Shallow or deep? Detecting anomalous flows in the Canadian Automated Clearing and Settlement System using an autoencoder

Leonard Sabetti and Ronald Heijmans
Shallow or deep? Detecting anomalous flows in the Canadian Automated Clearing and Settlement System using an autoencoder

Leonard Sabetti and Ronald Heijmans*

* Views expressed are those of the authors and do not necessarily reflect official positions of De Nederlandsche Bank.
Shallow or deep? Detecting anomalous flows in the Canadian Automated Clearing and Settlement System using an autoencoder*

Leonard Sabettia and Ronald Heijmansb,c

aBank of Canada
bPayments Canada
cDe Nederlandsche Bank

April 2020

Abstract
Financial market infrastructures and their participants play a crucial role in the economy. Financial or operational challenges faced by one participant can have contagion effects and pose risks to the broader financial system. Our paper applies (deep) neural networks (autoencoder) to detect anomalous flows from payments data in the Canadian Automated Clearing and Settlement System (ACSS) similar to Triepels et al. (2018). We evaluate several neural network architecture setups based on the size and number of hidden layers, as well as differing activation functions dependent on how the input data was normalized. As the Canadian financial system has not faced bank runs in recent memory, we train the models on “normal” data and evaluate out-of-sample using test data based on historical anomalies as well as simulated bank runs. Our out-of-sample simulations demonstrate the autoencoder’s performance in different scenarios, and results suggest that the autoencoder detects anomalous payment flows reasonably well. Our work highlights the challenges and trade-offs in employing a workhorse deep-learning model in an operational context and raises policy questions around how such outlier signals can be used by the system operator in complying with the prominent payment systems guidelines and by financial stability experts in assessing the impact on the financial system of a financial institution that shows extreme behaviour.

Keywords: Anomaly Detection, Autoencoder, Neural Network, Artificial intelligence, ACSS, Financial Market Infrastructure, Retail Payments.

JEL classifications: C45, E42, E58.

*This project was carried out while Sabetti worked at Payments Canada. Sabetti and Heijmans can be reached at lsabetti@bank-banque-canada.ca and ronald.heijmans@dnb.nl, respectively. We are grateful for helpful comments from seminar participants at the Canadian Economics Association Annual Conference (June 2019), the Bank of Finland Payment and Settlement System Simulator workshop (August 2019), the joint conference by the Bank of England and King’s College on “Modelling with Big Data and Machine Learning: Interpretability and Model Uncertainty” (November 2019) and the Payments Canada and Bank of Canada Joint Payments Research Symposium (November 2019). We also thank Timothy Aerts and Youcef Touizrar for providing useful comments on earlier drafts of the paper. The views expressed in the paper are solely those of the authors and do not represent the views of the authors’ affiliations.
1 Introduction

Financial market infrastructures (FMIs) play a crucial role in our economy. They facilitate the clearing and settlement of financial obligations between financial institutions and their clients. An FMI that does not function properly can pose significant risks to the financial system and become a potential source of contagion, especially, in times of increased market stress. Due to their importance, FMIs have to live up to high international standards, called the Principles for Financial Market Infrastructures (CPSS, 2012).

The automated clearing settlement system (ACSS) facilitates the clearing and settlement of primarily low-value electronic and paper-based payment items on behalf of financial institutions and their customers, underpinning much of day-to-day economic activity in Canada.1 2 3 Because the majority of payments cleared in the ACSS are driven by recurring business and economic activity in Canada between member financial institutions, payment flows tend to follow well-behaved, partly predictable patterns that also correlate with economic conditions. As a result, sudden changes or diverging trends in these flows could represent unusual or suspect conditions for a financial institution (whether due to liquidity, operational or other issues). The emergence of financial problems for a participating financial institution (referred to hereafter as a participant) could result in decreased trust and trigger a sudden increase in the redemption of deposits, which is known as a bank run.

The aim of this paper is to detect anomalous payment flows in ACSS automatically by applying an unsupervised anomaly detection method. Anomaly detection aims to detect patterns in data that do not conform with expected behaviour (Chandola et al., 2009). Our data is unlabeled as we do not have previously identified examples. The unsupervised learning problem we study is a potentially challenging and highly relevant one in light of the legacy design of ACSS that does not make use of real-time risk controls relative to other payment systems such as large value payment systems or automated clearing houses. Our method can be used by: 1) the ACSS system operator to comply with the Canadian prominent payment systems guidelines; 2) prudential banking supervisors in detecting potential liquidity problems at an early stage; and 3) financial stability experts assessing the impact

1Credit card payments as well as Interac e-transfer’s P2P application clear through separate rails and settle in the large-value system.
2ACSS does not fall under the PFMI but under the Bank of Canada Prominent Payment Systems (PPS), which are derived from the PFMI. Therefore, we still link the risks to the PFMI as a guideline known world wide.
3In 2018, the ACSS cleared over $6.4 trillion in value, representing roughly 7 billion individual payments.
of a large financial institution showing strange behaviour in the financial system either by looking at historical data or by running simulations.

