Did the crisis affect inflation expectations?
Did the crisis affect inflation expectations?

Gabriele Galati, Steven Poelhekke and Chen Zhou *

* Views expressed are those of the authors and do not necessarily reflect official positions of De Nederlandsche Bank.
Did the crisis affect inflation expectations?

by Gabriele Galati, Steven Poelhekke and Chen Zhou*

DNB, August 2009

Abstract
We investigate whether the anchoring properties of long-run inflation expectations in the United States, the euro area and the United Kingdom have changed around the economic crisis that erupted in mid-2007. We document that in these three economies, expectations measures extracted from inflation-indexed bonds and inflation swaps became much more volatile in 2007. Moreover, their sensitivity to news about inflation and other domestic macroeconomic variables – a measure of anchoring – increased first during the oil price rally in 2006–07, and then during the heightened turmoil triggered by the collapse of Lehman Brothers. Liquidity premia and technical factors have significantly influenced the behaviour of inflation-indexed markets since the outburst of the crisis. We show, however, that these factors did not contaminate the relationship between macroeconomic news and financial market-based inflation expectations at the daily frequency. By testing for structural breaks we conclude that in the United States, the euro area and the United Kingdom, long-run inflation expectations have become less firmly anchored during the crisis.

JEL Classification: E31, E44, E52, E58.
Key words: monetary policy, inflation and inflation compensation, anchors for expectations, crisis, liquidity.

* Research Department, De Nederlandsche Bank. Views expressed are those of the authors and do not necessarily reflect official positions of De Nederlandsche Bank nor of the Eurosystem of central banks. We would like to thank Maria Demertzis, Refet Gürkaynak, Peter Hördahl, Pierre Lafourcade, Martijn Schrijvers, Nikola Tarashev and participants at seminars at DNB, Vrije Universiteit Amsterdam, the 2009 INFINITI conference and the 28th SUERF Colloquium for useful discussions and comments. Any remaining errors are our own.
1. Introduction

“Ultimately, the firm anchoring of inflation expectations remains the best way to check the appropriateness of monetary policy in an uncertain environment.” (Bini-Smaghi, 2009)

After rising sharply in 2007 and the first half of 2008 – against the background of rallying commodity and food prices – global inflation went on a marked downward trend when the macroeconomic consequences of the financial crisis became visible in the fall of 2008. A few months later, price changes turned negative in a number of economies, sparking an intense debate on whether deflationary risks were likely to materialise and what steps would be needed to avoid deflation (Jeanne, 2009). The discussion centred to an important extent on how inflation expectations have been affected by the crisis, and in particular on whether the anchoring properties of long-run inflation expectations changed as the crisis unfolded (Svensson, 2009). Our paper attempts to answer this question, by examining the behaviour of long-run inflation expectations in three major economies – the United States, the euro area and the United Kingdom – in the years around the crisis. This is the first empirical study of the behaviour of expectations during a crisis.

We proceed in two steps. We first examine the time series behaviour of two types of measures of long-run inflation expectations – survey-based measures and measures extracted from financial market instruments – for the United States, the euro area and the United Kingdom. We argue that the semi-annual frequency of the former make these measures less suited for an analysis of changes that might have occurred within a relatively short time span. By contrast, information extracted from financial markets is available at daily or even intra-day frequency, and therefore useful for our empirical exercise. Markets for inflation-indexed bonds and swaps in these economies are the most liquid in “normal” times and have enjoyed sufficient liquidity to allow extracting “reasonable” measures of inflation compensation from them.

To verify whether inflation expectations are firmly anchored, we first need to check whether they vary around central banks’ inflation objectives. In addition, following the approach of Gürkaynak et al. (2005), Gürkaynak et al. (forthcoming) and Beechy et al. (2007), it is necessary to investigate the reaction of financial market-based measures to news about inflation and other domestic macroeconomic variables. The idea is that if long-run inflation expectations are perfectly anchored, they should not react to the arrival of news but rather be stable around the central banks target for inflation. In particular, we test whether the reaction of expectations to news has changed since the outburst of the crisis. Statistically and economically significant evidence of such a change would indicate that the crisis has influenced market participants’ perception of the Fed, the Bank of England and the ECB’s commitment to price stability. One conjecture is that the unprecedented monetary
easing (through both conventional and non-standard monetary policies), coupled with the accumulation of a huge fiscal debt, may have undermined market participants’ confidence in the ability of central banks to keep inflation at target in the longer-run.

We find several interesting empirical results. First, survey-based measures of long-run inflation expectations in the three economies remained fairly stable within the central bank’s comfort zone both during the oil price rally in 2006–07 and as the crisis unfolded. We argue that the frequency at which inflation surveys are conducted is too low to allow inferences on the stability of anchoring properties during a relatively short time span.

Second, using financial market-based measures we find evidence that anchoring properties have changed, starting before the crisis. These measures have become much more volatile around mid-2007. Moreover, structural break tests show that inflation expectations have become more sensitive to macroeconomic news, particularly during the heightened turmoil triggered by the collapse of Lehman Brothers.

Third, while liquidity premia and technical factors appear to have significantly influenced the behaviour of inflation expectations derived from inflation-indexed bonds or inflation swaps since the outburst of the crisis, they do not appear to have contaminated the relationship at the daily frequency between macroeconomic news and financial market-based inflation expectations. We therefore feel confident that financial market-based measures of long-run inflation expectations allow us to draw inferences about their anchoring properties during the crisis.

The remainder of the paper is organised as follows. Section 2 provides brief overview of the relevant literature on the anchoring of inflation expectations. Section 3 describes two measures of long-run inflation expectations: survey-based measures and measures backed out from financial instruments. Section 4 discusses the role of liquidity and technical factors in financial market measures of inflation expectations. Section 5 presents our empirical model and the main results. Section 6 concludes.

2. Literature review

While expectations and credibility play a central role in the theoretical literature, there is little theoretical work on the concept of “anchoring” of inflation expectations. In standard macroeconomic theory, if the central bank’s objective function is known and constant, the rational expectations hypothesis implies that long-run inflation expectations do not change over time in response to the arrival of new information. In fact, Del Negro and Eusepi (2009) show that standard medium scale DSGE models have difficulties explaining the evolution of inflation expectations, and that the fit is even worse when the assumption of perfect information is relaxed. In recent years, a series of papers
departed from the rational expectations hypothesis and the assumption of a known and constant central bank objective (e.g. Orphanides and Williams, 2005; Brazier et al., 2008; Demertzis et al., 2007, 2008). This approach allows more realistic models of the link between inflation expectations and underlying inflation.

A key element of these models is the relationship between inflation expectations and shocks to the economy. The higher the sensitivity of expectations to these shocks, the more successful monetary policy will be. In Orphanides and Williams (2005) agents do not know the true model of the economy but rather constantly update their estimates based on all information available to them. As a result, inflation expectations are sensitive to economic shocks. Orphanides and Williams (2005) introduced central bank communication in their model and find that with learning, successful communication reduces the sensitivity of inflation expectations to actual inflation.

A similar idea is found in Demertzis et al. (2007), who modelled monetary policy as an information game, in which individual agents have to interpret new (publicly available and private) information when they form ex ante expectations about future long-term inflation. In their model, ex post inflation is a function of the monetary policy chosen by the central bank to pursue its objectives and the average of all individual expectations. It is then optimal for agents to form expectations based on three elements: monetary authorities’ objectives and their policy decisions; shocks that occur after these decisions; and the average of individual inflation expectations. Once the central bank communicates its inflation objective to the public — such as the ECB’s operational definition of price stability as below but close to 2% – agents can either form their expectations based on the above three elements or, alternatively, coordinate their expectations on that target. They derived a time-varying parameter that captures the credibility of the central bank’s target. If the target’s credibility is sufficiently high, individual agents will focus their expectations on that target.

