## Default Cycles

Wei Cui<sup>1</sup>

Leo Kaas<sup>2</sup>

13 of November, 2018

De Nederlandsche Bank



<sup>&</sup>lt;sup>1</sup>University College London

<sup>&</sup>lt;sup>2</sup>Goethe University Frankfurt

#### Motivation

- Corporate default rates and credit spreads (all rated Aaa) are countercyclical.
- ▶ Yet, the links between the two are non-trivial:
  - Volatility of spreads is not accounted for by variations in expected default losses.
  - Spreads do not predict default rates perfectly.

(e.g. Duffie et al. 2009, Giesecke et al. 2011, Gilchrist/Zakrajsek 2012)

#### Motivation

- Corporate default rates and credit spreads (all rated Aaa) are countercyclical.
- ▶ Yet, the links between the two are non-trivial:
  - Volatility of spreads is not accounted for by variations in expected default losses.
  - Spreads do not predict default rates perfectly.

```
(e.g. Duffie et al. 2009, Giesecke et al. 2011, Gilchrist/Zakrajsek 2012)
```

- Fundamentals and non-fundamentals for credit and spreads?
- How do they matter for the macroeconomy?

## This paper

- Tractable macro model with endogenous firm default.
- ► Self-fulfilling beliefs in credit conditions (sunspots):
  - good conditions, low default, a high volume of credit, high investment, good conditions ...

## This paper

- Tractable macro model with endogenous firm default.
- ► Self-fulfilling beliefs in credit conditions (sunspots):
  - good conditions, low default, a high volume of credit, high investment, good conditions ...
- Equilibrium is indexed by the variance of beliefs shocks
- Solve the model around the (indeterminate) risky steady state
  - zero excess bond premium determins the variance of beliefs

## This paper

- Tractable macro model with endogenous firm default.
- ► Self-fulfilling beliefs in credit conditions (sunspots):
  - good conditions, low default, a high volume of credit, high investment, good conditions ...
- Equilibrium is indexed by the variance of beliefs shocks
- Solve the model around the (indeterminate) risky steady state
   zero excess bond premium determins the variance of beliefs
- Also consider other financial shocks to: excess bond premium and recovery (liquidity) correlated with expectations
- ▶ All three shocks account for close to 2/3 of U.S. output growth volatility, 1982–2016.

## U.S. corporate bonds



#### Literature

### Default, spreads and the business cycle

Bernanke, Gertler & Gilchrist 1999, Christiano, Motto & Rostagno 2014, Miao & Wang 2010, Gomes & Schmid 2012, Gourio 2013, Khan, Senga & Thomas 2016

#### Sunspots and credit market frictions

Azariadis, Kaas & Wen 2016, Harrison & Weder 2013, Benhabib & Wang 2013, Liu & Wang 2014, Gu, Mattesini, Monnet & Wright 2013

### Self-fulfilling sovereign default

Calvo 1988, Lorenzoni & Werning 2013, Cole & Kehoe 2000, Conesa & Kehoe 2015, Aguiar, Amador, Farhi & Gopinath 2013



### Outline

- 1. Illustrative example of indeterminacy
- 2. Macroeconomic model
- 3. Quantitative analysis

## Example

Firms with preferences

$$\mathbb{E} \sum_{t=0}^{\infty} \beta^t \Big[ (1-\beta) \log c_t - \mathbf{1}_{\{\text{defaulting}\}} \eta_t \Big]$$

where  $\eta_t$  is a default utility cost:

$$\eta_t = \left\{ egin{array}{ll} 0 & ext{with prob. } p \ \Delta > 0 & ext{with prob. } 1-p \end{array} 
ight.$$

▶ Default ⇒ No access to credit.

