How to measure the unsecured money market? The Eurosystem’s implementation and validation using TARGET2 data
How to measure the unsecured money market? The Eurosystem’s implementation and validation using TARGET2 data

Luca Arciero, Ronald Heijmans, Richard Heuver, Marco Massarenti, Cristina Picillo and Francesco Vacirca *

* Views expressed are those of the authors and do not necessarily reflect official positions of De Nederlandsche Bank.
How to measure the unsecured money market? The Eurosystem’s implementation and validation using TARGET2 data

Luca Arciero Ronald Heijmans Richard Heuver Marco Massarenti
Cristina Picillo Francesco Vacirca *

Thursday 31st January, 2013

Abstract

This paper develops a methodology, based on Furfine (1999), to identify unsecured interbank money market loans from transaction data of the most important euro processing payment system, TARGET2, for maturity ranging from one day (overnight) up to three months. The implementation has been verified with (i) interbank money market transactions executed on the Italian trading platform e-MID and (ii) individual reporting by the EONIA panel banks. The Type 2 (false negative) error for the best performing algorithm setup is equal to 0.92%. The different stages of the global financial crisis and of the sovereign debt crises are clearly visible in the interbank money market, characterised by significant drops in the turnover. We find aggregated interest rates very close to the EONIA but we observe high heterogeneity across countries and market participants.

Keywords: euro interbank money market, Furfine, TARGET2, financial stability, EONIA

JEL Codes: E42, E44, E58, G01

*Luca Arciero: Banca d’Italia, Market and Payment System Oversight Department, e-mail: luca.arciero@bancaditalia.it; Ronald Heijmans: De Nederlandsche Bank, Cash and Payment Systems Division, e-mail: ronald.heijmans@dnb.nl; Richard Heuver: De Nederlandsche Bank, Cash and Payment Systems Division, e-mail: richard.heuver@dnb.nl; Marco Massarenti: European Central Bank, Oversight Division email: marco.massarenti@ecb.europa.eu; Cristina Picillo: Banca d’Italia, Market and Payment System Oversight Department, e-mail: cristinamarialp.picillo@bancaditalia.it; Francesco Vacirca: Banca d’Italia, Payment System Department, e-mail: francesco.vacirca@bancaditalia.it. We thank Ron Berndsen, Hans Brits and Matti Hellqvist for reviews of early versions of the paper and the colleagues at the ECB who worked together in the early stage of the money market project: Carlos Garcia de Andoain Hidalgo, Florian Heider, Joanna McLafferty, Patrick Papsdorf and Sara Testi. We would also like to thank for their comments participants at the 2nd CPSS workshop on payment monitoring indicators (BIS) and participants at the first joint Financial Stability Committee-Payment and Settlement Systems Committee workshop (ECB). The views expressed in this paper are those of the authors and do not necessarily represent those of the Banca d’Italia, De Nederlandsche Bank or ECB. All errors and/or omissions are ours.
1 Introduction

An efficient interbank money market is essential for the stability of the financial system and plays a critical role in the transmission of monetary policy. After the failure of Lehman Brothers in the fall of 2008, banks became increasingly reluctant to lend liquidity to each other, due to higher perceived counterparty risk (Heider et al., 2009). To compensate for this increased uncertainty, lenders demanded higher credit risk premia or high quality collateral (ECB, 2010). At the same time, liquidity-short banks were reluctant to ask for interbank deposits to avoid being perceived as illiquid, due to the so-called stigma effect (Cappelletti et al., 2011). In many cases banks stopped lending to their counterparties and preferred turning to the European Central Bank’s (ECB) overnight deposit to store their liquidity surplus. This resulted in a significant decrease of the turnover in the unsecured interbank money market and a significant increase of the ECB’s overnight deposit facility. Furthermore, interbank money market trading has shifted from the unsecured to the secured market (ECB, 2012; Cappelletti et al., 2011), which allows the interposition of the central counterparty to mitigate risks. Since the contagion of the sovereign debt crisis among European periphery countries, the segmentation in the interbank money market has increased significantly. Banks located in the so-called periphery countries (Greece, Ireland, Italy, Portugal and Spain) faced an increased sovereign risk premiums while cross-border liquidity flows to these countries declined (BIS, 2012).

In response to the crisis, the Eurosystem has introduced unconventional monetary policy measures to ease the strain in several markets, such as the interbank money market, which hampered the smooth transmission of the monetary policy impulses. (ECB, 2010; van Riet, 2010). The effect of these actions and especially of switching to fixed-rate full-allotment monetary policy tenders has been that banks no longer need to rely on each other to fund their liquidity needs. Liquidity-short banks can always obtain the desired amount of liquidity from regular ECB monetary policy operations, against collateral from a wide range of eligible assets. Liquidity-rich banks can always deposit their excess at the ECB’s overnight deposit facility instead of lending it to a market counterparty, as long as they accept the implicit opportunity cost.

To evaluate the efficiency of the transmission of the (unconventional) monetary policy impulses, it is essential to have reliable and complete information on the interbank money market. Normally, however, central banks, including the ECB, have to rely on partial information. In the Eurosystem this information contains the following sources: (i) reporting by the major banks in the euro area on their overnight lending rates and volumes (which make up the Euro OverNight Index Average, EONIA); (ii) data on individual exchanges on the Italian electronic trading platform e-MID; (iii) data on individual trades on the Spanish domestic market MID; and (iv) data on domestic and cross-border lending and borrowing for Greek banks. EONIA panel data only refer to the aggregated

Unconventional monetary policy measures included: fixed-rate full-allotment since October 2008; swap agreements with other Central Banks (e.g. FED, SNB); extension of the collateral framework; extension of the duration of the refinancing operations (e.g. year tenders starting July 2009 and 3-year tenders starting December 2011); the introduction of the Covered Bond Purchase Program (May 2009), the Securities Market Program (May 2010) and of the Outright Monetary Transactions (September 2012).

Besides the fact that each of the four sources only gives partial information on the money market, there are also restrictions on the availability of the data for confidentiality reasons: EONIA data are available only to the European Banking Federation (EBF) and to the ECB for monetary policy purposes, e-MID data to Banca d’Italia in its financial
The main research question of this paper is, therefore, how to identify euro area unsecured interbank loans, with maturities ranging from one day up to one year, using payment data from TARGET2. To find the loan refund combination from LVPS data, we employ and expand the method of Furfine (1999). He developed an algorithm to identify interbank loans for the US money market, using Fedwire data. This algorithm assumes a round value transferred from bank A to bank B at time t and the same value plus a plausible interest rate amount from bank B to bank A at time $t + 1$. The minimum value of a payment has been set to 1 million US dollars with increments of 100,000 US dollars. The interest rate is considered plausible if it lies within 50 basis points above or below the federal funds rate. Demiralp et al. (2004) extended the algorithm to capture smaller size loans and excluded any transaction whose interest rate does not correspond to a market quote for interest rates in units of 1/32 percentage points or in whole basis points.

Subsequently, several authors have applied Furfine’s method to payment data from several payment systems. Millard and Polenghi (2004) applied the Furfine’s algorithm to the British LVPS (CHAPS) data, using a threshold of 1 million pounds sterling. Hendry and Kamhi (2007), studying the Canadian Large Value Transfer System (LVTS), follow the approach of Demiralp et al. (2004) by only including interest rates in units of half a basis point as eligible. Akram and Christophersen (2010) have implemented an algorithm for the Norwegian market. They determined that some money market trades can occur at rates below the overnight deposit rate, which is usually the lower bound of the interest rates traded in the market, as at that rate banks can turn to their central bank for depositing their excess liquidity as long as they have access to the standing facility of the central bank. The authors argued that foreign banks which do not have access to the overnight deposit facilities of the Norges Bank may in fact lend their excess liquidity in Norwegian krones at rates even below the deposit rate.

The aforementioned papers have in common that they focus solely on the overnight money market. Heijmans et al. (2010) and Guggenheim et al. (2010) implemented an algorithm for maturities up to one year for the Dutch and Swiss markets respectively. The main difference between the two papers is the way longer term loans are matched. Guggenheim et al. (2010) start by identifying the one-day loans. When a loan refund match has been found, the two payments that have been matched are excluded from the search for the following maturity. Conversely, Heijmans et al. (2010) do not exclude any loan-refund candidates when looking at longer maturities. Thus, the same payment may be matched to different refunds and vice versa. Multiple matches may arise both within the same maturity and between different ones. The alternative candidates stemming from these multiple matches are then selected according to the most plausible match. This approach avoids the a priori matching imposed by the order in which the algorithm processes the payments.
Following a similar approach, we enhance the algorithm to reduce the uncertainty of the results. Moreover, with respect to other works, the results have been validated against two external data sources: (i) individual EONIA panel contributions and (ii) e-MID transaction-level data. To the authors’ best knowledge, this is the most comprehensive validation exercise yet carried out with reference to a Furfine implementation. The validation enables us to quantify the Type 2 (false negative) and Type 3 errors (mismatch). Further, it shows that our algorithm’s performance is considerably reassuring, particularly in the overnight segment. This result is in sharp contrast with the recent paper by Armantier and Copeland (2012) assessing the quality of the Furfine’s algorithm implemented at the Federal Reserve Bank of New York against a dataset of bilateral transactions between two large US dealers. They find very discouraging results, namely average Type 1 and Type 2 errors equal to 81% and 23% respectively, between 2007 and 2011. In addition, they also argue that these errors may not subside if the algorithm’s output is aggregated. This confirms the validity of our implementation and underscores that a “plain-vanilla” version of the Furfine algorithm without a deep knowledge of the underlying data and technical details of the system may lead to misleading and potentially spurious results. This study also aims at providing the Eurosystem with a database of euro area money market transactions to serve monetary policy, financial stability and research purposes.

