients of the GARCH models show a similar pattern.

Therefore, these models incorporating all implied measures yield essentially the same forecasts as

the models using implied volatility and quantile only, because implied skewness and kurtosis do

not provide additional information in this setting.

We conclude that a model with incorporated implied volatility and quantile yields the best VaR

prediction performance for both the considered covariate and GARCH model class for the VaR at

a 99% probability level. The implied skewness and kurtosis do not contain additional information

for VaR prediction on top of the implied volatility and quantile.

Lastly, we investigate the VaR prediction performance within the quantile regression model
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Figure 5: Comparative backtest results of extended GARCH(1,1) model at the probability level of α =

99%. The plotted values correspond to Φ(Ψ), which can be used to determine p-values regarding the test

hypothesis. If Φ(Ψ) ≤ p, then the examined model significantly outperforms the reference model. If 1−
Φ(Ψ)≤ p, then the reference model significantly outperforms the examined model.

class. The comparative backtest results in Figure 7 confirm the significantly better performance of

using daily returns compared to cumulative returns for each implied measure incorporated; see also

the unconditional coverage ratio test results in Table 3. Although applying the square-root rule to

scale the VaR forecast to the target horizon may not be theoretically correct, it yields better VaR

forecasts in our empirical study. Therefore, we focus on this alternative approach that scales the

daily VaR to 10-day VaR in the remainder of this paper.

Comparing the prediction performance of incorporating different implied measures by the com-

parative backtest results in Figure 8, we find a similar pattern as for covariate and GARCH models.

Incorporating each of the different implied volatility measures and implied quantile individually

outperforms the benchmark model. For VaR at the 99% probability level, all considered implied

volatility measures perform similarly well. In contrast, incorporating implied skewness and kur-

tosis leads to a worse performance compared to the other implied measures. When incorporating

the implied measures simultaneously, the combinations containing implied skewness and kurtosis

22



2000 2002 2005 2007 2010 2012 2015 2017

0

1

2

3
10-3

s

k

q

2000 2002 2005 2007 2010 2012 2015 2017

0

1

2

3
10-3

q

Figure 6: Estimated model parameters corresponding to the MEM-implied measures in covariate models.

The upper plot corresponds to the model combining all implied measures and the lower one to a combination

of implied volatility and quantile.

perform worst. Incorporating the combination of implied volatility and quantile appears to be the

best, but does not perform significantly better than individually incorporating implied volatility or

quantile measures.

23



0.042 0.012 0.009 0.014 0.061 0.042 0.013 0.016 0.038 0.012 0.014

B
en

ch
m

ar
k

V
IX

B
S

IV

M
E

M

s M
E

M

k M
E

M

q M
E

M
10

%

M
E

M
, s

M
E

M

M
E

M
, s

M
E

M
, k

M
E

M

M
E

M
, s

M
E

M
, k

M
E

M
, q

M
E

M
10

%

M
E

M
, q

M
E

M
10

%

Incorporated Implied Measures

Daily vs. cum. returns (QR)

0

0.5

1

Figure 7: Comparative backtest results for comparing the prediction performance between using daily and

cumulative returns in the simple quantile regression (QR) model at the probability level of α = 99%. The

plotted values correspond to Φ(Ψ), which can be used to determine p-values regarding the test hypothesis.

If Φ(Ψ)≤ p, then the examined model significantly outperforms the reference model. If 1−Φ(Ψ)≤ p, then

the reference model significantly outperforms the examined model. The model using daily returns represents

the examined model and the one using cumulative returns the reference model.
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Figure 8: Comparative backtest results of the simple quantile regression model at the probability level of

α = 99%. The estimated conditional quantiles are based on daily returns, which are then scaled to the VaR

target horizon. The plotted values correspond to Φ(Ψ), which can be used to determine p-values regarding

the test hypothesis.
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4.2.3 Comparison Across Model Classes

To investigate which model class benefits the most from incorporating implied measures when

forecasting the VaR at a probability level of 99%, we compare the VaR prediction performances

of the best performing model of each class. That means we analyze the models that use the com-

bination of MEM-implied volatility and quantile as explanatory variables. Even though all three

models have similar low numbers of VaR violations, their performance differs when applying the

comparative backtest procedure. The corresponding results are shown in Figure 9.
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Figure 9: Comparative backtest results comparing the best performing models of each model class and their

corresponding benchmarks at the VaR probability level of α = 99%. These covariate (COV), GARCH and

simple quantile regression (QR) models combine MEM-implied volatility and quantile as explanatory vari-

ables and are based on daily returns. The plotted values correspond to Φ(Ψ), which can be used to determine

p-values regarding the test hypothesis. If Φ(Ψ)≤ p, then the examined model significantly outperforms the

reference model. If 1−Φ(Ψ)≤ p, then the reference model significantly outperforms the examined model.

