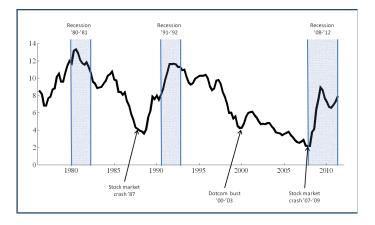
Saving on a Rainy Day, Borrowing for a Rainy Day

Sule Alan¹² Thomas Crossley¹²³ Hamish Low²³

Paper at:http://www.ifs.org.uk/wps/wp1211.pdf


¹Koc University ²University of Cambridge ³Institute for Fiscal Studies

25 October 2012

イロト 不得下 イヨト イヨト

- What does a recession imply for different households?
 - Effect on income only part of the story
 - Increased uncertainty (unemployment, asset prices)
 - Contractions in supply of credit
- How do households respond?

Motivation: Savings Rates Over Time

• Spike in saving: consumption not smoothed, fall in borrowing

イロト イヨト イヨト イヨト

Motivation

- PIH: consume a permanent income change and annuity value of a transitory income change:
 - ► Transitory income loss → saving level and rate both fall
 - ▶ Permanent income loss → no change in savings level; denominator effect leads to rate rise

(日) (同) (三) (三)

Motivation

- PIH: consume a permanent income change and annuity value of a transitory income change:
 - ► Transitory income loss —→ saving level and rate both fall
 - ▶ Permanent income loss → no change in savings level; denominator effect leads to rate rise
- Model saving during booms and recessions in a life-cycle model with stable preferences
- Distinguish effects of different types of recession

Motivation: What is a Recession?

Aggregate shock to income (permanent or transitory)

Q Rise in uncertainty

- idiosyncratic risk rises in recessions (Carroll, 1992)
- variance of highly persistent shocks rises (Blundell, Low and Preston, 2011)

Oredit crisis

- rationing credit raises aggregate saving? Guerrieri and Lorenzoni (2011)
- Mian and Sufi (2009, 2010): over-indebtedness

Wealth destruction

- sharp falls in asset prices rebuilding balance sheets?
- Moore and Palumbo (2011); de Nardi et al (2011)

Outline

- Life-cycle Model of Saving in Recessions
- Oata: Effect of Recessions on Savings Rates
- Model Inputs and Calibration
- Simulated Responses to different types of Recession

Life-cycle Model of Saving

- Standard life-cycle dynamic portfolio allocation model
- Possibility of recession: 2 state Markov process
 - Aggregate income shock
 - Aggregate income shock and idiosyncratic uncertainty higher
 - Aggregate income shock and credit market tightening.
- Possibility of asset crash (whether in a recession or not)

Life-cycle Model of Saving

- Standard life-cycle dynamic portfolio allocation model
- Possibility of recession: 2 state Markov process
 - Aggregate income shock
 - Aggregate income shock and idiosyncratic uncertainty higher
 - Aggregate income shock and credit market tightening.
- Possibility of asset crash (whether in a recession or not)
- Realisation of a recession can occur with or without a crash
- Explicit aggregation from micro to macro

Life-cycle Model of Saving

$$V_t = \max_{c,q,d} E_t \left[\sum_{j=0}^{T-t} eta^j rac{(c_{t+j})^{1-\gamma}}{1-\gamma}
ight]$$

$$c_t + q_t - d_t \le x_t$$

 $x_{t+1} = (1 + r_{t+1}^q)q_t - (1 + r)d_t + y_{t+1}$

- x_t : cash-on-hand at the start of period
- q_t : holding of a risky asset at end of the period
- d_t: debt owed at end of the period
 (d_t < 0 indicates saving in the safe asset)

Life-cycle Model

Recession

• 2 state Markov process:

	Boom $t+1$	Recession $t+1$
Boom <i>t</i>	π	$1-\pi$
Recession t	1- ho	ρ

• Asymmetric process

3 x 3

Image: A math a math

Stochastic Return Process

- Composite Risky Asset
- Excess returns are iid
- Possibility of a crash in the asset price: a return of $-\phi$
- Probability of a crash is p_R in a recession, p_B in a boom, $p_R > p_B$.

< 67 ▶

Income Process

 Y_{iat} : stochastic labour income for individual *i* age *a* in period *t*:

$$\ln Y_{iat} = \ln Y_{iat}^{P} + \lambda D_t + u_{iat}, \qquad \qquad u_{iat} \sim N(0, \sigma_u^2)$$

$$\ln Y_{iat}^{P} = \ln Y_{iat-1}^{P} + f(age) + \theta D_t + \eta_{iat} \qquad \qquad \eta_{iat} \sim N(0, \sigma_{\eta,t}^2)$$

- $\lambda~$: transitory effect of a recession
- $\theta~$: permanent effect of a recession

$$\Delta \ln Y_{\textit{iat}} = f\left(\textit{age}
ight) + heta D_t + \lambda \Delta D_t + \eta_{\textit{iat}} + \Delta u_{\textit{iat}}$$

