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Abstract

The way in which individual expectations shape aggregate macroeconomic vari-
ables is crucial for the transmission and effectiveness of monetary policy. We study
the individual expectations formation process and the interaction with monetary
policy, within a standard New Keynesian model, by means of laboratory experi-
ments with human subjects. We find that a more aggressive monetary policy that
sets the interest rate more than point for point in response to inflation stabilizes in-
flation in our experimental economies. We use a simple model of individual learning,
with a performance-based evolutionary selection among heterogeneous forecasting
heuristics, to explain coordination of individual expectations and aggregate macro
behavior observed in the laboratory experiments. Three aggregate outcomes are ob-
served: convergence to some equilibrium level, persistent oscillatory behavior and
oscillatory convergence. A simple heterogeneous expectations switching model fits
individual learning as well as aggregate outcomes and outperforms homogeneous
expectations benchmarks.
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1 Introduction

Inflation expectations are crucial in the transmission of monetary policy. The way

in which individual expectations are formed, therefore, is key in understanding how

a change in the interest rate affects output and the actual inflation rate. Since the

seminal papers of Muth (1961) and Lucas (1972) the rational expectations hypothe-

sis has become the cornerstone of macroeconomic theory, with representative ratio-

nal agent models dominating mainstream economics. For monetary policy analysis

the most popular model is the New Keynesian (NK) framework which assumes, in

its basic formulation, a representative rational agent structure (see e.g. Woodford

(2003) and Gali (2008)). The standard NK model with a rational representative

agent however has lost most of its appeal in the light of overwhelming empirical

evidence: it is clear from the data that this approach is not the most suitable to

reproduce stylized facts such as the persistence of fluctuations in real activity and

inflation after a shock (see e.g. Chari, Kehoe, and McGrattan (2000) and Nelson

(1998)). Economists have therefore proposed a number of extensions to the stan-

dard framework by embedding potential sources of endogenous persistence. They

have incorporated features such as habit formation or various adjustment costs to

account for the inertia in the data (e.g. Christiano, Eichenbaum, and Evans (2005)

and Smets and Wouters (2007)).

In the last two decades adaptive learning has become an interesting alterna-

tive to modeling expectations (see e.g. Sargent (1999) and Evans and Honkapo-

hja (2001)). Bullard and Mitra (2002), Preston (2005) among others, introduce

adaptive learning in the NK framework and Milani (2007) shows that learning

can represent an important source of persistence in the economy and that some

extensions which are typically needed under rational expectations to match the

observed inertia become redundant under learning. More recently a number of au-

thors have extended the NK model to include heterogeneous expectations, e.g. Gali

and Gertler (1999), De Grauwe (2010) and Branch and McGough (2009, 2010).
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The empirical literature on expectations in a macro-monetary policy setting

can be subdivided in work on survey data and laboratory experiments with human

subjects. Mankiw, Reis, and Wolfers (2003) find evidence for heterogeneity in

inflation expectations in the Michigan Survey of Consumers and argue that the

data are inconsistent with rational or adaptive expectations, but may be consistent

with a sticky information model. Branch (2004) estimates a simple switching model

with heterogeneous expectations on survey data and provides empirical evidence

for dynamic switching that depends on the relative mean squared errors of the

predictors. Capistran and Timmermann (2009) show that heterogeneity of inflation

expectations of professional forecasters varies over time and depends on the level

and the variance of current inflation. Pfajfar and Santoro (2010) measure the

degree of heterogeneity in private agents’ inflation forecasts by exploring time series

of percentiles from the empirical distribution of survey data. They show that

heterogeneity in inflation expectations is persistent and identify three different

expectations formation mechanisms: static or highly autoregressive rules, nearly

rational expectations and adaptive learning with sticky information. Experiments

with human subjects in a controlled laboratory environment to study individual

expectations have been carried out by, e.g., Hommes, Sonnemans, Tuinstra, and

van de Velden (2005), Adam (2007), Pfajfar and Zakelj (2010); see Duffy (2008) for

an overview of macro experiments, and Hommes (2011) for an overview of learning

to forecast experiments to study expectation formation.

In this paper we use laboratory experiments with human subjects to study

the individual expectations formation process within a standard New Keynesian

setup. We ask subjects to forecast the inflation rate under three different scenar-

ios depending on the underlying assumption on output gap expectations, namely

fundamental, naive or forecasts from a group of individuals in the laboratory. An

important novel feature of our experiment is that, in one of the treatments, the

aggregate variables inflation and output gap depend on individual expectations of

two groups of individuals forming expectations on two different variables, inflation
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and the output gap. In particular, we address the following questions:

• are expectations homogeneous or heterogeneous?

• which forecasting rules do individuals use?

• which theory of expectations and learning fits the aggregate as well as indi-

vidual experimental data?

• which monetary policy rules can stabilize aggregate outcomes in learning to

forecast experiments?

The paper is organized as follows. Section 2 describes the underlying NK-model

framework, the different treatments, the experimental design and the experimental

results. Section 3 analyzes the individual forecasting rules used by the subjects,

while Section 4 proposes a heterogeneous expectations model explaining both in-

dividual expectations and aggregate outcomes. Finally, Section 5 concludes.

2 The learning to forecast experiment

In 2.1 we briefly recall the New Keynesian model and then we give a description of

the treatments in the experiment. In 2.2 we give an overview of the experimental

design and in 2.3 we summarize the main results.

2.1 The New Keynesian model

In this section we recall the monetary model with nominal rigidities that will be

used in the experiment. We adopt the heterogeneous expectations version of the

New Keynesian model developed by Branch and McGough (2009), which is de-

scribed by the following equations:

yt = ye
t+1 − ϕ(it − πe

t+1) + gt , (2.1)

πt = λyt + βπe
t+1 + ut , (2.2)

it = π + φπ(πt − π) , (2.3)
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where yt and ye
t+1 are respectively the actual and average expected output gap, it

is the nominal interest rate, πt and πe
t+1 are respectively the actual and average

expected inflation rates, π is the inflation target, ϕ, λ, β and φπ are positive co-

efficients and gt and ut are white noise shocks. The coefficient φπ measures the

response of the nominal interest rate it to deviations of the inflation rate πt from

its target π. Equation (2.1) is the aggregate demand in which the output gap yt

depends on the average expected output gap ye
t+1 and on the real interest rate

it − πe
t+1. Equation (2.2) is the New Keynesian Phillips curve according to which

the inflation rate depends on the output gap and on average expected inflation.

Equation (2.3) is the monetary policy rule implemented by the monetary author-

ity in order to keep inflation at its target value π. The New Keynesian model

is widely used in monetary policy analysis and allows us to compare our experi-

mental results with those obtained in the theoretical literature. However the New

Keynesian framework requires agents to forecast both inflation and the output gap.