## Example

Firms with preferences

$$\mathbb{E} \sum_{t=0}^{\infty} \beta^t \Big[ (1-\beta) \log c_t - \mathbf{1}_{\{\mathsf{defaulting}\}} \eta_t \Big]$$

where  $\eta_t$  is a default utility cost:

$$\eta_t = \left\{ egin{array}{ll} 0 & ext{with prob. } p \ \Delta > 0 & ext{with prob. } 1-p \end{array} 
ight.$$

- ▶ Default ⇒ No access to credit.
- Linear technology with return Π.
- ▶ Competitive risk-neutral investors with outside return  $\bar{R} < \Pi$ .
- ▶ Investors offer standard debt contracts (b, R).

## Firm's problem

Let  $V(\omega)$  be the value of a firm with net worth  $\omega$ .

$$\begin{split} V(\omega) &= \max_{s,(R,b)} (1-\beta) \log(\omega-s) \\ &+ \beta \mathbb{E} \max \left\{ V[\Pi(s+b) - Rb], V^d[\Pi(s+b)] - \eta \right\} \end{split}$$

•  $V^d(\omega)$  is the value of a firm with a default history:

$$V^d(\omega) = \max_s (1 - \beta) \log(\omega - s) + \beta V^d(\Pi s)$$

## Firm's problem

Let  $V(\omega)$  be the value of a firm with net worth  $\omega$ .

$$\begin{split} V(\omega) &= \max_{s,(R,b)} (1-\beta) \log(\omega-s) \\ &+ \beta \mathbb{E} \max \left\{ V[\Pi(s+b) - Rb], V^d[\Pi(s+b)] - \eta \right\} \end{split}$$

•  $V^d(\omega)$  is the value of a firm with a default history:

$$V^d(\omega) = \max_s (1 - \beta) \log(\omega - s) + \beta V^d(\Pi s)$$

- ▶ Verify:  $V(\omega) = \log(\omega) + \bar{V}$  and  $V^d(\omega) = \log(\omega) + \bar{V}^d$ .
- ▶ Write  $v \equiv \bar{V} \bar{V}^d$  for the surplus value of credit market access (expected credit conditions).

## Optimal debt contract

Maximize borrower utility s.t. investors' participation constraint

$$\max_{(R,b)} \mathbb{E} \max \Big\{ \log[\Pi(s+b) - Rb] + \textcolor{red}{\mathbf{v}}, \log[\Pi(s+b)] - \eta \Big\} \quad \text{s.t.}$$

$$\bar{R}b = \begin{cases} Rb & \text{if } \log[\Pi(s+b) - Rb] + \mathbf{v} \ge \log[\Pi(s+b)] \ , \\ (1-p)Rb & \text{if } \log[\Pi(s+b)] > \log[\Pi(s+b) - Rb] + \mathbf{v} \\ & \ge \log[\Pi(s+b)] - \Delta \ , \\ 0 & \text{else.} \end{cases}$$

(No default / partial default / default with certainty)

## Optimal debt contract

Maximize borrower utility s.t. investors' participation constraint

$$\max_{(R,b)} \mathbb{E} \max \Big\{ \log[\Pi(s+b) - Rb] + v, \log[\Pi(s+b)] - \eta \Big\} \quad \text{s.t.}$$

$$\bar{R}b = \begin{cases} Rb & \text{if } \log[\Pi(s+b) - Rb] + \nu \ge \log[\Pi(s+b)] \ , \\ (1-p)Rb & \text{if } \log[\Pi(s+b)] > \log[\Pi(s+b) - Rb] + \nu \\ & \ge \log[\Pi(s+b)] - \Delta \ , \\ 0 & \text{else.} \end{cases}$$

(No default / partial default / default with certainty)

### Proposition 1

Under some condition, there exists  $\bar{v}>0$  s.t. the optimal contract has no default if  $v\geq \bar{v}$  and partial default if  $v<\bar{v}$ .