Our paper is closely related to Triepels et al. (2018). Their anomaly detection method tries to identify starting bank runs from TARGET2 transaction data. There is a few differences in our approach, however, compared to Triepels et al. (2018). First, we implement the autoencoder approach for a retail payment system (ACSS) which processes different types of retail payment instruments. Liquidity problems for a participant could unfold through a single or multiple payment stream(s), such as those payment streams that offer faster funds availability or typically process relatively large dollar amounts. Second, we work with daily aggregate bilateral payment flows instead of intraday ones given the batch-entry nature of ACSS. Lastly, we also investigate the potential of a deeper autoencoder, which includes more than one hidden layer.

We add to the growing literature on outlier detection and finding potential risks in financial market infrastructures (FMIs). Petrunia et al. (2018) study a credit risk (collateral) management scheme for the Canadian ACSS designed to cover the exposure of a defaulting member. Heijmans and Heuver (2014) identify several elements that may show signs of liquidity stress at the participant level in a large value payment system. Berndsen and Heijmans (2020) develop different types of risk indicator based on FMI transaction data. Their indicators are linked to the PFMIs. In order to set the threshold to raise an alarm for medium or high risk, they use the univariate method developed by Timmermans et al. (2018). Triepels and Heuver (2019) develop a neural network to identify stress by banks months before they actually go bankrupt. Chakraborty and Joseph (2017) introduce machine learning in the context of central banking and policy analysis. Beutel et al. (2019) compare the out-of-sample predictive performance of different early-warning models for systemic banking crises using a sample of advanced economies covering the past 45 years. They compare a benchmark logit approach to several machine learning approaches recently proposed in the literature. They find that while machine learning methods often attain a very high in-sample fit, they are outperformed by the logit approach in recursive out-of-sample evaluations.

Anomaly detection has also been applied to other parts of the financial domain. Credit card companies apply anomaly detection to credit card transactions by their clients to identify fraud, see Ghosh and

4TARGET2 is the largest real time gross settlement system in the European Union for euro denominated payments.
Reilly (1994) or Maes et al. (2002). Also, stock exchanges make use of anomaly detection to detect potential unwanted or unlawful trades. These models can be used to detect situations where brokers do not act in the best interest of their customers (Ferdousi and Maeda, 2006) or manipulate stock prices (Kim and Sohn, 2012).

Our paper is also linked to papers that look at different types of risks defined by the PFMIs such as systemic or credit risks. Li and Perez-Saiz (2018) develop a method to measure systemic risk across financial market infrastructures in Canada. Avdjiev et al. (2019) develop a new network centrality measure that can be interpreted in terms of a banking system’s credit risk or funding risk. Boyd et al. (2019) construct theory-based measures of systemic bank shocks. The authors find, consistent with the result in the previous literature, that deposit insurance and safety net guarantees do not affect the probability of a systemic bank shock, but do increase the probability of a policy response to such a shock.

The organization of the paper is as follows. Section 2 describes the ACSS and its corresponding data. Section 3 describes the setup of the autoencoder. Section 4 assesses how well our autoencoder setup works to detect liquidity problems in ACSS data and evaluates the detection of outliers using in-sample outliers and a simulated bank run. Section 5 summarizes and provides insights in how to use it as an operator.

2 ACSS

2.1 ACSS Overview

The ACSS facilitates the clearing of many paper and electronic payment instruments, such as cheques, automated funds transfer (AFT) and electronic data interchange (EDI). Payments require clearing and settlement when a transfer of funds occurs between accounts held at different financial institutions, which are either direct participants or have tiering arrangements as indirect participants. These payment types include online bill payments, direct deposits such as payroll, business-to-business payments, pre-authorized debits such as mortgage payments and point-of-sale debit card purchases, as well as cross institution ABM cash withdrawals. On average, the ACSS clears about 30 million transactions per day worth roughly $30 billion.

By comparison, the large-value transfer system (LVTS) clears and settles roughly 30,000 payments
per day, worth on average CA$150 billion. Wire payments in LVTS are typically large in value that require immediate finality and irrevocability. Wire payments often settle obligations from other FMIs outside LVTS or relate to cross-border transactions. Because LVTS operates under a collateralized hybrid DNS-RTGS model with real-time risk controls, a participant experiencing an outflow of payment requests would be required to obtain sufficient liquidity in advance, such as by pledging additional collateral to its settlement account held at the central bank. In contrast, payments exchanged and cleared through ACSS do not pass any similar real-time liquidity risk controls.

For historical reasons, including the accommodation of physical paper items that require manual processing, ACSS operates under a deferred net settlement model. Participants settle their multilateral net positions arising from the exchange of payments across multiple payment streams over a business day the following morning via wire payment in the LVTS. Credit risk materializes when a participant is incapable of meeting its final settlement obligation (a debit, or payable, multilateral net position); that is, at the time of settlement it is unable to deliver funds to its ACSS settlement account at the Bank of Canada in an amount equivalent to its final multilateral net debit position. Furthermore, in anticipation of settlement, participants may have already made funds available to recipient clients from the defaulting participant following exchange the previous day. Historically, a loss sharing agreement ensured certainty of settlement in case of a default; more recently, ACSS was designated a prominent payments system (PPS) and Payments Canada instituted a cover-one collateral pool made up of proportional contributions from participants to ensure that financial resources are available in case of a participant default. The level of the collateral pool is set to the 99th largest observed MNDP over a rolling two-year time period. While multilateral netting lowers settlement risk exposure between participants, there is no practical way by which a participant can limit its credit exposure in the event of a default, nor can the operator implement risk controls to constrain exposures.

