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1 Introduction

The severe drought in the US during the summer of 2012 coincided with price increases

of corn, soybeans and other field crops by more than 50%. Figure 1 provides an illustration

of this period. The upper panel shows the contract price for the purchase of one bushel of

corn or soybeans delivered at the end of 2012. The bottom panel shows the accumulated

precipitation in the Primary Corn and Soybean Belt from March 2012 onwards.1 Prices

remained relatively stable during the first few months. The level of precipitation was not

much different from its level in previous years and remained between its historical lower

and upper quartiles. However, June and July were months with exceptionally low levels

of precipitation.2 As this drought was prolonged and growing in severity, prices started

to increase rapidly. Prices somewhat flattened during the late summer, but only after

the amount of rainfall in August and September returned to a level close to its historical

average.

Extreme movements in agricultural commodity prices are anything but uncommon.

For instance, between August 2007 and March 2008, the price of wheat almost doubled.

However, before the end of 2008, the wheat price had returned to its original level.

Another example is the price of corn, which fell a massive 55% in the second half of

2008 alone. These whopping figures illustrate the highly volatile behavior of agricultural

commodity prices.

Strong price movements hurt many of the industry’s stakeholders, including produc-

ers, traders and processing firms. Also, the economic prosperity of many developing

countries often depends on the price development of raw material commodities. More

than fifty countries depend on only three or fewer commodities for more than half their

total exports.3 As a result these countries are very vulnerable to price decreases and

volatility, see e.g., Deaton (1999) or Balagtas and Holt (2009).

In the same vein, individual farmers are also highly vulnerable to commodity price risk.

All price decreases translate fully and directly into a loss of income for the farmer. In this

study we take the perspective of an individual U.S. farmer when analyzing agricultural

commodities price risk. Nevertheless, many of the risk management findings in this study

are also relevant to other affected parties.

1The National Climatic Data Center uses the expression Primary Corn and Soybean Belt to specify
a large agricultural belt around (and including) Illinois, Indiana and Iowa. It covers parts of Alabama,
Arkansas, Kansas, Kentucky, Louisiana, Minnesota, Mississippi, Missouri, Michigan, Nebraska, North
Dakota, Ohio, South Dakota, Tennessee and Wisconsin.

2The area-weighted precipitation in the Primary Corn and Soybean Belt in June and July 2012 was
4.6 inches (cumulative), or almost half the historical average of 8.3 inches between 1970 and 2011. Since
1895, such low levels of precipitation in June and July were only recorded in 1936 and 1988, with 3.6
and 4.5 inches, respectively.

3Based on the UNCTAD 1995 Commodity Yearbook. We refer to Bidarkota and Crucini (2000) for
an extensive analysis of the relationship between the terms of trade of developing nations and world
prices of internationally traded primary commodities.
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Figure 1: Futures prices and precipitation in 2012
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Daily prices of futures contracts for delivery at the end of 2012 come from Datastream. Monthly area-
weighted precipitation data for the Primary Corn and Soybean Belt come from the U.S. Climate Di-
visional Database and are obtained from the National Climatic Data Center of the National Oceanic
and Atmospheric Administration. The bandwidth around the dashed line for the historical average
corresponds to the historical lower and upper quartile.

A good understanding of the most extreme commodity returns is instrumental in any

commodity risk management application. Small changes in revenues should not affect the

farmer much. Large price drops however, may result in bankruptcy. Using a standard

two-sector macro model, we describe how fat tails in agricultural commodity prices may

occur endogenously. In our general equilibrium model, commodity price spikes occur as a

result of factor productivity shocks, due to e.g., hurricanes, diseases and droughts. These

shocks feed through the system, rendering the equilibrium price distribution fat-tailed.

As the typical farmer is risk-averse, see e.g., Coyle (2007), he is inclined to hedge his

price risks. He may for instance remove his price risk by entering into forward or futures

contracts. Alternatively, he may choose to hedge only against large price declines by

buying out-of-the-money put options, thereby retaining the potential profit from sudden

price increases. In order to decide upon the optimal risk mitigation strategy, the farmer
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needs a risk quantification methodology.4 He should be able to answer questions like:

How likely is a 10% fall in the corn price over the next two days? How likely is a price

change that may result in bankruptcy? Is either the corn or the wheat price more likely

to experience extreme price movements? What is the expected size of the maximum loss

due to price risk during the next decade?

Such questions may be addressed by the use of Extreme Value Theory (EVT). This

technique is particularly suited for estimating the likelihood of extreme returns when the

probability distribution functions are non-normal. Mills (1927) was one of the first to

discuss the non-normality of commodity returns as he reported higher kurtosis, implying

more extreme returns. Mandelbrot (1963a) modeled the returns in the spot market for

cotton by means of the stable distributions to capture the heavy-tail phenomenon. More

recently, Ai et al. (2006) also discuss the non-normality of commodity returns, which they

find to be characterized by frequent price jumps and fat tails. We refer to Kat and Oomen

(2006), and Wang and Tomek (2007) for thorough studies of the time series properties of

agricultural product prices.

Over the last few years, the popularity of EVT to assess the risk of an extreme event

has increased considerably. For example, EVT has been used to examine the severity of

stock market crashes, the pricing of catastrophic loss risk in reinsurance or the extent

of operational risk in banks.5 EVT is particularly suitable for analyzing extremely rare

events when sample sizes are too small for determining the probability, extent or cause

of the extreme returns using conventional statistical techniques. The semi-parametric

EVT approach exploits the functional regularities that probability distributions display

far from the center.

Interestingly, in spite of its growing recognition, application of EVT in agricultural

price risk management has so far been sparse in the academic literature. Kofman and

De Vries (1990) estimate the tail distribution parameters for potato futures. Matia et al.

(2002) estimate the parameters of a large number of general commodities and find the

tails to be fat. Their article provides no risk management applications, however. Kre-

hbiel and Adkins (2005) apply EVT to four complex NYSE energy futures contracts to

estimate various risk measures. Even so, their analysis is limited to oil and gas contracts,

whose return distribution may be very different from those of renewable agricultural com-

modities. More recently, Morgan et al. (2012) use EVT on weekly data to estimate three

different tail risk measures for corn and soybeans. Their thorough study is evidence of

the growing interest in this topic.