## Stationary equilibria

In steady state, the value difference  $v^* = V - V^d$  satisfies

$$\mathbf{v}^* = f(\mathbf{v}^*) \equiv \left\{ \begin{array}{ll} \beta \log \left[ \frac{\bar{R}}{\bar{R} - \Pi(1 - e^{-v^*})} \right] & \text{if } \mathbf{v}^* \geq \bar{\mathbf{v}} \ , \\ \beta \left\{ \log \left[ \frac{\bar{R}}{\bar{R} - \Pi(1 - p)(1 - e^{-v^* - \Delta})} \right] - (1 - p)\Delta \right\} & \text{if } \mathbf{v}^* < \bar{\mathbf{v}} \ . \end{array} \right.$$

## Stationary equilibria

In steady state, the value difference  $v^* = V - V^d$  satisfies

$$\mathbf{v}^* = f(\mathbf{v}^*) \equiv \left\{ egin{array}{ll} eta \log \left[ rac{ar{R}}{ar{R} - \Pi(1 - e^{-v^*})} 
ight] & ext{if } \mathbf{v}^* \geq ar{\mathbf{v}} \; , \\ eta \left\{ \log \left[ rac{ar{R}}{ar{R} - \Pi(1 - p)(1 - e^{-v^* - \Delta})} 
ight] - (1 - p)\Delta 
ight\} & ext{if } \mathbf{v}^* < ar{\mathbf{v}} \; . \end{array} 
ight.$$

#### Proposition 2

Under some condition, there are two stationary credit market equilibria  $v^D < v^N$  s.t. default rates and interest spreads are positive at  $v^D$  and zero at  $v^N$ . Details

## Multiple stationary equilibria

 $\Pi/\bar{R}$  in a certain range for coordination failures of lenders Too large: no default; Too small: default for sure sunspot default cycles / indeterminacy



### Macroeconomic model

Firm owners with the same preferences, producing

$$y = (z_t k_t)^{\alpha} (A_t I_t)^{1-\alpha}$$

- Exogenous  $A_t$  with trend growth  $\mu_t^A$
- ▶ z<sub>t</sub> is idiosyncratic:

$$z_t = \left\{ egin{array}{ll} z^H & ext{with prob. } \pi \ z^L & ext{with prob. } 1-\pi \end{array} 
ight.$$

- ▶ Default costs  $\eta$  has cdf G(.)
- ▶ Competitive real wage  $w_t$ .
- ▶ Hand-to-mouth workers supply  $\ell_t$  such that  $w_t/A_t = \kappa \ell_t^{\nu}$ .

# Credit market: contract $(R_t, \theta_t)$

▶ Creditors recover a random fraction  $\lambda_t$  of net worth.Defaulter loses collateral and access to credit (return w/ prob.  $\psi$ ).

# Credit market: contract $(R_t, \theta_t)$

- ▶ Creditors recover a random fraction  $\lambda_t$  of net worth.Defaulter loses collateral and access to credit (return w/ prob.  $\psi$ ).
- ► Lenders' zero-profit condition:

$$\bar{R}_t(1+\Phi_t) = \mathbb{E}_t\left\{ (1-G(\tilde{\eta}_{t+1}))R_t + G(\tilde{\eta}_{t+1})\lambda_{t+1} \frac{1+\theta_t}{\theta_t} \Pi_t z^H \right\},\,$$

 $\tilde{\eta}_{t+1}$ : ex-post default threshold.  $\Phi_t$ : excess bond premium

► Default threshold

$$ilde{\eta}_{t+1} = \log \left[ rac{(1+ heta_t)(1-\lambda_{t+1})\zeta}{1+ heta_t(1-
ho_t)} 
ight] - extstyle 
otag$$



# Credit market: contract $(R_t, \theta_t)$

- ▶ Creditors recover a random fraction  $\lambda_t$  of net worth.Defaulter loses collateral and access to credit (return w/ prob.  $\psi$ ).
- ► Lenders' zero-profit condition:

$$\bar{R}_t(1+\Phi_t) = \mathbb{E}_t\left\{ (1-G(\tilde{\eta}_{t+1}))R_t + G(\tilde{\eta}_{t+1})\lambda_{t+1} \frac{1+\theta_t}{\theta_t} \Pi_t z^H \right\},\,$$

 $\tilde{\eta}_{t+1}$ : ex-post default threshold.  $\Phi_t$ : excess bond premium