The next section describes some statistical features (or empirical regularities) of ACSS participant bilateral payment flows and settlement balances from recent history. Deviations from normal or usual patterns could indicate the emergence or development of impending risks, whether financial, operational or other. An anomaly detection tool may prove effective at uncovering such instances in light of historical statistical patterns that have emerged from the data. The application of an autoencoder approach is motivated by these considerations to inform and monitor ongoing risks.

Some payment instruments, such as AFT are governed by a two-hour funds availability rule; however, in general ACSS payments are not necessarily irrevocable, unlike wire transfers.
2.2 ACSS Data and Statistics

While exchange of payment files compromising client payment instructions for each payment instrument occurs over the course of the day with three exchange window cutoff times, the ACSS application only receives data on payment flows overnight when entries are made by participant institution’s back offices. As a result, from an operational perspective Payments Canada does not observe payment flows for a given day until the following morning. For this reason, we work with data aggregated to the daily level reflecting gross bilateral payments sent between participants, either by payment instrument or in aggregate. Figure 1 provides a visual depiction of average daily bilateral flows between participants; we observe that among the 11 participants, most of the value is skewed towards the larger ones.

Table 1 provides a high-level description of the data stemming from the ACSS for 2019. The largest payment streams by value are AFT credit and debit. These are electronic credit push as well as debit pull payments, typically for direct deposits and pre-authorized debits. Furthermore, Payments Canada instituted a two-hour funds availability rule following the end of each exchange window. As a result, a client could send an AFT payment during the morning exchange window and the recipient would receive funds by close of business. This type of transfer has some features of a wire payment while being cheaper and easier to process from the sender’s perspective. As a result, payment flows in AFT could particularly show early signs of dislocation for a participant experiencing stress or other challenges.

Table 1: ACSS facts in 2018.

<table>
<thead>
<tr>
<th>Number of participants</th>
<th>ACSS has 11 direct participants, (excluding the central bank)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daily averages</td>
<td>ACSS processed a daily average of 30 , million payments, representing a daily average value of CA$ 35 billion</td>
</tr>
<tr>
<td>Median transaction value</td>
<td>CA$ 2000</td>
</tr>
<tr>
<td>Top 5 payment instruments by value</td>
<td>Automated funds transfer (AFT) debits and , credits (mainly direct deposits), paper-based and imaged cheques and remittances, point-of-sale debits and credits</td>
</tr>
<tr>
<td>Value share of largest five participants</td>
<td>90%</td>
</tr>
</tbody>
</table>

Source: Payments Canada.
Figure 1 plots historical daily multilateral net positions (MNPs) for select participants for illustration. While MNPs typically centre around zero, we observe some days with large outliers with reversion to the mean and little serial correlation. The empirical densities of settlement positions are highly skewed, which poses challenges for inferring VaR measures that rely on distributional or normal assumptions.

Figure 1: Heat map of bilateral flows between participants.

Note: Heatmap is based on average daily bilateral gross value sent in dollars from sending participant to recipient over the time period used in our training sample from 2007 to 2018. Diagonal elements are zero.

Overall, the data derive from normal and benign conditions, except for a short period of financial stress during the financial crisis; further, we are unaware of any major or prolonged operational incidents. In light of the data, our objective is to ascertain to what extent an algorithm such as a neural network autoencoder could detect anomalous payment flows in a relatively short period of time, alerting potential emerging risks concerning a participant. Timely signals from such a model could provide useful information to the operator as well as other financial-system stakeholders. In the next section, we describe our modeling approach in detail.
Figure 2: Daily individual participant settlement obligations of the six largest participants (referred to as A to F) in ACSS.

(a) Participant A.
(b) Participant B.
(c) Participant C.
(d) Participant D.
(e) Participant E.
(f) Participant F.

Note: Scatterplots represent observed daily settlement obligations, or multilateral net positions, in ACSS for six participants. A positive value reflects a debit position while a negative value reflects a credit position.
3 Anomaly detection in ACSS

This section describes the main concepts of our methodology for detecting anomalous liquidity flows from aggregate payment streams of the ACSS. The setup and used notation is similar to Triepels et al. (2018).