The main contribution of this article is twofold. The first contribution is to show how

the heavy-tailedness of agricultural prices may arise endogenously in an economic model.

4For a discussion on the use of derivatives to hedge commodity price risk we refer to Lu and Neftci
(2009).

5Based on the ECB June 2006 Financial Stability Review.
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The second contribution is the use of EVT to measure the extreme price risk of nine

different agricultural commodities. We use a back-testing procedure to provide empirical

evidence on the accuracy of the proposed risk measures. We show that the non-normality

of the return distribution strongly influences the level of the risk measures. Our empirical

estimates provide a good indication of the size of the risks as measured by widely used and

easily interpretable risk measures. This study provides farmers and other stakeholders

with a reliable toolset to quantify their price risks and to answer the above questions.

The remainder of this article is as follows. Section 2 provides a model in which

commodity price spikes arise endogenously, as a result of productivity shocks. Section 3

discusses how to apply EVT to estimate the Value-at-Risk and Expected Shortfall risk

measures. The data are described in Section 4. Empirical estimates of the distributions’

tails are presented in Section 5. Value-at-Risk and Expected Shortfall estimates, as well

as back-testing results are provided in Section 6. We conclude in Section 7.

2 Theory

Mandelbrot (1963a,b), using Houthakker’s cotton price series, is probably the first who

documented that the tails of the distribution of logarithmic commodity price changes

diminish by a power instead of an exponent, as is the case under the more common

(log)normal assumption. If the tail of a distribution diminishes by a power, then the

probability of variable x̃ exceeding threshold u, if u is large, is distributed as:

Pr(x̃ > u) ∼ Cu−α, (1)

where C > 0 and α > 0 are, respectively, the scale and the shape parameter. The

distribution is named after Pareto who discovered that the tail of the income distribution

follows a power law. Distributions with tails that obey the functional form in (1) are

classified as heavy-tailed. Tails which follow a power law are in the end always fatter than

tails that decrease by an exponent.

To explain the heavy-tail nature, Mandelbrot advances that the physical world is full

of heavy-tailed phenomena, which may trigger the heavy-tailedness of commodity price

changes.6 But how a power law may arise endogenously in this type of market has not

been investigated.

Below we develop a small standard macro model with an agricultural sector to study

agricultural prices in equilibrium. The equilibrium agricultural price distribution is the

6See e.g., Newman (2005) and Salvadori et al. (2007) for a number of natural hazards that follow
a power law distribution, including the magnitude of earthquakes, the volume of air-fall material from
volcanic eruptions, various drought measures, flood levels, and the scale of wars. Several of the above
events influence agricultural prices in one way or another. Spikes or sudden drops in prices can be
triggered by, for instance, a drought or bumper crop.
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result of factor productivity shocks that feed through the system. In themselves such

shocks need not be (although they may be) heavy-tailed. This is the extra kick that our

economic analysis provides. We show how the power law spikes observed in agricultural

commodity prices can arise endogenously in the economy. The model describes how

adverse productivity shocks, such as drought and hurricanes, affect the tail distribution

of commodity prices.

2.1 Model

We use a standard off-the-shelf two-sector macro model.7 The agricultural sector is

modeled as the competitive sector. The other sector produces differentiated goods in the

spirit of Dixit and Stiglitz (1977) (subsequently referred to as DS1977). Exogenous shocks

affect the productivity of both sectors. In the agricultural sector, these shocks can be best

thought of as changes in weather and other natural hazards. For the differentiated goods

sector, which also captures the services industry, the shocks mostly represent changes in

productivity.

The macro literature has focused almost exclusively on the DS1977 specification for

the differentiated goods demand, see e.g., Walsh (2008). The familiar DS1977 specifica-

tion with endogenous labor supply derives from the following utility function

U = Z1−θ

[
1

n

n∑
i=1

Qρ
i

]θ/ρ
− 1

1 + γ
L1+γ, (2)

where Z is the competitive good, the Qis are the differentiated goods and L is labor.

To guarantee concavity and allow for zero demand for a particular Qi, the parameter

ρ is constrained to ρ ∈ (0, 1). We envision the Z good to be the staple of agricultural

produce, while the Qi goods capture the production of other goods and services. Param-

eter θ ∈ (0, 1) determines the relative importance of the other goods and services to the

agricultural produce in the consumer’s consumption bundle. The higher the level of θ,

the smaller the share of income the consumer is willing to spend on agricultural goods.

Parameter γ is the inverse of the Frisch (1959) elasticity of labor supply. In general, the

higher the level of γ, the less responsive labor supply will be to changes in the wage rate.

The budget constraint reads

wL+Π(Q) = qZ +
1

n

n∑
i=1

piQi, (3)

where w is the wage rate and q, pi are the goods prices, while Π(Q) are the profits received

7See Ardeni and Freebairn (2002) for a discussion on the interaction between agricultural prices and
the macro economy.
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from the differentiated goods sector.8

For the supply side we assume Ricardian technologies for all the goods, where

Z = BN, (4)

and

Qi = ANi. (5)

Here A and B are the productivity coefficients while N and Ni are the respective labor

inputs. Both A and B are random variables. In the case of variable A, these are the

familiar supply side total factor productivity shocks. In the case of the agricultural

sector, variable B captures the random element in agricultural productivity inherited from

nature. We assume that the market for the agricultural product is perfectly competitive.

The producer of the differentiated product exploits his pricing power, but ignores his

pricing effect on consumer income wL+Π(Q) and on the price index of the differentiated

goods,

P =

(
1

n

n∑
i=1

p
ρ/(ρ−1)
i

) ρ−1
ρ

. (6)

Finally, to determine the price level we assume a simple quantity type relation

M = wL. (7)

2.2 Equilibrium price distribution

With the above preparations, we can now obtain the implications for the equilibrium

prices.