Default threshold

$$\widetilde{\eta}_{t+1} = \log\left[rac{(1+ heta_t)(1-\lambda_{t+1})\zeta}{1+ heta_t(1-
ho_t)}
ight] - extstyle 
onumber 
onumbe$$

► Optimal contract maximizes borrower utility s.t. the banks' zero profit condition and the default threshold condition

## General equilibrium

Credit market expectations

$$\begin{aligned} v_t = & \beta \pi \mathbb{E}_t \bigg\{ \log \Big( \zeta(1 + \theta_t)(1 - \lambda_{t+1}) \Big) - \tilde{\eta}_{t+1}(1 - G(\tilde{\eta}_{t+1})) \\ & - \int_{-\infty}^{\tilde{\eta}_{t+1}} \eta \ dG(\eta) + (1 - \psi - \pi) v_{t+1} \bigg\} \end{aligned}$$

▶ beliefs:  $\varepsilon_{t+1}^b$  and  $\mathbb{E}_t[\varepsilon_{t+1}^b] = 0$  added to  $v_{t+1}$ 

$$\tilde{\mathbf{v}}_{t+1} = \mathbb{E}_t \tilde{\mathbf{v}}_{t+1} + \varepsilon_{t+1}^b$$
$$\tilde{\eta}_{t+1} = \mathbb{E}_t \tilde{\eta}_{t+1} + \varepsilon_{t+1}^b$$

## General equilibrium

Credit market expectations

$$\begin{aligned} v_t = & \beta \pi \mathbb{E}_t \bigg\{ \log \Big( \zeta(1 + \theta_t)(1 - \lambda_{t+1}) \Big) - \tilde{\eta}_{t+1}(1 - G(\tilde{\eta}_{t+1})) \\ & - \int_{-\infty}^{\tilde{\eta}_{t+1}} \eta \ dG(\eta) + (1 - \psi - \pi)v_{t+1} \bigg\} \end{aligned}$$

▶ beliefs:  $\varepsilon_{t+1}^b$  and  $\mathbb{E}_t[\varepsilon_{t+1}^b] = 0$  added to  $v_{t+1}$ 

$$\tilde{\mathbf{v}}_{t+1} = \mathbb{E}_t \tilde{\mathbf{v}}_{t+1} + \varepsilon_{t+1}^b$$
$$\tilde{\eta}_{t+1} = \mathbb{E}_t \tilde{\eta}_{t+1} + \varepsilon_{t+1}^b$$

▶ Credit market equilibrium ( $f_t$  = fraction with credit market access)

$$z^L \Pi_t = \bar{R}_t, \quad f_t \pi \theta_t \leq (1 - \pi).$$

## General equilibrium

Credit market expectations

$$\begin{aligned} v_t = & \beta \pi \mathbb{E}_t \bigg\{ \log \Big( \zeta(1 + \theta_t)(1 - \lambda_{t+1}) \Big) - \tilde{\eta}_{t+1}(1 - G(\tilde{\eta}_{t+1})) \\ & - \int_{-\infty}^{\tilde{\eta}_{t+1}} \eta \ dG(\eta) + (1 - \psi - \pi)v_{t+1} \bigg\} \end{aligned}$$

▶ beliefs:  $\varepsilon_{t+1}^b$  and  $\mathbb{E}_t[\varepsilon_{t+1}^b] = 0$  added to  $v_{t+1}$ 

$$\begin{aligned} \tilde{\mathbf{v}}_{t+1} &= \mathbb{E}_t \tilde{\mathbf{v}}_{t+1} + \varepsilon_{t+1}^b \\ \tilde{\eta}_{t+1} &= \mathbb{E}_t \tilde{\eta}_{t+1} + \varepsilon_{t+1}^b \end{aligned}$$

ightharpoonup Credit market equilibrium ( $f_t$  = fraction with credit market access)

$$z^L \Pi_t = \bar{R}_t, \quad f_t \pi \theta_t \leq (1 - \pi).$$

Aggregate dynamics of net worth, capital stock and  $f_t$ .