In a companion paper, Demertzis et al. (2008) took their model to the data and estimate the degree to which long-run inflation expectations in the United States have been anchored to the Fed’s objective. They tested whether long-run inflation expectations— derived from the Fed’s FRB model or quarterly survey-based measures – are influenced by short-run inflation dynamics. They estimated a time-varying parameter (λ) that measures the extent to which inflation expectations are anchored across quarters. They found that in recent years, the anchorness of expectations in the United States has weakened but only slightly, without compromising the Fed’s credibility.

Agents may also use rules of thumb (“heuristics”) to make inflation forecasts. Brazier et al. (2008) consider two heuristics: one is based on lagged inflation and the other on an inflation target announced
by the central bank. In their model, agents switch between these two heuristics based on an imperfect assessment of how each has performed in the past.

The empirical literature on drivers of inflation expectations – surveyed carefully in a paper by Clark and Davig (2008) – has highlighted the role of macroeconomic variables. The periodical announcements on the state of the economy and forecasts released by various (statistical) offices and agencies form a steady source of new information. To the extent that the new information is unanticipated, beliefs about future inflation may be updated. If expectations are perfectly anchored – i.e. the central bank credibly commits to its inflation objective – long-run inflation expectations should not be responsive to news about actual inflation, or more general about macroeconomic conditions.

A number of recent studies documented the anchoring of long-run inflation expectations in a number of countries. One strand of the literature relies on inflation surveys. Levin et al. (2004) analysed the behaviour of private-sector inflation forecasts at horizons up to ten years – measured by quarterly Consensus forecasts – in United States and the euro area over the period 1994–2003. They found that expectations were highly correlated with a three-year moving average of lagged inflation. By contrast, in industrial countries that have adopted inflation targeting (United Kingdom, Sweden, Canada, Australia and New Zealand), inflation expectations were found not to be sensitive to actual inflation. Levin et al. (2004) concluded that inflation targeting has played a significant role in anchoring long-run inflation expectations. Paloviita and Viren (2005) found that inflation expectations, proxied by OECD inflation forecasts, respond to changes in output and actual inflation. The results are based on a simple VAR model with inflation, inflation expectations, estimated with pooled annual data for euro area countries over the period 1979–2003. Clark and Nakata (2008) showed that in the United States, inflation expectations appeared to be slightly better anchored in recent years compared to 20 or more years ago. In particular, they found evidence of a declining impact of unexpected increases in inflation on long-term expectations.

A second strand of the literature extracted inflation expectations from inflation-indexed financial market instruments, and looked at the relationship between inflation expectations and macroeconomic variables at high (daily or intraday) frequency (Swanson, 2006). Gürkaynak et al. (2003, 2005) derived inflation expectations from inflation-indexed bonds and examined their sensitivity to surprises about macroeconomic announcements at the daily frequency. To test for anchoring of inflation expectations, they regressed daily inflation expectations on a set of macroeconomic news variables. They found that between 1990 and 2002, long-run inflation expectations in the United States were not perfectly anchored. This analysis was extended by Gürkaynak et al. (forthcoming) and Gürkaynak et al. (2006),

1 Another strand of literature relies on economic experiments (e.g. Marimon and Sunder, 1994; Hommes et al, 2005, 2007; Adam, 2007).
who documented that long-run inflation expectations are more solidly anchored in the United Kingdom, Sweden and Canada – countries that adopted formal inflation targets. Consistently with Levin et al. (2004), they concluded that a numerical inflation target has helped anchoring long-term inflation expectations.

Beechey et al. (2007) followed the same methodology to compare the anchoring properties of long-run inflation expectations in the United States and the euro area over the period 1 June 2003 – 31 December 2006. They found that surprises about monetary policy decisions and macroeconomic data releases – the core CPI but also indicators of economic activity such as the National Association of Purchasing Managers (NAPM) index or non-farm payrolls – have significant effects on US forward inflation compensation at different horizons. By contrast, long-term inflation compensation does not significantly react to any news about price or output developments in the euro area. Beechey et al. (2007) concluded that long-run inflation expectations are more firmly anchored in the euro area than in the United States.

This paper builds on the literature by developing a method to assess possible changes in anchoring of inflation expectations around the recent crisis. Mounting inflationary pressure due to booming commodity prices in the run-up to the crisis might have caused inflation expectations to drift. Similarly, the crisis may well have led to drifting inflation expectations in the wake of unsurpassed monetary and fiscal expansion.

3. Measuring inflation expectations

Survey based measures

There are two main approaches to measuring long-run inflation expectations. The first approach relies on inflation surveys. A frequently used data source, Consensus Economics, provides semi-annual data on expectations of a panel of some 30 professional forecasters six to ten years ahead, for a number of countries. There are also survey data for somewhat shorter horizons. For example, at a horizon of 5 years, the ECB Survey of Professional Forecasters (SPF) collects, on quarterly basis, forecasts by a panel of some 70 professional forecasters on euro area HICP.

2 Using a similar empirical approach, Galati, Poelhekke and Zhou (2008) tested whether the sharp increase in HICP inflation in the year before the crisis, which was underpinned by a sharp rally in commodity and food prices, led to an un-anchoring of long-run expectations in the euro area. They backed out long-run expectations inflation expectations from euro denominated nominal and inflation-indexed swaps, and investigated the reaction of these measures to news about inflation and other macroeconomic variables in the main euro area countries. They found some evidence that long-run inflation expectations started to drift away from the ECB's anchor in the course of 2007.

3 A detailed analysis of the properties of these measures is provided in ECB (2006). For a careful analysis of the properties of survey measures, see Clark and Davig (2008).
Figure 1 shows the time series of SPF data on expectations of euro area inflation over a 5-year horizon. The graph highlights that neither the oil price rally in the years preceding the crisis nor the crisis itself have had a visible influence on inflation expectations at the 5-year horizon.

However, survey measures have several important shortcomings. First, given their low frequency, survey measures appear well-suited for analysing longer-run properties of inflation expectations but not for identifying the existence and timing of breaks in the expectation formation over a short horizon. Second, survey results may not be reliable to the extent that respondents do not have to act on the basis of their responses – i.e. “do not put their money where their mouth is”. Third, as shown by Van der Klaauw et al. (2008), survey results are sensitive to the wording of the questions. Fourth, different types of survey measures may produce very different results. Mankiw et al. (2003), for example, looked at 50 years of data on inflation expectations in the United States, and documented substantial disagreement among both consumers and professional economists about expected future inflation. They found that this disagreement varied substantially through time, depending on the level of inflation, the absolute value of the change in inflation, and relative price variability.

Financial market based measures

A second approach to measuring long-run expectations consists in using financial market-based measures. In a number of countries, bonds or interest rate swaps that are linked to some measure of domestic inflation are actively traded (Deacon et al., 2004, and JP Morgan, 2008). These instruments can be combined with nominal bonds or nominal interest rate swaps to back out financial markets’ inflation expectations. The main advantage of this type of measure is that, given its high frequency, it allows examining changes in the behaviour of expectations over a relatively short horizon. It is therefore most useful in investigating whether the financial crisis has affected the anchoring of inflation expectations to the Fed’s, the ECB’s, and the Bank of England’s inflation objectives.