Since forecasting two variables at the same time might be a too difficult task for

the participants in an experiment we decided to run an experiment using three

different treatments. In the first two treatments we make an assumption about

output gap expectations (a steady state equilibrium predictor and naive expecta-

tions respectively), so that the task of the participants reduces to forecast only

one macroeconomic variable, namely inflation. In the third treatment there are

two groups of individuals, one group forecasting inflation and the other forecasting

output gap. The details of the different treatments are described below.

Treatment 1: steady state predictor for output gap

In the first treatment of the experiment we ask subjects to forecast the inflation

rate two periods ahead, given that the expectations on the output gap are fixed

at the equilibrium predictor (i.e. ye
t+1 = (1 − β)πλ−1). Given this setup the NK
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framework (2.1)-(2.3) specializes to:

yt = (1 − β)πλ−1 − ϕ(it − πe
t+1) + gt , (2.4)

πt = λyt + βπe
t+1 + ut , (2.5)

it = φπ(πt − π) + π , (2.6)

where πe
t+1 = 1

H

∑H
i=1 πe

i,t+1 is the average prediction of the participants in the

experiment. Substituting (2.6) into (2.4) leads to the system

yt = (1 − β)πλ−1 + ϕπ(φπ − 1) − ϕφππt + ϕπe
t+1 + gt , (2.7)

πt = λyt + βπe
t+1 + ut . (2.8)

The above system can be rewritten in terms of inflation and expected inflation:

πt = Aπ +
λϕ + β

1 + λϕφπ

πe
t+1 + ξt , (2.9)

where Aπ =
(1 − β)π + λϕπ(φπ − 1)

1 + λϕφπ

is a constant and ξt = λ
1+λϕφπ

gt + 1
1+λϕφπ

ut is

a composite shock. Hence, treatment 1 reduces to a learning to forecast experiment

on a single variable, inflation, comparable to the learning to forecast experiments

on asset prices in Hommes, Sonnemans, Tuinstra, and van de Velden (2005) and

on inflation in Adam (2007)1.

Treatment 2: naive expectations for output gap

In the second treatment we ask subjects to forecast only the inflation rate (two

periods ahead), while expectations on the output gap are represented by naive

expectations (i.e. ye
t+1 = yt−1). This treatment is similar to the experiment in

Pfajfar and Zakelj (2010) who also implicitly assume naive expectations on output.

1Given the calibrated values of the structural parameters, described in Section 2.3, the coef-
ficient λϕ+β

1+λϕφπ
in (2.9) measuring expectation feedback takes the value of about 0.99 when the

policy rule’s reaction coefficient φπ = 1, and of about 0.89 when φπ = 1.5. The corresponding
expectation feedback coefficient in Hommes, Sonnemans, Tuinstra, and van de Velden (2005) was
0.95.
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Given this set up the NK framework (2.1)-(2.3) specializes to:

yt = ϕπ(φπ − 1) − ϕφππt + ϕπe
t+1 + yt−1 + gt , (2.10)

πt = λyt + βπe
t+1 + ut . (2.11)

where πe
t+1 = 1

H

∑H
i=1 πe

i,t+1 is the average prediction of the participants in the

experiment. We can rewrite the above system in matrix form

⎡
⎢⎣

yt

πt

⎤
⎥⎦ = A + Ω

⎡
⎢⎣

0 ϕ(1 − φπβ)

0 λϕ + β

⎤
⎥⎦

⎡
⎢⎣

ye
t+1

πe
t+1

⎤
⎥⎦ + Ω

⎡
⎢⎣

1 0

λ 0

⎤
⎥⎦

⎡
⎢⎣

yt−1

πt−1

⎤
⎥⎦ + B

⎡
⎢⎣

gt

ut

⎤
⎥⎦ (2.12)

where Ω = (1 + λϕφπ)−1, A = Ω

⎡
⎢⎣

ϕπ(φπ − 1)

λϕπ(φπ − 1)

⎤
⎥⎦ and B = Ω

⎡
⎢⎣

1

λ

−ϕφπ

1

⎤
⎥⎦.

This setup is more complicated than the learning to forecast experiments in

Hommes, Sonnemans, Tuinstra, and van de Velden (2005) and Adam (2007) be-

cause inflation is not only driven by expected inflation and exogenous noise, but

also by the past output gap yt−1. An important difference with Pfajfar and Zakelj

(2010) is that we assume IID noise instead of an AR(1) noise process, so that if

fluctuations in inflation will arise in the experiment they must be endogenously

driven by expectations.

Treatment 3: forecasting inflation and output gap

In the third treatment there are two groups of participants acting in the same econ-

omy but with different tasks: one group forecasts inflation while the other forecasts

the output gap. Agents are divided randomly into two groups, one group is asked

to form expectations on the inflation rate and another group provides forecasts on

the output gap. The aggregate variables inflation and output gap are thus driven

by individual expectations feedbacks from two different variables by two different
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groups. The model describing the experimental economy can be written as

⎡
⎢⎣

yt

πt

⎤
⎥⎦ = A + Ω

⎡
⎢⎣

1 ϕ(1 − φπβ)

λ λϕ + β

⎤
⎥⎦

⎡
⎢⎣

ye
t+1

πe
t+1

⎤
⎥⎦ + B

⎡
⎢⎣

gt

ut

⎤
⎥⎦ . (2.13)

where A, B and Ω are defined as in treatment 2, while ye
t+1 = 1

H

∑H
i=1 ye

i,t+1 and

πe
t+1 = 1

H

∑H
i=1 πe

i,t+1 are respectively the average output gap and the average in-

flation predictions of the participants in the experiment. As already pointed out,

in treatments 1 and 2 individuals are asked to forecast only the inflation rate two

periods ahead, assuming respectively that the expected future output gap is given

by the equilibrium predictor (ye
t+1 = (1 − β)πλ−1) or follows naive expectations

(ye
t+1 = yt−1). An important novel aspect of Treatment 3 is that our experimental

economy is driven by individual expectations on two different aggregate variables

that interact within a New Keynesian framework.

Treatments a/b: passive versus active monetary policy

In order to study the stabilization properties of a monetary policy rule such as

(2.3), we ran two experimental sessions for each of the three different treatments

described above. In session ”a” the monetary policy responds only weakly to in-

flation rate fluctuations i.e., the Taylor principle does not hold (φπ = 1), while

in session ”b” monetary policy responds aggressively to inflation i.e., the Taylor

principle holds2 (φπ = 1.5).

Table 1 summarizes all treatments implemented in the experiments. In total

120 subjects participated in the experiment in 16 experimental economies, 3 for

each of the treatments 1a, 1b, 2a, and 2b with 6 subjects each, and 2 experimental

economies for treatments 3a and 3b with 12 subjects each. Total average earnings

over all subjects were � 32.

