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Abstract
This paper develops a method to identify operational outages of participants in the
Canadian Large Value Transfer System. We define an operational outage as either
no or unusually low activity. We test our algorithm against a database of outages
by participants reported in order to reduce false negatives. The false positives can
be reduced by excluding “outages found” by the algorithm if a participant histor-
ically has no payment in a given five minute time interval. Additionally, we can
test whether participants do indeed report all their operational outages. The re-
sults show that our algorithm works best for the largest participants as they send
in payments continuously. Our method can be used by LVTS system operators and
overseers to identify sources of operational risks.
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1 Introduction

Financial market infrastructures (FMIs) play a crucial role in the economy. FMIs repre-

sent vast financial networks that connect financial intermediaries (and their clients) by

means of technology, rules, standards and procedures to facilitate the transfer of value

between agents in an economy. Large value payment systems (LVPSs), including real-

time gross settlement (RTGS) systems, are a type of FMI that facilitate the exchange,

clearing and final settlement of typically large-value and time-sensitive monetary trans-

fers between participating financial intermediaries on their own behalf and that of their

clients.1 They are a critical component of a country’s financial system and economy,

as they serve as the platform for the implementation of monetary policy, as well as sup-

porting hundreds of billions of dollars in real and financial transaction activity each day.

Needless to say, if these systems do not function properly, they can seriously hinder eco-

nomic activity. Therefore, FMIs have to live up to high international standards and are

generally subject to a strong degree of regulatory and operational oversight, see CPSS

(2012).

As LVPSs connect financial intermediaries, interdependencies exist where the actions

of one participant in the network will have an impact on the others. For instance, if one

participant in the network suffers a technical outage that prevents it from sending pay-

ment instructions to other participants in the network as planned, this could result in

other participants only being able to fulfill their payment obligations at a higher cost as

they must seek intraday funding somewhere else to meet these obligations, e.g., through

a central bank intraday credit facility.2 During the technical outage, the stricken bank

serves as a liquidity sink in which incoming liquidity stays trapped on its account and

cannot be recycled to the rest of the system. This problem is exacerbated when other

participants, either unaware or dismissive of the fact that the stricken bank is unable

to send payments, continue to funnel transfers to the stricken bank through the net-
1LVPSs around the world include the US Fedwire and US CHIPS systems, BOJ-NET in Japan, the

TARGET2 system in the Euro Area, UK CHAPS, and the Canadian LVTS. Virtually all major economies
around the world have adopted a real-time gross settlement (RTGS) model for their LVPS implementation
(Bech and Hobijn, 2007).

2Incoming payments represent the cheapest source of intraday liquidity for participants in these sys-
tems.
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work.3 In the worst-case scenario, a technical outage at a participant could result in a

gridlock in which no participant is willing or able to make any more payments and waits

for others to make the first payment.4 To mitigate this possibility, timely indication of

participant technical outages is key. Therefore, operators of an FMI diligently monitor

the activity of their system’s participants.5

The question we address in this paper is how can operational outages of individual par-

ticipants in the Canadian Large Value Transfer System (LVTS) can be detected in a

more timely manner. Even though LVTS participants are required by the LVTS Rules

to inform the system operator within 15 minutes of detecting a technical disruption in

their ability to send and/or receive payments, anecdotal evidence suggests that this is

often not the case, for a variety of reasons.6 For instance, a participant that is busy

trying to restore connectivity may may miss the 15-minute deadline, or forget to contact

Payments Canada altogether. In economics parlance, this generates an externality by

increasing the risk of financial loss to the system as a whole through this single out-

age. In all cases, this increases the risk of financial loss associated with operational

outages. Given the strong seasonal patterns observed in the LVTS on an intraday, daily,

monthly and even quarterly basis, coupled with the prospective real-time availability of

these data to Payments Canada and in the development of machine learning algorithms

focused on anomaly detection, it seems that more timely and accurate detection of oper-

ational outages in the LVTS is certainly possible. This has the potential to reduce the

cost associated with such events, thereby reducing the risk profile of the system as a

whole.