- 4 同 6 4 日 6 4 日 6

Life-cycle Model Variance Shock Recession

 How does the variance of permanent and transitory idiosyncratic shocks (η_{iat} and u_{iat}) evolve over the business cycle?

$$\begin{array}{lll} \eta_{it} & \sim & \mathit{N}(0,\sigma_{\eta,B}^2) & \text{ in boom} \\ \eta_{it} & \sim & \mathit{N}(0,\sigma_{\eta,R}^2) & \text{ in recession} \end{array}$$

• Focus on increase in permanent variance in recessions (Blundell, Low, Preston, 2011)

Alternative Credit Constraints

- Implicit constraint: cannot borrow more than repay with certainty
- **2** Explicit quantity constraint: cannot borrow more than a certain level

 $d_{it} \leq \bar{d}$

< 67 ▶

Alternative Credit Constraints

- Implicit constraint: cannot borrow more than repay with certainty
- **2** Explicit quantity constraint: cannot borrow more than a certain level

$$d_{it} \leq \bar{d}$$

Second se

$$d_{it} < 3Y_{it}$$

Flow constraint: cannot increase the stock of debt (have to repay interest):

$$d_{it} \leq d_{it-1}$$
 if $d_{it} > 0$

Alternative Credit Constraints

- Implicit constraint: cannot borrow more than repay with certainty
- **2** Explicit quantity constraint: cannot borrow more than a certain level

$$d_{it} \leq \bar{d}$$

Second se

$$d_{it} < 3Y_{it}$$

Flow constraint: cannot increase the stock of debt (have to repay interest):

$$d_{it} \leq d_{it-1}$$
 if $d_{it} > 0$

• Credit Supply Shock Recession: flow constraint comes into place.

< 17 >

Precautionary Borrowing

First-order condition w.r.t. d_t

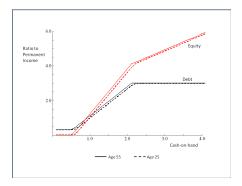
$$u_c(x_t + d_t - q_t) = \beta E_t \left[(1+r) \frac{\partial V_{t+1}}{\partial x_{t+1}} - \frac{\partial V_{t+1}}{\partial d_t} \right]$$

 Borrow in period t because of possibility that need debt in period t+1: borrowing for a rainy day

< 4 → <

Precautionary Borrowing

First-order condition $w.r.t. d_t$


$$u_c(x_t + d_t - q_t) = \beta E_t \left[(1 + r) \frac{\partial V_{t+1}}{\partial x_{t+1}} - \frac{\partial V_{t+1}}{\partial d_t} \right]$$

- Borrow in period t because of possibility that need debt in period t+1: borrowing for a rainy day
- Option value of holding debt: $\frac{\partial V_{t+1}}{\partial d_t} > 0$

... but $rac{\partial V_{t+1}}{\partial x_{t+1}}$ higher because of presence of constraint in t+1


- Both precautionary borrowing and precautionary saving motives are present:
 - consumption in t could be lower or higher

Solution Without Flow Credit Constraint

- Two motives for borrowing.
- As cash-on-hand rises: desire to leverage and buy risky asset
- Contrast with single asset model

Solution With Flow Credit Constraint

• High x : constraint reduces equity investment (increases consumption)

-

- UK micro data (FES) 1976-2010: consumption, income etc
- Recessions: 1980-1981, 1990-1991, 2008-2009
- Micro data: observe individual behaviour
- Synthetic cohort analysis
- Observe young/ middle aged/ old in each recession

Estimates

Saving Rates at Onset: what fraction of cohort income is saved

	Savings Rate	$\Delta Savings$ Rate
$Recession^*$	0.0390 (.0093)	
Recession Onset	0.010 (.012	
Recession Onset $+$ 1	0.03 (.012	• •••==•
Recession Onset $+$ 2	0.05 (.014	
Recession Onset $+$ 3	0.011 (.014	
F-Test (p-value)	4.24 (0.	004) 3.24 (0.0166)

• Same across age groups and across recessions

3

Simulations

- Show calibration
- Show baseline life-cylce profiles: consumption, savings, net worth, leverage
- Simulate behaviour in alternative recessions:
 - Recession occurs and lasts 2 periods:
 - Fall in permanent income
 - Pall in permanent income and variance increase
 - Oredit market constraint tightens in recession
 - Asset price crash occurs at start of the recession
- Effects on different cohorts depending on age at onset (25,40,55)

Inputs into the Model: Income Process

The Effect of Recessions on Income Growth

Constant	0.0294 (.0072)	0.0293 (.0073)	
Age	0.010 (.007)	0.0098 (.0067)	
Age^2	-0.00015 (.00007)	-0.00015 (.00007)	
Permanent: $ heta$	- 0.0317 (.0127)	- 0.0311 (.0154)	
$Transitory:\lambda$		-0.00097 (.0150)	

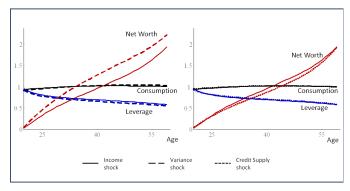
• Permanet effect only: consistent with lack of consumption smoothing.