The outline of this paper is straightforward. Section 2 presents the data used in our analysis. Section 3 describes the algorithm, whereas its validation against e-MID and EONIA panel data is provided in Section 4. That section also describes the level of uncertainty of the algorithm and presents the most suitable corridor for the euro money market. Section 5 provides some descriptive analysis of the euro area interbank money market. Finally, Section 6 concludes and makes some policy recommendations.
2 Data

The data sources we use for this paper comprise (i) payments settled in TARGET2, the main euro area LVPS; (ii) individual interbank loans settled in the Italian electronic money market trading platform e-MID; (iii) individual reporting by the banks participating in the EONIA panel.

2.1 TARGET2

TARGET2, Trans European Real-time Gross settlement Express Transfer, is the Eurosystem real time gross settlement system (RTGS) for large value payments in euro in central bank money. Currently, all euro area countries and six non-euro area countries are connected to TARGET2. The system processes the transactions of roughly 4,500 credit and other financial institutions which meet the access criteria, directly or indirectly. As TARGET2 is an RTGS, each transaction is settled immediately (real time), individually (gross) and irrevocably. Besides transactions between (in)direct participants and transactions related to monetary policy implementation, it is also used for settlement of many other ancillary systems (Kokkola, 2010). For the purpose of this paper, two important systems which settle in TARGET2 are the Italian e-MID and the Spanish MID, i.e. the only trading platforms for unsecured money market transactions operating in the euro area (see Section 2.2).

Every transaction in TARGET2 involves two participants (mainly banks) and/or one (domestic) or two (cross-border) national central banks (NCBs). The participants’ list comprises mainly euro area credit institutions and several large non-euro area banks (notably UK and US). Each account of every participant is assigned to one of the NCBs. Although banks are free to choose a reference central bank in the Eurosystem, most banks choose the central bank of the country where their headquarters are located and opt for two or more reference central banks only as specific business needs arise. For non-euro area participants, the location of branches and/or subsidiaries has determined the choice of reference central bank. This is relevant and should be kept in mind when studying domestic and cross-border developments in the euro interbank money market.

Money market transactions may be settled also through EURO1, the second LVPS system in euro, which is a privately owned payment system for domestic and cross-border payments in commercial bank money. The system numbers 65 participating (mainly large) euro area banks. Although banks participating in this system have the option to settle interbank money market loans in EURO1, the majority of money market transactions are assumed to be settled in TARGET2: in the latter, the daily turnover is close to 3,000 billion euros whereas in EURO1 it is below 250 billion euros.

2.2 e-MID

e-MID, electronic Mercato Interbancario dei Depositi, is a privately owned electronic money market system for interbank loans, created in 1990 from a joint initiative of the Italian banking community and the Banca d’Italia. Money market trades that are executed on this platform do not differ

3The six non euro area countries are Bulgaria, Denmark, Latvia, Lithuania, Poland and Romania (status at the end of October 2012).
significantly from OTC transactions, as e-MID offers three different trading opportunities: (i) the Multilateral Trading facility, where orders entered by participants are visible to the entire market and are binding vis-à-vis other participants; (ii) the Request for Quote facility, where banks have the opportunity to trade with a restricted group of counterparties; (iii) the Direct Order dealing option, where banks agree bilaterally on money market trades. These last two trading options closely resemble the features of OTC transactions.

Since the launch of the euro and until the start of the financial crisis, e-MID experienced continuous growth in trading and increasing participation by non-Italian banks. At the beginning of 2007, more than 60% of participants were non-Italian institutions from 19 countries. In that year, e-MID represented 20% of the overall interbank transactions in Europe (ECB, 2012). As of August 2007, and especially in the aftermath of Lehmann’s collapse, the daily average traded volumes declined, most likely as a result of higher perceived counterparty risk and a potential stigma effect for banks having to disclose their liquidity needs on a transparent electronic platform like e-MID (Cappelletti et al., 2011). Cross-border flows decreased significantly too, as of 2008. Nevertheless, according to Monticini and Ravazzolo (2011), e-MID was still representative for the whole euro area money market in 2008, as loans involving at least one non-Italian counterparty accounted for 42% of the total turnover and foreign participants represented 42% of the total number of active traders (179). Although the share of non-Italian trading fell to 20% in 2009 and to 10% in 2010, e-MID prevailing market conditions remained anchored to the euro area money market as witnessed by the low spread between the overnight interest rate traded in the e-MID and the EONIA. Thus, e-MID can be regarded as a benchmark of the euro area money market and a suitable support in validating Furfine’s algorithm, especially at the beginning of the analysed period and for the overnight maturity.5

Unlike one-day transactions, longer term maturities traded on e-MID have been quite rare since the outbreak of the crisis. Therefore, the extension to the entire data set of validation results for these maturities is less straightforward. The e-MID market shifted towards shorter term maturities in the aftermath of the sub-prime crisis. From June 2008, one-day transactions (overnight, tomorrow-next, spot-next) accounted for more than 90% of total transactions. Until mid-2009 loans with maturity up to 3 months (excluding one-day transactions) represented 5% of the overall turnover. Although infrequent, e-MID longer trades are the only readily available source of individual money market transactions which can be used to assess the goodness of fit of the Furfine-like algorithm in the euro area at longer maturities.

2.3 EONIA panel

The EONIA is an effective overnight interest rate computed as the weighted average of all overnight unsecured loans reported by the contributing euro area panel banks.6 Soon after the closing of the

5Only since the contagion of the sovereign debt crisis in Italy (August 2011) the market has become mainly Italian and the spread between the EONIA and e-MID widened, reflecting an increased national segmentation of the euro area money market. Thus, the information content of e-MID loans as a benchmark for the overnight euro area money market has, since then, deteriorated (Cappelletti et al., 2011).

6In October 2012 the panel of banks contributing to EONIA consists of 43 banks. The list of current panel banks can be found at http://www.euribor-ebf.eu/euribor-eonia-org/panel-banks.html.
day trade phase in TARGET2, each panel bank sends to the ECB the sum of all lending transactions carried out during the business day and the corresponding weighted average rate. There is a number of lending transactions that panel banks have to exclude from their report: loans to counterparties belonging to the same banking group (intra-group), money market transactions settled on behalf of customers as well as tomorrow-next and spot-next transactions, the last ones not being agreed on the reporting business day.

The data set comprises the daily individual volume and the corresponding weighted average rate for all the reporting banks during the period in analysis. The EONIA panel includes banks in EU countries participating in the euro from the beginning, banks in EU countries not participating in the euro from the beginning and large international banks in non-EU countries but with important euro area operations. The banks contributing to EONIA are the same as those in the EURIBOR panel and all hold an RTGS account in TARGET2.
3 The algorithm setup

Our implementation of the unsecured interbank loans identification algorithm in the euro area using TARGET2 payments data is characterised by the following elements: (i) the input data, (ii) the loan value and increment, (iii) the areas of interest rate plausibility, (iv) a further criterion for plausible interest rates, (v) the procedure to deal with multiple matches and finally (vi) the identification of the maximum reliable duration. This section concludes by summarising the algorithm implementation. See the Annex for a more formal description of the algorithm setup.

3.1 TARGET2 data

As we are interested in identifying unsecured loans settled in TARGET2 between commercial banks in the euro area, our input dataset is composed solely of bank-to-bank (interbank) transactions. Starting from the total TARGET2 database, interbank transactions are identified excluding payments from or to accounts belonging to central banks and national treasury accounts. In addition, we exclude transactions from and to accounts belonging to the same legal entity. Some banks (or a group of banks) have more than one account in TARGET2 (within one central bank for administrative reasons and/or across several central banks within the euro area): we deem it admissible to consider them together because usually these accounts are controlled by the credit institution’s head office. As we want to assess the overall money market transactions in the euro area, executed both over-the-counter and electronically, we also include ancillary system transactions stemming from the electronic money market platforms e-MID (Italy) and MID (Spain). Transactions from all other ancillary systems in the euro area are discarded. Finally, we need to point out that, due to data unavailability, the matches are based on the TARGET2 settlement banks and not on the originator and final beneficiary of the transactions. This may introduce substantial noise into analyses at bank level. The TARGET2 data we use in this paper ranges from June 1st 2008 until October 31st 2012.