3.1 Notation and definitions

Let \(\Omega = \{f_1, \ldots, f_n\} \) be a set of \(n \) participants (which are the direct and group clearers) that initiate payments to each other in ACSS. Furthermore, let \(T = \langle t_1, \ldots, t_m \rangle \) be an ordered set of \(m \) time intervals, where \(t_1 = [\tau_0, \tau_1), t_2 = [\tau_1, \tau_2), \ldots \). The time intervals are consecutive and of the same length, which is one business day in our setup.\(^6\) Let \(a_{ij}^{(k)} \) be the total amount of liquidity that bank \(f_i \) sends to \(f_j \) at time interval \(t_k \) and let \(A^{(k)} \) be a liquidity matrix defined by:

\[
A^{(k)} = \begin{bmatrix}
 a_{11}^{(k)} & \cdots & a_{1n}^{(k)} \\
 \vdots & \ddots & \vdots \\
 a_{n1}^{(k)} & \cdots & a_{nn}^{(k)}
\end{bmatrix}
\]

The diagonal elements of \(A^{(k)} \) denote the total amount of liquidity that a bank transfers between its own accounts in time interval \(t_k \).\(^7\) In our case the diagonal is zero as there are no flows recorded in ACSS from and to itself. See Figure 1 of section 2.2 for a visual representation of average bilateral flows in the form of a heatmap. While ultimately the payment system operator or overseer is concerned with the potential for unusually large settlement positions that could trigger a default, multilateral net positions are derived from these bilateral liquidity flows.

3.2 General aspects of on autoencoder

An autoencoder (AE) is a feed-forward neural network that is trained to reconstruct outputs from inputs. It does this by processing the input through one or more hidden layer(s) in which a set of neurons forms a compressed representation of the input in a lower dimensional space. In contrast,

\(^{6}\)Triepels et al. (2018) use 15-minute aggregations.

\(^{7}\)A feature of many RTGS systems is that banks may initiate payments on behalf of clients that are not allowed to participate directly within the settlement system. This is known as tiering, see Adams et al. (2010). Payments settled between indirect participants of the settlement system via the same direct participant are recorded as internal payments of the direct participant. In TARGET2 for example there are flows between accounts of the same participant known as liquidity transfers, see e.g. Berndsen and Heijmans (2020).
typical machine-learning applications aim to relate an input layer to a distinct target output layer that is either categorical in nature (such as image detection) or continuous. Figure 3 graphically depicts the architecture of a classic three-layered AE (Figure 3a) and a four-layered (Figure 3b) deep AE. A greater number of hidden layers is associated with a deeper network.

The mean relative error (MRE) is minimized when the reconstructed $\hat{x}^{(i)}$ is as close as possible to the original $x^{(i)}$ for each $x^{(i)} \in \mathcal{X}$. Usually, the MRE is minimized by gradient descent in conjunction with back-propagation to efficiently calculate all gradients during the optimization procedure, see Werbos (1982) and Bottou (2004)). In this case, the parameters are iteratively updated proportional to the negative gradient of the MRE with respect to the parameters. This process is repeated until the parameters converge to a configuration for which the MRE is (locally) minimized.

The quality of the reconstruction depends on the number of neurons in the hidden layer. If the number of neurons is too low, the autoencoder may not be able to provide an accurate reconstruction of the feature vectors. On the other hand, if the number of neurons is too large then the autoencoder may achieve perfect reconstruction. In this case, it simply copies the feature vectors from the input layer to the output layer. To prevent this from happening, we need to limit the size of the hidden layer to be smaller than the size of the input layer and output layer. This forces an AE to compress feature vectors to an undercomplete hidden representation. Achieving a good reconstruction is difficult when the feature vectors are entirely random and do not have any structure. But if they do have structure, for example, some input features are dependent, then an AE might be able to learn features of these dependencies in the hidden layer to achieve a better reconstruction.

The advantage of an AE is that it does not make any explicit assumptions about the distribution of the liquidity vectors, except for being independent and identically distributed (iid). Furthermore, AEs are capable of handling high dimensionality of vectors very well. Lastly, they allow for calculation of the contribution of each individual liquidity flow as part of the total RE. This is a useful property to explain anomalies.

To avoid over-fitting, we split our data into training and test sub-samples. The training set contains 80% of the data sample and the validation 20%. Our model is trained using the training set and evaluated on the validation (or hold-out) set. Finally, the optimal model is evaluated on test data, which contains the outliers in our data sample. In order to minimize the potential for over-fitting to the validation set, we use k-fold cross validation where we partition the training set into five partitions.
of equal size. For a given model choice, we train the model in five separate instances using one of the distinct validation partitions. The final model score for a particular specification is based on an average across the five validation sets.

Figure 3: The architecture of an autoencoder. The input layer and hidden layer(s) can also have a bias term.

3.3 Detection and explanation of Anomalies

In line with Hawkins et al. (2002), Tóth and Gosztolya (2004), Dau et al. (2014) and Triepels et al. (2018) we also use an AE for anomaly detection. To assess the performance of a trained model (including the configuration of its hyper-parameters), it is evaluated on test data never seen before. A network that performs equally or almost as well on test data as on training data is indicative of a model that generalizes well out-of-sample and was not overfit to the training data. In our case, we would like our trained AE to have a low reconstruction error on data that is considered to reflect normal behaviour but a high reconstruction error for payment flows that are unusual (defined as anomalous). Consequently, we train an AE on historical data that excludes daily observations where any participant
experienced an end of day settlement obligation (or multilateral net debit position) that exceeded its 99th empirical quantile. We draw our test data from our historical sample with the remaining observations containing bilateral flows generating a settlement position among the largest percentile for at least one participant.