To detect operational outages, we build on the approach by Glowka et al. (2018) and

Klee (2010), who have developed an algorithm for the European RTGS, TARGET2, and
3This could be due to a healthy participant thinking that the stricken bank will recover quickly.
4Liquidity injections are still possible of course (e.g., central bank lending facility) in this scenario, but

they too carry a financial cost.
5Moreover, some system operators may choose to impose strict operational availability requirements on

participants in the network (as is the case in Canada), which are subject to compliance protocols if not
adhered to. As well, given the importance of these systems, there are often manual or other special back-
up facilities that might be available for an affected participant to continue to send value over the network,
usually to facilitate any time-sensitive transfers. While these back-up facilities are typically not designed
to handle the regular daily flow of participants, they can at least be used to help circulate some liquidity
from the affected participant back to the network to help avoid a gridlock scenario. Before backup facilities
can be started it has to be known that there is an (operational) problem with a participant.

6Non-compliance with this rule garners further follow-up and potential penalty.
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the American RTGS, Fedwire, respectively. Glowka et al. (2018) looks in contrast to

Klee (2010) at periods of unusual low activity. They argue that, in the event that a

participant is not able to send in payment instructions via the standard channels, there

may be back-up functionalities that allow at least a few (very urgent) payments to be

made. We modify their approach to make it suitable for the Canadian LVTS. This type

of algorithms inevitably leads to potential Type I and Type II errors. A Type I error

would be identifying an outage when non has occurred , because the direct clearing

member had no (or few) payments to send in. A Type II error would be not identifying

an operational outage when in fact there was one. This could be the case if the activity

during the outage period exceeds the 1 percentile threshold used. Unlike Glowka et al.

(2018), we have a data base containing the participants’ reported outages over a two

year period, which we used to test our algorithm.

Our paper adds to the growing literature on identifying risks for FMIs. Benos and Zim-

merman (2012) develop risk indicators measuring the impact of liquidity risk due to

operational outages. Their findings indicate that the impact of operational outages on

system liquidity has increased since the collapse of Lehman Brothers, compared with

the previous observation period. Berndsen and Heijmans (2020) develop risk indicators

based on TARGET2 transaction data that are linked to the principles of financial mar-

ket infrastructures, can be used by FMI operators and overseers. Clarke and Hanckock

(2013) study how the design of the payment system can impact operational disruptions.

Diehl and Müller (2015) study the use of bilateral limits in TARGET2. They find that

limits are not actively used and if they are used they are relatively constant over time.

Both papers find that liquidity saving mechanisms in an LVPS can reduce the impact of

an operational outage. Triepels et al. (2018) implemented a neural network to identify

intraday liquidity outliers of an individual bank for TARGET2. Their method can detect

starting bank runs from RTGS data. One frequently investigated aspect of large value

payment systems is timing. There may be timing incentives in the payment system,

as described theoretically by the game theoretical model by Bech and Garratt (2003,

2006). Their model has been run in an experimental real life game by Abbink et al.

(2017) and by Heemeijer and Heijmans (2015). Heijmans and Heuver (2014) study sev-

eral liquidity aspects that can be derived from RTGS data including payments’ timing.
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The main sources of liquidity they identify from LVPS data are incoming payments, in-

terbank money market loans (a special subset of interbank payments), monetary loans

(transactions with the central bank) and intraday credit (which is backed by collateral),

which allows them to make payments even though their account balance is insufficient).

Kaliontzoglou and Müller (2015) build on this work to derive a payments delay indica-

tor, which can be used for all banks in the Eurosystem. Diehl (2013) explains that

free-riding incentives may be behind the timing of payment transactions, although they

find no free riders in the German part of TARGET2.