3.2 Loan and increment values

In the seminal version of the algorithm, Furfine (1999) adopts 1 million US dollars as the minimum loan value and a fixed increment of 100,000 US dollars for the US federal funds market. Demiralp et al. (2004) also describe the US market using 50,000 US dollars as the lower bound and as increment. Heijmans et al. (2010), investigating the Dutch part of the euro area market, used 100,000 euros as minimum loan and increment value. Guggenheim et al. (2010) for the Swiss market use a minimum loan value of 500,000 Swiss francs and increment value of 100,000 Swiss francs. All the papers available in the literature adopted minimum loan values ranging between 50,000 and 1 million of the local currency unit, with increment values of between 50,000 and 100,000 units. Nevertheless, none of the existing papers provide hard evidence to support their choices.

To choose the optimal setup for the euro area a two-phased approach was adopted. First, a survey was conducted among the euro area central banks to assess national practices in the euro-denominated

7The algorithm can be used to analyse customer payments as well: these are excluded from our input dataset as the focus of the present work is on the interbank money market, not the lending and borrowing activity involving customers.
The survey revealed (i) that the minimum loan value is 1 million euros with increments ranging from 10,000 euros to several million euros, depending on the loan size, (ii) that payment splitting (which would make it almost impossible to identify individual money market transactions) almost never occurs and (iii) that roll-overs (automatic renewal of loans) are frequent in certain euro area countries.\footnote{This applies in France, Portugal and Spain.} In addition, the e-MID database confirms that 1 million euros is a good choice as minimum loan value, although the platform does allow smaller trades under specific conditions.\footnote{In e-MID, banks are required to quote proposals at least equal to 1.5 million euros. Nevertheless, if after being hit by an order that partially covers the proposed quantity, the residual quantity is lower than the minimum amount, the proponent can still negotiate such a residual amount. In fact, e-MID trades below 1 million euros represent only 0.1\% of all e-MID transactions, by volume.}

The analysis of the number of unique matches obtained by imposing a minimum increment threshold of 10,000 euros shows that setting the increments depending on the loan amounts is the optimal strategy: too low increments could lead to an increase of false positives, whereas too high thresholds would not capture effective money market transactions (false negatives, see Section 4.1). Figure 1 depicts the scatter plot of the increment with respect to the loan amount for all unique matches captured by the algorithm that uses the 10,000 euros increment rule. The size of the circles is weighted with the number of identified transactions for a given loan amount and a given increment. The black
line, representing the increment threshold below which no unique matches were found, led us to adopt a step function for the minimum increment amount, as follows:

- 10,000 euros for transactions below 1 billion euros.
- 1 million euros for transactions between 1 billion and 2 billion euros.
- 10 million euros for transactions between 2 billion and 10 billion euros.
- 100 million euros for transactions between 10 billion and 15 billion euros.
- 1,000 million euros for transactions greater than 15 billion euros.

3.3 Areas of plausibility

Matching two transactions as being an interbank loan and its refund requires assumptions regarding plausible interest rates. Furfine (1999) uses a corridor of 50 basis points below the 11:00 a.m. brokered federal funds rate and 50 basis points above the closing rate. Demiralp et al. (2004) use a corridor of 100 basis points in order to capture loans that potentially differ more noticeably from brokered fed funds trades. They use a minimum interest rate of 1/32. Heijmans et al. (2010) use a corridor of 50 basis points centered on the EONIA or EURIBOR rate (depending on the maturity) for most of the investigated period. After the failure of Lehman Brothers, they increase the lower bound to 100 basis points, because some banks were able to attract liquidity at unusually low interest rates. Guggenheim et al. (2010) set the corridor to 15 basis points around the respective LIBOR rate for most of the days. On days of high volatility, they use a band width that is a function of the intraday volatility.

To find the optimal area of plausibility for the euro area, we investigate five different corridors. The first plausibility area (ECB0) is equal to the ECB corridor of marginal lending and overnight deposit rates. However, evidence from the literature and from the e-MID data show that rates both below the deposit rate and above the marginal lending rate do occur. Therefore, a second plausibility area widens the ECB corridor by 25 basis points below and above (ECB25). However, the ECB corridor represents a benchmark for overnight money market transactions but not for longer term ones. Better reference rates for longer term money market transactions might therefore be derived from the EURIBOR yield curve. Therefore, we also investigate corridors around EONIA for overnight transactions and around EURIBOR for maturities starting from 1 week. Unlike the ECB key policy rate, which is the centre of the first type of plausibility areas, the EURIBOR is not an actual rate but only a quoted one, which means that effective longer-term maturities may depart significantly from the relative fixing. Like Furfine (1999), we choose to set a corridor around this reference rate of 25 (EONIA25), 50 (EONIA50) and 100 basis points (EONIA100).

11 Banks may borrow at rates higher than the ECB marginal lending rate if, e.g., they lack collateral to guarantee their overdraft; banks may also borrow and lend at rates outside the ECB corridor if they do not have access to the Eurosystem standing facilities.
3.4 Plausible interest rates

The corridor approach excludes implausibly high or low interest rates but may still match payments that yield implausibly complicated interest rates. Anecdotal evidence collected from market operators as well as the e-MID minimum rate tick rule suggests that banks do not agree on interest rates that are not rounded to a particular number of decimals.

Demiralp et al. (2004) were the first to employ such an additional criterion on the interest rate: they filtered out any repayments that did not imply an interest rate in units of 1/32 percentage points or in whole basis points. Similarly, we only include matched transactions with implied interest rates of multiples of half a basis point, i.e. the third decimal must be either 0 or 5. In other words, a returning payment that leads to a 4.345% rate is included in the output dataset, whereas one resulting in a 4.343% rate is not considered a plausible match and therefore discarded. Treasurers at several commercial banks have confirmed this hypothesis.12

3.5 Multiple matches

The algorithm described so far matches all transactions that represent possible loan advances with all payments that qualify as potential repayments. As a consequence, a single transaction can be matched with several other payments (multiple matches or collisions). Two different types of multiple matches can occur: (i) intra-day and (ii) inter-day multiple matches. The first case occurs when one or more potential reimbursements match with one or more transactions on the same day. In this case the wrong choice of match may lead to an error in the estimated rate if the amounts of the reimbursements differ. The second case occurs when one or more reimbursements on different days match with one or more setup transactions; in this case the error affects both the maturity and the rate. Obviously, the two can also occur simultaneously.

In case of an intra-day maturity collision, the choice of match is made randomly since the first implied interest rate is assessed to be as plausible as the second one. In case of inter-day maturity collision, we choose the most plausible duration according to the observed frequency of the maturities of uniquely matched TARGET2 loans (see Figure 2). The chart shows that where an identified loan advance matches with two opposite transactions, one six and the other seven days later, our rule will consider it as a seven day maturity loan. In most cases, maturities counted in whole weeks and months occur with higher frequency than all other adjacent maturities.

3.6 Maximum reliable duration

The longer the loan maturity, the larger the area of plausibility is in an absolute sense. Where the corridor is wider, it is more likely that a matched loan-refund combination is in fact a pair of two unrelated transactions. In other words, the amount of noise (falsely identified loans) will increase with maturity. Figure 3 shows schematically the increase of the stochastic error with increasing maturity whereas Figure 4 shows for 16 different maturities the distribution of all unique loans found by our

12In this paper we have only implemented the 360-day year convention for rate calculation. However, we have found evidence that some trades (in some parts of the Eurosystem), follow the 365-day year convention. This is probably due to the British banks holding TARGET2 accounts: the United Kingdom follows the 365-day convention.
Figure 2: Observed frequency of maturity of all unique matches.

algorithm. As the stochastic error becomes larger, the algorithm become less reliable. The validation exercise of Section 4.2 confirms this. Therefore, we assume that our algorithm is most reliable for identified TARGET2 loans up to three months.

3.7 Summary of the algorithm

The elements of the algorithm are the following:

A. **Input:**

 a. Interbank payments (MT202) and selected ancillary systems transactions (e-MID and MID)

 b. Only transactions between different BICs (no liquidity transfers).

B. **Loan and increment:**

 a. The minimum loan value is 1 million euros.

 b. The loan increment follows the following criteria:

 i. 10,000 euros for transactions below 1 billion euros;

 ii. 1 million euros for transactions between 1 billion and 2 billion euros;

 iii. 10 million euros for transactions between 2 billion and 10 billion euros;
iv. 100 million euros for transactions between 10 billion and 15 billion euros;
v. 1,000 million euros for transactions greater than 15 billion euros.