We find that all models incorporating the implied volatility and quantile significantly outper-

form all benchmark models at a significance level of 10%. Hence, incorporating option-implied

information can improve the performance of established models solely based on historical return

information.

It should be noted that the performance of the different benchmark models is in line with the

existing results for VaR prediction, see Kuester et al. (2006) and Bao et al. (2006). Quantile re-

gression models based on historical returns perform worse than GARCH models. Additionally,

the GARCH(1,1) model outperforms the covariate benchmark model, which is probably due to the
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capability to account for volatility clustering.

Comparing across different model classes that incorporate MEM-implied information, we find

that the extended GARCH model performs better than the extended covariate model. This relation

is similar to the benchmark comparison, but only at a significance level of 12%. It is notable that

the extended quantile regression model performs the best, as it outperforms the extended covariate

and GARCH models at a 3% significance level.

A possible reason for the performance differences is that the GARCH model predictions do not

adjust as quickly to large losses and events as the quantile regression model does. This leads to

lower VaR predictions by the quantile regression over long time periods, which leads to a better

outcome in the comparative backtest. Notice that the two models incorporate the implied measures

differently. The quantile regression explains the VaR directly using the implied information. Hence,

it can use all information contained in the implied measures that is relevant for tail estimation. By

contrast, the GARCH model only takes into account the information useful for conditional variance

estimation. Additionally, the GARCH model is a parametric model, which is not as flexible as the

non-parametric quantile regression model. Hence, we conclude that for VaR forecasting the simple

quantile regression model is better suited to incorporate the information contained in the option-

implied measures and yields a superior VaR prediction performance.

5 Robustness Analysis

This section investigates the robustness in the results of Section 4 by considering alternative VaR

probability levels (Section 5.1), prediction horizons (Section 5.2) and testing periods (Section 5.3).

Additionally, we investigate another approach of estimating the quantile of the risk-neutral prob-

ability distribution in Section 5.4, which we then use for VaR forecasting. Lastly, Section 5.5

analyzes alternative VaR prediction models. In most of the robustness checks we provide a descrip-

tion of the results without detailed tables and figures. The detailed tables and figures are available

upon request.

5.1 Alternative Probability Levels

Section 4.2.2 shows that incorporating implied volatility and quantile yields the best performing

VaR predictions. The performance comparison is focused on applying the comparative backtest

approach and considering a VaR probability level of 99%. If we consider probability levels of 95%

and 97.5%, we obtain a similar pattern as shown in Figures 4, 5 and 8. For lower probability levels,

though, the VIX-implied volatility performs better than the other two considered implied volatility

measures. Our main conclusion that the combination containing both implied volatility and the
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implied quantile performs best remains valid for all considered probability levels. Moreover, the

result of the model comparison in Section 4.2.3 does not change qualitatively for different VaR

probability levels.

5.2 Alternative Prediction Horizons

In the empirical study (Section 4) we focus on a VaR prediction horizon of ten trading days. To

investigate whether the results are robust for different horizons, we assess the VaR prediction per-

formance for alternative horizons of 1, 5, 15, 20 and 25 trading days. For all considered prediction

horizons, we use the same training and testing sample. Note that the number of out-of-sample

predictions differs per horizon, but includes the same trading days.

Firstly, we compare the prediction performance of models incorporating implied volatility and

quantile to their corresponding benchmark models, which are solely based on historical return

information. Figure 10 shows that adding implied information is useful for most considered pre-

diction horizons. The level of outperformance relative to the benchmark model decreases as the

prediction horizon increases. The implied volatility and quantile do not add significant value to

VaR predictions by the GARCH-type models for a horizon longer than one month. Likely due to

the poor performance of its benchmark, the quantile regression model is improved the most by in-

corporating the implied measures. For the other considered probability levels, the results displayed

in Figure 10 do not change qualitatively.