This paper is organized as follows. Section 2 describes the main features of LVTS and

their data. Section 3 explains the set up of the algorithm used to identify the opera-

tional outages. Section 4 provides the results of the algorithm and the check against the

reported operational outages. Section 5 concludes.

2 Large Value Transfer System

2.1 The system

The Large Value Transfer System (LVTS) is used to facilitate interbank settlement in

Canada. Owned and operated by Payments Canada, the LVTS has been in place since

1999 and clears roughly CA$C200 billion in transaction value each day. This translates

to clearing roughly the equivalent of Canadian nominal GDP every nine business days.

The LVTS is best described as a real-time net settlement system. At the heart of the

LVTS settlement model stands novation netting, where bilateral settlement obligations

stemming from intraday exchange of payment instructions between pairs of participants

are immediately extinguished upon LVTS processing and replaced with a multilateral

settlement obligation on the part of the sender to the rest of the system. Settlement

of multilateral obligations of participants should occur at 18:30 EST on each business

day. Settlement takes place in central bank money through daily transfer of value over

participants’ settlement accounts maintained at the Bank of Canada. Settlement risk

stemming from this model is managed via a dual-stream risk model.

The participants can use two different streams in LVTS. It is their choice which stream
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they send the payments to. The two streams (or Tranches) differ with regard to the way

settlement risk exposure generated by a participant is controlled. In the first stream, or

Tranche 1, any intraday credit exposure posed by a participant to the rest of the system

is supported on a dollar-for-dollar basis with financial collateral posted to the central

bank by the participant (‘defaulter-pays’). In the second stream, intraday credit expo-

sure posed by a participant to the rest of the system is supported by a joint (‘survivors-

pay’) collateral pool and further backed by a central bank commitment. Through a com-

bination of financial collateral, and corresponding bilateral and multilateral net debit

limits, the LVTS risk model ensures that, at a minimum, there will always be suffi-

cient collateral value posted to cover the largest possible multilateral net settlement

obligation of any single participant in the system. The central bank commitment helps

to further ensure that the LVTS will settle under all circumstances. Additionally, a

participant may use either Tranche to send payment instructions, subject to applicable

bilateral and multilateral net debit limits.7 There were 17 participants in the LVTS

(see Payments Canada) including domestic and international financial intermediaries.

There is a high degree of concentration, whereby the largest six LVTS participants are

typically responsible for over 90% of daily LVTS transfer value. The five smallest banks

are only responsible for only 1% of the turnover and fewer than 1% of the transactions.

This means that the participants in LVTS are highly heterogeneous.

2.2 Transaction data

We have transaction data available for Tranches 1 and 2 for the period 2002- 2018.

For each transaction we have used the settlement date, settlement time, sending and

receiving participant, and amount. The number of participants varies between 14 in

2002 and 17 in 2018.

The data has been cleaned for the following transactions. First, we only kept trans-

actions between 8.00 AM to 6.00 PM (EST). These are the normal opening hours in

which banks are active. LVTS is also open besides these times, but activity is normally

limited. During the night, for example, the payments to CLS are made;8 These CLS
7see Arjani and McVanel (2006) for a more in-depth discussion of the LVTS model.
8CLS stands for continuous linked settlement and takes care of foreign exchange transactions. It oper-
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payments are highly urgent but very limited in number. Second, we removed all out-

going transactions from the central bank as we are interested in outages of commercial

banks only. Payments from a participant to the central banks remain in the sample as

this constitutes payment activity of a commercial bank (participant). Third, we removed

all Canadian public holidays from the transaction data set. On most public holidays the

system will be closed, which means that be no payments at all are executed in. There are

also ‘regional’ public holidays on which the system is open, but the activity can be much

lower than usual. Moreover, activity may also slow down around US public holidays.

This can cause false positives in which outages are detected by our algorithm, but in

fact thees are just the reduced activity of a normal ‘slow’ day. Some LVTS participants

are foreign bank branches or subsidiaries operating in Canada, and thus have their

headquarters outside the country, e.g. in France, the United Kingdom or the United

States. For these participants, we also removed the transactions on days on which their

home country has a public holiday.