C. Plausible corridors are centered either on EONIA/EURIBOR rates or on ECB standing facilities corridor rates. In the first case, EONIA is used for loans up to 4 days and the corresponding closest EURIBOR is used for loans of 5 days or longer.

D. Interest rates must be multiples of half a basis point, i.e. the third decimal digit is either 0 or 5.

E. Multiple matches: the most plausible duration is chosen on the basis of the maturity frequencies for unique matches.

F. Post-processing of transactions to distinguish between intra-group and extra-group loans based on the SWIFT BIC directory information. For this purpose the field Parent BIC code is considered to consolidate the group of accounts.
Figure 4: Type 1 error: Frequency of spreads versus the reference rate at increasing maturity. The red line represents the fitted normal distribution using the mean and standard deviation of the sample.
4 Validation

To evaluate the robustness of the algorithm and to choose the best performing corridor, the identified TARGET2 loans were validated against external sources of money market transactions which represent a subset of the total market. For this purpose, e-MID transaction-level data and aggregated EONIA data were used. This section describes the validation of the algorithm outcome. Section 4.1 explains the three different types of uncertainties inherent in the algorithm. Sections 4.2 and 4.3 present the validation of the algorithm with e-MID and EONIA data, respectively.

4.1 Uncertainties in the algorithm

The algorithm as described above is not free of errors as it identifies money market transactions simply by matching two payments given certain boundary conditions. The algorithm does not “know” whether the coupled payments really represent a money market loan, nor if the two payments refer to the same money market exchange or stem from two different money market transactions. In the estimated database three different types of errors may occur:

A. Type 1 error, or false positive, occurs when the algorithm identifies a money market transaction which in fact is not composed of a loan and a repayment, but of two unrelated to money market transactions. This error can typically occur if the corridor is too wide, because the larger the corridor, the higher the probability that two random transactions match as a loan-refund combination. This happens especially when matching longer maturities because there the plausibility area is wider in absolute terms.

B. Type 2 error, or false negative, occurs when the algorithm fails to identify a money market transaction. This can happen for the following reasons: (i) the transaction is not present in the TARGET2 initial dataset, for example because the money market exchange is not settled in TARGET2, but in EURO1 or on commercial bank accounts; (ii) the algorithm is not able to find the transaction, because the loan does not satisfy the conditions embedded in the parameters of the algorithm. This is particularly likely to happen, (a) if the interest rate of the exchange lies outside the corridor (if the algorithm looks for loans with an interest rate between 1% and 2%, it will fail to pick up money market exchanges executed at 2.1% or 0.95%), (b) if the amount of the loan transaction does not respect the increment rule or (c) if the implied rate is not a multiple of half a basis point.

C. Type 3 error relates to the so called “wrong match”. A wrong match can occur when the real loan is not considered plausible (e.g. because it falls outside the corridor) or in the case of multiple matches. In the latter case, two types of multiple matches can be distinguished. First, a loan can be matched with several repayments executed on the same day, i.e. a loan transaction at \(t = D \) may match with more than one plausible refund payments on \(t = D + x \). Since only one of these has to be randomly selected, the algorithm may choose a wrong one thus impairing the statistics on the executed rates. The second kind of multiple match occurs if the algorithm couples a loan with several repayments executed on different days: this happens when a loan at
\(t = D \) has a plausible refund at \(t = D + x \) but also at \(t = D + y \). As the algorithm will select one, according to the unique matches duration probabilities described in Section 3.5, it may select the wrong match, discarding the correct one. The wrong matches are directly connected to false positive errors and can be considered as a subset of false positive errors, i.e., each wrong match is connected to a false negative transaction but not vice versa.

The increase of wrong matches may stem from the fact that in a wider corridor the algorithm is more likely to find multiple matches, including the correct one. If the corridor is too narrow, the algorithm finds a smaller number of multiple matches, possibly missing the correct one: here the false negative error rate may be higher. On the other hand the wider the corridor, the more likely the dataset will be to include false positives, which however will be difficult to estimate or even to approximate. The choice of corridor width is therefore a compromise between the false negative and estimated false positive error rates.\(^\text{13}\) The trade-off between false negatives and positives is amplified for longer maturities for which the overlap between corridors of subsequent maturities increases as the maturity increases and, accordingly, the probability of "collision" (see Section 3.5).\(^\text{14}\)

4.2 Comparison with e-MID

The validation of the identified TARGET2 loans with e-MID data employed two different strategies, given the two different settlement procedures in e-MID, (i) automatic settlement and (ii) manual settlement. The first strategy is applied to automatically settled trades. This typically occurs when both counterparties have joined the automated facility that allows the electronic platform e-MID to send the deal directly to TARGET2. The transactions submitted automatically by e-MID to TARGET2 are identified in the TARGET2 database with a code which allows matching uniquely the originating transaction and the reimbursement of a single e-MID deal. However, not all e-MID participants have joined the automated facility and when at least one counterparty of a money market contract has not, the deal must be sent to TARGET2 directly by the participants (manual settlement). Those e-MID transactions do not allow straightforward matching of the loan and the connected repayment. In this case the validation process has therefore to revert to e-MID nominative individual transactions collected by Banca d’Italia for supervisory purposes.

4.2.1 Validation of e-MID trades settled exclusively with automatic settlement facility

The automatic settlement facility is adopted by all Italian banks, whereas most non-Italian banks do not use this feature, therefore the validation with automatically settled e-MID transactions concentrates on loans between Italian banks. We compare the e-MID labelled loans in the TARGET2 data (settlement date, settlement banks, maturity, amount and rate) to money market transactions identified by our Furfine procedure. The validation shows three different matching possibilities:

\(^{13}\)Needless to say that increasing the maturity spectrum over which the algorithm is run will increase, \textit{ceteris paribus}, the false positive error rate. This is because each bilateral transaction is matched with a greater number of potential reimbursements, thus increasing the likelihood of spurious matches.

\(^{14}\)A more detailed discussion on the issue of overlapping maturities is presented in the Annex.
A. Perfect match: a loan with identical settlement date, settlement banks, maturity, amount and rate in TARGET2 and e-MID data.

B. False negative: a loan in the e-MID data set not found in the Furfine data set, which can either be:

 a. A false negative because the interest rate of the transaction lies outside of the assumed corridor
 b. A false negative for other reasons.

C. Wrong match: e-MID transactions identified by the algorithm but with different rate and/or duration.

Table 1 presents the results for the different corridors on maturities between 1 and 370 calendar days carried out on all automatically-settled e-MID transactions from June 2008 up to and including June 2012 with a size exceeding one million euros. For each corridor, false negative and wrong match rates (type 2 and 3 errors) with respect to the total number of e-MID automatic transactions are shown. The outcome shows that the algorithms searching over the corridors ECB25 (overall error rate 0.92%) and EONIA100 (overall error rate 1.96%) yield better results compared with the implementations based on other corridors. In terms of traded amounts (not reported in Table 1), the false negative rate is always below 0.015% for all five corridors. Nevertheless, as the corridor width for ECB25 and EONIA 100 is quite large in both cases, the majority of unidentified transactions is due to the fact that the rate is outside the plausible corridor. Increasing the corridor width improves the type 3 error rate (wrong match) which is a special kind of false negative error.

Figure 5 shows the time series of the false negative rates for different maturities. The evolution of the false negative error over time shows that both the ECB25 and EONIA100 corridors work remarkably well between 2008 and 2010 and in 2012 (error rate below 0.6%). However, during 2011 the error rate increases significantly (7.8% for EONIA100 and 2.75% for ECB25). This could be due to the high rates agreed by the Italian banks in the second half of the year, during the Italian sovereign debt crisis until the ECB’s first three-year long-term refinancing operation.

4.2.2 Validation of automatically and manually settled e-MID trades based on e-MID archive data

Apart from e-MID loans, which are settled automatically, there are two other options: (i) loans between two counterparties that are not settled in TARGET2 because they are settled through the same settlement bank (on-us transactions) and (ii) loans which are settled in TARGET2 but involve at least one e-MID participant that has not joined the automated settlement. Comparing the Furfine-identified transactions with the e-MID archive data conveys important insights on both these two categories which cannot be inferred from e-MID automatically settled loans in the TARGET2 database.

15The extension of the maturity to 370 calendar days aims at capturing one-year money market exchanges whose effective duration is longer than 365 days because of intervening weekend days and holidays that shift the repayment date.
Table 1: First validation method (e-MID transactions with amount > 1 million euro). Error rates are in terms of number of transactions.