In this paper we derived inflation expectations from nominal and inflation-indexed financial instruments. In particular, we considered inflation-indexed bonds for the United States (Treasury Inflation-Protected Securities, TIPS) and the United Kingdom (inflation-linked Gilts), and inflation swaps for the euro area. These instruments are actively traded and the most liquid ones among inflation-indexed products. For example, market commentary indicated that the monthly trading volume of 10-year euro area inflation swaps averaged around 6bn in 2007 (JP Morgan, 2008). Buyers of inflation swaps primarily include insurance companies and pension funds, which suffer a loss of

4 This point is emphasised in the experimental economics literature on inflation expectations (Smith, 1982).

5 Alternatively, we could have used nominal and inflation-indexed bonds also for the euro area, which in recent years have become increasingly liquid. Our preference for swaps is motivated by their greater liquidity along the whole maturity spectrum, particularly in the earlier years in our sample period. Beechey et al (2007) note that inflation compensation derived from swaps and TIPS are very similar. For a more extensive discussion of the difference between inflation-indexed bonds and inflation swaps, see Deacon et al. (2004) and JP Morgan (2008).
income if the actual inflation rate increases. Typical inflation swap sellers include firms whose income is linked to inflation while their expenses are not, or only to a lesser degree, such as public authorities, utilities, real estate companies, or distribution companies. By selling inflation in an inflation-linked swap, they are able to protect future income linked to inflation. Data for the yield curves of UK inflation-indexed bonds were taken directly from the Bank of England, while data on US TIPS and euro area swaps were obtained from Bloomberg.6

Here we describe in detail the method followed to extract inflation expectations from swaps markets but the main features apply also to the approach we followed for bond markets. Inflation expectations can be measured by the difference between one-year zero-coupon forward rates of inflation swaps and nominal interest rate swaps. Since we focus on long-term inflation expectations, we chose one-year zero-coupon forward rates ending ten year ahead. Hence, at day \(t \) inflation expectation are measured by

\[
(1) \quad f_t = f_{t,10}^{is} - f_{t,10}^{in},
\]

where \(f_{t,10}^{is} \) and \(f_{t,10}^{in} \) denote the one-year zero-coupon forward rates ending ten year ahead for inflation swaps and interest swaps respectively.

We collected daily data on euro area swap markets for the period 23 June 2004 to 24 March 2009. For each day, swap rates are available for different maturities, allowing us to estimate a whole yield curve. The forward rates ending ten year ahead can be calculated from the swap rates with 9- and 10-year maturities as

\[
(2) \quad f_{t,10} = \frac{(1 + y_{10})^{10}}{(1 + y_{9})^{9}} - 1,
\]

where \(y_9 \) and \(y_{10} \) are the 9-year and 10-year swap rates, respectively.7

One concern is that since the market for swaps with a 9-year maturity may be less liquid than the market for 10-year maturity, estimates of forward rates based on 9-year swaps may exhibit a high level of noise. In order to filter out this noise, we followed a standard technique of the finance literature – the Nelson-Siegel method (see, e.g. Nelson and Siegel, 1987) – to estimate a smooth yield curve for each day. Details on this method are presented in Appendix 1. Söderlind and Svensson (1997) argued that estimating yield curves by a simple curve fitting, as we did, rather than by a structural model for

7 The same formula to calculate the forward rates applies to both inflation swaps and interest swaps. This argument holds for the rest of the section.
interest rate dynamics is appropriate when the purpose is to extract market expectations about future interest rates without making additional assumptions about the model structure.

We obtained two smoothed yield curves for each day: one for inflation swaps, the other one for interest rate swaps. From these, we got the smoothed 9- and 10-year swap rates. We then estimated 10-year ahead forward rates, from which we derived the inflation expectation measures as a difference between inflation swaps and nominal interest rate swaps. Note that our smoothing procedure is applied for each specific day but it gives also a smoother measure of inflation expectations across time. This smoothing effect can be explained in terms of a smaller impact of liquidity effects. Throughout the paper, we used the smoothed series as a measure of long-run inflation expectations.

Figure 1 shows that our measure of long-run inflation expectations for the euro area based on inflation-indexed swaps differs significantly from the inflation expectations at the 5-year horizon given by the SPF. While the SPF measure were very stable and close to the ECB’s objective of 2% medium-term inflation over the whole sample period, inflation expectations from swap markets swung between 2.5% and 1% and became much more volatile after the onset of the crisis. Similarly, financial market and survey based measures of long-run inflation expectations also differ visibly for the United States and the United Kingdom.

4. The role of liquidity premia and technical factors

One potential reason for the visible difference between survey and financial market based measures of inflation expectations is that the latter may be contaminated by other factors, especially during the crisis. Break-even rates, i.e. the difference between nominal and inflation-indexed bonds, can be decomposed into four main factors: expected inflation, inflation risk premia, liquidity premia, and technical factors (Hördahl, 2009). According to Hördahl (2009), the same applies to a much lesser extent to the difference between nominal and inflation-indexed swaps. One example of these technical factors are sudden portfolio shifts by leveraged investors that may affect nominal and inflation-indexed bond markets but are unrelated to changing views about future economic fundamentals. One critical assumption of exercises that back out measures of inflation expectations from financial instruments is that the last two factors do not respond to macroeconomic news at the daily frequency. Changes in far-horizon break-even rates can then be interpreted as a revision of market participants’ long-run inflation expectations or inflation risk in response to new information, indicating that inflation expectations are not solidly anchored.

8 See e.g. Barclays Capital Research (2008).
9 The inflation risk reflects both the volatility of inflation expectations as well as market participants’ attitude towards risk. If inflation expectations are firmly anchored, none of these two components should react to new information.
In “normal” times this assumption appears plausible. Dudley et al. (2009) documented the deepening of TIPS markets by looking at trading volumes, bid-ask spreads and estimates of illiquidity premia. Beechey et al. (2007) documented that the announcement effects on inflation expectations measured using TIPS or inflation swaps persist for about one business week. They interpreted this as evidence that the reaction of the dependent variable is not driven primarily by liquidity effects. Beechey et al. (2008) decomposed US nominal yields into three components – nominal yields, real yields, and the spread between these two (i.e. inflation compensation) – and then estimated the effect of news on these three components using intra-day data. They found that different types of news – about prices, the real economy or monetary policy – have quite different effects on real rates and rates of inflation compensation. In particular, only news about prices affect inflation compensation. They also tested whether the impact of news has changed over time, since the market for inflation-indexed bonds in the United States – Treasury Inflation Protected Securities (TIPS) – has deepened. Their evidence suggests that the reaction of long-term inflation compensation to inflation news has not changed between 17 February 2004 and 13 June 2008, implying no significant change in inflation expectations’ anchoring properties during this period.10

During the current crisis, the assumption that changes in market liquidity and technical factors may contaminate the behaviour of financial market-based measures of inflation expectations appears much less innocuous. Financial markets, including bond and swap markets, experienced pronounced swings in volatility and liquidity. In these circumstances, there was evidence that yields on nominal and inflation-indexed bonds (and swaps) were driven not just by expectations about future inflation but also by high and volatile liquidity premia and technical factors related e.g. to hedging activity (Fender et al., 2009; Hördahl, 2009).

Note that by construction, our measure of inflation compensation filtered out part of the noise. In particular, by taking the difference between nominal and inflation-indexed bonds (or swaps), we purged the effect of liquidity and technical factors that affect both markets in a similar way. For example, if on a particular day there is a sudden broad portfolio shift out of fixed income markets in general and into equity markets, nominal and inflation-indexed bond yields could both be affected in a similar fashion. Moreover, we focus on day-to-day changes in inflation compensation, and the relative liquidity of the nominal and inflation-indexed markets may not change substantially from day to day.