Figure 1 gives insight into the number of transactions settled in LVTS. Figure 1a shows

that the monthly daily average number of transactions has increased from roughly

26,000 in 2012 to 36,000 in 2018. This rise is mainly the result of the larger banks

increasing their activity in LVTS. Figure 1b shows the percentage share of the transac-

tions settled in a given hour. Transactions listed under ‘8’ are those settled between 8.00

AM and 9 AM, etc. It is clear from this figure that the number of transactions is at its

lowest the last two hours of the day. The last hour, especially, has a very low transaction

volume. This is mainly due to the fact that banks use this hour primarily to make sure

they have sufficient liquidity available in their account by the system’s closing time.

2.3 Reported operational outages

Besides LVTS transaction data, we have a list of operational outages reported by LVTS’s

participants. This states when they were unable to make any payments (Severity 1 out-

age) or only a few transactions (Severity 2 outage) in the years 2016 and 2017. As well

as the participant name and severity type, the list contains the dates and the start and

end times of the incidents. The total numbers of reported outages in 2016 and 2017

ates in many different time zones.
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Figure 1: Number of transactions in LVTS between 2012 and 2018.

(a) Monthly daily averages.

(b) Hourly averages.

were 23 (16 Severity 1 and 7 Severity 2) and 26 (19 Severity 1 and 7 Severity 2), re-

spectively. We have only included outages that took place between 8 AM and 6 PM. The

average outage duration in those two years were 02:05 and 02:25 hours, respectively.

The longest operational problem recorded in 2016 lasted 12:40 hours and in 2017 12:46

hours.
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2.4 Special arrangements or features

Procedures to follow in the case of an operational outage are governed by LVTS Rule

12. Rule 12 and the accompanying procedures distinguish between different types of

outages. A Severity 1 outage occurs when a participant is unable to send/receive any

payments via the LVTS. A Severity 2 outage is when the participant is able to send pay-

ments, but not at a normal processing pace; its normal payment processing operations

are still disrupted. For Severity 1 and Severity 2 outages alike, section 12.14 of Rule 12

states that, if a participant encounters a technical, site or external problem (e.g., SWIFT

connection problem, payments environment problem, site problem, or weather or civil

problem) that may impact its ability to send or receive LVTS payment messages, the

participant must notify the LVTS Help Desk within 15 minutes of becoming aware of

the problem, identifying itself, the nature of the problem and, if possible, the expected

time by which the situation will be resolved. In the case of time-sensitive payments or

given risk of a material liquidity trap, contingency procedures are available to mitigate

risk of further disruption to other participants and FMIs. For instance, if a participant

is experiencing a Severity 1 Incident and cannot send payment messages via its SWIFT

interface because of a technical, site or external problem that results in trapped liquidity

or the inability of that participant to meet critical time-sensitive obligations (e.g. CLS

pay-ins, funding for ACSS settlement, and CDSX settlement), the participant may use

the direct network to send payment messages in accordance with the procedures con-

tained within Rule 12. Note that the direct network can only be used to foster interbank

transfers (SWIFT MT 205 messages).9

3 The algorithm

In line with Glowka et al. (2018), we also look at two different types of potential outages.

First, if there are no transactions at all during a particular five minute time interval,

this interval is referred to as one of “no payment activity (NoPA).10 Second, if activity
9SWIFT message type 205 is often referred to as 202 in other jurisdictions.

10They look at intervals of 10 minutes, being one-third of the length of an outage that should be reported
by a participant in TARGET2. In the LVTS, participants must inform Payments Canada within 15 minutes
of encountering a disruption. We Therefore look at five minute intervals, this also being one-third of the
minimum report interval length. However, this period can be set to any desired value by the operator.
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is much lower than usual (e.g. below 1 percentile), meaning that only a very limited

number of transactions is taking place, we refer to this interval as one of “low payment

activity (LowPA)”. The reasoning for looking at periods with lower transaction volumes,

as well as none at all, is that financial institutions have a manual contingency procedure

whereby they can still process a limited amount of very urgent payments during an

outage. In this way we also limit susceptibility to false negatives, as these periods with

low activity should be seen as potential outages, but are not picked up by the NoPA

method.