<table>
<thead>
<tr>
<th></th>
<th>Total automatically settled e-MID trades (A)</th>
<th>Matched transactions (B)</th>
<th>Validation rate (C=B/A)</th>
<th>False negatives rate (interest rate out of range) (D)</th>
<th>False negatives rate (other reasons) (E)</th>
<th>Total false negative rate (F=D+E)</th>
<th>A component of total false negatives: Wrong matched (G=γF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECB0</td>
<td>222,568</td>
<td>211,613</td>
<td>95.1%</td>
<td>2.76%</td>
<td>2.16%</td>
<td>4.92%</td>
<td>0.47%</td>
</tr>
<tr>
<td>ECB25</td>
<td>222,568</td>
<td>220,513</td>
<td>99.1%</td>
<td>0.68%</td>
<td>0.25%</td>
<td>0.92%</td>
<td>0.26%</td>
</tr>
<tr>
<td>EONIA25</td>
<td>222,568</td>
<td>194,464</td>
<td>87.4%</td>
<td>12.53%</td>
<td>0.10%</td>
<td>12.63%</td>
<td>1.08%</td>
</tr>
<tr>
<td>EONIA50</td>
<td>222,568</td>
<td>212,436</td>
<td>95.4%</td>
<td>4.46%</td>
<td>0.10%</td>
<td>4.55%</td>
<td>1.08%</td>
</tr>
<tr>
<td>EONIA100</td>
<td>222,568</td>
<td>218,201</td>
<td>98%</td>
<td>1.81%</td>
<td>0.15%</td>
<td>1.96%</td>
<td>0.73%</td>
</tr>
</tbody>
</table>

Figure 5: Results of the e-MID validation for automatically settled loans.

The second validation method is carried out separately for loans between Italian banks and for loans involving at least one foreign counterparty.

On the one hand, on the automatic settlement platform, used directly or through a settlement agent by virtually all Italian banks, the error rates of the validation exercise should be interpreted as a mix of:

A. the algorithm’s inability to identify the real trades from the settlement data;
B. difficulties in matching the identified TARGET2 loan with the correct e-MID trade because it has been indirectly settled (through correspondent banking relationship) as in the e-MID archives the settlement banks are not recorded (Type 2);

C. missing identification due to the fact that two banks trading in e-MID settle their obligations through the same TARGET2 direct participant (on-us transactions) (Type 3).

In comparison to the previous validation method, the last two sources of uncertainty yield a slightly lower validation rate for Italian participants. This is not due to the algorithm, which is invariant under both methods. The uncertainties could be removed if we had detailed information about the original sender and beneficiary across the TARGET2 data.

On the other hand, when it comes to deals involving non-Italian participants, there is an additional error factor related to the different market practices the trading banks may choose to adopt. In fact, while market players cannot affect the settlement of their automatically settled e-MID trades, TARGET2 loans involving at least one non-Italian bank do not necessarily match exactly the traded quantity. Banks may, for example, not settle their money market transactions on a gross basis exchanging a unique loan amount and a unique repayment (“1-to-1 basis”), as inferred from anecdotal evidence, but may split their obligations into several chunks, e.g. by repaying the principal and the interest separately. Furthermore, market operators may offset some intermediate payments against each other in case of a roll-over, a market practice that from the outcome of the money market survey seems to be infrequently used.

As the first validation method already outlined the superiority of the ECB25 and EONIA100 corridors, the second validation methodology focuses directly on them: the results are shown in Table 2. A first by-product of the second validation approach is a measure of the incidence of “on-us” transactions on total unsecured money market trading, which yields reassuring results. According to the e-MID data, only a small percentage, around 3%, of trades carried out between domestic counterparties are not settled in central bank money and thus escape detection because they are not included in the payment data. More specifically, the incidence of internalised transactions on total money market trades executed between Italian counterparties seems relatively low, across all maturities, with higher maturities exhibiting higher ratios.16 The incidence of the “on-us” transactions appears 10 times smaller in the case of cross-border money market deals, around 0.3%, again with higher maturities exhibiting higher ratios. Always bearing in mind the caveats due to lower representativeness of the sample of the e-MID cross-border transactions compared to the OTC transactions executed in the euro area, this result is not surprising as we expect that small and medium banks are less likely to establish correspondent relationships across national borders.

The comparison between our estimated Furfine dataset and the e-MID native archives enables us to quantify the ratio of unmatched transactions to the total e-MID loans (type 2 error rate) that, as expected, is lower for loans carried out between Italian counterparties than for loans involving at least

16 It is worth mentioning that the “on-us” rates could be improved if future analysis aimed at detecting who settles for whom in TARGET2, especially for foreign participants. This analysis could also shed light on the settlement practices followed by the market and help improving the accuracy of the algorithm.
one non-Italian bank, thanks to the availability of a richer data set.17

At the domestic level, the ratio of non-matched transactions is relatively small (2.7\% for the ECB25 corridor and 3.7\% for the EONIA100 corridor), increasing quite substantially with rising maturities. The two corridors perform differently across the maturity range: for the short maturities (up to one month) the ECB25 corridor exhibits slightly better validation rates; the opposite holds for longer ones, at which for domestic deals the error rate of the ECB25 corridor peaks at 29\% above 3 months, whereas the error rate of the EONIA100 corridor never exceeds the 20\% threshold. For money market deals executed on a cross-border basis, the validation rates exhibit a similar pattern but they are lower across the entire range of maturities for both corridors. While for domestic transactions the error rates are negligible throughout the whole reference period, except for the dramatic fall recorded in late 2011 due to the Italian sovereign debt crisis, the evolution of the error rates for cross-border transactions appears more erratic, with validation rates dropping below 80\% on several occasions.18

17In the ECB25 corridor the overall type 2 error rate for trades between Italian banks is 2.7\% while the one for trades involving at least one non-Italian participant is 8.6\%. In the EONIA 100 corridor the percentages are very similar (3.7\% and 8.2\%, respectively).

18The time series analysis is carried out only on the most liquid maturities.
Table 2: Second validation methodology. Error rates are in terms of number of transactions.

<table>
<thead>
<tr>
<th>Maturity</th>
<th>Total e-MID trades with amount > 1 million euros (A)</th>
<th>Total e-MID trades without on-us transactions (C=A-B)</th>
<th>Matched (D)</th>
<th>False negatives because interest rate is out of range (E)</th>
<th>False negatives for other reasons (F)</th>
<th>Validation rate (D/C)</th>
<th>False negatives error rate (E+F)/C</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECB 25</td>
<td>226,439</td>
<td>226,162</td>
<td>7,158</td>
<td>219,004</td>
<td>213,011</td>
<td>1,522</td>
<td>4,471</td>
</tr>
<tr>
<td>domestic</td>
<td>1 day</td>
<td>166,552</td>
<td>166,325</td>
<td>4,736</td>
<td>161,589</td>
<td>158,193</td>
<td>602</td>
</tr>
<tr>
<td></td>
<td>2-10 days</td>
<td>52,735</td>
<td>52,692</td>
<td>2,014</td>
<td>50,678</td>
<td>49,216</td>
<td>287</td>
</tr>
<tr>
<td></td>
<td>11-33 days</td>
<td>5,185</td>
<td>5,179</td>
<td>305</td>
<td>4,874</td>
<td>4,239</td>
<td>267</td>
</tr>
<tr>
<td></td>
<td>34-94 days</td>
<td>1,621</td>
<td>1,620</td>
<td>79</td>
<td>1,541</td>
<td>1,134</td>
<td>292</td>
</tr>
<tr>
<td></td>
<td>94-370 days</td>
<td>346</td>
<td>346</td>
<td>24</td>
<td>322</td>
<td>229</td>
<td>74</td>
</tr>
<tr>
<td>all maturities</td>
<td>11,516</td>
<td>11,515</td>
<td>38</td>
<td>11,477</td>
<td>10,490</td>
<td>4</td>
<td>987</td>
</tr>
<tr>
<td></td>
<td>1 day</td>
<td>8,898</td>
<td>8,897</td>
<td>16</td>
<td>8,881</td>
<td>8,169</td>
<td>1</td>
</tr>
<tr>
<td>foreign</td>
<td>2-10 days</td>
<td>2,427</td>
<td>2,427</td>
<td>11</td>
<td>2,416</td>
<td>2,177</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>11-33 days</td>
<td>163</td>
<td>163</td>
<td>2</td>
<td>161</td>
<td>131</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>34-94 days</td>
<td>21</td>
<td>21</td>
<td>9</td>
<td>12</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>94-370 days</td>
<td>7</td>
<td>7</td>
<td>0</td>
<td>7</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>EONIA 100</td>
<td>226,439</td>
<td>226,162</td>
<td>7,158</td>
<td>219,004</td>
<td>210,928</td>
<td>4,057</td>
<td>4,019</td>
</tr>
<tr>
<td>domestic</td>
<td>1 day</td>
<td>166,552</td>
<td>166,325</td>
<td>4,736</td>
<td>161,589</td>
<td>156,253</td>
<td>2,708</td>
</tr>
<tr>
<td></td>
<td>2-10 days</td>
<td>52,735</td>
<td>52,692</td>
<td>2,014</td>
<td>50,678</td>
<td>48,756</td>
<td>894</td>
</tr>
<tr>
<td></td>
<td>11-33 days</td>
<td>5,185</td>
<td>5,179</td>
<td>305</td>
<td>4,874</td>
<td>4,323</td>
<td>290</td>
</tr>
<tr>
<td></td>
<td>34-94 days</td>
<td>1,621</td>
<td>1,620</td>
<td>79</td>
<td>1,541</td>
<td>1,306</td>
<td>146</td>
</tr>
<tr>
<td></td>
<td>94-370 days</td>
<td>346</td>
<td>346</td>
<td>24</td>
<td>322</td>
<td>290</td>
<td>19</td>
</tr>
<tr>
<td>all maturities</td>
<td>11,516</td>
<td>11,515</td>
<td>38</td>
<td>11,477</td>
<td>10,547</td>
<td>16</td>
<td>930</td>
</tr>
<tr>
<td></td>
<td>1 day</td>
<td>8,898</td>
<td>8,897</td>
<td>16</td>
<td>8,881</td>
<td>8,191</td>
<td>15</td>
</tr>
<tr>
<td>foreign</td>
<td>2-10 days</td>
<td>2,427</td>
<td>2,427</td>
<td>11</td>
<td>2,416</td>
<td>2,209</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>11-33 days</td>
<td>163</td>
<td>163</td>
<td>2</td>
<td>161</td>
<td>133</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>34-94 days</td>
<td>21</td>
<td>21</td>
<td>9</td>
<td>12</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>94-370 days</td>
<td>7</td>
<td>7</td>
<td>0</td>
<td>7</td>
<td>6</td>
<td>0</td>
</tr>
</tbody>
</table>
4.3 Comparison with EONIA