The AE is trained on the training data set, which consists of daily liquidity vectors spanning roughly 10 years. In the training phase, the AE learns the main features of the aggregated payment flows between the participants. Each new liquidity vector $a^{(k)}$ that arrives, is reconstructed by the AE and classified as anomalous or non-anomalous. $a^{(k)}$ is classified as anomalous if the reconstruction error (RE) is higher than some predefined threshold value $\delta > 0$. If the RE of $a^{(k)}$ is smaller or equal to this δ then it is classified as non-anomalous. There is no mathematical way of determining what the δ has to be. It is up to the judgment of a domain expert. However, a good heuristic is to set δ two standard deviations above the MRE of \mathcal{D}, or to choose δ such that a certain percentage of the training vectors in \mathcal{D} are classified as anomalous.

In order to gain a better understanding of the anomalies found by the network, we can further analyze or decompose the overall network error by isolating which elements of the liquidity matrix display the largest prediction error. Such analysis could reveal whether the overall network error is driven by a single or by multiple participants, or in terms of outflows and inflows. The reconstruction error of a liquidity vector is defined by:

$$\text{RE}(a^{(k)}) = ||\hat{a}^{(k)} - a^{(k)}||^2_2$$ \hspace{1cm}(2)$$

where $\hat{a}^{(k)}$ is the reconstructed liquidity vector at time interval t_k. $\text{RE}(a^{(k)})$ is the reconstruction error aggregated over all liquidity flows between the banks in the settlement system. It measures the extent to which the configuration of the payment system as a whole is anomalous. A useful property is that we can express $\text{RE}(a^{(k)})$ in terms of the inflow or outflow of each bank:

$$\text{RE}(a^{(k)}) = \sum_{i=1}^{n} ||\hat{a}^{(k)}_{i\rightarrow} - a^{(k)}_{i\rightarrow}||^2_2 = \sum_{i=1}^{n} \text{RE}(a^{(k)}_{i\rightarrow})$$ \hspace{1cm}(3)$$

$$= \sum_{i=1}^{n} ||\hat{a}^{(k)}_{i\leftarrow} - a^{(k)}_{i\leftarrow}||^2_2 = \sum_{i=1}^{n} \text{RE}(a^{(k)}_{i\leftarrow})$$ \hspace{1cm}(4)$$

where $\hat{a}^{(k)}_{i\rightarrow}$ and $\hat{a}^{(k)}_{i\leftarrow}$ are respectively the reconstructed inflow and outflow of bank f_i at time interval t_k.
As the outflow of one participant is the inflow of another, the total inflow and outflow has to be equal by definition. The relative contribution of the inflow of each bank to the overall error is:

\[c^{(k)} = \left[\frac{\text{RE}(a_{1}^{(k)})}{\text{RE}(a^{(k)})}, \ldots, \frac{\text{RE}(a_{n}^{(k)})}{\text{RE}(a^{(k)})} \right] \]

(5)

where \(c^{(k)} \) is a \(n \)-dimensional vector and \((c^{(k)}_{i})_{i} \in [0,1] \) is the relative contribution of the inflow of bank \(f_i \) to the overall reconstruction error at time interval \(t_k \), and \(\sum_{i=1}^{n} (c^{(k)}_{i})_{i} = 1 \).

In a similar way, the contribution of the outflow can be defined. In case we find an anomaly at the system level, i.e. \(\text{RE}(a^{(k)}) > \delta \), we can estimate the \(c^{(k)} \) and \(c^{(k)}_{i} \). After that, we can perform a drill-down of the reconstruction error to the level of the individual participant to find an explanation for the anomaly.

4 Model selection and evaluation

This section describes the model performance for different setups of the neural network we implement. Table 2 shows the different setups for the one and two hidden layer AEs. For the one hidden layer network, the number of nodes ranges from 10 to 70 in increments of 10. The number of nodes in the two layer network ranges from 10 to 70 in increments of 10 for the first hidden layer and has 8, 16 and 32 nodes for the second hidden layer. The two hidden layer network attempts to obtain better generalizations than the single hidden layer setup. The number of nodes in both the input and the output layer is 110.\(^8\)

<table>
<thead>
<tr>
<th>Number of layers</th>
<th>nodes in 1(^{st}) layer</th>
<th>nodes in 2(^{nd}) layer</th>
<th>activation functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10,20,30,40, 50,60, 70</td>
<td>NA</td>
<td>ReLu, Tanh</td>
</tr>
<tr>
<td>2</td>
<td>10,20,30,40, 50,60, 70</td>
<td>8,16, 32</td>
<td>ReLu, Tanh</td>
</tr>
</tbody>
</table>

Table 2: Different model setup of for the one and two hidden layer AEs.

