Subjective Housing Beliefs, Falling Natural Rates and the Optimal Inflation Target

Klaus Adam Oliver Pfaeuti Timo Reinelt
University of Mannheim & CEPR

November 2022

- Subjective beliefs an important contributor to HP fluctuations
 Kaplan, Mitman Violante (2020), Piazzesi and Schneider (2009)
- Housing price beliefs deviate from Full Info RE:
 Case, Shiller & Thompson (2012), Armona, Fuster & Zafar (2018),
 Kuchler & Zafar (2019)

- Subjective beliefs an important contributor to HP fluctuations
 Kaplan, Mitman Violante (2020), Piazzesi and Schneider (2009)
- Housing price beliefs deviate from Full Info RE:
 Case, Shiller & Thompson (2012), Armona, Fuster & Zafar (2018), Kuchler & Zafar (2019)
- Goal of present paper:

- Subjective beliefs an important contributor to HP fluctuations
 Kaplan, Mitman Violante (2020), Piazzesi and Schneider (2009)
- Housing price beliefs deviate from Full Info RE:
 Case, Shiller & Thompson (2012), Armona, Fuster & Zafar (2018),
 Kuchler & Zafar (2019)
- Goal of present paper:
 - Build quantitatively credible equilibrium model of belief deviations & housing price behavior

- Subjective beliefs an important contributor to HP fluctuations
 Kaplan, Mitman Violante (2020), Piazzesi and Schneider (2009)
- Housing price beliefs deviate from Full Info RE:
 Case, Shiller & Thompson (2012), Armona, Fuster & Zafar (2018),
 Kuchler & Zafar (2019)
- Goal of present paper:
 - Build quantitatively credible equilibrium model of belief deviations & housing price behavior
 - Understand monetary policy implications of subj. HP beliefs

- Households' subjective housing beliefs in Michigan survey data:
 - capital gain beliefs revised too sluggishly (by a factor 3 4)
 - beliefs initially undershoot, followed by delayed overshooting
 - exp. capital gain procyclical, actual gains countercyclical (NEW)

- Households' subjective housing beliefs in Michigan survey data:
 - capital gain beliefs revised too sluggishly (by a factor 3 4)
 - beliefs initially undershoot, followed by delayed overshooting
 - exp. capital gain procyclical, actual gains countercyclical (NEW)
- Simple model featuring (weak) capital gain extrapolation replicates
 - housing price behavior: large & persistent swings
 - observed patterns of beliefs deviations (quantitatively!)

Insert capital gain extrapolation into

• MP model with housing sector & lower bound constraint

- MP model with housing sector & lower bound constraint
- Housholds & firms internally rational (Adam & Marcet (2011)):
 maximize holding dynamically consistent (subjective) beliefs

- MP model with housing sector & lower bound constraint
- Housholds & firms internally rational (Adam & Marcet (2011)):
 maximize holding dynamically consistent (subjective) beliefs
- Beliefs again replicate deviations from rat. HP exp. & HP behavior

- MP model with housing sector & lower bound constraint
- Housholds & firms internally rational (Adam & Marcet (2011)):
 maximize holding dynamically consistent (subjective) beliefs
- Beliefs again replicate deviations from rat. HP exp. & HP behavior
- MP affects housing demand (more than non-housing demand)
 but MP cannot manipulate/exploit subj. HH beliefs

- MP model with housing sector & lower bound constraint
- Housholds & firms internally rational (Adam & Marcet (2011)):
 maximize holding dynamically consistent (subjective) beliefs
- Beliefs again replicate deviations from rat. HP exp. & HP behavior
- MP affects housing demand (more than non-housing demand)
 but MP cannot manipulate/exploit subj. HH beliefs
- Ramsey optimal MP

- In line with data: larger housing price fluctuations
 - => belief-driven housing price fluctuations amplified (absent under RE)

- In line with data: larger housing price fluctuations
 - => belief-driven housing price fluctuations amplified (absent under RE)
- More volatile housing prices => more volatile natural rates

- In line with data: larger housing price fluctuations
 - => belief-driven housing price fluctuations amplified (absent under RE)
- More volatile housing prices => more volatile natural rates
- To keep output gap stable: MP has to work against fluctuations in housing construction (driven by belief-driven price fluctuations)