• Effect same across age and across recessions.

イロト 不得下 イヨト イヨト 二日

Calibration Parameter Values

$\delta=$ 0.07	discount rate
$\gamma=$ 2.0	coefficient of relative risk aversion
$\sigma_{n,B} = 0.1$	permanent shock in boom
$\sigma_{n,R} = 0.15$	permanent shock in recession
$p_{B} = 0.02$	probability of a crash in boom
$p_{R} = 0.04$	probability of a crash in recession
$\phi=15\%$	size of crash in risky asset
$\sigma_{arepsilon}=$ 0.076	standard deviation of return on risky asset
$\mu = 0.035$	mean return on risky asset
r = 0.02	interest rate
~ 0.00	comparate equalment many white water

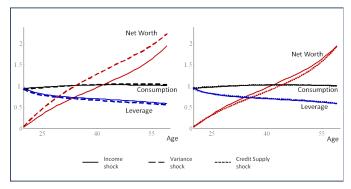

g = 0.02 corporate earnings growth rate

3

(日) (同) (三) (三)

Baseline

No realised recession or crash

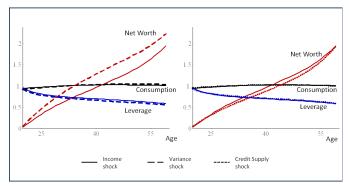


3

<ロ> (日) (日) (日) (日) (日)

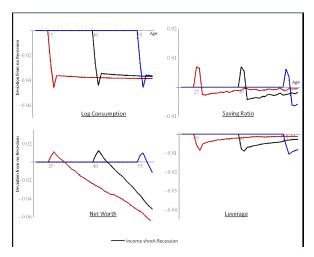
Baseline

No realised recession or crash

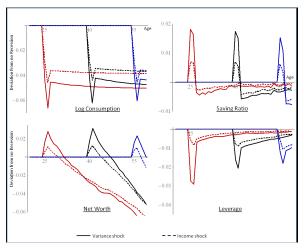


• Variance shock: consumption growth faster, more accumulation, less leverage

(人間) トイヨト イヨト

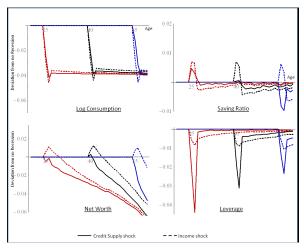

Baseline

No realised recession or crash


- Variance shock: consumption growth faster, more accumulation, less leverage
- Credit supply shock: consumption growth slower, less accumulation, more leverage:
 - precautionary borrowing offsetting precautionary saving

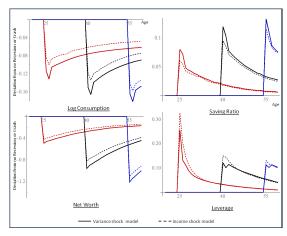
Simulations: Income Shock Recession

- Overshooting of consumption and saving (at all ages)
- Uncertainty about duration of recession


Simulations: Variance Shock Recession

- Greater overshooting of consumption and saving (at all ages)
- Sharp deleveraging.
- Over half of saving spike explained.

Alan, Crossley and Low (Cambridge)


Simulations: Credit Supply Shock Recession

- Consumption falls less because of precautionary borrowing motive
- Saving spike *lower* than income shock recession.
- Saving falls in recession for the old

Alan, Crossley and Low (Cambridge)

Simulations: Asset Market Crash in a Recession

- Direct wealth loss large because of leveraged positions
- Savings rate high, and remains high, especially for old
- Debt remains and deleveraging needed reduction is gradual

• Data: saving rates are greater on a rainy day

- spikes up after onset of recession, then falls back after 2 years
- across recessions and across age groups
- Recession modelled as:
 - permanent fall in income
 - increased uncertainty
 - constraint on flow credit
 - alongside asset market crash

- Recession as a permanent fall in income has some effect on savings rate (a quarter of the observed rise)
- Contraction in supply of new credit
 - Ex ante: generates borrowing for a rainy day
 - Ex post:
 - \star only a small increase in savings rate for the young in recessions
 - \star fall in savings rate for the old

- Recession as a permanent fall in income has some effect on savings rate (a quarter of the observed rise)
- Contraction in supply of new credit
 - Ex ante: generates borrowing for a rainy day
 - Ex post:
 - * only a small increase in savings rate for the young in recessions
 - \star fall in savings rate for the old
- Asset price fall matters especially for older households
 - High savings rate persists, slow to unwind leveraged positions.

- Recession as a permanent fall in income has some effect on savings rate (a quarter of the observed rise)
- Contraction in supply of new credit
 - Ex ante: generates borrowing for a rainy day
 - Ex post:
 - ★ only a small increase in savings rate for the young in recessions
 - ★ fall in savings rate for the old
- Asset price fall matters especially for older households
 - High savings rate persists, slow to unwind leveraged positions.
- Preferred explanation:
 - Permanent fall in income and rise in uncertainty:
 - \star generates rise in savings in recessions and then fall at end of recession

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

 \star generates observed patterns across life-cycle