### Fundamental and belief shocks

$$\begin{split} \eta &\sim \textit{N}(\mu, \sigma) \text{: a non-linear } \textit{G}(.) \\ &\log(1 + \Phi_t) - \log(1 + \Phi) = \rho_{\Phi} \left[ \log(1 + \Phi_{t-1}) - \log(1 + \Phi) \right] + \varepsilon_t^{\Phi}, \\ &\log(1 - \lambda_t) - \log(1 - \lambda) = \rho_{\lambda} \left[ \log\left(1 - \lambda_{t-1}\right) - \log\left(1 - \lambda\right) \right] + \varepsilon_t^{\lambda} + \chi_{\lambda}^{\phi} \varepsilon_t^{\phi}, \\ &\log(1 + \mu_t^A) - \log(1 + \mu^A) = \rho_{A} \left[ \log\left(1 + \mu_{t-1}^A\right) - \log\left(1 + \mu^A\right) \right] + \varepsilon_t^A \;, \\ &\varepsilon_t^b = \chi^{\Phi} \varepsilon_t^{\Phi} + \varepsilon_t^s, \end{split}$$

 $\varepsilon_t^\Phi$  excess bond premium (EBP) shocks  $\varepsilon_t^\lambda$  recovery shocks  $\varepsilon_t^A$  shocks to productivity growth  $\varepsilon_t^b$  belief shocks /  $\varepsilon_t^s$  pure sunspot shocks shocks are mean zero with variance  $\sigma_i^2$ 

### Calibration

- 2 risky steady states (RSS).
- An illustration of the zero profit condition

$$rac{1+\Phi_t}{\Delta_t} = \mathbb{E}_t \left[ 1 - G( ilde{\eta}_{t+1}) \left( 1 - rac{\lambda_{t+1}}{\xi_t} 
ight) 
ight]$$

▶ Denote  $\mathbb{E}_t[\tilde{\eta}_{t+1}] = \tilde{\eta}_t^e$ . The RHS becomes

$$1 - \left[G(\tilde{\eta}_t^e) + \frac{G''(\tilde{\eta}_t^e)\sigma_b^2}{2}\right] \left(1 - \frac{1 - (1 - \lambda_t)^{\rho_\lambda} (1 - \lambda)^{1 - \rho_\lambda} e^{\frac{\sigma_\lambda^2}{2}}}{\xi_t}\right)$$

# Calibration (cont)

- ▶ Calibrate to match the U.S. 1982–2016 targets.  $\rightarrow$  indeterminate (lower default) risky steady state
- Explore the role of shocks to recovery rate  $\lambda_t$ , EBP  $\Phi_t$ , credit expectations (beliefs  $\varepsilon_t^b$ ), and productivity  $\mu_t^A$ .
- MLE using recovery rate, credit spreads, default rate, and output (per capita) growth.

## Directed calibrated parameters

| Parameter    | Value | Explanation/Target                       |
|--------------|-------|------------------------------------------|
| $\alpha$     | 0.33  | Capital income share                     |
| $\delta$     | 0.10  | Depreciation rate                        |
| $\mu^{m{A}}$ | 1.72% | Trend growth                             |
| $\kappa$     | 2.38  | Labor supply $\ell=0.25$                 |
| u            | 0.67  | Macro labor supply elasticity $1/ u=1.5$ |
| $\pi$        | 0.20  | Constrained firms (Almeida et al. 2004)  |
| $\psi$       | 0.10  | 10-year default flag                     |
| $\zeta$      | 0.85  | 15% default loss (Davydenko et al. 2012) |
| Ф            | 0.00  | 0 steady-state EBP                       |