- In line with data: larger housing price fluctuations
 belief-driven housing price fluctuations amplified (absent under RE)
- More volatile housing prices => more volatile natural rates
- To keep output gap stable: MP has to work against fluctuations in housing construction (driven by belief-driven price fluctuations)
- Lower bound constraint more relevant: average inflation \Uparrow under Ramsey optimal MP: 1% \Uparrow for 3% \Downarrow

- In line with data: larger housing price fluctuations
 belief-driven housing price fluctuations amplified (absent under RE)
- More volatile housing prices => more volatile natural rates
- To keep output gap stable: MP has to work against fluctuations in housing construction (driven by belief-driven price fluctuations)
- Lower bound constraint more relevant:
 average inflation ↑ under Ramsey optimal MP: 1% ↑ for 3% ↓
- Inflation effect absent with rat. HP expectations:
 Subj. housing beliefs quant. important for Ramsey optimal MP

Structure of Talk

- Deviations from rational HP expectations in survey data
- Simple housing model: quantitative match
- Full monetary policy model & policy implications

Subjective Housing Beliefs: Data

- Survey of Consumers, University of Michigan (2007 2021)
- 1-year-ahead house price expectations
- Use mean and median expectations
- Case/Shiller Price Index for actual house prices

Subjective Housing Beliefs: Sluggish Updating

• Following Coibion & Gorodnichenko (2015):

$$q_{t+4} - E_{t}^{\mathcal{P}}\left[q_{t+4}\right] = \mathsf{a}^{\mathsf{CG}} + \mathsf{b}^{\mathsf{CG}} \cdot \left(E_{t}^{\mathcal{P}}\left[q_{t+4}\right] - E_{t-1}^{\mathcal{P}}\left[q_{t+3}\right]\right) + \varepsilon_{t}.$$

where q_t is nominal/real housing price.

Under FIRE $b^{CG} = 0$, but find $b^{CG} > 0$

Subjective Housing Beliefs: Sluggish Updating

Table:

	Mean Expectations	Median Expectations
Nominal HP	'	·
\widehat{b}^{CG}	2.22***	2.85***
	(0.507)	(0.513)
Real HP		
\widehat{b}^{CG}	2.00***	2.47***
	(0.332)	(0.366)

Subjective Housing Beliefs: Wrong Cyclicality

Following Adam, Marcet & Beutel (2017):

$$E_t^{\mathcal{P}}\left[\frac{q_{t+4}}{q_t}\right] = a + c \cdot PR_{t-1} + u_t \tag{1}$$

$$\frac{q_{t+4}}{q_t} = \mathbf{a} + \mathbf{c} \cdot PR_{t-1} + \mathbf{u}_t. \tag{2}$$

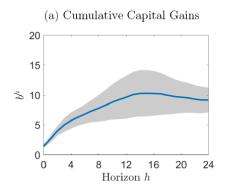
- With FIRE: $H_0: c = \mathbf{c}$
- We find c > 0 and c < 0

Subjective Housing Beliefs: Wrong Cyclicality

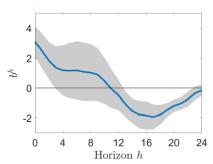
Table:

	·	·	p -value $H_0: c = c$
	ĉ (in %)	ĉ (in %)	(small sample corrected)
Nominal HP			
Mean	0.033	-0.102	0.000
	(800.0)	(0.007)	
Median	0.014	-0.102	0.000
	(0.001)	(0.007)	
Real HP			
Mean	0.030	-0.113	0.000
	(0.017)	(0.009)	
Median	0.010	-0.113	0.000
	(0.004)	(0.009)	

Subj. Beliefs: Underreaction & Delayed Overshooting


Local projections of the form

$$X_{t+h} = a^h + b^h \cdot \frac{q_{t-1}}{q_{t-2}} + u_t^h, \tag{3}$$


For I.h.s. variable X_{t+h} we consider:

- ullet cumulative housing capital gain q_{t+h}/q_{t+1}
- ullet 1-year ahead forecast error, $q_{t+h+4}/q_{t+h}-E_{t+h}^{\mathcal{P}}[q_{t+h+4}/q_{t+h}]$

Subj. Beliefs: Underreaction & Delayed Overshooting

(b) Capital Gain Forecast Errors

Structure of Talk

- Deviations from rational HP expectations in survey data
- Simple housing model: quantitative match
- Full monetary policy model & policy implications