2Notice that when the policy parameter φπ is equal to 1, the system in Treatments 2 and 3
exhibits a continuum of equilibria.
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φπ πe
t+1 ye

t+1 # groups average earnings π (y) in �

Treatment 1a 1 πe
t+1 (1 − β)πλ−1 3 31

Treatment 1b 1.5 πe
t+1 (1 − β)πλ−1 3 37

Treatment 2a 1 πe
t+1 yt−1 3 28

Treatment 2b 1.5 πe
t+1 yt−1 3 36

Treatment 3a 1 πe
t+1 ye

t+1 2 28 (28)
Treatment 3b 1.5 πe

t+1 ye
t+1 2 34 (32)

Table 1: Treatments summary

2.2 Experimental design

The experiment took place in the CREED laboratory at the University of Amster-

dam, March-May 2009. For treatments 1 and 2, groups of six (unknown) individuals

were formed who had to forecast inflation two periods ahead; for treatment 3 two

groups of six individuals were formed, one group forecasting inflation, the other

group forecasting the output gap. Most subjects are undergraduate students from

Economics, Chemistry and Psychology. At the beginning of the session each sub-

ject can read the instructions (see Supplementary material, (Translation of Dutch)

Instructions for participants) on the screen, and subjects receive also a written

copy. Participants are instructed about their role as forecasters and about the

experimental economy. They are assumed to be employed in a private firm of pro-

fessional forecasters for the key variables of the economy under scrutiny i.e. either

the inflation rate or the output gap. Subjects have to forecast either inflation or

the output gap for 50 periods. We give them some general information about the

variables that describe the economy: the output gap (yt), the inflation rate (πt) and

the interest rate (it). Subjects are also informed about the expectations feedback,

that realized inflation and output gap depend on (other) subjects’ expectations

about inflation and output gap. They also know that inflation and output gap

are affected by small random shocks to the economy. Subjects did not know the

equations of the underlying law of motion of the economy nor did they have any

information about its steady states. In short, subjects did not have quantitative

details, but only qualitative information about the economy.
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The payoff function of the subjects describing their score that is later converted

into Euros is given by

score =
100

1 + f
, (2.14)

where f is the absolute value of the forecast error expressed in percentage points.

The points earned by the participants depend on how close their predictions are

to the realized values of the variable they are forecasting. Information about the

payoff function is given graphically as well as in table form to the participants (see

Fig. 1). Notice that the prediction score increases sharply when the error decreases

to 0, so that subjects have a strong incentive to forecast as accurately as they can;

see also Adam (2007) and Pfajfar and Zakelj (2010), who used the same payoff

function.

0 2 4 6 8 10
0

10

20

30

40

50

60

70

80

90

100

absolute value forecast error

sco
re

Figure 1: Payoff function

Absolute forecast error 0 1 2 3 4 9

Score 100 50
33

3
25 20 10

In each period individuals can observe on the left side of the screen the time

series of realized inflation rate, output gap and interest rate as well as the time
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series of their own forecasts. The same information is displayed on the right hand

side of the screen in table form, together with subjects own predictions scores (see

Fig. 2). Subjects did not have any information about the forecasts of others.

Figure 2: Computer screen for inflation forecasters with time series of inflation
forecasts and realizations (top left), output gap and interest rate (bottom left) and
table (top right).

2.3 Experimental results

This subsection describes the results of the experiment. We fix the parameters at

the Clarida, Gali, and Gertler (2000) calibration, i.e. β = 0.99, ϕ = 1, and λ = 0.3,

and we set the inflation target to π = 2.

Figure 3 depicts the behavior of the output gap, inflation and individual fore-

casts in the three different sessions of treatments 1a and 1b with output expecta-

tions given by the steady state predictor. The dotted lines in the figures represent

the RE steady states for inflation and output gap that are respectively 2 and 0.07.

In treatment 1a (φπ = 1) we observe convergence to a non-fundamental steady

state for two groups, while the third group displays highly unstable oscillations3.

3The unstable fluctuations were mainly caused by one participant making very high and very
low forecasts.
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Figure 3: Time series of Treatment 1, with fundamental predictor for the output
gap. Upper panels: Treatment 1a (φπ = 1). Lower panels: Treatment 1b
(φπ = 1.5). Blue thick line: realized inflation; yellow thick line: realized output
gap; thin lines: individual forecasts for inflation.
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In treatment 1b (φπ=1.5) we observe convergence to the inflation target for two

groups, while the third group exhibits oscillatory behavior which is by far less

pronounced than what we observed in treatment 1a, group 2.

We conclude that, under the assumption of a fundamental predictor for expected

future output gap, a more aggressive monetary policy that satisfies the Taylor

principle (φπ > 1) stabilizes inflation fluctuations and leads to convergence to the

desired inflation target in two of the three groups.

Fig. 4 shows the behavior of the output gap, inflation and individual forecasts in

three different groups of treatments 2a and 2b with naive output gap expectations.

In treatment 2a (φπ = 1) we observe different types of aggregate dynamics. Group

1 shows convergence to a non-fundamental steady state. Group 2 shows oscillatory

behavior with individual expectations coordinating on the oscillatory pattern. In

this session the interest rate hits the zero lower bound in period 43 and the ex-

perimental economy experiences a phase of decline in output gap but eventually

recovers. In group 3 the behavior is even more unstable: inflation oscillates until,

in period 27, the interest rate hits the zero lower bound and the economy enters a

severe recession and never recovers. In treatment 2b (φπ) we observe convergence to

the fundamental steady state for two groups, while the third group exhibits small

oscillations around the fundamental steady state.

We conclude that also under the assumption of naive expectations for the output

gap, an interest rate rule that responds more than point to point to deviations of

the inflation rate from the target stabilizes the economy.

The upper panels of Fig. 5 reproduce the behavior of the output gap, inflation

and individual forecasts for both variables in two different sessions of treatment 3a.

Recall that in treatment 3 realized inflation and output gap depend on the indi-

vidual forecasts for both inflation and output gap. In both groups of treatment 3a

(φπ = 1) we observe (almost) convergence to a non-fundamental steady state4. In

4Note that group 1 ends in period 26 because of a crash of one of the computers in the lab.
Moreover realized inflation and output gap in group 2 are plotted until period 49 because of an
end effect. In fact, participant 3 predicted an inflation rate of 100% in the last period, causing
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Figure 4: Upper panels: Treatment 2a. Lower panels: Treatment 2b. Blue
thick line: realized inflation; yellow thick line: realized output gap; thin lines:
individual forecasts for inflation.
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Figure 5: Upper panels: Treatment 3a. Lower panels: Treatement 3b. Blue
thick line: realized inflation; yellow thick line: realized output gap; thin lines:
individual forecasts for inflation and output gap.

the lower panels of Fig. 5 we plot the output gap, inflation and individual forecasts

for both variables in two sessions of treatment 3b (φπ = 1.5). In both groups we

observe convergence to the 2 percent fundamental steady state, but the converging

paths are different. In group 1, after some initial oscillations, inflation and out-

put gap converge more or less monotonically, while in group 2 the convergence is

oscillatory.