Proposition 1 The prices of the differentiated goods are

pi = M
1/ρθ/γ+1

A
(
θθ (1− θ)1−θ AθB1−θ

)1/γ . (8)

For the agricultural good the price is

q = M
1/ρθ/γ

B
(
θθ (1− θ)1−θ AθB1−θ

)1/γ . (9)

8The quantities of the differentiated goods, the Qi, are normalized by the number of differentiated
goods, n. This notation is analogous to the common continuous good notation often used in theoretical
macro literature.
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Proof. See Appendix A.

Most macro models consider shocks toM , A and B. Let us focus on the natural shocks

to B.9 Assuming M and A to be constant, we can write the price of the agricultural

good as

q(B) = ΘB− 1+γ−θ
γ , (10)

where

Θ = M
1/ρθ/γ(

θθ (1− θ)1−θ Aθ
)1/γ .

For illustrative purposes we assume that B follows a beta distribution (we relax this

assumption later):

Pr {B < t} = tβ (11)

on [0, 1] and β > 0. Consider the implication for the price distribution of the agricultural

product. Denote the randomness in q by q̃. Then

Pr {q̃ > u} = Pr
{
ΘB− 1+γ−θ

γ > u
}

= Pr
{
B < Θ

γ
1+γ−θu− γ

1+γ−θ

}
= Θ

βγ
1+γ−θu− βγ

1+γ−θ , (12)

with support on [Θ,∞). The distribution of equilibrium prices in equation (12) has the

same functional form as the heavy-tailed distribution in equation (1). But naturally, this

result is subject to the qualification that it crucially relies on the restrictive assumption

of the beta distribution for shocks from nature in (11).

We proceed by relaxing the assumption of the beta distribution for B in (11). More

specific, we derive a general condition on the density function of B, fB(B), such that

the equilibrium prices follow a heavy-tailed distribution if this condition holds. This

condition is provided in the following proposition.

Proposition 2 Suppose that the distribution and density of the agricultural productiv-

ity coefficient B are continuous. Given the price-productivity relation for agricultural

9For our results to hold it is not necessary to assume a constant A and M . For example, the heavy-
tailedness of the equilibrium price distribution due to natural shocks is preserved if the productivity of
the differentiated sector does not collapse completely, which implies that the support of A is bounded
away from zero. Further, the heavy-tailedness of the equilibrium price distribution is not affected if the
distribution of M has exponential tails, such as the lognormal distribution.
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products in equation (10), we have that

Pr(q̃ > u) ∼ L(u)u−α as u → ∞, (13)

with

α = ξ
γ

1 + γ − θ
, (14)

if

lim
s↓0

wfB(sw)

fB(s)
= wξ with ξ ∈ R+. (15)

Proof. See Appendix B.

Whether the condition on the distribution of B in (15) is satisfied depends on the

shape of the density of the productivity shocks, fB(B), for values close to zero. The

reason is that high price levels occur in periods of low agricultural productivity, such as

severe droughts. The distribution of those low productivity levels determine the shape

of the distribution function for extremely high prices. For the beta distribution in (11),

which we considered for illustrative purposes, the condition in (15) is satisfied with ξ = β.

The lower parameter β in (11), the more severe are the shocks resulting in productivity

levels close to zero, and the heavier is the tail of the agricultural prices.

Corollary 1 The shape of the distribution of the agricultural productivity coefficient B

close to zero determines whether the equilibrium price distribution is heavy-tailed. The

more slowly the density of B converges to zero for extremely low productivity levels, i.e.,

the lower ξ, the heavier is the tail of the agricultural price distribution, i.e., the lower is

α.

It is not difficult to verify that a broad range of distribution functions with positive

support satisfy the condition in Proposition 2 with different values for ξ. For instance,

the standard uniform distribution and the exponential distribution satisfy the condition

in (15) with ξ = 1, the Chi-squared distribution with k degrees of freedom satisfies

the condition with ξ = k/2, the Gamma distribution with shape parameter k satisfies

the condition with ξ = k, and the (heavy-tailed) Burr (Type XII) distribution with

parameters (c, k) satisfies the condition with ξ = c. All these distributions would result

in a heavy-tailed equilibrium price distribution. However, not every possible distribution

yields heavy-tailed prices in the macro-economic framework. An example of a popular

exception is the lognormal distribution: Its limit in (15) converges to 0.10 Seriously

10The statistical distribution of crop yields has been the topic of a wide body of literature, see e.g.,
Nelson and Preckel (1989), Moss and Shonkwiler (1993), Just and Weninger (1999), Atwood et al. (2003),
Ramı́rez et al. (2003), Harri et al. (2009) and Koundouri and Kourogenis (2011).
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low levels of agricultural productivity are too rare under the lognormal distribution to

generate a heavy tail among the occurrences of high agricultural prices in the model.

As follows from Proposition 2, the shape parameter of the tail of the distribution of

agricultural prices not only depends on the distribution of productivity shocks, but also

on the preference parameters θ and γ.

Corollary 2 The greater the share of agricultural produce in consumption, i.e., the

higher 1− θ, and the higher the elasticity of labor supply, i.e., the higher 1/γ, the heavier

is the tail of the distribution of agricultural prices, i.e., the lower is α.

Given the distribution function of productivity shocks, it follows from equation (14) that

a high value of 1−θ results in a low shape parameter of the equilibrium price distribution

of agricultural goods, α, and hence in a fatter tail. This finding has the following intuition.

The importance of the share of the agricultural good in the consumption bundle of the

agents is represented by 1 − θ, see equation (2). The larger the role of the agricultural

good for the agents’ utility, the more extreme price reactions one may expect if supply

falls. This is reflected in a fatter tail of the equilibrium price distribution, i.e., a lower α.

It also follows from equation (14) that a high value of parameter γ results in a high

value of shape parameter α. Adverse technology shocks have a dual effect on the output of

the competitive sector. First, given the amount of labor used, an adverse technology shock

in the competitive sector directly reduces output. Second, low productivity decreases the

equilibrium amount of labor used in the competitive sector, which further reduces output.