Simple Model of Subj. Housing Beliefs

(Risk-neutral) household:

$$\max_{\left\{C_t \geq 0, D^{\max} \geq D_t \geq 0, D_t^R \geq 0\right\}_{t=0}^{\infty}} \quad E_t^{\mathcal{P}} \sum_{t=0}^{\infty} \beta^t \left[C_t + \xi_t^{d} \left(D_t + D_t^R\right)\right]$$

s.t. :
$$C_t + (D_t - (1 - \delta)D_{t-1}) q_t + R_t D_t^R = Y_t$$
 for all $t \ge 0$,

Two first-order conditions:

$$R_t = \xi_t^D$$

$$q_t = \xi_t^D + \beta(1 - \delta)E_t^{\mathcal{P}}q_{t+1}$$

Capital Gain Extrapolation form Bayesian Learning

Households perceive capital gains to evolve as

$$\frac{q_t}{q_{t-1}} = b_t + \varepsilon_t$$

with

$$b_t = b_{t-1} + \nu_t$$

Capital Gain Extrapolation form Bayesian Learning

Households perceive capital gains to evolve as

$$\frac{q_t}{q_{t-1}} = b_t + \varepsilon_t$$

with

$$b_t = b_{t-1} + \nu_t$$

With conjugate prior beliefs, it follows:

$$E_t^{\mathcal{P}}\left[rac{q_{t+1}}{q_t}
ight]\equiveta_t$$

where

$$\boldsymbol{\beta}_{t} = \min \left\{ \boldsymbol{\beta}_{t-1} + \frac{1}{\alpha} \left(\frac{q_{t-1}}{q_{t-2}} - \boldsymbol{\beta}_{t-1} \right), \boldsymbol{\beta}^{U} \right\}$$

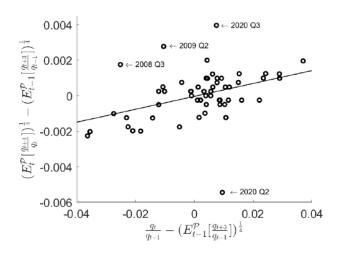
Capital Gain Extrapolation form Bayesian Learning

Households perceive capital gains to evolve as

$$\frac{q_t}{q_{t-1}} = b_t + \varepsilon_t$$

with

$$b_t = b_{t-1} + \nu_t$$


With conjugate prior beliefs, it follows:

$$E_t^{\mathcal{P}}\left[rac{q_{t+1}}{q_t}
ight]\equiveta_t$$

where

$$\boldsymbol{\beta}_{t} = \min \left\{ \boldsymbol{\beta}_{t-1} + \frac{1}{\alpha} \left(\frac{q_{t-1}}{q_{t-2}} - \boldsymbol{\beta}_{t-1} \right), \boldsymbol{\beta}^{U} \right\}$$

Capital Gain Extrapolation in Survey Data

Equilibrium Housing Price

The equilibrium house price is given by

$$q_t = rac{1}{1-eta(1-\delta)oldsymbol{eta}_t} oldsymbol{\xi}_t^D$$

ullet driven by fundamental shocks $oldsymbol{\xi}_t^D$ and subjective beliefs $oldsymbol{eta}_t$

Equilibrium Housing Price

The equilibrium house price is given by

$$q_t = rac{1}{1-oldsymbol{eta}(1-\delta)oldsymbol{eta}_t} oldsymbol{\xi}_t^D$$

- ullet driven by fundamental shocks $oldsymbol{\xi}_t^D$ and subjective beliefs $oldsymbol{eta}_t$
- lower natural rate/higher $\beta =>$ more volatile house prices

Equilibrium Housing Price

The equilibrium house price is given by

$$q_t = rac{1}{1-eta(1-\delta)oldsymbol{eta}_t} oldsymbol{\xi}_t^D$$

- ullet driven by fundamental shocks $oldsymbol{\xi}_t^D$ and subjective beliefs $oldsymbol{eta}_t$
- lower natural rate/higher $\beta =>$ more volatile house prices
- Simple model gets very far in terms of quantitatively matching
- forecast error patterns
- housing price behavior:

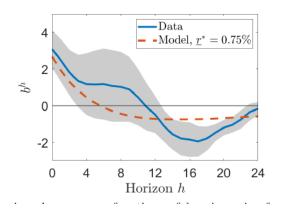
Quantitative Performance: Housing Prices

Simple Calibration:

- $\delta = 0.03/4$ and $\rho_{\xi} = 0.99$ from Adam & Woodford (2021)
- $\frac{1}{\alpha} = 0.007$ from Adam et al. (2016) for stock prices and β^U to match maximum value of PR
- eta to match average natural rate of 0.75% and $\sigma_{\tilde{\xi}}^2$ to match PR volatility

Quantitative Performance: Housing Prices

	Data	Subjective Belief Model
$std(PR_t)$	8.6	8.6
$corr(PR_t, PR_{t-1})$	0.99	0.99
$std(q_t/q_{t-1})$	0.06	0.04
$corr(q_t/q_{t-1},q_{t-1}/q_{t-2})$	0.97	0.94


Quantitative Performance: Housing Prices

	Data	Subjective Belief Model	RE Housing
$std(PR_t)$	8.6	8.6	2.69
$corr(PR_t, PR_{t-1})$	0.99	0.99	0.99
$std(q_t/q_{t-1})$	0.06	0.04	0.003
$corr(q_t/q_{t-1},q_{t-1}/q_{t-2})$	0.97	0.94	-0.01

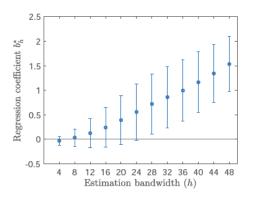
Quantitative Performance: Housing Prices

	Subj.		
	Belief Model	Data	
		Mean	Median
CL : L (G	2.00	1.60	0.10
Sluggishness b ^{CG}	2.09	1.68	2.12
	0.00	(0.355)	(0.394)
exp. cap gain <i>c</i>	0.03	0.030	0.010
		(0.172)	(0.043)
actual cap gain c	-0.063	-0.113	-0.113
		(0.009)	(0.009)

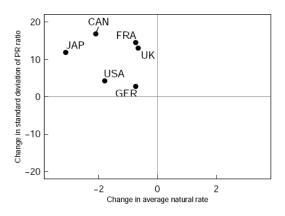
Initial Underreaction & Delayed Overshooting

Lessons Learned from the Simple Model

- Weak extrapolation =>
 - large & persistent housing price swings
 - patterns of expectational deviations
- Subj. belief dynamics important for HP volatility: 2/3 of std(PR)
- Low real/natural interest rates => larger housing price volatility


Housing Price Volatility Natural Rates: Unites States

• Consider local projections of the form


$$Std(PR_{t-\frac{h}{2}}, ..., PR_{t+\frac{h}{2}}) = a_h^* - b_h^* \cdot r_t^* + u_{t,h},$$
 (4)

ullet Coefficient b_h^* has causal interpretation under standard assumptions

Housing Price Volatility Natural Rates: Unites States

Δ PR Vola vs. Δ Natural Rate (Pre-/Post-1990)

Structure of Talk

- Deviations from rational HP expectations in survey data
- Simple housing model: quantitative match
- Full monetary policy model & policy implications

Full Monetary Policy Model

Textbook New Keynesian model

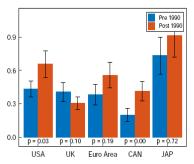
- + housing sector with endogenous housing supply
- + subjective housing price beliefs
- + effective lower bound constraint on nominal rates
- + falling natural rates of interest

Full Monetary Policy Model

Textbook New Keynesian model

- + housing sector with endogenous housing supply
- + subjective housing price beliefs
- + effective lower bound constraint on nominal rates
- + falling natural rates of interest
 - Full model still matches forecast error patterns & HP behavior
 - Study Ramsey optimal monetary policy in this framework
 - Derive closed-form 2nd order approximation of Ramsey problem

Full Monetary Policy Model


New insights generated by the full model:

Lower average levels of the natural rate

- => increased HP fluctuations
- => increased volatility of natural rate
- => lower bound become more stringent than under RE
- => average inflation increases by more as natural rate falls

Rising Std. Deviation of the Natural Rate

Figure 2: Volatility of Natural Rates

Source: Holston et al. (2017) and Fujiwara et al. (2016) (natural rate estimates). The black lines denote the 90%-confidence bands. The reported p-values are for the null hypothesis that volatility has not changed from pre to post 1990.