This discussion suggests that simple graphical evidence on the behaviour of break-even rates can be misleading: the “true” inflation expectations may be anchored even though financial market based

10 By contrast, using daily data from early 1999 to early 2004, Beechey et al. (2008) compared the performance of their model before and after 2004 and found evidence that inflation compensation became less sensitive to news after 2004. They interpreted this result as suggesting that the improved liquidity and functioning of the TIPS market since 2004 may have allowed TIPS yields to become more responsive to new information.
measures are not close to the central bank’s objective if the influence of liquidity and technical factors is not filtered out properly. In addition, even if our expectation measure is “accidentally” close to the central bank’s objective, it is not sufficient to conclude that inflation expectations are firmly anchored. In this case, the movements of expectations are influenced by macroeconomic (and other) news, which happen to drive inflation expectations close to the central bank’s objective. To get more accurate evidence on the anchoring of long-run inflation expectations, we therefore turn to examine their response to macroeconomic news.

5. Empirical results on breaks and anchoring

In order to test whether inflation expectations became unanchored during the crisis, we examined the impact of news on HICP inflation and other macroeconomic variables on our measures of inflation expectations. Our focus is on testing for structural breaks while improving estimation by dealing explicitly with liquidity effects. Our sample period is 23 June 2004 – 23 March 2009, and includes almost two crisis years during which liquidity effects may have been especially important.

Following the approach developed by Gürkaynak et al. (2006) and Beechey et al. (2007) – who compared the credibility of the Fed, the ECB and inflation targeting central banks – we captured news by the difference between actual releases of the main euro area macroeconomic variables and values anticipated by market participants according to surveys conducted by Bloomberg and JP Morgan. This is a common method in the literature, although Rigobon and Sack (2008) found that it tends to underestimate the responses to true news because of measurement errors. In fact, Bartolini et al. (2008) discussed shortcomings of survey-based measures of news but conclude that this approach may be the only one available in practice.

We expect that data releases on inflation variables are most important. However, without empirical guidance from the literature, we have few other priors on what type of information influences inflation expectations. Other macroeconomic variables – such as GDP growth, business confidence indicators, the unemployment rate or wage growth – may also give indications about possible inflationary pressures. The used the same macro-announcements as in Beechey et al. (2007). For the euro area, we concentrated on data releases for the three main economies – Germany, France, and Italy – since these are most likely to have a primary influence on views on future euro area inflation. Considerably more news variables are available through Bloomberg and JP Morgan for the United Kingdom and the United States. Appendix 2 lists all available variables.

11 One difference with Beechey et al. (2007) is that we do not include US news in the regressions where the dependent variable is euro area or UK inflation expectations.
We regressed our measure of long-run inflation expectations on a constant, a set of macroeconomic news variables and a set of control variables, according to the following model:

$$\Delta f_t = \alpha + \beta X_t + \gamma Z_t + \varepsilon_t$$

where the dependent variable $\Delta f_t = f_t - f_{t-1}$ is the change, from closing of the markets at day $t-1$ to closing on day t, in one-year inflation compensation ten years ahead. The explanatory variables X_t are a vector of news variables on various measures of the state of the economy. Most macroeconomic news arrives at 8:30 am, before stock markets open.\(^{12}\) Our expectations variable therefore measures the change in inflation expectations between the end-of-day swap quote of the day before macro news arrive ($t-1$), and the end-of-day quote on the same day on which the news arrive (t).

Z_t is a vector of control variables intended to capture the influence that shorter-term changes in liquidity premia and technical factors unrelated to inflation expectations may have on swap rates. In particular, our control variables are useful in purging the effect of liquidity premia and technical factors that are related to shocks that broadly hit financial markets. For example, a sudden increase in financial stress on a particular day due to news about the collapse of a major financial player may induce a broad flight to liquidity. This could benefit nominal bonds at the expense of other assets such as inflation-index bonds. Our preferred control variable is the implied volatility of bond yields but we checked that our results were robust to using four alternative variables that measure market liquidity: the Chicago Board Options Exchange Volatility Index (VIX), a widely used measure of the implied volatility of S&P 500 index options; the euro bund implied volatility; the on-the-run off-the-run spread (a commonly measure of bond market liquidity); and analogously for the euro area, the KfU-bund spread.\(^{13}\) All these non-news controls were first differenced as well, because a change in implied volatility should lead to an additional change in our measure of inflation expectations through a liquidity premium. We also controlled for day-of-the-week effects but these turned out not to be statistically significant.\(^{14}\)

We interpret a high R^2 – to the extent that it is driven by significant coefficients on the variables X_t – as evidence that expectations are weakly anchored. A low R^2 conversely implies well anchored inflation expectations. A change in explanatory power of the model during the sample period would then indicate that anchoring properties of inflation expectations have changed. In particular, we verified whether the sensitivity of inflation expectations to news about inflation and other

\(^{12}\) See for example JP Morgan (2009).

\(^{13}\) A description of this variable is given in Hördahl (2009).

\(^{14}\) For reasons of space, the results for these dummies are not reported here. All variables used in the regressions are stationary.
macroeconomic variables has increased since 2006, when first commodity and food prices started to rally and then the financial crisis erupted.

To detect such changes, we need to test for a structural break. We used the Chow test, which verifies whether the structure of the model changes on a certain day. However, it is an ex post test in the sense that the timing of the break must be chosen with some prior knowledge. Chow tests for dates that are close to the real structural break will also give statistically significant results. To get a more precise indication of the timing of the structural break, we therefore used a rolling version of the Chow test. Changing the date at which we split the sample gives us a measure of when, if at all, the model starts to predict changes in inflation expectations. If we find that the model fit increases after the break we may conclude that expectations have become less anchored from that point on. Note that we adjusted the Chow test statistic so that we capture only the change in model performance due to news variables.15

As a further step, we considered the most conservative dating of a structural break, given by the maximum of the test statistics from the rolling Chow tests (see Zeileis et al., 2003). We examined the change over time in both the F-test value and p-value to assess the timing of a structural break.16

Our results – summarised separately for the United States, the euro area and the United Kingdom in Figures 3, 4 and 5 – indicate that the sensitivity of inflation expectations to news has indeed changed during the sample period. Each figure plots on the left axis the p-value of the Chow test for each day, and on the right axis the actual value of the test statistic. Several results stand out. First of all, the test statistics (and, inversely, the p-values) all increase towards end-2008 and early 2009, around the time when the financial crisis peaked. The closer we get to the period of heightened financial stress – as highlighted by the dotted vertical line, the date at which Lehman Brothers filed bankruptcy – the more different the model performs in the later sample period compared to the first period. This indicates that in all three areas inflation expectations have changed sensitivity over time to macroeconomic news.

Secondly, we found a break in each economic area. The dates at which the Chow test becomes significant for the first time at the 99% confidence level are highlighted in the graphs by vertical dashed lines, and are reported in Table 1. We identified a first statistically significant change in the behaviour of inflation expectations around December 2006 for the euro area and March 2006 for the United States. In the United Kingdom we identified a break much later, in April 2008.

15 If liquidity premia are important, then the implied volatility variables may also cause the Chow test to flag a break, just because volatility increased during the crisis period. To prevent this, we replaced the sum of squared residuals from the three regressions (entire period, before and after potential break point) in the test statistic with one minus their partial R-squared – where the explanatory effect of the control variables was partialled out – multiplied by their respective total sum of squares.

16 We truncate the sample by 100 observations on each side to allow for feasible testing near the beginning and end of the sample.
Thirdly, the test statistics show a hump shaped pattern around the crisis period in all three economies, suggesting strong evidence for a break at the height of the crisis and decreasing evidence in the following months.