The inverse of the labor supply elasticity γ determines the sensitivity of the wage rate to

changes in the amount of labor used in production. With a higher value of γ, a reduction

in the amount of labor results in a lower drop of the wage rate, which translates in a

smaller change in the equilibrium amount of labor. Therefore, the change in production

of the competitive good is smaller for high values of parameter γ, which results in thinner

tails of the equilibrium price distribution, i.e., a higher α.

3 Empirical Methodology

The previous section discussed the plausibility of fitting the tail distribution of changes

in food prices to a power law. Next, we apply EVT to determine the parameters of the

power law.

3.1 Fitting the power law

As a first step we calculate n returns, Rt, from the observed prices as (Pt−Pt−1)/Pt−1.

Secondly, the returns are ordered from high to low: X1 ≥ · · · ≥ Xn. The number of

returns in the tail of the distribution is set equal to k. This implies that Xk+1 approaches
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the threshold, which is the minimum u for which the distribution in (1) applies. All

returns above this threshold are assumed to be distributed by a power law. Next, we

estimate the shape and the scale parameter (α and C) by following Hill (1975):

1

α̂
=

1

k

k∑
j=1

ln
Xj

Xk+1

(16)

and

Ĉ =
k

n
X α̂

k+1, (17)

where equation (16) is generally referred to as the Hill estimator.11

Whereas the concept and the estimation of the parameters are straightforward, the

choice of k is not. The optimum depends on the sample size T and the tail-thickness α;

the further one moves out into the tails, the better becomes the Pareto approximation

of those tails. However, this reduces the number of observations available for estimation

and increases the uncertainty of the estimate.

In practice, one may resort to visual inspection of the so-called Hill plots to determine

the optimal level of threshold k. The number of observations included in the tail, k, is

plotted along the x-axis. For each number of observations, k, the Hill estimate for α is

calculated. The optimal threshold is selected from the region in which the Hill estimate

for α is more or less stable, see also Drees et al. (2000).

Standard errors of the shape parameters can be obtained from a bootstrap procedure.

De Haan et al. (1994) demonstrate the asymptotic normality for the Hill estimator and the

VaR estimate for independent and identically distributed (iid) returns. The asymptotic

normality of the Hill estimator also holds in the presence of serial dependence, see e.g.,

Drees (2008). Following Hartmann et al. (2006), we refrain from assumptions on the

specific dependence structure and apply a bootstrap procedure with fixed block length

and 10,000 replications. Following Hall et al. (1995), we set the optimal block length

equal to n1/3 ≈ 20.

3.2 Risk measures

Both risk measures introduced in this subsection measure the probability of extremely

low returns (or extremely high returns in case of a short position), also called ‘tail risks’.

The first one, Value-at-Risk (VaR), is one of the most widely used risk measures in finan-

cial risk modeling. VaR plays an important role in the safety-first framework developed

by Roy (1952) and Telser (1955). Agents with the safety-first principle of Telser (1955)

11This procedure describes how a power law is fitted to the right tail of the return distribution. To
fit a power law to the left tail multiply the return series with -1.
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in their utility functions maximize their expected return, while limiting the probability

that a loss larger than some disaster level occurs at some admissible level p. Basically,

such agents maximize their expected return under a VaR constraint with probability p.

The VaR (in terms of returns) is simply defined as a quantile estimate. After fitting

a power law distribution to the data, the VaR is estimated by inverting the power law in

equation (1). To derive a VaR estimator, the parameter estimates for C and α in equations

(16) and (17) are substituted into the power law, which gives Pr(x̃ > u) ∼ k
n
X α̂

k+1u
−α̂.

Following the definition of VaR, V aR(p) can be considered as the threshold u which is

exceeded with probability p. Hence, we replace u by V aR(p) and Pr(x̃ > V aR(p)) by p.

After rewriting, the following VaR estimator is obtained:

V̂ aR(p) = Xk+1

(
k

np

)1/α̂

. (18)

One of the shortcomings of VaR is that it contains no information on the size of

the losses beyond the p% worst case. A risk measure which overcomes this problem

is the Expected Shortfall (ES). The ES(p) measures the expected amount one loses in

the p% worst cases. In case of a power law tail, the estimated Expected Shortfall is a

multiplication of VaR and a constant, which depends on the shape parameter only, see

also Danielsson et al. (2006):

lim
p↓0

ES(p)

V aR(p)
=

α

α− 1
. (19)

4 Data

In many financial risk management applications it is common practice to use relatively

high-frequency return series. For our purpose, daily data are preferable over weekly or

monthly data for two reasons. First, the use of high frequency data, implying more

observations, improves the quality of the parameter estimates. Second, the choice for

daily data corresponds to the time required to hedge a farmer’s price risk on the financial

markets, which can typically be accomplished within one day.

In this study we employ futures prices instead of spot prices. One reason for this choice

is the lack of reliable high frequency commodity spot prices. In general, historical daily

commodity spot prices contain a high number of zero returns and are more likely to be

affected by bid-ask bounces due to a lack of liquidity. By contrast, for many agricultural

commodities, futures contracts are highly liquid and exchange-traded instruments for

which reliable historical high frequency data is available.

Futures contracts for delivery at a particular date are usually traded for a relatively

short period, ranging from several months to several years. To obtain long-term futures

returns series, or so-called continuous series, we therefore need to combine consecutive
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data from several futures contracts, see e.g., De Roon et al. (2000). We take considerable

effort to construct high-quality continuous futures return series. Our procedure is as

follows. First, we download daily open interest and price series of all available futures

contracts from Datastream for each commodity. Those time series are available over a

period of 34 years: from January 1979 until December 2012. Subsequently, daily returns

are calculated for all futures price series. Finally, we construct the continuous futures

returns series from the individual return series. In January 1979 we start with the futures

contract that has the largest open interest. For each day we include its returns in the

new continuous series until six weeks before the contract’s last trading day. At this date

we switch to the futures contract with the largest open interest and a later last trading

day. Again we include the returns until six weeks before the last trading day and repeat

the last step. This procedure results for each commodity in a continuous futures returns

series with 8,870 daily observations from, on average, 164 different futures contracts.