For the activation function we either use the ReLu or the tanh.\(^9\) The ReLu activation function is used

\(^8\)There are 11 participants in ACSS. Each participant can make payments to ten other participants. There are no payments from a participant to itself.

\(^9\)ReLu stands for rectified linear unit and is mathematically defined as \(y = \max(0,x) \). Tanh is hyperbolic tangent function.
when the input data is normalized to be mean 0 with standard deviation 1 and as a result is treated as a continuous variable. The tanh activation function is used when we normalize the input data by maximum values to lie in the interval 0 and 1. We measure the model performance by examining the overall loss (mean square error, MSE) on the validation sets. The lower this value, the better the model performs.

Two important hyper-parameters when training a learning algorithm using stochastic gradient descent are the batch size and the number of epochs. The batch size reflects the number of observations passed through the network prior to updating the weights. We set the batch size to 16 throughout. The number of epochs defines the number of instances the entire training set will pass through the learning algorithm. A plot of the model error by epoch is known as a learning curve.

This remainder of this section will first look at the performance of the one and two hidden layer networks (section 4.1). Section 4.2 describes the best performing model and the trade offs in the selection of that model. Section 4.3 and 4.4 show the evaluation of the best model on the test set and on artificial data.

4.1 One vs two hidden layers

Figure 4 shows the model performance on training and validation sets in terms of mean square error (MSE) for the one hidden layer autoencoder using the ReLu (Figure 4a and 4b) and tanh (Figure 4c and 4d) activation functions. The number of nodes in the hidden layer varies between 10 and 70 and we train up to 300 epochs.

Overall, we observe that MSE scores from the training data tend to improve rapidly over the first 50 epochs but gradually stabilize with only marginal improvement as the number of epochs increases beyond 200. The MSE using the tanh activation function shows much lower values overall than the ReLu. The MSES for the ReLu activation function range from roughly 0.01 to 0.05, and for the tanh from 0.0002 to 0.0018. If we only look at the performance on the training set suggests that the tanh outperforms the ReLu setup. The MSES on the validation set tend to exhibit some variance as the number of epochs increases, but on average tend to decline as well, althought they trend at permanently higher levels when compared to the training data results. In the case of the tanh results, there is greater variance in MSES by epoch on the validation data and this tends to increase with the number of nodes, which may be caused by overfitting. Overall, the best performing one hidden layer
setup for the tanh activation function has a smaller hidden layer while the ReLu performs better on a larger hidden layer. However, in evaluating model performance there is a trade-off between lower overall MSEs versus the variance of the MSEs with changing epochs.

Figure 4: Model performance for different number of nodes in the hidden layer.

Figure 5 shows the model performance in terms of the MSE for the different setups of the two hidden layer (deep) autoencoder also using the ReLu and tanh activation function. Similar to the one hidden layer, the tanh also shows a better performance than the ReLu activation function. The performance on the validation data also shows higher variance than the training data. However, the variance of the validation data using both the tanh and ReLu activation function is lower than observed in the one hidden layer autoencoder. This suggests that the main advantage of utilizing a deeper network (two hidden layers) is to decrease the variance.
4.2 Model selection

In order to select the best performing model an epoch has to be chosen, which we set to 200. Model setups showing large variance in the MSE when increasing the epochs (of the validation set) do not seem to be good candidates for a model. This informed our modeling choice to constrain training the one hidden layer setup on 70 nodes or fewer.

Figure 6 shows the performance of the one and two hidden layer networks using the activation function ReLu (Figure 6a) and tanh (Figure 6b) respectively, with epoch 200. These figures allow for selecting the best model setup based on the MSE of the validation set. We have already seen in section 4.1 that the tanh activation function performs better than the ReLu based on its MSE values. Therefore, the tanh would be the preferred activation function. Zooming into the difference between the one and two hidden layer setups, Figure 6b shows that the one hidden layer performance domi-

\[10^{\text{However, the choice of epoch is somewhat arbitrary and a different epoch may lead to a difference in the selection of the best performing model.}}\]
nates the two hidden layer up until 70 nodes in the first layer. The figure shows that the one hidden layer approach with 40 nodes performs best overall, although not much better than a two hidden layer with 40 nodes in the first layer and 32 nodes in the second layer. Therefore, we will discuss the model performance on the test and artificial data in the next sections using the best one and two hidden layer setups.

Figure 6: MSE at epoch 200: one versus two hidden layers.
(a) ReLu. (b) Tanh.

note: The solid line shows the performance (low MSE is better) of the autoencoder with one hidden layer (solid line). The dashed lines show the performance of the 2 hidden layers autoencoder for different number of nodes in the both the first (x-axis) and second hidden layer (different dashed lines).