Table 1 shows, in addition to the timing of the first break identified by Chow tests, dates on which the Chow test statistics is maximized. Using this more conservative method of dating structural breaks in the relationship between inflation expectations and news we find more similarities across the United States, the euro area and the United Kingdom. For all three economies, the maximum Chow test statistic can be found between September and November of 2008, a period that is commonly considered as the height of the financial crisis, and encompasses the collapse of Lehman Brothers on 15 September 2008.

As a robustness check, we used the method developed by Andrews (1993), which tests whether a structural break exists within a short period without knowing the break point. The essence of these tests is to look at the test statistics yielded by Chow-tests on each day within the period under consideration, and construct new unified testing statistics from them. This helps to narrow down the location of the structural break. Once we identified the day on which the F-test statistic of our rolling Chow tests reaches their maximum, we applied the Andrews test to verify whether it identifies significant structural breaks around those days. The Andrews test indeed confirmed that at a 99% confidence level, a structural break exists on the days on which the Chow test statistics are maximized for all three economic areas.

Having identified structural breaks in the relationship between inflation expectations and inflation and macroeconomic news, we looked at the fit of the model in each sub-sample to tell us if inflation expectations became more or less anchored after those breaks. Tables 2–4 show the regression results for respectively the euro area, the United Kingdom and the United States, and distinguish three different sample periods. In each table, the first column refers to the entire sample period, while columns 2 and 3 refer sub-sample before and after the first break point identified by rolling Chow tests. Columns 4 and 5 report results for the sub-samples before and after the day on which the Chow statistic reached its maximum.

The tables highlight that in all three economic areas, inflation expectations became less well anchored in the run-up to and during the crisis. In particular, the reaction of inflation expectations to news on euro area inflation was much higher in December 2006–March 2009 than in June 2004–December

17 See also Andrews and Ploberger (1994). Our approach is very similar to that used by Beechey et al. (2008) to test for parameter instability.
2006. The partial R-squared, which excludes the effect of our measures of liquidity and technical factors, increased from 4.6% to 7.6% between the first and the second sub-sample. The difference is even starker in the United Kingdom: the partial R-squared increased six-fold, from 1% to 5.7%. Also US inflation expectations reacted much more to news after the break: 1.8% before March 2006 and 4.9% in the period after.

The change in model fit over time is even more evident when we split the sample period on the dates on which the Chow test statistics are maximized (columns 4 and 5 in Tables 2–4). The increase in model performance – measured by the partial R^2 – is most visible for the United States, where economic news explained only 1.7% of changes in inflation expectations before 14 November 2008 but 26.7% of the variation after that date! The model fit also increases from 2% to 10.8% for the United Kingdom, and from 4.4% to 16.9% for the euro area. We interpret this result as a warning sign that central banks should monitor inflation expectations very carefully, and that around the end of 2008, and probably earlier, long-run inflation expectations might have started to be less perfectly anchored. This is true irrespective of the monetary policy framework and the type of strategy that the Federal Reserve, the ECB and the Bank of England followed in reaction to the crisis.

To get a sense of the magnitude of the sensitivity of inflation expectations to news, we compared our results to those reported by Gürkaynak et al. (2006) for the United Kingdom and United States for data up to 2005. They found that economic news was able to explain 4% of the variation of US inflation compensation between 1998 and 2005. The results in Table 4 suggest that the degree of anchoring has declined significantly during the crisis. The same holds for the United Kingdom. Gürkaynak et al. (2006) report that after the Bank of England became independent, economic news only explained up to 3% of the variation in inflation compensation (between 1998 and 2005). The explanatory power did not increase when also international news was included. Post October 2008 we find that the degree of model fit rose to 16.9%, which is almost as high as the model fit that Gürkaynak et al. (2006) found for the period before the Bank of England gained independence (1993-1997).

6. Conclusions

To what extent have inflation expectations been affected by the economic crisis that erupted in mid-2007? In particular, have anchoring properties of long-run inflation expectations changed as the crisis unfolded in the course of the past two years? In our paper we addressed this question by examining long-run inflation expectations in the United States, the euro area and the United Kingdom between June 2004 and March 2009. We considered two types of measures of long-run inflation expectations:

18 Beechey et al. (2007) do not report measures of model fit so we could not compare what we found to their results.
19 This includes the statistically significant effect of several first-business-day-of-the-year dummies, which we did not include in our regressions.
survey-based measures and measures extracted from inflation-linked financial market instruments. The two measures tell a different story. Survey-based measures remained fairly stable within the central banks’ comfort zone both during the oil price rally in the run-up to the crisis and as the crisis unfolded. Expectations measures extracted from inflation-indexed bonds and inflation swaps show a marked increase in volatility since 2007. Moreover, we found evidence that their sensitivity to news about inflation and other domestic macroeconomic variables has increased since 2006. The reactivity to news increased particularly during the period of heightened turmoil triggered by the collapse of Lehman Brothers in September 2008, when central banks responded by significantly easing monetary policy using both standard and non-conventional tools.

Although it has been argued that liquidity premia and technical factors have significantly influenced the behaviour of inflation-indexed markets since the outburst of the crisis, we found that they did not contaminate the relationship between macroeconomic news and financial market-based inflation expectations at the daily frequency. We therefore feel confident to draw the conclusion that in all three economies, long-run inflation expectations have become less firmly anchored during the crisis. Whether the extent to which anchoring properties have changed during the crisis depends on monetary frameworks – such as an inflation targeting regime – or the strategies that were followed to counter the impact of the crisis, is an important topic for future research. In terms of methodology, we conclude that the approach developed by Gürkaynak (2005) and others is flexible enough to be used to investigate the properties of expectations during crisis times.

One interpretation of our results is that at the height of the crisis, market participants viewed monetary authorities as focusing mainly on fixing the monetary transmission mechanism and on softening the impact of financial instability on the real economy. This appears to have affected market participants’ views on the credibility of central banks in fighting inflation. In the midst of a crisis, this seemed less of a problem given the absence of inflationary pressures. However, once the economy regains traction, central banks need to carefully devise exit strategies from the expansionary monetary stance.
References

Jeanne, O. (2009). We need a multilateral consultation on how to avoid global deflation, *VoxEU*, 3 March.

Klaauw, W. van der, W. de Bruin, G. Topa, S. Potter and M.F. Bryan (2008). Rethinking the measurement of household inflation expectations, *FRB of New York Staff Report* No. 359.

Table 1: Break point dating

<table>
<thead>
<tr>
<th>Area</th>
<th>Break date:</th>
<th>first date significant</th>
<th>maximum test value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Euro Area</td>
<td>21dec2006</td>
<td>20oct2008</td>
<td></td>
</tr>
<tr>
<td>Chow F-test stat.</td>
<td>1.950</td>
<td>4.474</td>
<td></td>
</tr>
<tr>
<td>p-value</td>
<td>0.010</td>
<td>1.59e-09</td>
<td></td>
</tr>
<tr>
<td>Andrews' test stat.</td>
<td>76.06</td>
<td>33.43</td>
<td></td>
</tr>
<tr>
<td>1% critical value</td>
<td>1% critical value</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UK</td>
<td>16apr2008</td>
<td>09sep2008</td>
<td></td>
</tr>
<tr>
<td>Chow F-test stat.</td>
<td>2.302</td>
<td>5.615</td>
<td></td>
</tr>
<tr>
<td>p-value</td>
<td>0.005</td>
<td>4.93e-10</td>
<td></td>
</tr>
<tr>
<td>Andrews' test stat.</td>
<td>67.38</td>
<td>26.22</td>
<td></td>
</tr>
<tr>
<td>1% critical value</td>
<td>1% critical value</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US</td>
<td>15mar2008</td>
<td>14nov2008</td>
<td></td>
</tr>
<tr>
<td>Chow F-test stat.</td>
<td>2.236</td>
<td>13.187</td>
<td></td>
</tr>
<tr>
<td>p-value</td>
<td>0.008</td>
<td>8.99e-26</td>
<td></td>
</tr>
<tr>
<td>Andrews' test stat.</td>
<td>145.06</td>
<td>24.73</td>
<td></td>
</tr>
<tr>
<td>1% critical value</td>
<td>1% critical value</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Regressions are run as specified in tables 2 to 4.
Table 2: Regression results for Euro Area