Hence, with subjects in the experiment forecasting both inflation and output

gap, a monetary policy that responds aggressively to fluctuations in the inflation

rate stabilizes fluctuations in inflation and output and leads the economy to the

desired outcome.

In order to get more insights into the stabilizing effect of a more aggressive

actual inflation to jump to about 20%.
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Group Inflation Output gap
1a-1 0.3125 0.0052
1a-2 23.3332 0.0071
1a-3 0.4554 0.0052

1a (median) 0.4554 0.0052

1b-1 0.0715 0.0195
1b-2 0.0169 0.0115
1b-3 0.5100 0.0720

1b (median) 0.0715 0.0195

2a-1 3.8972 0.0181
2a-2 3.7661 0.4953
2a-3 6003.1485 35699.2582

2a (median) 3.8972 0.4953

2b-1 0.0160 0.0265
2b-2 0.0437 0.0400
2b-3 0.1977 0.1383

2b (median) 0.0437 0.0400

3a-1 (excl. t=50) 1.2159 0.1073
3b-1 0.4804 0.1865
3b-2 0.4366 0.2256

3b (median) 0.4585 0.2060

Table 2: Average quadratic difference from the REE

monetary policy, Table 2 summarizes, the quadratic distance of inflation and output

gap from its RE fundamental benchmark for all treatments. The table confirms our

earlier graphical observation that a more aggressive Taylor rule stabilizes inflation.

Increasing the Taylor coefficient from 1 to 1.5 leads to more stable inflation by

a factor around 6 in Treatment 1, a factor of 90 in Treatment 2 and a factor of

about 3 in Treatment 3. In contrast to inflation the output gap is not stabilized in

our experimental economy where the central bank sets the interest rate responding

only to inflation.
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3 Individual forecasting rules

Estimation of general linear forecasting rules

For each participant we estimated a simple linear prediction rule of the form

πe
j,t+1 = c +

2∑
i=0

αiπ
e
j,t−i +

3∑
i=1

βiπt−i +
3∑

i=1

γiyt−i + μt (3.1)

ye
j,t+1 = c +

2∑
i=0

δiy
e
j,t−i +

3∑
i=1

εiyt−i +
3∑

i=1

ςiπt−i + νt (3.2)

in which πe
j,t+1 and ye

j,t+1 refer to the inflation or output gap forecast of participant

j for period t + 1 (submitted in period t). Prediction rule (3.1) applies to inflation

forecasters and prediction rule (3.2) to output gap forecasters, using both lagged

inflation and lagged output. These prediction rules assume that participants do

not use information with a lag of more than three periods; the regression results

(see below) show that this is generally a reasonable assumption. We allow for a

learning phase, during which participants have not yet fully formed their prediction

rules, by leaving the first 11 periods of the experiment out of the regression sample.

Tables 1 – 7 in Supplementary material show the regression results. Of the 102

participants5 78% submitted predictions that can be described by a linear rule of the

form (3.1) or (3.2) satisfying standard diagnostic tests.6 In all treatments, the most

popular significant regressor is the last available value of the forecasting objective

(πt−1 or yt−1). This is followed in most treatments by either the most recent own

prediction (πe
t or ye

t ) or the second last available forecasting objective (πt−2 or yt−2).

Looking at the estimated coefficients, a remarkable property is that all but one of

the non-zero coefficients with both the last available forecasting objective and the

most recent own prediction are positive suggesting some form of adaptive behavior

(see below). In contrast, a clear majority of the non-zero coefficients of remaining

5The prediction rule specifications (3.1) and (3.2) were applied to all participants except for
those in group 3 of Treatment 2a (see Fig. 4) and group 1 of Treatment 3a (see Fig. 5), which
experienced respectively total economic collapse and a computer crash during the experiment.

6Estimated prediction rules were tested for autocorrelation (Breusch-Godfrey test, 2 lags),
heteroskedasticity (White test, no cross terms) and misspecification (Ramsey RESET test, 1
fitted term). A significance level of 5% was used.
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regressors, excluding the constant, is negative. Averaging over the participants of

all treatments, the number of significant regressors, including the constant, in the

estimated prediction rules is 3.4.

The estimation results indicate that most participants, largely irrespective of

the treatment they are in, use a consistent, linear prediction rule, at least after

a learning phase of 11 periods. What is more, there are clear regularities across

groups and treatments regarding the variables the prediction rules are composed

of and the sign of their coefficients. Specifically, the fact that the two latest obser-

vations of the forecasting objective and the latest own prediction are generally the

most used prediction rule components, implies that these variables are of particular

importance in the prediction rule specification. The relatively low average number

of significant regressors, at 3.4 compared to the 10 potential regressors (including

the constant) in (3.1) and (3.2), means that the other variables are used very little

as input to form predictions. It may therefore be worthwhile to restrict specifica-

tions (3.1) and (3.2) by leaving out these infrequently used regressors. The fact

that the estimated non-zero coefficients for the most recent values of the forecast-

ing objective and the own prediction are almost all positive, while the non-zero

coefficients of the other variables tend to be negative, similarly suggests that the

rule specifications (3.1) and (3.2) are too flexible. Restricting (3.1) and (3.2) along

the lines of these regularities could increase the efficiency of the estimates, as well

as make the estimated rules easier to interpret from a behavioral viewpoint.