Our method has an important advantage compared to Datastream’s procedure to

construct continuous futures series. By calculating returns prior to constructing the

continuous series, no returns are calculated over price observations from two different

futures series. Therefore, our series represents the return that investors could achieve

by rolling over futures contracts as opposed to the continuous Datastream series which

includes price jumps due to changes in the underlying futures series. The extreme returns

in our series thus represent genuine financial risks to market participants.12

From all commodity futures traded in the United States, the following seven crop

commodities and two animal commodities are investigated: Corn, oats, soybeans, wheat,

cotton, sugar, orange juice, live cattle and lean hogs.13

5 Empirical tail estimates

Table 1 reports the descriptive statistics of the daily futures return series. A quick

overview of the data confirms the non-normality of the returns. Six out of nine series

contain at least one observation with a distance of at least six standard deviations from

the mean. The probability of such a return occurring equals about 2.0 × 10−9 under

the assumption of normality, or roughly once every 2 million years.14 The other three

series contain at least one observation with a distance of five standard deviations from

12In addition, shifts in the roll-over date often occur in the Datastream continuous series. To give an
extreme example: the second largest daily price fall during the last 30 years in the unadjusted Datastream
series for cotton (NCTCS00) is caused by a delayed roll-over date. The return of -26.3% is caused by
the difference between 113.6, which is the price for delivery in July 1995 listed on the 4th of July, 1995,
and 83.75, which is the price for delivery in October 1995 listed on the 5th of July, 1995. Such extreme
observations may distort the assessment of the actual tail of the risk distribution.

13See Appendix C for details on the selection process of the commodities. The continuous futures
returns are available from the corresponding author on request.

14If x̃ ∼ N(0, 1), then Pr(x̃ ≤ −6) ≈ 1.0× 10−9.
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Table 1: Descriptive statistics

Commodity Mean St.dev. Min. Min. Date Series Max. Max. Date Series

Corn -0.01 1.4 -7.6 2009-06-30 1009 9.0 2009-09-15 0310
Cotton 0.00 1.4 -6.9 2012-06-21 1012 7.2 2008-12-08 0309
Oats -0.01 1.7 -11.3 2005-03-31 0705 11.1 2005-03-30 0705
Soybeans 0.01 1.4 -7.1 2009-07-07 1009 6.9 1999-08-02 1099
Wheat -0.01 1.6 -9.5 2009-01-12 0309 9.2 2008-10-29 0309
Lean hogs -0.01 1.4 -6.7 1998-12-11 0399 7.1 1998-12-14 0399
Live cattle 0.01 0.9 -6.2 2003-12-30 0304 4.2 1989-07-19 1089
Orange juice 0.00 1.7 -12.8 2010-01-11 0310 16.3 2006-10-12 0307
Sugar 0.02 2.3 -16.7 1988-07-26 1088 15.3 1985-07-26 1085

Note: The first two columns report the mean and the standard deviation of the daily returns series. The
other columns report the minima and maxima of the return series, the date of these observations and
the code of the futures series in which these were observed. The code of the futures series refers to the
month of delivery with format MMYY.

Figure 2: QQ-plots of agricultural commodity returns.
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QQ-plots of the daily returns of futures contracts for live cattle, sugar and wheat against a normal
distribution with the same mean and standard deviation.

the mean, an observation that would happen roughly once every 7 thousand years under

the assumption of a normal distribution.

As an illustration, Figure 2 reports QQ-plots of three arbitrarily chosen daily return

series (live cattle, sugar and wheat). The non-normality is strongly confirmed by QQ-

plots of the return series against the normal distribution. Only the daily return series

for live cattle seems to be an exception. Except for a few extreme tail observations,

the distribution of the live cattle return series is generally quite close to the normal

distribution.

Table 2 documents the estimated tail parameters. Unreported Hill plots show that

the Hill estimates are relatively stable when a total of 150 tail observations are used, i.e.,

approximately 1.75% of all observations. The value of most shape parameters is estimated

to be around 4. The most risky commodities with respect to the shape parameter are

wheat, with an estimate of around 3.6 for the left tail, and orange juice, with an estimate

13



Table 2: Tail parameter estimates.

Commodity Left tail Right tail
Shape (s.e.) Scale Shape (s.e.) Scale

Corn 4.16 0.37 2.67 4.31 0.33 4.25
Cotton 4.78 0.46 6.24 4.63 0.39 5.36
Oats 4.65 0.34 10.71 4.20 0.32 5.75
Soybeans 4.48 0.35 4.22 4.68 0.36 4.82
Wheat 3.60 0.28 1.52 3.84 0.29 2.86
Lean hogs 6.63 0.79 47.65 5.67 0.54 12.26
Live cattle 8.23 1.23 11.64 7.87 0.77 7.62
Orange juice 4.36 0.35 7.57 3.62 0.28 2.63
Sugar 4.58 0.36 34.74 4.17 0.34 16.83

Note: The first columns on the left and on the right side report the estimated shape parameter from
equation (16) for, respectively, the left and right tail. The second columns report the corresponding
standard error from the bootstrap procedure described in Section 5. The third columns report the
estimated scale parameter from equation (17). Each tail consists of 150 observations, or approximately
1.75% of 8,609 observations.

of around 3.6 for the right tail. Live cattle and lean hogs are the commodities with the

highest estimates for the shape parameters, implying thinner tails. For live cattle this

finding is not remarkable: The QQ-plots already showed that the live cattle futures return

distribution is quite similar to the thin-tailed normal distribution.

5.1 Alternative data frequencies

In this subsection, the shape parameters are tested for sensitivity to changes in the

data frequency. In principle, the estimated shape parameters should be robust for changes

in the data frequency in case of independent and identically distributed returns.15 Nev-

ertheless, volatility clustering or daily price limits may result in different tail behavior for

different data frequencies. To this end, two-day returns and weekly returns are calculated

from the daily return series. In order to test for equality of the shape parameters, we es-

timate the shape parameters from the two-day returns and weekly returns. Subsequently,

we calculate the following t-statistic

T =
α̂1 − α̂2

σ̂(α1 − α2)
, (20)

15Mandelbrot (1963b) shows that power law distributions are invariant with respect to the shape pa-
rameter under several basic transformations. The shape parameter is invariant with regard to summation
of random variables, mixing random variables with different scale parameters and selection of maxima.
It follows that the power law distribution is independent of data frequency choices, distribution mixture
assumptions and missing data. As a consequence, sample-specific data problems are unlikely to affect
the observed shape parameter.
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where σ̂(α1 − α2) denotes the standard deviation of the difference between the shape

parameters estimated from two different frequencies, and where the t-statistic converges

to a standard normal distribution under the null hypothesis of equal shape parameters.