1 5 10 15 20 25
0

0.05

0.1

0.15

0.2

Covariate
GARCH
QR

Figure 10: P-values of the comparative backtests when comparing the performance of models using MEM-

implied volatility and quantile to their corresponding benchmark models. The horizontal axis indicates

different VaR forecast horizons for a probability level of 99%. The test hypothesis is that the model incorpo-

rating implied measures is not better than the corresponding benchmark model.

Secondly, when comparing the VaR prediction performance of different model classes for dif-

ferent prediction horizons, Figure 11 shows that the performance of different models becomes more

similar for a longer horizon. Similar to the result for a ten trading days horizon, the quantile re-

gression model significantly outperforms the other two models for all considered VaR prediction

horizons. This is consistent for all considered probability levels.
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Figure 11: P-values of the comparative backtests when comparing the performance of considered model

classes (using MEM-implied volatility and quantile). The horizontal axis indicates different VaR forecast

horizons for a probability level of 99%. The first model mentioned indicates the examined model and the

second the reference model. The test hypothesis is that the model mentioned first is not better than the second

model.

5.3 Alternative Testing Periods

As an alternative testing sample, we consider the periods of US recession, obtained from the Na-

tional Bureau of Economic Research (NBER). We compare the VaR prediction performance of

the different models during these periods. The results are shown in Figure 12. Our qualitative

conclusion remains valid: the quantile regression model incorporating implied volatility and quan-

tile outperforms the other models when only evaluating the VaR forecasts during the periods of

recession. However, the p-value increases slightly when considering lower VaR probability levels.
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Figure 12: Comparative backtest results comparing the best performing models of each model class and their

corresponding benchmarks at the VaR probability level of α = 99% during periods of recessions according

to NBER. These covariate (COV), GARCH and simple quantile regression (QR) models combine MEM-

implied volatility and quantile as explanatory variables and are based on daily returns. The plotted values

correspond to Φ(Ψ), which can be used to determine p-values regarding the test hypothesis. If Φ(Ψ) ≤ p,

then the examined model significantly outperforms the reference model. If 1−Φ(Ψ)≤ p, then the reference

model significantly outperforms the examined model.

5.4 Alternative Implied Quantile Estimation

Section 4.2.2 shows that using implied skewness and kurtosis leads to the worst performance in

VaR predictions. These implied measures are linearly incorporated into the different VaR pre-

diction models. A possible reason for the poor performance is that the linear structure is not an

efficient way to employ the implied skewness and kurtosis. As a robustness check, we investigate

an alternative approach, which utilizes implied skewness and kurtosis in a structural way. We first

estimate the quantile of a parametric risk-neutral probability distribution based on implied skew-

ness and kurtosis. Then we incorporate the obtained parametric implied quantile into the models.

With such a structural approach, the implied skewness and kurtosis are incorporated into the VaR

prediction models in a non-linear way. This could potentially improve the VaR prediction.

We opt for the skewed t-distribution as the parametric model for the risk-neutral distribution,

since we require a unimodal parametric distribution that allows for skewness and heavy tails. Ap-

plying the method of moments, we fit the skewed t-distribution to the moments of the risk-neutral

probability distribution estimated from the MEM. This method uses the MEM-implied moments to
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obtain estimates for parameters ν and ξ of the skewed t-distribution. Having fitted this distribution,

we derive its quantile, which we use as an explanatory variable in VaR prediction models. These

steps are explained in more detail in Appendix A.2.

The results of the comparative backtest, displayed in Figure 13, show that firstly, using this

parametric implied quantile as explanatory variable does not significantly improve the VaR pre-

diction performance, compared to solely using historical return information for any model class.

Secondly, compared to the implied quantile directly obtained from the MEM, it performs worse at

a 6% significance level for all considered models.