Despite its granularity and the availability of longer term money market transactions in the e-MID data, which allows transaction by transaction cross-checking, the analysis is somehow lacking a euro-wide context since from the start of the crisis, e-MID data has concentrated on money market trades between Italian participants. The need for validation against more euro-wide representative data calls for a cross-check also with the EONIA data. As already noted, every bank in the EONIA panel reports daily (i) the aggregate volume and (ii) the corresponding weighted average rate of lending transactions made on its own behalf. The use of the EONIA data set provides valuable reference material for the euro area market going beyond and complementing the e-MID validation. The results reported in the following are based on the comparison between the overnight interbank loans identified using the Furfine algorithm for the EONIA panel banks and the actual daily aggregate reported values and rates of EONIA. The validation considers a dynamic panel reflecting the changing composition of the reporting banks in the sample under analysis.

The results of the comparison are reassuring. We start by looking at the difference between the total value reported and the total value identified with the Furfine algorithm. Figure 7 depicts the reported and identified turnovers for the EONIA panel banks using the EONIA100 corridor. The two series show similar trends, with the identified turnover ranging from 98% to 250% (1st and 3rd quartile are 120% and 160%, respectively) of the reported one. This does not imply that the EONIA is not valid. In fact, the differences in the two series can be due to several reasons:
A. Identified volumes can be larger than reported by the EONIA due to:

a. Possible overidentification
b. Tomorrow-next and spot-next transactions, not reported in the EONIA
c. Rollovers, not reported in the EONIA unless both parties are actively involved in the issue of a new contract
d. Intra-group transactions, excluded in the EONIA reporting but not always possible to distinguish and discard in the TARGET2 dataset
e. Transactions concluded on behalf of clients

B. Identified volumes can be lower than the reported EONIA due to:

a. Transactions settled outside TARGET2, e.g. on accounts of a commercial bank (correspondent banking)
b. Loans settled via another payment system such as EURO1

For example, for some banks we identified that they were very active in the tomorrow next and spot-next markets. In other cases, we identified regular lending to other banks, that a deeper analysis showed that the sending and/or receiving bank are not always the beneficiary but act on behalf of another bank. Such transactions of course introduce a bias in the implied rate and an upward bias in the volume estimation. Finally, one bank reporting in the EONIA panel opened an account in TARGET2 only after few months from the beginning of our sample. The lending transactions of this bank were obviously settled outside TARGET2, either via a different payment system or on its books.

With regard to the rates (see Figure 7, bottom panel), the reported and the implied rates lie close together. It is reassuring the matching of interest rate spikes occurring at the end of a maintenance period, due to the increase in the cost of interbank borrowing. The mean and median spread are equal to 9 and 8 basis points respectively. Finally, the implied rate is almost always lower than the reported rate and the difference is larger around interest rate decisions. This may be due to unidentified intragroup loans, which usually take place at rates well below the EONIA.
Figure 7: Results of the EONIA cross-check for the corridor EONIA100
5 The euro area unsecured money market

This section describes developments of the euro area interbank money market, since June 2008, based on our algorithm. We focus on three levels: (i) Eurosystem level, including all banks participating in TARGET2 (ii) core versus periphery level and (iii) country level (Italy and the Netherlands).

5.1 Eurosystem level

Figure 8 shows the turnover of the overnight interbank money market.\(^{19}\) The overnight turnover dropped dramatically after the default of Lehman Brothers to almost 50%, from 130 billion euros in June 2008 to 79 billion euros in June 2009. It stabilised at around 75 billion euros until April 2010. We observe a partial recovery between May 2010 and April 2011 to some 93 billion euros, to plunge again after Portugal’s request for financial assistance to on average 75 billion euros between May and November 2011. The turnover faced another decrease after the two ECB’s 3-year Longer Term Refinancing Operations (LTRO) in December 2011 and February 2012 to 47 billion euros, on average, between January and June 2012. After the decrease of the main refinancing rate to 0.75% in July 2012, and the corresponding overnight deposit rate to 0%, the turnover plummeted to about 20 billion euros. It seems that this rate cut affected predominantly the overnight cross-border turnover market. Overall, the cross-border trades exhibit a more pronounced decreasing trend than the domestic ones, except for being less affected by the ECB’s second 3-year tender.

The incidence of volumes of exchanges with maturity longer than one day fluctuates between 10% and 17% of the overall volumes, but their outstanding amounts range from 87% to 93% of the entire unsecured money market. In other words, the incident turnover of overnight loans is the majority, but in terms of outstanding value the loans with longer maturity are dominant. From a central bank policy point of view both aspects are relevant, as central banks are interested in the smooth flow of interbank money circulation, but also in the amount of liquidity individual banks need to fund themselves. Figure 9 shows the outstanding value of the loans with maturity up to three months (top panel) and to one year (bottom panel).\(^{20}\) The outstanding amounts on deposits with maturities up to three months exhibit a significant drop after the Lehman collapse, falling from an average of 324 billion euros recorded in the four months preceding the Lehman default to 273 billion euros in the four months after (−24%). This pattern is clearly visible despite the underestimation of the first three months in the

\(^{19}\)In the remaining, the expression “overnight” will be used as for the one-day exchanges. In fact, the Furfine algorithm cannot distinguish between overnight, tomorrow-next and spot-next transactions, since they are characterized by a time lag of one day between the loan and the refund, even if the trade has been agreed on different days (the overnight exchanges have been negotiated on the very same day of the loan’s settlement, the tomorrow-next and spot-next on \(t−1\) and \(t−2\) respectively).

\(^{20}\)It should be noted that it is possible to estimate the volumes and the outstanding amounts, reliably, only for the central interval of the analysed time horizon, since for some maturities the loans or the refunds are not included in the initial TARGET2 dataset. The shorter the maturity is, the longer is the reliability of the estimated dataset. For example, the estimations of the one-day exchanges will be reliable over the whole time span except for the first and the last day of the sample: in fact, during the first day it will be impossible to identify the refunds of loans initiated the previous day whereas in the last day the loans will not be matched with their refunds since these one are not yet available. Similarly, when considering the one year maturity, the algorithm neglects all the refunds that are available in the first twelve months and all the loans in the last period of the sample. As a result, the outstanding amounts of money market deposits with maturity between one day and twelve months can be quantified exactly only between June 2009 and October 2011, while the exchanged volumes will be underestimated only in the final period of the sample.
sample. While the loans up to three months have remained constant until Portugal’s financial assistance request, with the exception of a physiological cyclicality, the longer-term outstanding amounts decline with a constant trend in the domestic component partially compensated by a slight increase in the cross-border one (bottom panel of Figure 9).