Optimal Policy with Lower Bound Constraint

$$\max_{\left\{\pi_{t}, y_{t}^{\textit{gap}}, i_{t} \geq \underline{i}\right\}} - E_{0} \sum_{t=0}^{\infty} \beta^{t} \frac{1}{2} \left(\Lambda_{\pi} \pi_{t}^{2} + \Lambda_{y} \left(y_{t}^{\textit{gap}}\right)^{2} + \Lambda_{q} \left(\widehat{\boldsymbol{q}}_{t}^{\textit{u}} - \widehat{\boldsymbol{q}}_{t}^{\textit{u*}}\right)^{2}\right)$$

s.t.:

$$\pi_t = \beta E_t \pi_{t+1} + \kappa_y y_t^{gap} + \underbrace{\kappa_q}_{<0} \left(\widehat{q}_t^u - \widehat{q}_t^{u*} \right) + u_t$$

$$y_t^{gap} = \lim_{T} E_t y_T^{gap} - \varphi E_t \sum_{k=0}^{\infty} \left(i_{t+k} - \pi_{t+1+k} - r_{t+k}^{n,RE} \right)$$

$$-\frac{C_q}{C_Y} \left(\widehat{q}_t^u - \widehat{q}_t^{u*} \right)$$

+Equation(s) determining $(\widehat{q}_t^u - \widehat{q}_t^{u*})$

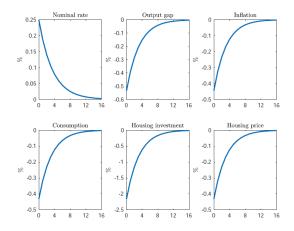
Rational housing expectations: $(\hat{q}_t^u - \hat{q}_t^{u*}) = 0$

Optimal Policy with Lower Bound Constraint

• The natural rate closing the output gap under subjective beliefs

$$r_t^n \equiv r_t^{n,RE} \underbrace{-\frac{1}{\varphi} \frac{C_q}{C_Y}}_{>0} \left(\left(\widehat{q}_t^u - \widehat{q}_t^{u*} \right) - E_t \left(\widehat{q}_{t+1}^u - \widehat{q}_{t+1}^{u*} \right) \right)$$

More volatile housing prices => more volatile natural rate!

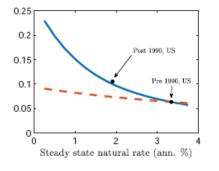

ullet Bayesian learning about housing price in marginal utility units q_t^u

- ullet Bayesian learning about housing price in marginal utility units q_t^u
- Belief dynamics empirically plausibleand theoretically attractive

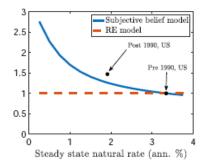
- ullet Bayesian learning about housing price in marginal utility units q_t^u
- Belief dynamics empirically plausibleand theoretically attractive
- Belief dynamics do not depend not on monetary policy:
 Can meaningfully discuss optimal policy design!

- ullet Bayesian learning about housing price in marginal utility units q_t^u
- Belief dynamics empirically plausibleand theoretically attractive
- Belief dynamics do not depend not on monetary policy:
 Can meaningfully discuss optimal policy design!
- At the same time:
 - MP does affect housing demand & housing prices
 - natural rate (& other fundamentals) affect belief dynamics

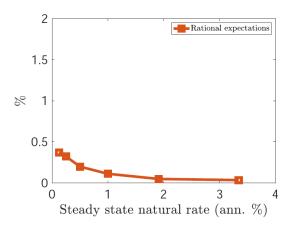
Impulse Response to MP Shock: Calibrated Model

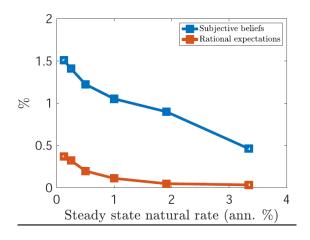


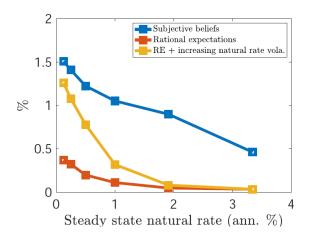
Model Calibration


- Calibrate the model to match the pre-1990
 - (1) average natural rate
 - (2) volatility of the natural rate
 - (3) volatility of price-to-rent ratio
- Do this for the RE model and the Subj. Belief model
- What happens as natural rate falls to post-1990 average (or lower):
 - increase in the discount factor eta
 - may reflect lower steady-state growth