Estimated parameters (steady state and dynamics)

| Para                               | Value                                                                                                                                           | Explanation                     | Target / T stat (std err) Capital-output ratio 200% Recovery rate 41.74% |  |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------------------------------------------------|--|
| β                                  | 0.96                                                                                                                                            | Discount factor                 |                                                                          |  |
| $\lambda$                          | 0.20                                                                                                                                            | Recovery parameter              |                                                                          |  |
| $\sigma_{b}$                       | 3.42%                                                                                                                                           | Std. dev. of belief shocks      | Credit spread 2%                                                         |  |
| $z^H$ 1.13 High productivity       |                                                                                                                                                 | High productivity               | Debt-output ratio 82% Average productivity $	ilde{z}=1$                  |  |
| $z^L$                              | $z^L$ 0.79 Low productivity                                                                                                                     |                                 |                                                                          |  |
| $\mu$                              | -0.23                                                                                                                                           | Mean of $\eta$                  | Default rate 1.58%                                                       |  |
| $\sigma$                           | $\sigma$ 7.31% Std. dev. of $\eta$                                                                                                              |                                 | Leverage $	heta=2.1$                                                     |  |
| $\sigma_{s}$                       | 2.69%                                                                                                                                           | Std. dev. of pure sunspots      | $\sigma_b^2 = \sigma_s^2 + (\chi_b^{\Phi})^2 \sigma_{\Phi}^2$            |  |
|                                    |                                                                                                                                                 |                                 |                                                                          |  |
| $\rho_{\Phi}$                      | 0.73                                                                                                                                            | Persistence of EBP              | Estimated: 6.22 (0.12)                                                   |  |
| $ ho_{\mathcal{A}}$                | $\begin{array}{ccc} \rho_A &  0.25 & \text{Persistence of productivity} \\ \rho_\lambda &  0.58 & \text{Persistence of collateral} \end{array}$ |                                 | Estimated: 1.23 (0.20)                                                   |  |
| $ ho_{\lambda}$                    |                                                                                                                                                 |                                 | Estimated: 6.55 (0.09)                                                   |  |
| $\sigma_{\Phi}$                    | 0.0087                                                                                                                                          | Std. dev. of EBP                | Estimated 10.27 (0.0009)                                                 |  |
| $\sigma_{A}$                       | $\sigma_A$ 0.0334 Std. dev. of productivity $\sigma_\lambda$ 0.0313 Std. dev. of collateral                                                     |                                 | Estimated 7.81 (0.0043)                                                  |  |
| $\sigma_{\lambda}$                 |                                                                                                                                                 |                                 | Estimated 11.63(0.0027)                                                  |  |
| $\chi_b^{\Phi}$ 2.4279 Spill o     |                                                                                                                                                 | Spill over to beliefs variation | Estimated 3.54 (0.69)                                                    |  |
| $\chi^{oldsymbol{\Phi}}_{\lambda}$ | 0.0650                                                                                                                                          | Spill over to collateral        | Estimated 5.80 (0.01)                                                    |  |
|                                    |                                                                                                                                                 |                                 |                                                                          |  |

### Estimated smoothed shocks









### Impulse responses

An  $\uparrow$  default  $\downarrow$  lending and  $\uparrow$  ex-post recovery. Small movements in spreads.



## Variance decompositions

|                | Exogenous Shocks to |            |         |              |
|----------------|---------------------|------------|---------|--------------|
|                | EBP                 | Collateral | Sunspot | Productivity |
| Credit Spreads | 98.25               | 0.18       | 1.57    | 0            |
| Recovery Rate  | 77.15               | 19.59      | 3.26    | 0            |
| Default Rate   | 22.06               | 44.56      | 33.38   | 0            |
| Output Growth  | 41.16               | 3.32       | 17.63   | 37.88        |
| Debt-to-Output | 37.73               | 5.77       | 54.25   | 2.26         |
| TFP Growth     | 17.30               | 1.75       | 10.72   | 70.23        |

# Variance decomposition: fundamentals versus expectations

|                              | Shocks that change |                |  |
|------------------------------|--------------------|----------------|--|
|                              | Fundamentals       | Beliefs        |  |
| Credit Spreads               | 77.04              | 22.96          |  |
| Recovery Rate                | 76.63              | 23.37          |  |
| Default Rate                 | 45.96              | 54.04          |  |
| Output Growth                | 78.70              | 21.30          |  |
| Debt-to-Output<br>TFP Growth | 78.48<br>90.93     | 21.52<br>10.07 |  |