Estimation of an anchoring-and-adjustment heuristic

The estimation results of the previous section indicate that the general predic-

tion rules (3.1) and (3.2) can for most participants be restricted without losing

much explanatory power. One way of strongly reducing the number of parameters

while preserving much of the specifications’ flexibility is by fitting an anchoring-

and-adjustment heuristic, (Tversky and Kahneman (1974)), named First-Order
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Heuristic (FOH)7. In the context of our experiment, the FOH has the following

form8:

πe
h,t+1 = α1πt−1 + α2πh,t + (1 − α1 − α2)

1

39

50∑
t=12

πt + α3(πt−1 − πt−2) + μt(3.3)

ye
h,t+1 = γ1yt−1 + γ2yh,t + (1 − γ1 − γ2)

1

39

50∑
t=12

yt + γ3(yt−1 − yt−2) + νt (3.4)

The first three terms in (3.3) and (3.4) are a weighted average of the latest real-

ization of the forecasting objective, the latest own prediction and the forecasting

objective’s sample mean (excluding the learning phase). This weighted average is

the (time varying) “anchor” of the prediction, which is a zeroth order extrapolation

from the available data at period t. The fourth term in (3.3) and (3.4) is a simple

linear, i.e. first order, extrapolation from the two most recent realizations of the

forecasting objective; this term is the “adjustment” or trend extrapolation part of

the heuristic. An advantages of the FOH rule is that it simplifies to well-known

rules-of-thumb for different boundary values of the parameter space. For exam-

ple, the inflation prediction rule (3.3) reduces to Naive Expectations if α1 = 1,

α2 = α3 = 0; it reduces to Adaptive Expectations if α1 + α2 = 1, α3 = 0. Another

special case occurs when α1 = α2 = 0, so that the anchor reduces to the sample

average; we will refer to this case as Fundamentalists, as the sample average is

a proxy of the steady state equilibrium level of inflation or output. In the more

flexible case α1 + α3 = 1, α2 = 0 the anchor is time varying; we will refer to this

case as a learning anchor and adjustment (LAA) rule.

We estimated the FOH rules (3.3) and (3.4) for participants that have a pre-

diction rule of type (3.1) or (3.2) satisfying standard diagnostic tests (see previous

Section), and that are not significantly worse described by a FOH rule than by

7For other applications of the FOH in modeling expectation formation, see Heemeijer,
Hommes, Sonnemans, and Tuinstra (2009) and Heemeijer (2009).

8In the estimation of (3.3) and (3.4) we included the sample mean of inflation resp. output,
which is of course not available to the subjects at the moment of the prediction but acts as a
proxy of the equilibrium level. In the heuristic switching model of section 4 we will use the sample
average of all previous realizations at every point in time, which generally converges quickly to
the sample mean, as an anchor.
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a general linear rule. The second criterion was verified by a Wald test on joint

parameter restriction. It turns out that 59 out of the 102 participants used in the

regression analysis, that is, 58%, pass both criteria. These results are in line with

the findings in Adam (2007) where simple forecast functions that condition on a

single explanatory variable capture subjects’ expectations fairly well. For the par-

ticipants whose forecasting rules can be successfully restricted to a FOH rule, the

estimation results are shown in Tables 8 – 10 in the Supplementary material. Also

indicated in Tables 8 – 10 in the Supplementary material are the rules-of-thumb,

if any, that the estimated FOH rules are equivalent to (again according to Wald

tests). Looking across treatments, the most frequent classifications for the anchors

of the prediction rules are Naive and Adaptive Expectations. However, the anchors

of almost half of the participants with a FOH rule (26 out of 59) are not equivalent

to a well-known rule-of-thumb and are therefore described as “other.” Regarding

the adjustment part of the estimated FOH rules, it is interesting to see that all

participants with a trend extrapolating term in their FOH rules are trend followers,

i.e. the coefficient α3 > 0, ranging from 0.3 to 1.4. More than half of the estimated

FOH rules (31 out of 59) have a trend-following adjustment term.

Figs. 6(a) – 6(d) illustrate the estimation results in the three-dimensional space

(α1, α2, α3). The individual FOH rules are represented by dots in the FOH rule’s

prismatic parameter space. The prisms show concentrations of dots at the regions

corresponding to Naive Expectations (α1 = 1, α2 = α3 = 0), Adaptive Expecta-

tions (α1 + α2 = 1, α3 = 0), or Trend-Following Expectations (α3 > 0), confirming

the classification results above. At the same time, there are substantial differences

between the prisms. In particular, Figs. 6(b) and 6(d) show that almost all par-

ticipants using an FOH rule in Treatments 2a, 2b and 3b have a trend-following

adjustment term, while this is much less frequently the case in Treatments 1a,

1b and 3a (see Figs. 6(a) and 6(c)). Comparing with the experimental results

(Figs. 3 – 5), the presence of trend-following forecasting rules is clearly related

to oscillations in the forecasting objective, which occur more often in Treatments
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(a) (b)

(c) (d)

Figure 6: Estimated coefficient vectors of First-Order Heuristics (FOH) prediction
rules for the participants. The graph on the right of each prism presents a top-down
view of the prism. Top left: dark dots correspond to participants of Treatment
1a; light dots to participants of Treatment 1b. Top right: dark dots correspond to
participants of Treatment 2a; light dots to participants of Treatment 2b. Bottom
left: dark dots correspond to inflation forecasters of Treatment 3a; light dots to
output gap forecasters of Treatment 3a. Bottom right: Dark dots correspond
to inflation forecasters of Treatment 3b; light dots to output gap forecasters of
Treatment 3b.

21



2a, 3a and 3b than in the rest of the experiment. Also, an interesting difference

between Figs. 6(c) and 6(d) is that Fig. 6(c) contains a cluster of dots close to

Naive Expectations, while Fig. 6(d) contains a cluster close to Fundamentalist

Expectations (i.e. predictions equal to the forecasting objective’s sample mean).

Comparing with Fig. 5, it is apparent that the reason for this difference is that

inflation and, to a lesser extent, output gap, do not fully converge in Treatment 3a,

while they do converge in Treatment 3b. This makes a constant anchor such as in

Fundamentalist Expectations more useful in Treatment 3b, and a flexible anchor

such as in Naive Expectations more useful in Treatment 3a.

Graphical evidence for strategy switching

The estimated forecasting rules (3.3) and (3.4) assume a fixed individual predic-

tion rule over the last 40 periods of the experiment. This should be viewed as

an approximate forecasting rule; in reality agents may learn and switch to a dif-

ferent forecasting heuristic. This section presents graphical evidence of switching

behavior. Fig. 7 shows the time series of some individual forecasts together with

the realizations of the variable being forecasted. For every period t we plot the

realized inflation or output gap together with the two period ahead forecast of the

individual. In this way we can graphically infer how the individual prediction uses

the last available observation. For example, if the time series coincide, the subject

is using a naive forecasting strategy.

In Fig. 7(a) (group 2, treatment 3a), subject 2 strongly extrapolates changes

in the output gap in the early stage of the experiment, but starting from period

t = 18 he switches to a much weaker form of trend extrapolation.

In Fig. 7(b) (group 1, treatment 3b), subject 4 switches between various con-

stant predictors for inflation in the first 23 periods of the experimental session. She

is in fact initially experimenting with three predictors, 2% 3% and 5%, and then

switches to a naive forecasting strategy after period 23. In the same experimen-

tal session, Fig. 7(c), participant 6 predicting the output gap is using different
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Figure 7: Individual learning as switching between heuristics. For every
period the subject’s forecast xe

i,t+2 (green) and the variable being forecast xt, with
x = π, y, are reproduced.

trend extrapolation strategies and, in the time interval t = 19, ..., 30, he uses a

constant predictor for the output gap. This group illustrates an important point:

in the same economy individuals forecasting different variables may use different

forecasting strategies.