Unlike Glowka et al. (2018), we do not have to exclude extremely small participants.

After all, LVTS only has 17 participants. By contrast, TARGET2 has approximately

1000 direct participants, many of them very small ones in terms of payment activity.

Nevertheless, the difference in activity between the largest and smallest participants in

LVTS is also quite wide.

If our algorithm were to see a period of low or no activity by a small participant, that

would not necessarily mean that it had indeed faced a technical outage. That could

instead be the result of not having any payment obligations to settle for some time,

or of an intentional delay (with no technical problems). Besides, with the available

data, we are not be able to prove in real-time that there was indeed an outage. Our

algorithm is intended to inform the payment operator that a participant has had low

or no activity over say for 15 minutes. If this is too long a period of inactivity from the

operator’s perspective, it can then contact the participant to see what is going on. Lastly,

participants only have to report to the operator when they have had a technical outage

of at least 15 minutes, which is three consecutive monitoring intervals in our algorithm.

3.1 No payment activity

The “no payment activity algorithm” (NoPA) identifies periods during which a partic-

ipant has sent no payment instructions into the LVTS. We look at intervals with no
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transactions of five minutes.

NoPA =


yes, if TNRfi,t = 0

no, if TNRfi,t > 0

(1)

where TNRfi,t is the number of transactions financial institution fi has at five minute

time interval t.

Figure 2 illustrates the absolute ( 2a and 2b) and relative ( 2c and 2d) number of five

minute periods without transactions in LVTS for all banks ( 2a and 2c) and for the

largest five banks ( 2b and 2d) in LVTS, respectively.11

Figure 2c shows that the number of five minute periods without transactions is just

below 50%. The reason for so many periods without any transactions is that quite a few

banks are not very active in the system throughout the whole day. These banks have

periods in which they do not send in any payments. If we zoom in on the five largest

financial institutions, which tend to be the most active banks, this number decreases to

below 20%, see Figure 2d. The number of periods without transactions decrease over

the years, to close to 15%. This remains a relatively large number as there are still no

transactions in 1 out of every 5-6 periods of five minutes.

3.2 Low payment outages

By contrast with the NoPA outage setup, in the low payment activity (LowPA) setup

we do accept a few payments being sent in to the LVTS. We base this low activity on

the behaviour of the individual participant. Low activity is defined as the number of

transactions settled in a given 5 minute interval over the whole data sample below 1

percentile. We zoom into the payment behaviour of that particular participant during

that particular time interval. First, participants often send in more payment instruc-

tions at given times, for example early in the morning and in the afternoon, and have

fewer payments at other times, see e.g. Massarenti et al. (2012) or Heijmans and Heuver

(2014). Second, we wish to exclude periods of no activity when they are ‘normal’ for that
11As the number of financial institution increased from 14 in 2002 to 17 in 2017, the absolute number

of five minute intervals increased accordingly. As the number of business days varies per year, the total
number of five minutes intervals also varies.
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Figure 2: Five minute intervals with and without transactions.

(a) Absolute number all banks. (b) Absolute five largest banks.

(c) Relative share all banks. (d) Relative share five largest banks.
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particular participant. To be able to look at unusually low payment activity we must

correct for this natural difference in payment activity at the participant level:

TNRfi,t

TNRfi,t,y

< 1 percentile (2a)

TNRfi,t > 5 (2b)

where TNRfi,t is again the number of transactions a participant fi has at five minute

time interval t TNRfi,t,y is the mean number of transactions of participant fi at five

minute interval t over the year y. The TNRfi,t,y is the mean per year as the numbers

may change over the years.