4.3 Evaluation on test data

Figure 7 evaluates the optimal one layer and two layer networks derived in the previous section on the training and test data for both activation functions. The model error is displayed at the daily level. The test data is drawn from historical daily observations where at least one participant exhibited a settlement position greater than its ex post 99th quantile. While we observe that the daily reconstruction error displays, on average, a level shift higher on the test data than on the training data along with larger spikes, there is no clear demarcation between the two reconstruction error sets. In other words, there are daily observations from the training data where the reconstruction error is greater than those observed from the test data. Furthermore, despite the fact that the neural networks were optimized to fit the training data, we do observe outliers at the daily level where the network does a poor job. The two hidden layer autoencoder has an overall lower MSE and fewer spikes compared to the one layer autoencoder.
The outlier scores (MSE) on the test data are quite similar between the networks. Therefore, given the lower overall MSE levels and fewer spikes, the deeper network will pick up outliers more quickly. This may be due to the fact that a deeper network is more capable of generalizing the data. A deeper network can also learn correlations between flows of participants. This may also be the reason why some normal days in the training days show high MSE values, as there may be uncommon outflow and/or inflow combinations between participant pairs. The tanh activation function shows a better performance on our data than the ReLu.

Figure 7: MSE levels of the training and test set using the optimal autoencoder.

(a) ReLu 1 hidden layer. (b) Tanh 1 hidden layer.
(c) ReLu 2 hidden layers. (d) Tanh 2 hidden layers.

Note: The blue bars show the MSE levels for the different days in the training set. The orange bars show the MSE levels of the test set which contains outliers.
4.4 Evaluation on artificial data

During the time period under study, there have not been any defaults in ACSS nor any substantive periods of financial stress for any participant. Therefore, we are not able to test whether a scenario such as a bank run would be flagged by our autoencoder. To combat that, we simulate an artificial bank run and evaluate the performance of our chosen optimal autoencoders; defined as a scenario where a participant’s bilateral outflows increase proportionally to all other participants by $\frac{1}{2}$ standard deviation on a weekly basis; similarly, its bilateral inflows from all other participants decrease at the same aggregate rate. As a result, after one month of simulation the participant is exhibiting gross bilateral inflows and outflows of 2 standard deviations from actual levels. The “bank run” starts at business day 41 in the graph, which is the start of the ninth business week. Figure 8 displays the reconstruction error when applying each two-layer neural network to one month of normal data followed by one month of artificial data that intends to mimic a bank run. We observe that the reconstruction error rises rapidly in both cases, but the potential detection of anomalous activity occurs more quickly in the case of the ReLu activation function. This suggests that a bank run in which the outflows increase consistently will be picked up by our autoencoder setup after a few days. Of course, bank runs will have different speeds at which the outflow increase, and may even have gaps in the outflow due to insufficient liquidity, see Triepels et al. (2018).

Figure 8: MSE levels of a simulated bank run of a large participant in ACSS.
5 Conclusions

This paper investigates whether a neural network (autoencoder) can detect anomalous flows in the Canadian retail payments data (ACSS). It describes the process of setting up the best model and the choices that have to be made by the system operator. It is a first attempt to apply a neural network model to these data. The most optimal setup of the autoencoder, i.e. the setup that has the lowest MSE of all models on the validation set, is a one hidden layer autoencoder with 40 nodes using the tanh activation function. However, we observe multiple incidents of large MSEs on the training data indicating potential anomalous flows that are in fact normal (false positives). This may be due to several flows between participants being unusual, but not exceptionally so. In addition, on the test data which we consider to be a sample of all outlier days, we observe cases of lower than average MSEs (false negatives). In contrast, on the training sample we observe fewer spikes (false positives) in the two hidden layer setup with 40 nodes in the first hidden layer and 32 nodes in the second. This suggests that the two hidden layer setup better generalizes the flows between the participants. In particular, on the cross correlation between flows of different participants. Even though the two hidden layer autoencoder is not the best model looking at the MSE of the validation set, it does a better job in detecting the type of outliers we aim for in this paper.

The simulated bank run shows that if there are continuously increasing outflows from the problem bank to all other participants, the algorithm will show substantially increased MSEs within a week. One direction for improving the model would be to investigate whether the sequence or ordering of the data (e.g. weekly or monthly patterns) matter. Recurring peak values by day of the week or month could be accounted for, which might help reduce the number of incorrectly identified outliers. Examples of such models would be a Long Short-Term Memory (LSTM) or a Gated Recurrent Units (GRU).

To conclude, we summarize how the output of the types of models we work with in this paper can be used by the operator to monitor unusual flows in its system. In the case an outlier is detected by the model, it could trigger an analysis on the underlying vcauses; for instance, whether the outlier was caused by: 1) just one bank having a very large in or outflow; 2) one bank having unusual in and outflows to many other banks; or 3) many banks having unusual in and outflows to many other banks. In addition, the occurrence of an outlier or multiple outliers could warrant an investigation so as to untangle whether the underlying cause was driven by financial stress, operational or otherwise as well
as monitoring activity closely in the short-term. Depending on the application, a single outlier or a sequence of outliers can be shown to the operator. In some cases, the outlier could be linked to an operational problem known by the operator. The output can also be used by financial stability experts in assessing the impact of strange behaviour or liquidity problems at the level of one or more financial institutions participating in ACSS. This can either be done by looking at historical data or by running simulations.