<table>
<thead>
<tr>
<th>Break date (99% confidence level):</th>
<th>(1) 23jun2004-12mar2009</th>
<th>(2) 1st significance 21dec2006</th>
<th>(3) maximum significance 20oct2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>overall R-squared</td>
<td>0.050 (0.002)</td>
<td>0.078 (0.006)</td>
<td>0.091 (0.012)</td>
</tr>
<tr>
<td>partial R2</td>
<td>0.041 (0.001)</td>
<td>0.046 (0.002)</td>
<td>0.076 (0.003)</td>
</tr>
<tr>
<td>Observations</td>
<td>1232 (0.002)</td>
<td>651 (0.002)</td>
<td>581 (0.003)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Break date (99% confidence level):</th>
<th>(1) 23jun2004-12mar2009</th>
<th>(2) 1st significance 21dec2006</th>
<th>(3) maximum significance 20oct2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>France Business Confidence overall indicator</td>
<td>0.018*** (0.009)</td>
<td>0.009 (0.006)</td>
<td>0.030** (0.012)</td>
</tr>
<tr>
<td>France GDP QoQ</td>
<td>0.022** (0.009)</td>
<td>0.022*** (0.008)</td>
<td>0.010 (0.013)</td>
</tr>
<tr>
<td>France Industrial Production MoM SA 2000=100</td>
<td>0.002 (0.008)</td>
<td>0.000 (0.008)</td>
<td>0.008 (0.013)</td>
</tr>
<tr>
<td>France PPI MoM 2000=100</td>
<td>0.031*** (0.003)</td>
<td>-0.017 (0.015)</td>
<td>0.036*** (0.004)</td>
</tr>
<tr>
<td>France Unemployment rate SA</td>
<td>0.002 (0.006)</td>
<td>0.003 (0.007)</td>
<td>-0.008 (0.009)</td>
</tr>
<tr>
<td>France CPI MoM European harmonized NSA</td>
<td>-0.005 (0.007)</td>
<td>-0.009* (0.005)</td>
<td>0.009 (0.018)</td>
</tr>
<tr>
<td>Bundesbank Germany Current Account EUR SA</td>
<td>0.008 (0.006)</td>
<td>0.017** (0.008)</td>
<td>0.002 (0.009)</td>
</tr>
<tr>
<td>Germany HICP MoN 2005=100</td>
<td>0.009* (0.005)</td>
<td>0.009*** (0.005)</td>
<td>0.012 (0.018)</td>
</tr>
<tr>
<td>IFO pan Germany business climate 2000=100</td>
<td>-0.007 (0.011)</td>
<td>0.014** (0.006)</td>
<td>-0.030 (0.018)</td>
</tr>
<tr>
<td>Germany Industrial production MoM SA 2000=100</td>
<td>0.011 (0.010)</td>
<td>-0.003 (0.006)</td>
<td>0.020 (0.016)</td>
</tr>
<tr>
<td>Germany PPI MoM 1995=100</td>
<td>-0.013 (0.011)</td>
<td>0.009 (0.011)</td>
<td>-0.024 (0.015)</td>
</tr>
<tr>
<td>Germany Unemployment rate SA</td>
<td>0.009 (0.006)</td>
<td>0.004 (0.005)</td>
<td>0.015 (0.011)</td>
</tr>
<tr>
<td>Italy Business confidence 2000=100</td>
<td>-0.003 (0.006)</td>
<td>-0.001 (0.004)</td>
<td>-0.003 (0.011)</td>
</tr>
<tr>
<td>Italy HICP MoM NSA 2005=100</td>
<td>0.005 (0.005)</td>
<td>0.004 (0.004)</td>
<td>0.005 (0.011)</td>
</tr>
<tr>
<td>Italy Industrial Production MoM SA 2000=100</td>
<td>0.009 (0.008)</td>
<td>0.013*** (0.006)</td>
<td>-0.001 (0.008)</td>
</tr>
<tr>
<td>Italy PPI manufacturing MoM 2000=100</td>
<td>-0.017* (0.009)</td>
<td>0.001 (0.008)</td>
<td>-0.033** (0.016)</td>
</tr>
<tr>
<td>Italy Real GDP QoQ SA WDA</td>
<td>0.032 (0.021)</td>
<td>0.015*** (0.002)</td>
<td>0.037 (0.028)</td>
</tr>
</tbody>
</table>

∆ Implied Volatility (Euro-bund future continuous call)	-0.000 (0.002)	0.008*** (0.002)	-0.004 (0.002)	0.003** (0.001)	-0.010 (0.001)
∆ VIX (CBOE SPX Volatility (New) – price index)	-0.005* (0.003)	-0.006 (0.004)	-0.005 (0.003)	-0.007** (0.003)	-0.005 (0.005)
Constant	0.000 (0.002)	-0.001 (0.001)	0.001 (0.003)	0.000 (0.001)	-0.008 (0.014)

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1
Table 3: Regression results for the United Kingdom