0.506

0.943

0.609

0.949

0.122

0.980

C
ov

ar
ia

te

G
A

R
C

H

Q
R

 (
da

ily
 r

et
ur

ns
)

Model Class

q
param
10%  vs. Benchmark

q
param
10%  vs. q

MEM
10%

0

0.5

1

Figure 13: Comparative backtest results of using the parametric implied quantile in the considered model

classes at the probability level of α = 99%. The corresponding VaR prediction performance is compared to

the benchmarks and the MEM-implied quantiles. The plotted values correspond to Φ(Ψ), which can be used

to determine p-values regarding the test hypothesis. If Φ(Ψ) ≤ p, then the examined model significantly

outperforms the reference model. If 1−Φ(Ψ) ≤ p, then the reference model significantly outperforms the

examined model. The first model mentioned (q10%
param) indicates the examined model and the second one

represents the reference model.

Hence, we conclude that the worse performance of implied skewness and kurtosis, shown in

Section 4.2.2, is not caused by the linear incorporation of these measures into the VaR prediction

models. The results of the superior performance of the MEM-implied quantile stems from its more

relevant information content for VaR prediction. By contrast, the information content of implied

skewness and kurtosis is genuinely not superior to historical return information in terms of VaR

prediction performance.

5.5 Alternative Value-at-Risk Prediction Models

Additional to the standard GARCH and quantile regression model discussed in this paper, one

may also consider extensions of these models that are often used for VaR forecasting (see, e.g.,

Kuester et al., 2006; Bao et al., 2006). We opt for an extension of the GJR-GARCH (Glosten et al.,

1993) and the CAViaR model (Engle and Manganelli, 2004) and compare their VaR prediction
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performance when incorporating implied measures to the results of the corresponding base models

discussed in Section 4.

5.5.1 GJR-GARCH

The GJR-GARCH model distinguishes between the impact of negative and positive innovations to

returns, εt−1, on the conditional variance ht . An intuition Glosten et al. (1993) provide is that a

negative innovation to today’s stock return will change the capital structure of the corresponding

firm by increasing its leverage. This results in a higher expected variance in the future and can be

accounted for by this model. We consider the following model specification:

rt = µ +
√

htεt , for t = 2, . . . ,T,

ht = ω +
(
γ +ρI{εt−1<0}

)
ht−1ε2

t−1 +δht−1 +θxt−1,

where I{εt−1<0} = 1 if εt−1 < 0 and 0 otherwise. To ensure positive conditional variance and

stationarity, we impose the following parameter restrictions: ω > 0 and γ , ρ , δ ,θi ≥ 0, for all

i = 1, . . . ,N, and γ +ρ Pr(εt−1 < 0)+δ < 1. In other words, we scale ρ to take into account how

many residuals are expected to be negative. With commonly used symmetric distributions, such as

normal or standard t-distribution, this scaling factor is 1/2. However, since we allow for non-zero

skewness, we have to estimate the proportion of negative residuals and therefore, use the sample

residuals for that purpose.

We find that this extended GJR-GARCH(1,1) model yields a similar VaR prediction perfor-

mance pattern but does not perform better compared to the discussed GARCH model (see Figure 14

and the upper panel of Table 4). Our conclusion that incorporating implied volatility and quantile

yields the best VaR prediction performance remains qualitatively unchanged. The reason for these

similar results is that the parameter estimate corresponding to the lagged residual is negligibly

small so that it only has a minor effect on the VaR prediction performance of the considered model.

Therefore, the VaR predictions become almost identical to the ones of the considered GARCH(1,1)

models.

5.5.2 CAViaR

The second model we apply is the general CAViaR specification, which is often used for VaR

predictions (see, e.g., Kuester et al., 2006). The standard CAViaR model uses the estimated quantile

from the previous period as explanatory variable. We add implied measures as extra explanatory

variables. Hence, the conditional quantile at time t is given as

Qrt:t+h |xt (1−α) = µ +β0 Qrt−1:t−1+h |xt−1(1−α)+βxt ,

where β0 ∈ R is an additional model parameter.
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Similar to the quantile regression model, we apply the alternative approach of using daily re-

turns when comparing the prediction performance across the different considered quantile regres-

sion models. The comparison of VaR violations of simple quantile regression and CAViaR model

does not clearly indicate which model performs better (see the lower panel of Table 4). However,

the comparative backtest results in Figure 14 show that the CAViaR does not perform better than

the simple quantile regression model when incorporating any implied measure. This conclusion

is consistent for all considered probability levels. Hence, the lagged conditional quantile in the

CAViaR specification does not lead to a better VaR prediction. A possible explanation for this

is that we do not perform iterative multi-period out-of-sample forecasts to predict the VaR. The

CAViaR procedure might benefit from the additional lagged quantile. This would require a time

series model to model the incorporated implied measures prior to the VaR prediction exercise.
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Figure 14: Comparative backtest results of comparing prediction performance of GJR-GARCH and

GARCH as well as CAViaR and quantile regression (QR) model using daily returns for a probability level

of α = 99%. The plotted values correspond to Φ(Ψ), which can be used to determine p-values regarding

the test hypothesis. If Φ(Ψ) ≤ p, then the examined model significantly outperforms the reference model.