Figure 10 (bottom panel) depicts the difference between the estimated weighted average overnight interest rate and the EONIA for the domestic and the cross-border money market exchanges. Immediately after the Lehman collapse, the estimated weighted average overnight rate departed significantly from the European fixing until summer 2009, being on average 15 basis points below. As of mid-2009 the series recoups with the EONIA rate and remains closely aligned with it until summer 2011. The only exception is the period between October 2009 and January 2010 when the domestic rate exceeds EONIA. With the deepening of the sovereign debt crisis linked to the Italian political events in the second half of 2011, both the domestic and the cross-border rate deviate consistently from EONIA: they approach the rate on the ECB overnight deposit facility and, after the ECB’s sec-
Figure 9: Outstanding amounts in the deposits in the euro area with maturities up to 3 months and up to twelve months, breakdown into domestic and cross-border component (daily averages per maintenance period). Columns presented in transparency refer to the data which are underestimated.

ond 3-year LTRO in late February 2012, they fall below the lower bound of the monetary policy rate corridor, corroborating the results of Akram and Christophersen (2010).21 Since the main refinancing operation rate was cut in July 2012, the domestic rate has passed the EONIA, reverting and turning to a negative spread between the fixing and the estimated rate. The reason why cross-border rates are consistently lower than the domestic rates from the second half of 2011 may be that only the best fund-raisers are able to attract liquidity from the European market at lower rates than those paid by the less reliable banks which are forced to refinance themselves at the domestic level. However, the phenomenon cannot be confirmed beyond doubt, since information is only available on the settlement banks, not on the originator and final beneficiary of the monetary transaction.

21Precisely the cross-border rate deviates from the EONIA starting from the month of August, the domestic rate from November 2011.
5.2 Core-versus-periphery level

At a more granular level, we compare money market developments between countries at the core of the euro area (Germany, France, The Netherlands, Belgium and Finland) and countries at the (geographic) periphery of the euro area also facing a sovereign debt crisis. These include the program countries (Greece, Ireland, and Portugal), but also Italy and Spain. The cross-border exchanges of peripheral countries have experienced the biggest and most constant decline since the Lehman’s collapse to the summer of 2012, while the one-day deposits exchanged domestically by the peripheral countries have gradually increased starting from March 2012 (Figure 11, top panel).

During the first period this could be due to a greater difficulty in evaluating the creditworthiness of foreign borrowers, itself attributable to non-harmonised insolvency frameworks across Europe; since the outbreak of the sovereign debt crisis, the reason for such behaviour may lie in distrust of banks located in the periphery countries. The spread paid by periphery countries towards EONIA (Figure 11, bottom panel) is higher for their domestic deposits than for cross-border ones, presumably due, again, to an adverse selection effect: the few bank of the periphery countries that are able to raise

Figure 10: Estimated overnight rates, breakdown in domestic and cross-border.
funds from abroad are the most creditworthy counterparties in their country, and they are able to negotiate lower interest rates in comparison to the other domestic banks which are forced to tap the domestic money market.

5.3 Country level

We are now focusing on two countries, one belonging to the periphery group (Italy) and the other to the core euro area countries (the Netherlands). Focusing on Italy, it can be seen that the net cross-border position of Italian banks was negative in all maintenance periods until the one starting in December 2011, just before the first 3-year LTRO, when, presumably, interbank money market fund raising was further replaced by central bank liquidity (Figure 12). However, the net exposure in the very short term maturity range has been positive since January 2011, while it has been negative for longer term maturities. The Italian banking system seems therefore to borrow long term funds from
Figure 12: Italian and Dutch cross-border net position (daily averages per maintenance period) - breakdown in different maturities.

abroad and to reinvest the surpluses by providing short-term lending to foreign banks.22 About the Netherlands, a slightly different story can be told (Figure 12). The Dutch banks entered the reference period with a positive net cross-border position both at the very short and very long maturities. By and by, the net position of Dutch banks for longer maturities at the shortest and longest maturities diverged: the Dutch banking system continued to raise liquidity at the very short maturities, until the first 3-year LTRO, when the net cross-border position became virtually balanced. By contrast, from the first 1-year LTRO in June 2009, the net position of Dutch banks became significantly negative, returning to positive values only in the second half of 2011. One notable difference between the Italian and Dutch cross-border position lies in the different outstanding amounts of borrowing and lending, which appear significantly higher for the Dutch banking community.

Referring to price conditions, the overnight interest rates offered by Italian lenders to foreign bor-

22This evolution would be in line with the dynamics of the collateralised money market exchanges backed by Italian government bonds executed on the electronic platform MTS repo Italy.
Italian overnight rates, breakdown into domestic and cross-border borrowing and lending.

Cross-border lenders (cross-border lending) have on average been lower than the ones paid by Italian borrowers to raise liquidity for one day from abroad (cross-border borrowing - Figure 13). All in all, the rates paid by the Italian banks have been fairly well aligned with the EONIA rates, with the exception of the summer of 2011, when the Italian sovereign debt crisis led to a sharp increase of the overnight rates paid by Italian banks domestically. This increase quickly reversed after the first 3-year LTRO. Again, the impact of the sovereign debt crisis on the borrowing rates paid by the Italian banking system vis-à-vis non-domestic counterparties was less severe due to probable selection effects, so that only high standing Italian players continued to borrow from abroad. By contrast, the Dutch banking community turned out to be able to borrow at rates well below the EONIA throughout the period, benefiting from a higher spread during the most severe phase of the sovereign crisis.
Figure 14: Dutch overnight rates, breakdown into domestic and cross-border borrowing and lending.
6 Conclusions

This paper developed an algorithm to identify unsecured interbank money market loans from TARGET2 data, which is suitable for the whole euro area. This algorithm improves on the version developed by Furfine (1999), who was the first to develop such an algorithm for overnight loans only, and the one by Heijmans et al. (2010), who first developed an algorithm for a subset of the euro area money market. With respect to the original algorithm, several enhancements have been implemented. The algorithm has been extended mainly in three ways: (i) It identifies money market loans with maturity up to one year; (ii) it incorporates criteria for the implied interest rates: inclusion of the rate in a plausibility corridor and rounding to half a basis point. Specifically, we investigated two plausible corridors: one centered on the EONIA for loans up to 4 days and on the respective EURIBOR for other maturities and the other using the ECB standing facility corridor bounded by the overnight deposit facility rate and the marginal lending rate. Each corridor was been tested at several sizes. (iii) It includes a procedure to efficiently select the correct loan in case of multiple plausible matches. Where such multiple plausible matches have the same maturity, the ‘correct’ loan is determined randomly; where the maturities differ, the choice is made on the basis of the most plausible duration within maturity distribution inferred from the uniquely matched TARGET2 loans.

In contrast to the literature, our dataset of identified interbank loans has been compared with real data sources, namely EONIA panel data and e-MID transaction-level data. The validation against EONIA panel data has been carried out for overnight identified TARGET2 transactions. Results show that the average interest rate found by the algorithm matches very well with the reported EONIA. The average deviation with the EONIA rates are 9 basis points with highest deviation in the period September 2008 to June 2009. The turnover, however, is roughly 50% higher than that quoted by the EONIA. Differences between estimated and reported turnover appear due to transactions that are not reported by EONIA panel banks: (i) intra-group transactions, (ii) transactions settled on behalf of other banks, (iii) rolled-over transactions and (iv) spot-next and tomorrow-next loans.23 On the other hand, a source of misidentification are loans reported by EONIA panel banks not settled in TARGET2 but in commercial bank money or in other payment systems (e.g. EURO1).

The second and more sophisticated validation method, was used against the e-MID dataset. This method was applied to all maturities, transaction by transaction, and allows to compute the number of unidentified loans (false negative, Type 2 error) and the wrongly matched loans (real loans but with incorrect rates and/or maturities, error Type 3). Limits of this validation technique are the impossibility to estimate the false positive error (Type 1) and the fact that e-MID data are not representative for the entire euro money market during the whole analysed period. The best performing corridor setup is the one centered on the EONIA and EURIBOR rates and 200 basis points wide: Type 2 error rate is 1.96% while Type 3 error rate is 0.73%. Analysis of the error rates per maturity shows that the algorithm is more reliable for transactions up to three months. It can be used for loans up to one year using extra caution with respect to the uncertainties of the loans found. Our findings are in sharp contrast with Armantier and Copeland (2012), who validate the algorithm developed for Fedwire transaction. They find an estimate of 81% Type 1 and 23% Type 2 errors, which are significantly larger.

23This is because our algorithm works on the settlement dates and cannot distinguish between different trading dates.
Our algorithm was applied to the whole TARGET2 dataset (June 2008 to end October 2012) to describe and monitor the activity in the euro area unsecured money market. The monitoring can be done at market level (all loans found) and at sample level core (Germany, France, The Netherlands, Belgium and Finland) versus (geographic) periphery of the euro area also facing a sovereign debt crisis (Greece, Ireland, Italy, Portugal and Spain), at individual country level and at the level of individual banks.