The standard deviation, σ̂(α1 − α2), is obtained from a block bootstrap procedure, in

which each bootstrapped sample is obtained from daily returns, but subsequently also

transformed into lower frequency returns to calculate the two-day or weekly shape pa-

rameters.

Table 3, panels (a) and (b) report the results of the robustness test for changing the

data frequency. The differences in the shape parameters between daily and two-day return

distributions in panel (a) are statistically significant at the 5% level for two commodities.

The tails of the live cattle return distribution and the lean hogs return distribution have

significantly lower shape parameters for two-day returns. In panel (b) we test whether

the shape parameter changes significantly if one extends the data frequency further from

two-day returns to weekly returns. We do not find significant differences between the

shape parameters of two-day and weekly returns. Apparently, the issues that potentially

cause differences between the daily and two-day parameter estimates in our sample do

not play a large role if one turns to estimation at lower data frequencies.

6 Risk estimates

This Section discusses the empirical results of the risk estimates. Table 4 reports

the 0.1% and 0.01% VaR and Expected Shortfall estimates, following equations (18) and

(19). The 0.1% VaR is expected to be exceeded about once every four years, and the

0.01% VaR about once every 40 years, or about once during a farmer’s entire career.

The relevant information for farmers with respect to risk management is contained in

the left tail of the distribution, shown in Table 4, panel (a). We find that sugar has the

highest price risk of all commodities studied. Once every forty years the sugar price is

expected to fall by more than 16.2% within a one-day period. The safest commodity, in

terms of price development, appears to be live cattle. Once every forty years the price of

live cattle is expected to fall by more than 4.1% within a one-day period.

In the introduction the question was posed what the likelihood is of a price change

that could result in the farmer’s bankruptcy. It is possible to answer this question with

the results in Sections 5 and 6. Suppose a farmer who grows wheat and who would have

serious solvency problems after a 15% fall in the wheat price from its current level. What

is the probability that an unhedged farmer will default from one day to the next?

To answer this question, we apply equation (1) to the left tail, and substitute the

absolute value of the threshold return for u. Subsequently, the parameter estimates

from Table 2 for C and α are substituted into equation (1). Since the farmer stands

to be hurt by price falls (as opposed to price increases), the parameters for the left

15



Table 3: Tail parameter estimates with other data frequencies.

Panel (a): Two-day returns

Commodity Left tail Right tail
Shape (s.e.) Scale t-stat Shape (s.e.) Scale t-stat

Corn 3.47 0.33 3.44 -1.69* 3.56 0.42 5.53 -1.53
Cotton 4.05 0.37 9.57 -1.21 4.35 0.41 17.57 -0.51
Oats 4.15 0.40 22.13 -1.06 3.81 0.35 13.06 -0.70
Soybeans 3.91 0.39 6.58 -1.45 3.99 0.48 7.14 -0.53
Wheat 3.80 0.42 6.61 0.52 3.57 0.34 6.35 -0.38
Lean hogs 5.01 0.59 41.92 -2.19** 5.00 0.44 24.35 -0.77
Live cattle 4.89 0.49 3.70 -3.06*** 4.80 0.45 3.52 -3.54***
Orange juice 4.10 0.41 20.78 -0.56 3.18 0.32 4.55 -1.00
Sugar 4.43 0.45 96.43 -0.37 3.97 0.42 47.04 -0.37

Panel (b): Weekly returns

Commodity Left tail Right tail
Shape (s.e.) Scale t-stat Shape (s.e.) Scale t-stat

Corn 3.26 0.44 11.55 -0.39 3.95 0.51 71.31 1.53
Cotton 3.90 0.57 29.76 -0.24 2.97 0.51 6.80 -1.45
Oats 4.24 0.56 192.64 0.13 3.84 0.82 84.10 0.23
Soybeans 3.48 0.45 16.64 -0.85 3.42 0.47 14.44 -1.30
Wheat 3.83 0.56 30.68 0.05 3.25 0.48 15.86 -0.55
Lean hogs 4.17 0.66 53.06 -1.39 4.12 0.57 41.40 -0.95
Live cattle 4.16 0.71 10.17 -1.19 4.59 0.66 21.58 -0.17
Orange juice 3.69 0.48 49.69 -0.66 2.74 0.41 8.98 -0.76
Sugar 5.11 0.74 3133.97 0.99 3.75 0.77 145.42 1.00

Note: Shape parameters are estimated from equation (16) for the left and right tail of two-day returns in
panel (a) and weekly returns in panel (b). For two-day (weekly) returns we set k=100 (k=50). Reported
standard errors (s.e.) are generated by the bootstrap procedure described in Section 5. Scale parameters
are calculated from equation (17). For the two-day estimates in panel (a) we provide t-statistics for
testing against the null hypothesis of equal shape parameters in the daily return and two-day return
data, see equation (20). For the weekly estimates in panel (b) we provide t-statistics for testing the null
hypothesis of equal shape parameters in the two-day return and weekly return data. Significance at the
10%, 5% and 1% level is denoted by respectively *, ** and ***.
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Table 4: Risk estimates

Panel (a): Left tail

Commodity Probability level: 0.10% Probability level: 0.01%
VaR Min. Max. ES VaR Min. Max. ES

Corn 6.65 5.83 7.48 8.75 11.56 9.14 13.99 15.22
Cotton 6.22 5.68 6.76 7.87 10.07 8.44 11.70 12.73
Oats 7.35 6.66 8.03 9.36 12.05 10.13 13.97 15.35
Soybeans 6.44 5.75 7.13 8.29 10.77 8.91 12.63 13.86
Wheat 7.65 6.68 8.63 10.59 14.50 11.49 17.52 20.08
Lean hogs 5.08 4.52 5.64 5.98 7.19 5.83 8.55 8.47
Live cattle 3.12 2.80 3.44 3.55 4.13 3.34 4.92 4.70
Orange juice 7.77 6.98 8.57 10.09 13.19 10.88 15.50 17.12
Sugar 9.78 8.75 10.81 12.51 16.17 13.28 19.06 20.68