<table>
<thead>
<tr>
<th>Break date (99% confidence level):</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>overall R-squared</td>
<td>0.023</td>
<td>0.014</td>
<td>0.058</td>
<td>0.028</td>
<td>0.111</td>
</tr>
<tr>
<td>partial R2</td>
<td>0.022</td>
<td>0.010</td>
<td>0.057</td>
<td>0.020</td>
<td>0.108</td>
</tr>
<tr>
<td>Observations</td>
<td>1204</td>
<td>965</td>
<td>239</td>
<td>1066</td>
<td>138</td>
</tr>
<tr>
<td>UK Manufacturing PMI Markit survey ticker</td>
<td>-0.003</td>
<td>0.002</td>
<td>-0.007</td>
<td>-0.001</td>
<td>-0.006</td>
</tr>
<tr>
<td>(0.003)</td>
<td>(0.003)</td>
<td>(0.005)</td>
<td></td>
<td>(0.003)</td>
<td>(0.007)</td>
</tr>
<tr>
<td>UK industrial production MoM SA</td>
<td>0.007*</td>
<td>0.004*</td>
<td>0.013</td>
<td>0.004*</td>
<td>0.025***</td>
</tr>
<tr>
<td>(0.004)</td>
<td>(0.002)</td>
<td>(0.010)</td>
<td></td>
<td>(0.002)</td>
<td>(0.007)</td>
</tr>
<tr>
<td>UK CPI EU harmonized MoM NSA</td>
<td>0.009</td>
<td>0.000</td>
<td>0.016</td>
<td>0.004</td>
<td>0.018</td>
</tr>
<tr>
<td>(0.016)</td>
<td>(0.006)</td>
<td>(0.031)</td>
<td></td>
<td>(0.006)</td>
<td>(0.031)</td>
</tr>
<tr>
<td>UK retail prices index MoM NSA</td>
<td>-0.000</td>
<td>-0.002</td>
<td>0.013</td>
<td>-0.002</td>
<td>0.025</td>
</tr>
<tr>
<td>(0.011)</td>
<td>(0.004)</td>
<td>(0.028)</td>
<td></td>
<td>(0.004)</td>
<td>(0.031)</td>
</tr>
<tr>
<td>UK Nationwide consumer confidence Index SA</td>
<td>0.028</td>
<td>no</td>
<td>0.028</td>
<td>-0.047***</td>
<td>0.057***</td>
</tr>
<tr>
<td>(0.024)</td>
<td>(0.026)</td>
<td></td>
<td></td>
<td>(0.008)</td>
<td>(0.011)</td>
</tr>
<tr>
<td>UK unemployment claimant count monthly change SA</td>
<td>-0.005</td>
<td>-0.004</td>
<td>-0.000</td>
<td>-0.003</td>
<td>0.000</td>
</tr>
<tr>
<td>(0.005)</td>
<td>(0.003)</td>
<td>(0.008)</td>
<td></td>
<td>(0.003)</td>
<td>(0.008)</td>
</tr>
<tr>
<td>UK claimant count (unemployment) rate SA</td>
<td>-0.000</td>
<td>0.004</td>
<td>-0.012</td>
<td>0.005</td>
<td>-0.017*</td>
</tr>
<tr>
<td>(0.004)</td>
<td>(0.003)</td>
<td>(0.010)</td>
<td></td>
<td>(0.003)</td>
<td>(0.008)</td>
</tr>
<tr>
<td>BoE official bank rate</td>
<td>-0.005*</td>
<td>-0.010***</td>
<td>-0.005</td>
<td>-0.010***</td>
<td>-0.005</td>
</tr>
<tr>
<td>(0.003)</td>
<td>(0.003)</td>
<td>(0.003)</td>
<td></td>
<td>(0.003)</td>
<td>(0.004)</td>
</tr>
<tr>
<td>UK chained GDP at market prices QoQ</td>
<td>0.006</td>
<td>-0.003</td>
<td>0.021**</td>
<td>0.002</td>
<td>0.019</td>
</tr>
<tr>
<td>(0.006)</td>
<td>(0.005)</td>
<td>(0.009)</td>
<td></td>
<td>(0.006)</td>
<td>(0.015)</td>
</tr>
<tr>
<td>UK Retail Sales All Retailing</td>
<td>0.005</td>
<td>0.000</td>
<td>0.008</td>
<td>0.001</td>
<td>0.020*</td>
</tr>
<tr>
<td>(0.004)</td>
<td>(0.004)</td>
<td>(0.007)</td>
<td></td>
<td>(0.004)</td>
<td>(0.011)</td>
</tr>
<tr>
<td>UK PPI Manufactured Products M</td>
<td>-0.001</td>
<td>-0.002</td>
<td>0.002</td>
<td>-0.004</td>
<td>0.044**</td>
</tr>
<tr>
<td>(0.003)</td>
<td>(0.001)</td>
<td>(0.008)</td>
<td></td>
<td>(0.003)</td>
<td>(0.019)</td>
</tr>
<tr>
<td>UK Avg Earnings Whole Economy</td>
<td>-0.001</td>
<td>-0.000</td>
<td>-0.006**</td>
<td>-0.000</td>
<td>-0.007***</td>
</tr>
<tr>
<td>(0.002)</td>
<td>(0.003)</td>
<td>(0.002)</td>
<td></td>
<td>(0.003)</td>
<td>(0.002)</td>
</tr>
<tr>
<td>∆ Implied Volatility (Euro-bund future continuous call)</td>
<td>0.001</td>
<td>0.001</td>
<td>0.000</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.002)</td>
<td></td>
<td>(0.001)</td>
<td>(0.003)</td>
</tr>
<tr>
<td>∆ VIX (CBOE SPX Volatility (New) – price index)</td>
<td>-0.000</td>
<td>-0.001</td>
<td>-0.000</td>
<td>-0.002</td>
<td>0.000</td>
</tr>
<tr>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.002)</td>
<td></td>
<td>(0.001)</td>
<td>(0.002)</td>
</tr>
<tr>
<td>Constant</td>
<td>0.000</td>
<td>0.001**</td>
<td>-0.003</td>
<td>0.001**</td>
<td>-0.006</td>
</tr>
<tr>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.003)</td>
<td></td>
<td>(0.001)</td>
<td>(0.006)</td>
</tr>
</tbody>
</table>

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1
Table 4: Regression results for the United States

<table>
<thead>
<tr>
<th>Break date (99% confidence level):</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.032</td>
<td>0.022</td>
<td>1189</td>
<td>0.063</td>
<td>0.018</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>23mar2006</th>
<th>15mar2006</th>
<th>14nov2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>US Personal Consumption Expenditure Core Price Index MoM SA</td>
<td>0.006</td>
<td>-0.009</td>
<td>0.015**</td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td>(0.012)</td>
<td>(0.006)</td>
</tr>
<tr>
<td>US Capacity Utilization % of Total Capacity SA</td>
<td>0.020*</td>
<td>0.001</td>
<td>0.023</td>
</tr>
<tr>
<td></td>
<td>(0.011)</td>
<td>(0.012)</td>
<td>(0.016)</td>
</tr>
<tr>
<td>Conference board consumer confidence SA 1985=100</td>
<td>0.008</td>
<td>-0.006</td>
<td>0.016</td>
</tr>
<tr>
<td></td>
<td>(0.011)</td>
<td>(0.011)</td>
<td>(0.017)</td>
</tr>
<tr>
<td>US Industrial Production MoM 2002=100 SA (rate)</td>
<td>-0.027*</td>
<td>0.006</td>
<td>-0.033*</td>
</tr>
<tr>
<td></td>
<td>(0.014)</td>
<td>(0.013)</td>
<td>(0.017)</td>
</tr>
<tr>
<td>US initial jobless claims SA</td>
<td>-0.009</td>
<td>0.003</td>
<td>-0.016*</td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td>(0.004)</td>
<td>(0.008)</td>
</tr>
<tr>
<td>Conference board US leading index MoM</td>
<td>0.016</td>
<td>-0.007</td>
<td>0.027</td>
</tr>
<tr>
<td></td>
<td>(0.014)</td>
<td>(0.013)</td>
<td>(0.019)</td>
</tr>
<tr>
<td>Federal Funds Target Rate</td>
<td>0.009**</td>
<td>0.000</td>
<td>0.010*</td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td>(0.000)</td>
<td>(0.006)</td>
</tr>
<tr>
<td>US new privately owned housing units started by structure total SAAR (units/thou)</td>
<td>-0.003</td>
<td>-0.003</td>
<td>-0.004</td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
<td>(0.006)</td>
<td>(0.010)</td>
</tr>
<tr>
<td>US Employees on Nonfarm payrolls total MoM Net Change SA (thousands)</td>
<td>0.011*</td>
<td>-0.007</td>
<td>0.004</td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td>(0.006)</td>
<td>(0.004)</td>
</tr>
<tr>
<td>Adjusted retail & food services SA total monthly % change</td>
<td>0.014</td>
<td>-0.013*</td>
<td>0.026*</td>
</tr>
<tr>
<td></td>
<td>(0.012)</td>
<td>(0.007)</td>
<td>(0.014)</td>
</tr>
<tr>
<td>US unemployment rate total in labor force SA</td>
<td>-0.004</td>
<td>-0.015</td>
<td>-0.004</td>
</tr>
<tr>
<td></td>
<td>(0.007)</td>
<td>(0.017)</td>
<td>(0.008)</td>
</tr>
<tr>
<td>Δ Implied Volatility (Euro-bund future continuous call)</td>
<td>0.001</td>
<td>0.002</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.002)</td>
<td>(0.004)</td>
</tr>
<tr>
<td>Δ VIX (CBOE SPX Volatility (New) – price index)</td>
<td>-0.005</td>
<td>0.006</td>
<td>-0.005</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.005)</td>
<td>(0.003)</td>
</tr>
<tr>
<td>Constant</td>
<td>-0.000</td>
<td>-0.001</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.002)</td>
<td>(0.002)</td>
</tr>
</tbody>
</table>