A Encoding en decoding the autoencoder

Suppose \(x \) is an \(n \)-dimensional feature vector. An AE can be defined by an encoding function \(h = \phi(x) \) and a decoding function \(\hat{x} = \psi(h) \). The encoding function takes \(x \) as input and encodes it in the lower \(l \)-dimensional space by processing it through the hidden layer:

\[
\phi(x) = f^{(l)}(W_1 x + b_1)
\]

where \(W_1 \) is an \(l \) by \(n \) matrix of weights, \(b_1 \) is a vector of \(l \) bias terms and \(f^{(l)}(x) = [f(x_1), \ldots, f(x_l)] \) is a set of activation functions that are applied to \(x \) element-wise. Potential functions for \(f \) are the linear function, sigmoid function or hyperbolic tanh function.

The result of the encoding \(h = [h_1, \ldots, h_l] \) is a vector of \(l \) hidden neuron activations forming an undercomplete hidden representation of \(x \). The decoding function takes the hidden representation as input and reconstitutes it back into the \(n \)-dimensional space by processing it through the output layer:

\[
\psi(h) = g^{(n)}(W_2 h + b_2)
\]

where \(W_2 \) is an \(n \) by \(l \) matrix of weights, \(b_2 \) is a vector of \(n \) bias terms and \(g^{(n)}(x) \) is a set of activation functions. The result of the decoding \(\hat{x} = [\hat{x}_1, \ldots, \hat{x}_n] \) is a vector of \(n \) outputs forming a reconstruction of \(x \).

The parameters \(\Theta = \{W_1, W_2, b_1, b_2\} \) of the autoencoder are estimated from a set of \(m \) feature vectors \(\mathcal{X} = \{x^{(1)}, \ldots, x^{(m)}\} \). We can do this by minimizing the Mean Reconstruction Error (MRE). The reconstruction error of a single feature vector \(x^{(i)} \) can be defined as:

\[
\text{RE}(x^{(i)}) = \|\hat{x}^{(i)} - x^{(i)}\|_2^2
\]
where $||x||^2_2$ is the ℓ_2-norm of x. Accordingly, the problem of minimizing the MRE of all m feature vectors in \mathcal{X} with respect to parameters Θ can be defined as:

$$\Theta^* = \arg\min_{\Theta} \frac{1}{m} \sum_{i=1}^{m} \text{RE}(x^{(i)})$$

(9)

References

Previous DNB Working Papers in 2020

No. 662 Carin van der Cruijsen-Knoben, Jakob de Haan and Ria Roerink, Financial knowledge and trust in financial institutions
No. 663 Jon Frost, Economic Forces Driving FinTech Adoption
No. 664 Anna Samarina and Nikos Apokoritis, Evolution of monetary policy frameworks in the post-crisis environment
No. 665 Christian König-Kersting, Stefan T. Trautmann and Razvan Vlahu, Bank instability: Interbank linkages and the role of disclosure
No. 666 Claus Brand, Gavin Goy, Wolfgang Lemke, Natural Rate Chimera and Bond Pricing Reality
No. 667 Joost Bats, Corporates’ dependence on banks: The impact of ECB corporate sector Purchases
No. 668 Marc van Kralingen, Diego Garlaschelli, Karolina Scholtus and Iman van Lelyveld, Crowded trades, market clustering, and price instability
No. 669 Mark Mink, Rodney Ramcharan and Iman van Lelyveld, How Banks Respond to Distress: Shifting Risks in Europe’s Banking Union
No. 670 Jasmira Wiersma, Rob Alessie, Adriaan Kalwij, Annamaria Lusardi and Maarten van Rooij, Skating on thin ice: New evidence on financial fragility
No. 671 Michiel Bijlsma, Carin van der Cruijsen and Nicole Jonker, Consumer propensity to adopt PSD2 services: trust for sale?
No. 672 Duncan van Limbergen and Robert Vermeulen, The importance of value chains for euro area trade: a time series perspective
No. 673 Martijn Boermans en Bram van der Kroft, Inflated credit ratings, regulatory arbitrage and capital requirements: Do investors strategically allocate bond portfolios?
No. 674 Andras Lengyel and Massimo Giuliodori, Demand Shocks for Public Debt in the Eurozone
No. 675 Raymond Chaudron, Leo de Haan and Marco Hoeberichts, Banks’ net interest margins and interest rate risk: communicating vessels?
No. 676 Martijn Boermans and John Burger, Global and local currency effects on euro area investment in emerging market bonds
No. 677 Patty Duijn and Ilke van Beveren, Product diversification as a performance boosting strategy? Drivers and impact of diversification strategies in the property-liability insurance industry
No. 678 Richard Heuver and Ron Berndsen, Liquidity Coverage Ratio in a Payments Network: Uncovering Contagion Paths
No. 679 Gabriele Galati, Jan Kakes and Richhild Moessner, Effects of credit restrictions in the Netherlands and lessons for macroprudential policy (not published yet)
No. 680 Frank van der Horst, Jelle Miedema, Joshua Snell and Jan Theeuwes, Banknote verification relies on vision, feel and a single second