Panel (b): Right tail

Commodity Probability level: 0.10% Probability level: 0.01%
VaR Min. Max. ES VaR Min. Max. ES

Corn 6.96 6.26 7.67 9.07 11.89 9.83 13.94 15.48
Cotton 6.39 5.71 7.06 8.15 10.50 8.58 12.43 13.39
Oats 7.86 7.02 8.70 10.32 13.60 11.18 16.02 17.85
Soybeans 6.13 5.56 6.70 7.79 10.02 8.37 11.68 12.75
Wheat 7.93 6.94 8.92 10.71 14.43 11.35 17.50 19.50
Lean hogs 5.27 4.70 5.83 6.39 7.91 6.52 9.29 9.60
Live cattle 3.11 2.94 3.28 3.57 4.17 3.74 4.61 4.78
Orange juice 8.79 7.69 9.88 12.14 16.59 13.12 20.07 22.92
Sugar 10.32 9.03 11.60 13.57 17.92 14.22 21.62 23.58

Note: Value-at-Risk (VaR) estimates for the left tail in panel (a) and the right tail in panel (b) are
calculated from equation (18) for the 0.10% and the 0.01% probability level. We also provide the
95% confidence bands (Min.; Max.) of the VaR estimates. The Expected Shortfall (ES) estimates are
calculated from equation (19).

tail are employed. The outcome of equation (1) gives the probability of insolvency:

Pr(x̃ > u) ≈ 1.52× 15−3.60 ≈ 8.87× 10−5. The inverse of this number yields the number

of days in which at least one price fall of more than 15% is expected to occur. The

outcome is around 11,750 weekdays. Hence, with approximately 261 weekdays per year,

we expect to see such a large fall in the price of wheat once every 45 years.

6.1 Back-testing

To examine the accuracy of the V aR(p) estimates, we employ an out-of-sample back-

testing procedure. In this method, the V aR(p) estimates based on historical price changes

are compared to the realized price changes. Thus, first V aRt(p) is estimated using a

horizon of m preceding returns: {Rt−m, ..., Rt−1}. If the realized return Rt exceeds the

estimated V aRt(p), then a VaR-violation is registered. The above procedure is repeated
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Figure 3: Backtesting agricultural Value-at-Risk.
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The spikes show the daily wheat returns. The dotted (dashed) line shows the 0.1% VaR estimates
according to the power law tail (normal) distribution. The risk measure is estimated from the preceding
2,000 daily returns. From the figure it is clear that the VaR estimate from the normal distribution is
exceeded at a frequency higher than 0.001.

at time t+ 1 et cetera.

For a dataset containing n returns, the procedure is repeated n−m times. According to

the Value-at-Risk definition, if the V aR(p) estimate is of high quality, then the proportion

of VaR violations should have a value close to p. Thus, if the underlying distribution

does not change over time, 1
n−m

∑n
t=m+1 1(Rt > V aRt(p)) = p holds approximately for

accurate VaR estimates, where 1(·) denotes the indicator function.

The procedure is implemented as follows. The back-testing procedure is performed

both under the assumption of power law tails and under the assumption of the more

conventional normal distribution. The estimation ‘horizon’ m is set at 2,000 daily obser-

vations. Each tail is assumed to contain the most extreme 2.0% of all observations.

A visual representation of the procedure’s results is given in Figure 3. The spikes

show daily wheat returns. The dotted and dashed lines show the 0.1% VaR estimates

from the power law tail and the normal distribution, based on the preceding 2,000 daily

returns. The test procedure boils down to counting the number of spikes that exceed

either the dotted or the dashed line.

The results of the test procedure are summarized in Table 5. For each commodity,

the number of VaR violations is provided for three different VaR probabilities. The first

and fourth columns in Table 5 show that the 1% VaR estimates from both distributions

are violated too often. In other words, the 1% VaR estimates are too low for both

distributions, although the error is markedly smaller for the power law tail VaR estimates.

The predictions from the normal distribution underestimate the risk when one moves

further into the tail. The third and sixth columns in Table 5 show that the number of
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Table 5: Back-testing agricultural Value-at-Risk.

Commodity Left tail Right tail

Probability 1.00% 0.10% 0.05% 1.00% 0.10% 0.05%
EVT Nrm EVT Nrm EVT Nrm EVT Nrm EVT Nrm EVT Nrm

Corn 130 184 3 68 2 49 130 202 4 78 1 61
Cotton 126 170 10 33 5 23 104 166 9 52 3 38
Oats 102 147 7 43 3 27 91 152 5 50 2 40
Soybeans 98 163 4 66 0 52 85 139 3 56 0 43
Wheat 108 131 8 49 2 36 105 161 8 61 3 45
Lean hogs 93 130 10 26 5 16 86 107 6 28 2 22
Live cattle 82 111 4 26 3 14 86 108 9 20 3 12
Orange juice 102 186 5 66 2 52 103 174 9 68 3 49
Sugar 73 115 4 42 2 33 70 121 3 28 0 20

Average 101.6 148.6 6.1 46.6 2.7 33.6 95.6 147.8 6.2 49 1.9 36.7
Expected 68.7 68.7 6.9 6.9 3.4 3.4 68.7 68.7 6.9 6.9 3.4 3.4

Note: The table reports the number of VaR-violations in a back-testing procedure. The columns report
the number of VaR-violations for different VaR levels. The two bottom lines report respectively the
expected number of VaR-violations and the average number of VaR-violations. Although the normal
distribution (Nrm) and the power law tail distribution (EVT) both seem to underestimate the 1% VaR,
the power law tail distribution turns out to be quite accurate for more extreme events.