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1
Figure 1: Euro Area Inflation Expectations from Indexed Swaps and the SPF

Inflation Expectations, derived from Inflation Index Swaps
ECB Survey of Professional Forecasters
10 year horizon
5 year horizon

Figure 2: Inflation Expectations (vertical line = 15sep2008)

Euro Area UK US
Figure 3: Euro Area Chow Test Value and P-Value

Figure 4: UK Chow Test Value and P-Value
Figure 5: US Chow Test Value and P-Value

[Diagram showing the US Chow Test Value and P-Value over time with specific dates and values]

Legend:
- Green line: P-value (left-axis)
- Red line: Chow F stat. (right-axis)
Appendix 1: The Nelson-Siegel method

There is an extensive literature on modeling the term structure of interest rates or inflation swap rates. The seminal paper by Nelson and Siegel (1987) proposes a three-factor model that captures the level, slope and curvature of the yield curve. Empirical studies show that it fits well for yield curves with different shapes. At each time point \(t \), the model is given as follows:

\[
(A1) \quad y_t^{(m)} = \beta_{1,t} + \beta_{2,t} \left(\frac{1-e^{-\lambda m}}{\lambda m} \right) + \beta_{3,t} \left(\frac{1-e^{-\lambda m}}{\lambda m} - e^{-\lambda m} \right) + \epsilon_t^{(m)}.
\]

Here \(y_t^{(m)} \) is the yield with maturity \(m \), \((\beta_{1,t}, \beta_{2,t}, \beta_{3,t}) \) is the vector of parameters for the three factors, which indicate level, slope and curvature of the yield curve, \(\lambda \) is a decay parameter, which usually assumed to be constant across time, and \(\epsilon_t^{(m)} \) is an error term.

To estimate this model is by no means an easy task. In particular, taking the dynamics of the beta-parameters into account always involves advanced techniques such as Kalman filter (see Diebold et al. (2006). However, by fixing the decay parameter \(\lambda \), the estimation becomes a simple OLS regression. An example of this approach is in Diebold and Li (2006).

We did not choose a particular value for the decay parameter ex ante. Rather, we allowed the decay parameter to vary on a certain interval, while estimating the Nelson-Siegel model for each specific value in this interval. We then chose the value of the decay parameter at which the total mean squared error is minimized.

When estimating the Nelson-Siegel model for a specific value of \(\lambda \), the observations are the yields at different maturities. In our data set, the available maturities are 1,2,3,4,5,6,7,8,9,10,12,15,20 and 30

\[20\text{ For a recent discussion of the empirical performance of the Nelson-Siegel method, see e.g. de Pooter (2007).}\]
years. The observations are therefore concentrated at the shorter end of the yield curve, making it more
difficult to accurately represent the shape of the yield curve at longer maturities. In order to balance
this effect, we introduced other maturities – such as 11,13,14,16,17,18,19,21,22 years – . To obtain
yields on those maturities, we used the bootstrapping method in Fama and Bliss (1987).

We followed this procedure to estimate the yield curves for inflation swaps and interest rate swaps for
each day t. Based on this estimated yield curve, we obtained the yield with 9- and 10-year maturities.
These were used to calculate the 10-year ahead forward rates.
Appendix 2: Macroeconomic data releases

France
France Business confidence overall indicator
France GDP QoQ
France Industrial production MoM SA 2000=100
France PPI MoM 2000=100
France Unemployment rate SA
France CPI MoM European harmonized NSA

Germany
Germany Current Account EUR SA
Germany HICP MoM 2005=100
IFO pan Germany business climate 2000=100
Germany Industrial production MoM SA 2000=100
Germany PPI MoM 1995=100
Germany Unemployment rate SA

Italy
Business confidence 2000=100
Italy HICP MoM NSA 2005=100
Italy Industrial Production MoM SA 2000=100
Italy PPI manufacturing MoM 2000=100
Italy Real GDP QoQ SA WDA

United Kingdom
Manufacturing PMI Markit survey ticker
Industrial production MoM SA
CPI EU harmonized MoM NSA
Retail prices index MoM NSA
Nationwide consumer confidence Index
Unemployment claimant count MoM SA
Claimant count (unemployment) rate SA
BoE official bank rate
Chained GDP at market prices QoQ
Retail Sales All Retailing
PPI Manufactured Products M
Avg Earnings Whole Economy

United States
Personal Consumption Exp. CPI MoM SA
Capacity Utilization % of Total Capacity SA
Conference board consumer confidence SA
Industrial Production MoM SA (rate)
Initial jobless claims SA
Conference board US leading index MoM
Federal Funds Target Rate
New privately owned housing units started by structure total SAAR
Employees on Nonfarm payrolls MoM SA
Adjusted retail & food services SA MoM
Unemployment rate total in labor force SA
Previous DNB Working Papers in 2009

No. 198 Peter ter Berg, Unification of the Fréchet and Weibull Distribution
No. 199 Ronald Heijmans, Simulations in the Dutch interbank payment system: A sensitivity analysis
No. 200 Itai Agur, What Institutional Structure for the Lender of Last Resort?
No. 201 Iman van Lelyveld, Franka Liedorp and Manuel Kampman, An empirical assessment of reinsurance risk
No. 202 Kerstin Bernoth and Andreas Pick, Forecasting the fragility of the banking and insurance sector
No. 203 Maria Demertzis, The ‘Wisdom of the Crowds’ and Public Policy
No. 204 Wouter den Haan and Vincent Sterk, The comovement between household loans and real activity
No. 205 Gus Garita and Chen Zhou, Can Open Capital Markets Help Avoid Currency Crises?
No. 206 Frederick van der Ploeg and Steven Poelhekke, The Volatility Curse: Revisiting the Paradox of Plenty
No. 207 M. Hashem Pesaran and Adreas Pick, Forecasting Random Walks under Drift Instability
No. 208 Zsolt Darvas, Monetary Transmission in three Central European Economies: Evidence from Time-Varying Coefficient Vector Autoregressions
No. 209 Steven Poelhekke, Human Capital and Employment Growth in German Metropolitan Areas: New Evidence
No. 210 Vincent Sterk, Credit Frictions and the Comovement between Durable and Non-durable Consumption
No. 211 Jan de Dreu and Jacob Bikker, Pension fund sophistication and investment policy
No. 212 Jakob de Haan and David-Jan Jansen, The communication policy of the European Central Bank: An overview of the first decade
No. 213 Itai Agur, Regulatory Competition and Bank Risk Taking
No. 214 John Lewis, Fiscal policy in Central and Eastern Europe with real time data: Cyclicity, inertia and the role of EU accession
No. 215 Jacob Bikker, An extended gravity model with substitution applied to international trade
No. 216 Arie Kapteyn and Federica Teppa, Subjective Measures of Risk Aversion, Fixed Costs, and Portfolio Choice
No. 217 Mark Mink and Jochen Mierau, Measuring Stock Market Contagion with an Application to the Sub-prime Crisis
No. 218 Michael Biggs, Thomas Mayer and Andreas Pick, Credit and economic recovery
No. 219 Chen Zhou, Dependence structure of risk factors and diversification effects
No. 220 W.L. Heeringa and A.L. Bovenberg, Stabilizing pay-as-you-go pension schemes in the face of rising longevity and falling fertility: an application to the Netherlands
No. 221 Nicole Jonker and Anneke Kosse, The impact of survey design on research outcomes: A case study of seven pilots measuring cash usage in the Netherlands
Financial acceleration of booms and busts