The results show that the overnight unsecured money market dropped significantly after the collapse of Lehman Brothers (from 130 billion euros in June 2008 to 79 billion euros in June 2009). The outstanding amount of all deposits with maturities up to three months exhibits a significant drop after the Lehman collapse. While the loans up to three months remained constant until Portugal’s request for financial assistance, the longer-term outstanding amount declines with a constant trend in the domestic component partially compensated by a slight increase in the cross-border one. The sovereign debt crisis of the peripheral European countries had a clear negative impact on the turnover in the money market. One-day exchanges dropped again after the two 3-year LTROs in December 2011 and March 2012 (from on average 75 billion euros in the period before the first 3-year LTRO to an average of 47 billion euros between January and June 2012). After the rate cut of the ECB in July 2012 the turnover decreased even further. The interest paid by periphery countries towards EONIA is higher for the domestic deposits than for the cross-border ones, presumably due to an adverse selection effect: the banks of the periphery countries that are able to raise funds from abroad are the most creditworthy counterparties in their home country.

The current setup of our algorithm can be further improved by (i) a more theoretically correct assignment of a multiple match and (ii) also looking at loans which follow the 365 day convention for calculating the rate, as there are also e.g. British banks which follow this convention. Finally, although our algorithm performs well, and with the inclusion of these improvements may even perform better, it would be beneficial for both research and policy purposes to have money market loans flagged in TARGET2.
Annex

Overlapping maturities

Analysing the overlapping of searching corridors varying the loan duration provides a further insight into the mechanism of the Furfine algorithm. Given r_{OD}, r_{ML} and r_{MRO} the Overnight Deposit (OD), the Marginal Lending (ML) and the Main Refinancing Operation (MRO) rates respectively, the ECB corridor used by the Furfine algorithm can be expressed as $[r_{OD} - \delta; r_{ML} + \delta]$ or as $[r_{MRO} - \delta; r_{MRO} + \delta]$ supposing that $r_{MRO} = (r_{OD} + r_{ML})/2$, where $\delta = \delta + (r_{OD} - r_{ML})/2$.

Let us consider a loan characterised by x the amount of the loan, r the traded rate, d the set-up date and i the duration of the loan. As the Furfine algorithm assumes that x belongs to a discrete set, not all possible loan values are allowed and the correct working of the algorithm implies that the repayment (capital plus interests) is lower than the next plausible amount in the discrete set. In other words, the possible loan values are allowed and the correct working of the algorithm implies that the repayment value of the loan is lower.

The Furfine algorithm looks for reverse transactions at days $d + i$, in the range $[x + g_{MIN}(i); x + g_{MAX}(i)]$ where $g_{MIN}(i)$ and $g_{MAX}(i)$ are given by:

\[g_{MAX}(i) = \frac{x \cdot (r_{MRO} + \delta_k)}{360} \cdot i \]
\[g_{MIN}(i) = \frac{x \cdot (r_{MRO} - \delta_k)}{360} \cdot i \]

and represent the maximum and minimum interest accruable with i days loan duration. In the Furfine matching process (Figure 15), there is intra-maturity ambiguity between i days loan duration and $i + k$ and/or $i - k$ when

\[g_{MIN}(i+k) < g_{MAX}(i) \text{ and } g_{MAX}(i-k) > g_{MIN}(i) \text{ for } k < i \]
\[g_{MIN}(i+k) < g_{MAX}(i) \text{ for } k > i \]

Substituting $g_{MIN}(i)$ and $g_{MAX}(i)$ in the previous formula we obtain that for $k < i$ the corridors collides twice, both if $\frac{r_{MRO} + \delta_k}{r_{MRO} - \delta_k} > \frac{i+k}{i}$ and if $\frac{r_{MRO} + \delta_k}{r_{MRO} - \delta_k} > \frac{i}{i-k}$, whereas for $k > i$ they collide once if $\frac{r_{MRO} + \delta_k}{r_{MRO} - \delta_k} > \frac{i+k}{i}$.

Defining $\varphi = \frac{r_{MRO} + \delta_k}{r_{MRO} - \delta_k}$, introducing the step function $u(x-t)$ that is equal to 1 if $x \geq t$ and 0 if $x < t$ and given the maturity i, we can define the number of maturities that collide in terms of φ as

\[N(i) = \sum_{k=1}^{M-i} u(\varphi - \frac{i+k}{i}) + \sum_{k=1}^{i-1} u(\varphi - \frac{i}{i-k}) \]

where M is the maximum possible maturity, for example 365 days. The ratio between the overlap size and the corridor size of maturity is given by

\[\beta_{UP}(i,k) = \max \left(0; \frac{g_{MAX}(i) - g_{MIN}(i+k)}{g_{MAX}(i) - g_{MIN}(i)} \right) \]
for maturities greater than \(i \) and by

\[
\beta_{\text{DOWN}}(i,k) = \max(0; \frac{g_{\text{MAX}}(i-k) - g_{\text{MIN}}(i)}{g_{\text{MAX}}(i) - g_{\text{MIN}}(i)})
\]

(7)

for maturities smaller than \(i \).

Weighting collisions with the ratio between the overlap size and the corridor size, we obtain the number of normalised collisions which provides an indication of the probability a certain maturity collides with others. That is

\[
\bar{N}(i) = M - i \sum_{k=1}^{M-i} \beta_{\text{UP}}(i,k) \cdot u(\phi - \frac{i+k}{i}) + \sum_{k=1}^{i-1} \beta_{\text{DOWN}}(i,k) \cdot u(\phi - \frac{i}{i-k})
\]

(8)

Figure 16 depicts the weighted number of overlapping corridors for three different values of the MRO rate (1, 2 and 4%) and for different corridor configurations (\(\delta_1 \) equals to 25, 75 and 100 bps).

It can be observed that \(\bar{N}(i) \) increases rapidly when the maturity increases: it reaches its maximum value depending both on the MRO rate and on the corridor parameters and then decreases slowly because the number of overlapping corridors decreases, whereas the overlapping corridor size increases.

The solid blue line depicts the case MRO=1% and \(\delta_1 = 100 \text{ bps} \); in this case the figure degenerates since the size of the corridors includes 0% interest rate implying that all maturities collide with each other.

The analysis confirms that for longer maturities, the collision probability, which depends on the weighted number of overlapping corridors, increases steadily making the estimation of high maturity transactions less reliable than for short maturities. This evidence shows how the rate cuts that have occurred during the analysed time horizon have made it more difficult for the Furfine algorithm to disentangle higher higher maturities.
The algorithm

All the amount transactions from bank A to bank B and from B to A (where a bank is identified by
the BIC code of the settlement account) are stored in two vectors of N and M length respectively, \(x_{AB} \) and \(x_{BA} \) and the correspondent dates into the vectors \(d_{AB} \) and \(d_{BA} \). From the two vectors a matrix \(M_{AB} \) of all possible matches is created, where the element \((i, j)\) is set to 1 if a plausible match is identified from A to B, to -1 if a plausible match is identified from B to A and 0 in event that no match is found.

For instance for a loan from A to B, given \(x_{AB}(i) \) the amount of transaction between A and B, \(x_{BA}(j) \) the amount from B to A, \(d_{AB}(i) \) and \(d_{BA}(j) \) the dates of the two transactions, a plausible match occurred if the following conditions are verified simultaneously:

- \(x_{AB}(i) < x_{BA}(j) \).
- \(d_{AB}(i) < d_{BA}(j) \) and \(d_{BA}(j) - d_{AB}(i) \) is lower or equal than the greatest searched maturity, e.g. 370 days.
- \(x_{AB}(i) \) respect the increment rule.
- \(r = \frac{x_{BA}(j) - x_{AB}(i)}{x_{AB}(i)} \cdot \frac{D}{360} \) is a one half basis point multiple.
- \(r \) is in the plausible corridor.
In case the match occurs, $M_{AB}(i, j)$ is set to 1 and the rate is stored in $R_{AB}(i, j)$. Moreover, the number of matches per transactions is stored in two vectors, c_{AB} and c_{BA}, and incremented when a match if found.

In the second phase, the M_{AB} is looked up to search all unique matches, i.e. if $M_{AB}(i, j)$ is not equal to 0 and $c_{AB}(i)$ and $c_{BA}(j)$ are 1. The value of $M_{AB}(i, j)$ is zeroed.

In the third phase, the M_{AB} is looked up to search all the multiple matches loans, i.e. if $M_{AB}(i, j)$ is not equal to 0 and $c_{AB}(i)$ or $c_{BA}(j)$ are greater than 1. In this phase the plausible durations are chosen on the basis of the frequency of the duration computed from the unique matches set.
References

ECB (2012). *Euro money market survey*. Frankfurt am Main: ECB.

Financial acceleration of booms and busts
Previous DNB Working Papers in 2013

No. 367 **Andrea Colciago and Lorenza Rossi**, Firm Entry, Endogenous Markups and the Dynamics of the Labor Share of Income

No. 368 **Dirk Broeders, Paul Hilbers and David Rijsbergen**, What drives pension indexation in turbulent times? An empirical examination of Dutch pension funds