In Fig. 7(d) group 2, treatment 3b, subject 1 uses a trend following rule in

the initial part of the experiment, i.e. when inflation fluctuates more. However,

when oscillations dampen and inflation converges to the equilibrium level, he uses

a forecasting strategy very close to naive.

A stylized fact that emerges from the investigation of individual experimental
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data is that individual learning has the form of switching from one heuristic to

another9. Anufriev and Hommes (2009) found a similar result analyzing individual

forecasting time series from the asset pricing experiments of Hommes, Sonnemans,

Tuinstra, and van de Velden (2005). Moreover, the fact that different types of ag-

gregate behavior, namely convergence to different (non-fundamental) steady states,

oscillations and dampening oscillations arise, suggest that heterogeneous expecta-

tions play an important role in determining the aggregate outcomes. In the light

of the empirical evidence for heterogeneous expectations and individual switching

behavior, we introduce in the next section a simple model with evolutionary se-

lection between different forecasting heuristics in order to reproduce individual as

well as aggregate experimental data.

4 A heterogeneous expectations model

Anufriev and Hommes (2009) developed a heuristics switching model along the lines

of Brock and Hommes (1997), to explain different price fluctuations in the asset

pricing experiment of Hommes, Sonnemans, Tuinstra, and van de Velden (2005).

The key idea of the model is that the subjects chose between simple heuristics

depending upon their relative past performance. The performance measure of a

forecasting heuristic is based on its absolute forecasting error and it has the same

functional form as the payoff function used in the experiments. More precisely, the

performance measure of heuristic h up to (and including) time t − 1 is given by

Uh,t−1 =
100

1 + |xt−1 − xe
h,t−1|

+ ηUh,t−2,

with x = π, y. The parameter 0 ≤ η ≤ 1 represents the memory, measuring the

relative weight agents give to past errors of heuristic h.

9Direct evidence of switching behavior has been found in the questionnaires submitted at
the end of the experiments, where participants are explicitly asked whether they changed their
forecasting strategies throughout the experiment. About 42% of the participants answered that
they changed forecasting strategy during the experiment.
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Given the performance measure, the impact of rule h is updated according to a

discrete choice model with asynchronous updating

nh,t = δnh,t−1 + (1 − δ)
exp(βUh,t−1)

Zt−1

where Zt−1 =
∑H

h=1 exp(βUh,t−1) is a normalization factor. The asynchronous

updating parameter 0 ≤ δ ≤ 1 measures the inertia in the impact of rule h,

reflecting the fact that not all the participants update their rule in every period or

at the same time. The parameter β ≥ 0 represents the intensity of choice measuring

how sensitive individuals are to differences in heuristics performances.

Our goal is to explain three different observed patterns of inflation and output

in the experiment: convergence to (some) equilibrium level, permanent oscillations

and oscillatory convergence. In order to keep the number of heuristics small, we use

a heterogeneous expectation model with only four forecasting rules. These rules,

summarized in Table 3, were obtained as heuristics describing typical individual

forecasting behavior observed and estimated in our macro experiments. In order

to check the robustness of a heterogeneous expectations model across different set-

tings, we fixed the coefficient values to match the set of heuristics used in Anufriev

and Hommes (2009) to explain asset pricing experiments. In treatment 3 we apply

the same heuristics switching model to both inflation and output forecasting.

Table 3: Set of heuristics

ADA adaptive rule xe
1,t+1 = 0.65xt−1 + 0.35xe

1,t

WTR weak trend-following rule xe
2,t+1 = xt−1 + 0.4(xt−1 − xt−2)

STR strong trend-following rule xe
3,t+1 = xt−1 + 1.3(xt−1 − xt−2)

LAA anchoring and adjustment rule xe
4,t+1 = 0.5(xav

t−1 + xt−1) + (xt−1 − xt−2)
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4.1 50-periods ahead simulations

The model is initialized by two initial values for inflation and output gap, π1, y1,

π2 and y2, and initial weights nh,in, 1 ≤ h ≤ 4. Given the values of inflation

and output gap for periods 1 and 2, the heuristics forecasts can be computed and,

using the initial weights of the heuristics, inflation and output gap for period 3,

π3 and y3, can be computed. Starting from period 4 the evolution according to

the model’s equations is well defined. Once we fix the four forecasting heuristics,

there are three free “learning” parameters left in the model: β, η, and δ. We used

the same set of learning parameters as in Anufriev and Hommes (2009), namely

β = 0.4, η = 0.7, δ = 0.9, and we chose the initial shares of heuristics in such

a way to match the patterns observed in the first few periods of the experiment.

We also experimented with initial values of inflation and output gap close to the

values observed in the first two rounds of the corresponding experimental session.

After some trial-and-error experimentation with different initial conditions we were

able to replicate all three different qualitative patterns observed in the experiment.

For the simulations shown in Fig. 8 we used the same realizations for demand and

supply shocks as in the experiment and we chose the initial conditions as follows:

• treatment 1b, group 1, with convergence to fundamental equilibrium level

initial inflation rates: π1 = 2.5, π2 = 2.5;

initial fractions: n1,in = n4,in = 0.40, n2,in = n3,in = 0.10;

• treatment 2b, group 3, with permanent oscillations

initial inflation: π1 = 2.64, π2 = 2.70 (experimental data);

initial output gap: y1 = −0.20, y2 = −0.42 (experimental data);

initial fractions: n1,in = 0, n2,in = n3,in = 0.20, n4,in = 0.60;

• treatment 3a, group 2, with convergence to a non-fundamental steady state

initial inflation: π1 = 2.4, π2 = 2.0 ;

initial output gap: y1 = 1.8, y2 = 2 ;

initial fractions inflation: n1,in = 0.60, n2,in = 0.05, n3,in = 0.10, n4,in = 0.25
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initial fractions output gap: n1,in = 0.6, n2,in = 0.05, n3,in = 0.15, n4,in = 0.20.

• treatment 3b, group 2, with oscillatory convergence

initial inflation: π1 = 3.98, π2 = 3.72 (experimental data);

initial output gap: y1 = 0.28, y2 = −0.05 (experimental data);

initial fractions inflation: n1,in = 0, n2,in = 0.10, n3,in = 0.40, n4,in = 0.50

initial fractions output gap: n1,in = 0.15, n2,in = 0.20, n3,in = 0.50, n4,in =

0.15.

Fig. 8 shows realizations of inflation and output gap in the experiment together

with the simulated paths using the heuristics switching model10. The model is

able to reproduce qualitatively all three different patterns observed in the exper-

iment, which are, convergence to (some) equilibrium, permanent oscillations and

oscillatory convergence11. As shown in Table 4, the model is also capable to match

some quantitative features of the experimental data, such as the mean and the

variance12.