If 1−Φ(Ψ) ≤ p, then the reference model significantly outperforms the examined model. The first model

mentioned (i.e. GJR-GARCH and CAViaR, respectively) indicates the examined model and the second one

represents the reference model.
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Table 4: Value-at-Risk violations of estimated models

Incorporated Implied Measures
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% 4.39 3.86 3.86 3.86 4.42 4.39 3.81 3.73 3.76 3.66 3.81

97.5
# 103 86 93 89 101 106 91 88 90 87 89

% 2.51 2.10 2.27 2.17 2.47 2.59 2.22 2.15 2.20 2.12 2.17

99.0
# 61 50 47 49 61 59 51 48 49 49 48

% 1.49 1.22 1.15 1.20 1.49 1.44 1.24 1.17 1.20 1.20 1.17

C
AV

ia
R

(d
ai

ly
re

tu
rn

s)

95.0
# 173 172 175 169 203 220 173 170 180 178 166

% 4.22 4.20 4.27 4.12 4.95 5.37 4.22 4.15 4.39 4.34 4.05

97.5
# 110 102 92 94 110 131 90 95 101 98 90

% 2.68 2.49 2.25 2.29 2.68 3.20 2.20 2.32 2.47 2.39 2.20

99.0
# 61 65 56 58 59 74 53 57 66 62 51

% 1.49 1.59 1.37 1.42 1.44 1.81 1.29 1.39 1.61 1.51 1.24

Note: This table shows the absolute (#) and relative number (%) of violations of 4097 out-of-sample ten trading days

ahead VaR predictions for different probability levels α and model classes.

*, ** Hypothesis of accurate unconditional coverage ratio is rejected at 5% and 1% significance level, respectively.

6 Conclusion

This paper investigates the impact of incorporating option-implied information into different VaR

prediction models on their prediction performance. To obtain option-implied measures, we ap-

ply the MEM, which estimates the risk-neutral probability distribution of future returns based on

the market prices of options. We compute the implied moments and quantiles of the risk-neutral

distribution and incorporate them into three different types of VaR prediction models: covariate,

GARCH and quantile regression models. We consider using the implied measures individually or

in combination as explanatory variables and predict the VaR for different target horizons and prob-

ability levels. To evaluate the forecasting performance, we use the comparative backtest procedure

of Nolde and Ziegel (2017).

For all considered models, we find that adding implied volatility yields a significantly better
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performance than the benchmark model. Compared to the two conventional implied volatility

measures VIX and BSIV, the MEM-implied volatility performs equally well. Using the implied

10%-quantile of the risk-neutral distribution as explanatory variable yields a similar performance.

Combining both MEM-implied volatility and quantile yields the best VaR prediction performance

for all model classes, which is consistent for all considered probability levels.

Comparing the prediction performance across different model classes, we find that the simple

quantile regression model yields the best VaR forecasts and is best suited to incorporate option-

implied information. This is in contrast to the findings in existing studies based on historical returns

that the GARCH model class performs best (see, e.g., Kuester et al., 2006; Bao et al., 2006) 8. This

is possibly due to the fact that the quantile regression model does not model the whole return

distribution, but only focuses on the quantile conditional on the implied measures.

Due to the information content contained in the MEM-implied measures and the estimated

risk-neutral distribution, further research may investigate other applications using such informa-

tion. Furthermore, the models used in this paper do not allow time-varying skewness and kurtosis.

By further modeling the the time variation of skewness and kurtosis, the corresponding implied

measures may help to improve the forecast of these characteristics. In turn, it may further improve

the VaR prediction.