Model: Non-targeted Moments

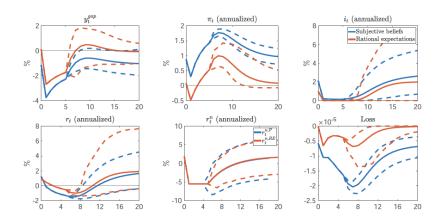

(a) Standard deviation of price-to-rent ratio (relative to corresponding m)ean


(b) Standard deviation of the natural rate relative to case with τ^{n,RE} = 3.34%

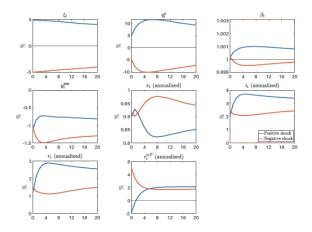

Average Inflation under Optimal Monetary Policy

Average Inflation under Optimal Monetary Policy

Average Inflation under Optimal Monetary Policy

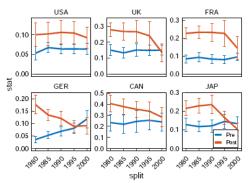

Conclusions

- MP implications of falling natural rates critically depend on the nature of housing price expectations
- Observed forecast errors & housing price behavior is consistent with capital gain extrapolation
- Justifies targeting higher inflation as natural rate falls than under RE
- Alternative approaches:
 - teach HHs how to make more accurate predictions
 - reverse unfavorable macro trends causing fall in average natural rate


Impulse Repsonse Analysis for ZLB Event

- Start economy in period 0 at ergodic mean of state variables
- 6 quarters negative natural rate that puts RE economy to ZLB & no other shocks
- After quarter 6: all shocks move gain according to their stochastic laws of motion
- Show the mean response: average over all path
- Show the 1% and 99% percentile of the response distribution
- Put the same shocks into the subjective belief model

Impulse Repsonse Analysis for ZLB Event



(Asymmetric) Leaning Against Housing Demand Shocks

Std. Deviation of the Price-to-Rent Ratio

(a) Standard Deviation of the Price-to-Rent Ratios for Different Sample Splits.

NK Model with Housing

• Representative HH:

$$\begin{aligned} & \max E_0^{\mathcal{P}} \sum_{t=0}^{\infty} \beta^t \left[\tilde{u}(C_t; \xi_t) - \int_0^1 \tilde{v}(H_t(j); \xi_t) dj + \tilde{\omega}(D_t + D_t^R; \xi_t) \right] \\ & s.t.: \\ & C_t + B_t + \left(D_t - (1 - \delta) D_{t-1} \right) q_t + k_t + R_t D_t^R = \\ & \tilde{d}(k_t; \xi_t) q_t + \int_0^1 w_t(j) H_t(j) dj + \frac{B_{t-1}(1 + i_{t-1})}{\Pi_t} + \frac{\Sigma_t + T_t}{P_t} \end{aligned}$$

ullet : subjective housing price beliefs, otherwise rational beliefs

NK Model with Housing

- Model formulated in terms of growth-detrended variables
- Discount rate β jointly captures:
 - pure time preference rate $\widetilde{eta} \in (exttt{0,1})$
 - the steady-state growth rate g_c of consumption

$$\beta \equiv \widetilde{\beta} \frac{\widetilde{u}_{C}(C(1+g_{c}))}{\widetilde{u}_{C}(C)},$$

- Growth rate g_c falls => discount rate β increases
- ullet Decline in growth & natural rate captured via increase in eta

NK Model with Housing

- Internally rational households & firms (Adam&Marcet (JET, 2011))
- HHs choose $\{C_t, H_t(j), D_t, D_t^R, k_t, B_t\}_{t=0}^{\infty}$ to maximize utility subject to the budget constraints
- Beliefs about variables beyond their control given by \mathcal{P} : $\{P_t, w_t(j), q_t^u, R_t, i_t, \Sigma_t/P_t, T_t/P_t\}$, where
 - $q_t^u \equiv q_t \tilde{u}_C(C; \xi_t)$ is housing price in marginal utility units

NK Model: Household Optimality Conditions

- Set of standard FOCs: labor-leisure choice, cons. Euler EQ
- 3 new optimality conditions:

Optimal housing demand :
$$q_t^u = \xi_t^d + \beta(1-\delta) E_t^{\mathcal{P}} q_{t+1}^u$$

Optimal housing investment:
$$k_t = \left(A_t^d \frac{q_t^u}{q_t^t} \frac{C_t^{\tilde{\sigma}^{-1}}}{C_t^{\tilde{\sigma}^{-1}}}\right) \frac{1}{1-\tilde{\alpha}}$$