Table 4: Observed vs simulated moments (50-periods ahead)

Treatment
1b 2b 3a (π) 3a (y) 3b (π) 3b (y)

μ σ2 μ σ2 μ σ2 μ σ2 μ σ2 μ σ2

Obs. 2.19 0.01 2.05 0.18 3.06 0.14 0.29 0.03 2.20 0.23 -0.02 0.23
Sim. 2.15 0.02 2.03 0.17 3.13 0.05 0.24 0.04 2.03 0.22 -0.07 0.33
p 0.06 0.03 0.74 0.71 ∗ ∗ 0.32 0.19 0.01 0.67 0.50 0.05

∗ = Non stationarity.
The row corresponding to p reports p-values of tests on the equality of observed and simulated
mean and on the equality of observed and simulated variance (HAC Consistent covariance esti-
mators (Newey-West) have been used to compute standard errors).

10Treatment 3a group 2 has been simulated for 49 periods due to a clear ending effect, see
footnote 4.

11We reported only simulations for some representative experimental economies which account
for the three different aggregate behaviors observed in the experiment. Results for experimental
economies with analogous qualitative behavior are similar.

12We performed the tests on the equality of observed and simulated mean and variance on a
sample that goes from period 4 to the end of the experimental session in order to minimize the
impact of the initial conditions.
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Figure 8: Experimental data (blue points) and 50-periods ahead heuristics
switching model simulations (red lines)
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4.2 One-period ahead simulations

The 50-period ahead simulations fix initial states and then predicts inflation and

output patterns 50-periods ahead. We now report the results of one-step ahead

simulations of the nonlinear switching model. At each time step, the simulated

path uses experimental data as inputs to compute the heuristics’ forecasts and up-

date their impacts. Hence, the one-period ahead simulations use exactly the same

information as the subjects in the experiments. The one-period ahead simulations

match the different patterns in the experimental data quite nicely. Fig. 9 compares

the experimental data with the one-step ahead predictions made by our model,

using the benchmark parameter values β = 0.4, η = 0.7, δ = 0.9. In these simu-

lations initial inflation and output gap initial inflation and output gap in the first

two periods are taken from the corresponding experimental group, while the initial

impacts of all heuristics are equal to 0.25.

Fig. 10 shows how in different groups different heuristics are taking the lead

after starting from a uniform distribution. In treatment 1b group 1 (Fig. 10(a)),

the initial drop in inflation, from 3.1 to 1.9 respectively in periods 1 and 2, causes

an overshooting in the predictions of the trend extrapolating rules, i.e. WTF, STF

and LAA, for inflation in period 3. Therefore the relative impacts of these rules

starts to drop, while the relative share of adaptive expectations ADA increases

to about 70% in the first 14 periods. From period 14 on, the share of the WTF

rule increases due to some slow oscillation, and it reaches a peak of about 48%

in period 33. During this time span of slow oscillations the fraction of the ADA

rule decreases to about 30%. However, in the last part of the experiment inflation

stabilizes and the ADA rule dominates the other rules. In group 3 treatment

2b (Fig. 10(b)) we clearly observe that the ADA rule is not able to match the

oscillatory pattern and its impact declines monotonically in the simulation. The

STF rule can follow the oscillatory pattern and initially dominates (almost 40% in

period 8) but its predictions overshoot the trend in realized inflation reverses, and

its relative share declines monotonically from period 9 on. Both the WTF and the
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Figure 9: Experimental data (blue points) and one-period ahead heuristics
switching model simulations (red lines)
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Figure 10: Evolution of fractions of 4 heuristics corresponding to one-period ahead
simulations in Fig. 9: adaptive expectations (ADA, blue), weak trend follower
(WTF, red), strong trend follower (STF, black), anchoring and adjustment heuris-
tics (LAA, green).
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LAA rule can follow closely the observed oscillations, but in the last part of the

experiment the LAA rule dominates the other rules. As in the quite different setting

of the asset pricing experiments in Anufriev and Hommes (2009), our simulation

explains oscillatory behavior by coordination on the LAA rule by most subjects.

In the early stage of treatment 3a, group 2 (Fig. 10(c)), the oscillations in inflation

are relatively small and therefore the WTF rule is able to match the oscillatory

pattern; also the ADA rule performs reasonably well, while both the STF and

LAA rules overshoot too often. Then inflation undergoes a more turbulent phase

with stronger oscillations starting in period 24 and the impact of the strong trend

following rule increases and reaches a peak of about 30% in period 35. At the same

time, when inflation fluctuates the share of the ADA rule declines. In the last part

of the experiment inflation more or less stabilizes and the impact of the WTF rule

declines monotonically, while, the impact of the ADA rule rises from less than 10%

to about 50% in the last 10 periods of the experiment. Interestingly, in the same

economy the story is different for the output gap (10(d)). In fact the dynamics

are characterized by oscillations in the early stage of the experiment which are less

pronounced than the oscillations in the inflation rate. The model then explains the

convergence pattern of output gap with small oscillation by coordination of most

individuals on the ADA rule and a share of WTF that varies between 7% and 25%

throughout the experiment. A novel feature of our heuristics switching model is

that it allows for coordination on different forecasting rules for different aggregate

variable of the same economy. Inflation expectations are dominated by weak trend

followers, causing inflation to slowly drift away to the “wrong” non-fundamental

steady state, while output expectations are dominated by adaptive expectations,

causing output to converge (slowly) to its fundamental steady state level.

For treatment 3b group 2 (Fig. 10(e)), the one step ahead forecast exercise

produces a rich evolutionary competition among heuristics. In the initial part of

the experiment, the STF is the only rule able to match the strong decline in the

inflation rate and its share increases to 50% in period 8. However the impact
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of the STF rule starts to decrease after it misses the first turning point. After

the initial phase of strong trend in inflation, the LAA rule does a better job in

predicting the trend reversal and its impact starts to increase, reaching a share

of about 70% in period 18. However oscillations slowly dampen and therefore the

impacts of the ADA rule and the WTF rule starts to rise. Towards the end of

the simulation, when inflation has converged, the ADA rule dominates the other

heuristics. The evolutionary selection dynamics are somewhat different for the

output gap predictors (Fig. 10(f)). In fact, oscillations of the output gap are

more frequent and this implies a relatively bad forecasting performance of the

STF rule that tends to overshoot more often. The switching model explains the

oscillatory behavior of output in the initial phase by coordination on the LAA rule

by most subjects. However, with dampening oscillations the impact of the LAA

rule gradually decreases and the ADA rule starts increasing after period 25 and

dominates in the last 10 periods. Fig. 11 reports the predictions of the participants

in the experiments together with the predictions generated by the four heuristics,

while Table 5 compares observed and simulated moments13.