In our LowPA model setup, an event is considered an outage if the payment activity is

below the 1 percentile for that particular participant and time interval (equation 2a)

and at least five transactions have been sent in (equation 2b).

4 Results

This section describes the outcome of our outage detection method compared to the re-

ported outages. Section 4.1 shows the detected outages for the period ranging from 2002

to 2017. Section 4.2 describes the intra week and intraday patterns of the outages. Un-

like Glowka et al. (2018), we have a list of outage events reported by the participants.

This allows us to check whether they do indeed report their outages, see section 4.3.

These reported outages presents an opportunity to assess the validity of our model and

the empirical likelihood of false positives. There may be an incentive for participants

to not report their operational outages. First, per the LVTS Rules participants need to

have up-time of at least 98% during each calendar month. Every time they report an

outage, their up-time decreases. Second, they do not want to be known by the operator

(and their peers) as a bad performer in terms of their technical infrastructure.
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4.1 Outages detected by the NoPA and LowPA algorithms

Figure 3 shows the number of outage intervals in the NoPA and LowPA models for all

banks and for the largest five banks. As expected, the number of outages decreases in

the low payment activity (LowPA) setup we do. As Glowka et al. (2018) state, the longer

an outage, the less likely that it is just a coincidence.

Figures 3a and 3b show the outages for the differentiated model with low activity. The

number of outages found by this model setup for the largest five banks in the system is

close to the numbers found for all banks (including the largest five). The reason for this

is that outages are only included if the number of transactions found is lower than the 1

percentile. For some of the smaller banks, the 1 percentile is equal to zero transactions.

As lower than zero transactions is not possible, these periods will not be picked up by

this second algorithm (although they will be picked up by the first).

4.2 Intraweek and intraday Outages.

Figure 4 shows the number of outages (lasting at least four consecutive five minute

periods) found by the LowPA algorithm, differentiated by day of the week. We use a

minimum of four consecutive intervals in order to exceed the reporting obligation time

interval of 15 minutes. The figure clearly shows that there are more potential outages

detected on Monday than over the rest of the week combined. According to the system

operator, this can be explained by the fact that software updates and new releases of

the LVTS system and the participant’s internal systems are usually introduced over

the weekend, and any resulting operational problems occur on the next working day.

But these are usually solved on the same day. As the number of outages detected on

Tuesdays is much smaller than that on Mondays, and is in line with the rest of the

week, this seems plausible.

Figure 5 depicts the outages found by the LowPA model by the hour of the day. The

last two hours monitored, 4-6PM, see many more outages found than the rest of the day.

This is because the participants typically use that period to make sure that their end of

day balance is adequate, resulting in payments which are relatively high in value but

low in number. The other hours of the day do not show a large variation.

14



Figure 3: Number of successive single, double, triple and quadruple intervals without
transaction.

(a) LowPA, all banks. (b) LowPA, five largest banks.

(c) NoPA all banks. (d) NoPA five large banks.
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Figure 4: Outages found by LowPA algorithm by day of the week.

(a) all banks (b) 5 large banks

Figure 5: Outages by LowPA algorithm by hour of the day.

(a) All banks. (b) Five large banks.

4.3 Validation of the algorithm: detected versus reported outages

We now move to the list with outages reported by the participants, see section 2.3. We

check whether the algorithm picks up those periods as outages, which is basically a

check of the false negative error. To check the algorithm we only include: 1) those partic-

ipants with a reported outages; and 2) time interval of the reported outage. The time in-

terval has to be between 8.00 AM and 6.00 PM as this is the period for which we studied

the data. As the algorithm works best for the largest five participants in the system, we

focus on them in this section. https://www.overleaf.com/project/5e15f17fa8c03300016d9875

Figure 6 shows the relative number of periods with and without transactions for the

largest five banks. During 75% of the reported outage periods, no transactions are de-

tected at all. In the other 25%, some payments are detected. Most of these are related
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Figure 6: Periods of outages reported by the five large banks.

to Severity 2 incidents in which participants are still able to make some payments. The

number of payments is still higher than the 1 percentile and therefore not excluded by

the algorithm. Ideally, an operator may want our algorithm to pick up these Severity

outages. In the event of a Severity 2 error, however, it is aware of the problem anyway

and so does not need to be informed by the algorithm. Some of the payments are within

the same five minute interval investigated, but occur (just) before the outage started.