A major limitation of our approach and the MEM-algorithm is the dependence on available

option data. We use options on the S&P 500, which are among the most liquid options. However,

even with these frequently traded options, the range of strike prices that can be used for the MEM

is limited. Hence, for assets with less liquid options the number of suitable options and sufficient

strike prices is lower. Although MEM does not require many options (Xiao and Zhou, 2016), the

approach of incorporating the corresponding implied measures based on fewer options could lead

to a worse prediction performance than shown in the current study.

Due to the strong performance of incorporating MEM-implied measures into VaR forecasting

models, the proposed approach is a beneficial supplement to the commonly used risk estimation

methods. However, as our approach heavily depends on available option data, it should not sub-

stitute methods that are based on historical returns, but may provide additional insights for risk

assessment.

8 One limitation of this comparison should be noted. Kuester et al. (2006) conclude that a GARCH model combined

with EVT performs best. We also analyzed the performance of applying EVT to our models. Even though the number

of VaR violations is closer to the target probability level, the comparative backtest indicated a lower performance of

the EVT method. The corresponding results are available upon request.
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Appendix

A Skewed t-Distribution

A.1 Probability Density Function

The probability density function of a skewed t distribution with mean zero and unit variance, εt ∼
skt(0,1,ξ ,ν), is given by

f skt (εt |ν ,ξ ) =


2s

ξ+ 1
ξ

f t [ξ (sεt +m) |ν ] , if εt <−m
s

2s
ξ+ 1

ξ
f t
[

1
ξ (sεt +m)

∣∣∣ν] , if εt ≥−m
s

,

where m=
Γ( ν−1

2 )
√

ν−2
√

πΓ( ν
2 )

(
ξ − 1

ξ

)
, s=

√(
ξ 2 + 1

ξ 2 −1
)
−m2 and f t (x |ν)= Γ( ν+1

2 )√
π(ν−2)Γ( ν

2 )

(
1+ x2

ν−2

)− ν+1
2

is the density of the standardized t-distribution with ν > 2 degrees of freedom (see, e.g., Giot and

Laurent, 2003). Here ξ ∈ R+ is the asymmetry coefficient of the distribution, which describes its

skewness and is defined as ξ 2 = Pr(εt≥0)
Pr(εt<0) . Hence, if ξ > 1 (ξ < 1), the probability mass above

(below) zero is greater, which corresponds to positive (negative) skewness. For the symmetric case,

ξ = 1, the skewed t-distribution simplifies to the standard t-distribution.

A.2 Method of Moments to Calculate Implied Quantile

To calculate the moments of a skewed t-distribution, we follow Fernández and Steel (1998), who

show that the r-th raw moment of the skewed t-distribution is given by

E(εr
t |ν ,ξ ) = Mr |ν

ξ r+1 + (−1)r

ξ r+1

ξ + 1
ξ

,

where Mr |ν is the r-th non-central moment of the standardized t-distribution truncated to positive

values, i.e.

Mr |ν =
∫ ∞

0
2 εr

t f t (εt |ν) dεt =
Γ
(ν−r

2

)
Γ
(1+r

2

)
(ν −2)

1+r
2√

π(ν −2)Γ
(ν

2

) ,

see, e.g., Lambert and Laurent (2001). Given the raw moments, we can derive skewness and

kurtosis of the skewed t-distribution as functions of the distribution parameters ν and ξ .

We estimate ν and ξ by setting the skewed t-distribution’s skewness and kurtosis equal to the

corresponding MEM-implied measures and solving the resulting equation system with the assump-

tion that the fourth moment exists, i.e. ν > 4. Having obtained parameter estimates for ν and ξ , we

scale and shift the skewed t-distribution using the MEM-implied volatility and mean, respectively.
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Note that, we obtain the MEM-implied measures used in this approach by following the proce-

dure in Section 2.2. However, we do not annualize the implied measures, since in the method of

moments context we aim at estimating the risk-neutral distribution of returns until option maturity.

After obtaining the estimated skewed t-distribution by fitting to the MEM moments, we follow

the same approach as in Section 4.1 to obtain the 10%-quantile of the risk-neutral distribution over

the following 21 trading days. This means, we apply the described method of moments on two

sets of options and obtain the corresponding risk-neutral probability distributions and their 10%-

quantiles. We interpolate these quantiles to the target of 21 trading days ahead and use the resulting

implied quantile as an explanatory variable in the VaR prediction models of Section 3.
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