Table 5: Observed vs simulated moments (one-period ahead)

Treatment
1b 2b 3a (π) 3a (y) 3b (π) 3b (y)

μ σ2 μ σ2 μ σ2 μ σ2 μ σ2 μ σ2

Obs. 2.19 0.01 2.05 0.18 3.06 0.14 0.29 0.03 2.20 0.23 -0.02 0.23
Sim. 2.17 0.01 2.05 0.16 3.08 0.14 0.25 0.04 2.21 0.32 -0.09 0.40
p 0.02 0.86 0.83 0.16 0.24 0.78 0.01 0.15 0.60 0.05 0.03 0.01

The row corresponding to p reports p-values of tests on the equality of observed and simulated
mean and on the equality of observed and simulated variance (HAC Consistent covariance esti-
mators (Newey-West) have been used to compute standard errors).

13We performed tests on the equality of observed and simulated mean and variance on a sample
that goes from period 4 to the end of the experimental session in order to minimize the impact
of initial conditions.
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Figure 11: Left panels: predictions of the participants in the experiment. Right
panels: predictions of the four heuristics.
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Forecasting performance

Table 6 compares the MSE of the one-step ahead prediction in 10 experimental

groups14 for 9 different models: the rational expectation prediction (RE), six ho-

mogeneous expectations models (naive expectations, fixed anchor and adjustment

(AA) rule15, and each of the four heuristics of the switching model), the switching

model with benchmark parameters β = 0.4, η = 0.7, and δ = 0.9, and the ”best”

switching model fitted by means of a grid search in the parameters space. The

MSEs for the benchmark switching model are shown in bold and, for comparison,

for each group the MSEs for the best among the four heuristics are also shown in

bold. The best among all models for each group is shown in italic16. We notice im-

mediately that the RE prediction is (almost) always the worst. It also appears that

the evolutionary learning model is able to make the best out of different heuristics.

In fact, none of the homogeneous expectations models fits all different observed

patterns, while the best fit switching model yields the lowest MSE in 9/1517 cases,

being the second best, with only a slightly larger MSE compared to the best model,

in the other cases (with the exceptions of group 1 in treatment 2a and groups 2

and 3 in treatment 3a). Notice also that the benchmark switching model typically

is almost as good as the best switching model, indicating that the results are not

very sensitive to the learning parameters.

14The MSE of the one-step ahead prediction for the remaining groups is reported in the Sup-
plementary material, Table 11

15In the AA rule we consider the full sample mean, which is a proxy of the equilibrium level,
as an anchor. In the LAA rule instead we use the sample average of all the previous realizations
that are available at every point in time as an anchor.

16We evaluate the MSE over 47 periods, for t = 4, ..., 50. This minimizes the impact of initial
conditions for the switching model in the sense that t = 4 is the first period when the prediction
is computed with both the heuristics forecasts and the heuristics impacts being updated on the
basis of experimental data.

17We excluded treatment 1a, group 2 and did not fit the heuristics switching model because of
the anomalous observed behavior.
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Out-of-sample forecasting

In order to evaluate the out-of-sample forecasting performance of the model, we

first perform a grid search to find the parameters of the model minimizing the MSE

for a restricted sample, i.e. for periods t = 4, ..., 43. Then, the squared forecasting

errors are computed for the next 7 periods. The results are shown in Table 7 and

in the Supplementary material, Table 12. Finally, we compare the out-of-sample

forecasting performance of the structural heuristics switching model (both the best

fit and the model with benchmark parameters) with a simple non-structural AR(2)

model with three parameters. Notice that, for treatment 3 we use different AR(2)

models for inflation and output gap, so that we have in fact 6 parameters for the

AR(2) models in treatment 3.

For the converging groups (treatment 1a groups 1 and 3, treatment 1b groups

1 and 2, treatment 2a group 1, treatment 2b groups 1 and 2, treatment 3a groups

1 and 2, treatment 3b group 1) we typically observe that the squared prediction

errors remain very low and comparable with the MSEs computed in-sample. This

is due to the fact that the qualitative behavior of the data does not change in the

last periods. For the groups that exhibit oscillatory behavior (treatment 1b group

3, treatment 2a, groups 2 and 3, treatment 2b group 3) the out-of-sample errors are

larger than the in-sample MSEs, and they typically increase with the time horizon

of the prediction. When we instead observe dampening oscillations (treatment

3b, group 2), the out-of-sample prediction errors are smaller than the in-sample

MSEs. This is due to the fact that, towards the end of the experimental session,

convergence is observed. Comparing the out-of-sample forecasting performance, we

conclude that the benchmark switching model generally does not perform worse

(sometimes even better) than the best in-sample fitted switching model. Compared

to the non-structural AR(2) model, the switching model on average performs better.

In particular, for treatment 3 the benchmark switching model as well as the 3-

parameter best-fit switching model perform better than the AR(2) models with 6

parameters.
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5 Conclusions

In this paper we use laboratory experiments with human subjects to study indi-

vidual expectations, their interactions and the aggregate behavior they co-create

within a New Keynesian macroeconomic setup. A novel feature of our experimental

design is that realizations of aggregate variables depend on individual forecasts of

two different variables, output gap and inflation. We find that individuals tend to

base their predictions on past observations, following simple forecasting heuristics,

and individual learning takes the form of switching from one heuristic to another.

We propose a simple model of evolutionary selection among forecasting rules based

on past performance in order to explain the different aggregate outcomes observed

in the laboratory experiments, namely convergence to some equilibrium level, per-

sistent oscillatory behavior and oscillatory convergence. Our model is the first to

describe aggregate behavior in an economy with heterogeneous individual expec-

tations on two different variables. Simulations of the heuristics switching model

show that the model is able to match individual forecasting behavior and nicely

reproduce the different observed patterns of aggregate variables. A distinguish-

ing feature of our heterogeneous expectations model is that evolutionary selection

may lead to different dominating forecasting rules for different variables within

the same economy (see Figs. 10(c) and 10(d) where a weak trend following rule

dominates inflation forecasting while adaptive expectations dominate output fore-

casting). We also perform an exercise of empirical validation on the experimental

data to test the model’s performance in terms of in-sample forecasting as well as

out-of-sample predicting power. Our results show that the heterogeneous expec-

tations model outperforms models with homogeneous expectations, including the

rational expectations benchmark. On the policy side we find that the implementa-

tion of a monetary policy that reacts aggressively to deviations of inflation from the

target leads the economy to the desired target, at least in the long run. In the short

run, however, oscillations in inflation and output may arise due to coordination of
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individual expectations on trend following rules.
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