Purchase vs. renting margin: $\xi_t^d = R_t \tilde{u}_C(C_t, \xi_t)$

NK Mode: Optimal Price Setting by Firms

- Supply side standard:
 - differentiated goods with Calvo price stickiness $lpha \in (0,1)$
 - Dixit-Stiglitz aggregation
- Standard firm FOCs for optimal reset price: Phillips curve
- New feature: wage/marginal costs depend on housing prices

Structure of Presentation

- New Keynesian model with housing & lower bound constraint
- Optimal policy problem & economic mechanisms

Nonlinear Optimal Policy Problem

$$\max_{\{Y_{t},q_{t}^{u},p_{t}^{*},w_{t}(j),P_{t},\Delta_{t},i_{t}\geq0\}} E_{0} \sum_{t=0}^{\infty} \beta^{t} U(Y_{t},\Delta_{t},q_{t}^{u};\xi_{t})$$

$$\left(\frac{p_{t}^{*}}{P_{t}}\right)^{1+\eta(\phi-1)} = \frac{E_{t}^{\mathcal{P}} \sum_{T=t}^{\infty} (\alpha)^{T-t} Q_{t,T} \frac{\eta \phi w_{T}(j)}{\eta-1} \left(\frac{Y_{T}}{A_{T}}\right)^{\phi} \left(\frac{P_{T}}{P_{t}}\right)^{\eta\phi+1}}{E_{t}^{\mathcal{P}} \sum_{T=t}^{\infty} (\alpha)^{T-t} Q_{t,T} (1-\tau_{T}) Y_{T} \left(\frac{P_{T}}{P_{t}}\right)^{\eta}}$$

$$(P_{t}/P_{t-1})^{\eta-1} = (1-(1-\alpha)(p_{t}^{*}/P_{t})^{1-\eta})/\alpha$$

$$\Delta_{t} = h(\Delta_{t-1}, P_{t}/P_{t-1})$$

$$w_{t}(j) = \lambda \frac{\bar{H}_{t}^{-\nu}}{\bar{C}_{t}^{\sigma-1}} \left(\frac{Y_{t}}{A_{t}}\right)^{\phi\nu} C(Y_{t}, q_{t}^{u}, \xi_{t})^{\tilde{\sigma}^{-1}} \left(\frac{p_{t}^{*}}{P_{t}}\right)^{-\eta\phi\nu}$$

$$\tilde{u}_{C}(C(Y_{t}, q_{t}^{u}, \xi_{t}); \xi_{t}) = \lim_{T \to \infty} E_{t}^{\mathcal{P}} \left[\tilde{u}_{C}(C_{T}; \xi_{T})\beta^{T} \prod_{k=0}^{T-t} \frac{1+i_{t+k}}{P_{t+k+1}/P_{t+k}}\right]$$

$$q_{t}^{u} = \xi_{t}^{d} + \beta(1-\delta)E_{t}^{\mathcal{P}} q_{t+1}^{u}$$

Optimal Policy with Lower Bound Constraint

• Can derive insightful LQ approx. to nonlinear policy problem

Helps understanding stabilization trade-offs for output & inflation

Model Calibration

Parameter	Value	Source/Target			
	Preferences and technology				
β	0.9917	Average U.S. natural rate pre 1990			
φ	1	Adam and Billi (2006)			
κ_y	0.057	Adam and Billi (2006)			
A _v	0.007	Adam and Billi (2006)			
κ_q	-0.0023	Adam and Woodford (2020)			
$\frac{\Lambda_{v}}{\Lambda_{\pi}}$ κ_{q} $\frac{C_{q}}{C_{X}}$ s^{d} δ	-0.29633	Adam and Woodford (2020)			
s^{d}	15%	Adam and Woodford (2020)			
δ	0.03/4	Adam and Woodford (2020)			
	Exogenous shock processes				
ρ_{τ^n}	0.8	Adam and Billi (2006)			
σ_{r^n}	0.2940% (RE)	Adam and Billi (2006)			
	0.1394% (subj beliefs)				
ρ_{ξ^d}	0.99	Adam and Woodford (2020)			
$\sigma_{\xi d}$	0.0233 (RE)	Std. dev. of price-to-rent ratio pre 1990			
	0.0165 (subj. beliefs)				
	Subjective belief parameters				
α	1/0.007	Adam et al. (2016)			
β^U	1.0031	Max percent deviation of PR-ratio from mean			