#### Conclusions

- Endogenous firm default and different financial shocks
- Self-fulfilling changes in credit market expectations important for default cycle (54%)
- ► The risks of beliefs play a big role for the steady state. The expectation channel accounts for about 22% variation in output growth
- Excess bond premium / collateral also important through the credit channel
- ► Policy targeting credit market expectations could be useful (for both the steady state and dynamics )

## Proposition 1

Suppose that the parameter condition

$$\frac{(e^{\Delta}-1)(1-p)}{e^{\Delta}-1+p}<\frac{\bar{R}}{\Pi}<\frac{(e^{(1-p)\Delta}-e^{-p\Delta})(1-p)}{e^{(1-p)\Delta}-1}$$

holds. Then there exists a threshold value  $\bar{v} \in (0, v^{\text{max}})$  with  $v^{\text{max}} \equiv \log(\Pi/(\Pi - \bar{R}))$ , such that

(i) If  $v \in [\bar{v}, v^{\text{max}})$ , the optimal contract is  $(b, R) = (b(s), \bar{R})$  with debt level and borrower utility

$$b(s) = s \frac{\Pi(1 - e^{-\nu})}{\bar{R} - \Pi(1 - e^{-\nu})} \ , \ U(s) = \log \left[ \frac{\bar{R} \Pi s}{\bar{R} - \Pi(1 - e^{-\nu})} \right] \ .$$

(ii) If  $v \in [0, \bar{v})$ , the optimal contract is

 $(R,b)=(ar{R}/(1-p),b(s))$ , with debt level and borrower utility

$$b(s) = s \frac{\Pi(1-p)(1-e^{-\nu-\Delta})}{\bar{R} - \Pi(1-p)(1-e^{-\nu-\Delta})} \ , \ U(s) = \log \left[ \frac{\bar{R}\Pi s}{\bar{R} - \Pi(1-p)(1-e^{-\nu-\Delta})} \right] - (1-p)\Delta \ .$$

## Proposition 2

Suppose that parameters satisfy

$$\left(\frac{\bar{R}}{\bar{R} - \Pi(1 - e^{-\bar{v}})}\right)^{\beta} < \frac{\Pi[1 - (1 - p)e^{-p\Delta}]}{\Pi - \bar{R} + e^{(1-p)\Delta}(\bar{R} - \Pi(1-p))}, \quad (1)$$

Then there are two stationary credit market equilibria  $v^D < v^N$  such that default rates and interest spreads are positive at  $v^D$  and zero at  $v^N$ .

→ Back

## Aggregate dynamics

Net worth

$$\Omega_{t+1} = \beta z^{H} \Pi_{t} \Omega_{t} \left\{ (1 - \pi) \bar{\rho}_{t} + \pi f_{t} \Big[ (1 - G(\tilde{\eta}_{t+1}))(1 + \theta_{t}(1 - \rho_{t})) + G(\tilde{\eta}_{t+1})(1 + \theta_{t})(1 - \lambda_{t})\zeta \Big] + \pi (1 - f_{t}) \right\}$$

Capital stock of productive and unproductive firms

$$K_t^H = \beta \Omega_t \pi \Big[ f_t(1+\theta_t) + 1 - f_t \Big] , K_t^L = \beta \Omega_t \Big[ (1-\pi) - \pi f_t \theta_t \Big]$$

 $\triangleright$  Fraction of firms with credit market access  $f_t$ 

$$f_{t+1}\Omega_{t+1} = \beta z^H \Pi_t \Omega_t \left\{ (1-\pi) f_t \bar{\rho}_t \right\}$$

$$+\pi f_t(1-G(\tilde{\eta}_{t+1}))(1+\theta_t(1-\rho_t))+(1-f_t)\psi[(1-\pi)\bar{\rho}_t+\pi]$$