This means that if the outage started at 10.04 AM and a few payments had already been

between 10.00-10.03 AM the five minute interval (10.00-10.05 AM) has been counted to-

wards the intervals with transactions.

Figure 7 shows the number of successive periods with low ( 7a) and no payment activity

( 7b) at the time of outages reported by the five large banks. The number of outage

intervals without transactions is much larger than the number with transactions. From

Figure 7b we can see that the number of quadruple period outages is almost the same as

the number of single period ones. As all outages except one lasted longer than three five

minute intervals, we can state that all reported outages are picked up by the algorithm.

Looking at the LowPA output (7a) we see that there is a few cases where there is still

some activity when an outage is reported. Some of these detected time intervals with

a low number of transactions will be at the beginning or the end of an outage with no

transactions at all. In the event that there are four consecutive periods with low activity,

however, we can assume that this is linked to Severity2 outages.
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Figure 7: The number of single, double, triple and quadruple outage intervals.

(a) LowPA five large banks. (b) NoPA five large banks.

5 Conclusions

This paper develop an algorithm to detect potential operational outages at individual

participants in LVTS. We distinguish two different setups of the algorithm. First, we

identify periods in which no payments at all are made by a participant. A bank that is

not able to send in payment instructions will become visible in the data if no payments

have been observed for a certain period of time. Second, we identify periods in which

there is an unusually low number of payment instructions sent in by the participant.

The rationale behind this second set-up is that a bank that is unable to send in pay-

ments in the normal way may have a back up functionality for very urgent payments.

The results show that a participants sends in not payments in roughly 50% of the five

minute periods. Zooming in on the five largest financial institutions, this percentage de-

creases to less than 20%. As expected, the number of consecutive periods of five minutes

decreases as their total duration increases from five minutes (one period) to 20 minutes

(four periods). For the five large participants, however, this decrease is much lower than

for all participants. Basically, this is because Large banks make payments during most
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five minute intervals and, therefore, it is unlikely that they do not have at least some

payments in two or three consecutive periods. When these large financial institutions

have more than one period without payments, this is thus more likely to be due to a

technical problem. And these problems may take some time to resolve (more than 20

minutes).

Most of the outages detected occur on Mondays. This is due to the fact that new software

releases and updates usually take place over the weekend, when the system is closed.

Problems with the new functionality and therefore experienced on the next working day,

Monday. These are usually solved on the same day, though, after which participants can

send in payment instructions normally again. Reports of operational outages by the par-

ticipants to the operator show that our algorithm picks up these incidents. During the

reported outages, for the most part the participants are unable to make any payments.

In a minority of cases, however, they are still able to send in some payments.

Overall, we can conclude that our algorithm works well for the five large banks. As

the small banks do not send in enough payments during the day and have too many

consecutive periods with no payment activity, it will lead to too many false positives

or negatives. The impact of the low activity on the part of the smaller participants is

limited as the other do not expect to receive large amounts of liquidity from them.

In order to implement a “real time potential outage detection method” as a monitoring

tool for the payment operator, it is crucial to have real-time data. The method presented

in this paper is only able to detect potential outages, at this stage, and not predict

them. As this type of algorithm will produce false positives (and negatives), a potential

outage detected by it does not mean with 100% certainty that the participant concerned

is actually suffering a technical outage. It may simply have no payment instructions to

undertake or it may be delaying payments intentionally. It is therefore advisable to look

at payment delay indicators to check whether a participant is potentially delaying its

payments.
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