0.05% VaR violations is approximately 10 times too high under the assumption of the

normal distribution. However, the power law tail estimates for VaR at smaller probabil-

ities (e.g., 0.1% and 0.05%) turn out to be quite accurate. The 0.05% VaR for the left

(right) tail is, on average, exceeded by 2.7 (1.9) observations per commodity, which is not

far from the expected number of violations in case of a perfectly accurate VaR prediction

(i.e., 3.4). Those estimates concern the very extreme events (about 1 observation in,

respectively, 4 and 8 years), which are most important from a farmer’s risk management

perspective.

7 Conclusion

A good understanding of extreme commodity returns is instrumental in any commod-

ity risk management application. Especially knowledge regarding large price swings is

most relevant for risk management purposes. We construct a two-sector general equilib-

rium model which describes how productivity shocks affect agricultural commodity prices.

In our model, extreme price spikes arise endogenously as a result of productivity shocks

in the agricultural sector, which results in a heavy-tailed equilibrium price distribution.

The economic literature on real business cycles reasons that productivity shocks are

a dominant source of fluctuations in economic aggregates. Agricultural producers experi-

ence a relative large amount of those shocks through their exposure to weather conditions
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and other natural forces. Prior studies show that those shocks have a relatively large im-

pact on agricultural commodity price behavior, see e.g., Deaton and Laroque (1992, 1996),

Ai et al. (2006) and Boudoukh et al. (2007). Our study shows why such productivity

shocks may result in heavy-tailed price distributions, even if they are not heavy-tailed

themselves.

We build on prior work to provide further empirical evidence that agricultural com-

modity price returns are heavy-tailed. We use Extreme Value Theory to estimate the

parameters or the power law in the tail of their distribution. These estimates are used to

measure an agricultural producer’s extreme price risks. We calculate Value-at-Risk and

Expected Shortfall measures to provide estimates of the likelihood and size of the largest

losses a farmer may encounter. Back-testing shows that this methodology is superior to

risk measures based on the conventional normal distribution assumption.

A Appendix. Derivation of equilibrium prices

The first order conditions for optimality entail
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where the price index for differentiated goods is defined as in equation (6).

Then the labor supply can be written as

L =

(
(1− θ)1−θ θθ

w

q1−θP θ

)1/γ

. (21)

The competitive goods demanded can be expressed as

Z = (1− θ)
wL+Π(Q)

q
. (22)

The differentiated goods demanded can be expressed as

Qi = θ
wL+Π(Q)

pi

(pi
P

)ρ/(ρ−1)

. (23)

A.1 Supply

From the perfectly competitive agricultural market we have that

Π(Z) = qZ − wN =
(
q − w

B

)
Z = 0,

so that

q = w/B. (24)

The differentiated goods profit function reads

Π(Qi) = piQi − wNi =
(
pi −

w

A

)
Qi

=
(
pi −

w

A

)
θ
wL+Π(Q)

pi

(pi
P

)ρ/(ρ−1)

.

The producer exploits his pricing power, but ignores his pricing effect on the price index

P of the differentiated goods and the consumer income wL + Π(Q).16 Differentiation

gives

∂Π(Qi)

∂pi
=

1

ρ− 1
Qi

{
ρ− 1

A

w

pi

}
.

Exploiting the pricing power therefore implies setting prices

pi =
w

ρA
. (25)

16One can easily incorporate this effect as well, if desired. For two reasons we do not follow this route.
One may doubt that producers take this macro effect of their pricing behavior into account. Moreover,
it adds little to the insights derived form specifying the differentiated goods sector.

21



Hence, P = w/ρA as all prices are identical. Total profits in the differentiated goods

sector equal

Π(Q) =
1

n

n∑
i=1

Π(Qi) =
n∑

i=1

(
1− w/pi

A

)
θ [wL+Π(Q)]

(pi
P

)ρ/(ρ−1)

= (1− ρ) θ [wL+Π(Q)] .

Solve for the total sectorial profits as

Π(Q) =
(1− ρ) θ

1− (1− ρ) θ
wL. (26)

A.2 Equilibrium

It follows in equilibrium, after substituting the price levels into the labor supply

equation (21), that

L =
(
θθ (1− θ)1−θ AθB1−θ

)1/γ
ρθ/γ = φρθ/γ, (27)

say, and where

φ =
(
θθ (1− θ)1−θ AθB1−θ

)1/γ
.

Furthermore, from (22), (26) and (27)

Z = (1− θ)
B

1− (1− ρ) θ
φρθ/γ. (28)

Similarly, using (23), (26) and (27)

Qj = θ
A

1− (1− ρ) θ
ρφρθ/γ.

Hence,

1

n

n∑
j=1

Qj = θ
A

1− (1− ρ) θ
φρθ/γ+1. (29)

With the above preparations, we now derive the implications for the equilibrium prices.

From (24), combined with (7) and (27), we obtain

q =
w

B
=

M

B

1

L
= M
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B
(
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Similarly, using (25) combined with (7) and (27) yields

pi = p =
w

ρA
=

M

ρA

1

L
= M

1/ρθ/γ+1

A
(
θθ (1− θ)1−θ AθB1−θ

)1/γ .
B Appendix. Proof of Proposition 2

Given (10), we want to find the condition on the density for B such that probability

distribution of the price q̃ follows a heavy-tailed distribution. We have that Pr(q̃ > u) ∼
L(u)u−α as u → ∞ if q̃ is regularly α-varying at infinity with 0 < α < ∞, i.e., if

lim
t→∞

1− Fq(tu)

1− Fq(t)
= u−α with α ∈ R+, (30)

where Fq denotes the cumulative distribution function of q̃, see also De Haan (1970). We

thus need to find the condition such that Fq it is regularly varying at infinity. Rewriting

(30) with L’Hôpital’s Rule gives the condition

lim
t→∞

ufq(tu)

fq(t)
= u−α with α ∈ R+, (31)

where fq denotes the density of q̃. Given equation (10), we have that the equilibrium price

q(B) is a strictly decreasing function of B for θ ∈ (0, 1). Therefore, by a transformation

of variable we have that

fq(q̃) =

∣∣∣∣dB(q̃)

dq̃

∣∣∣∣ fB(B(q̃)), (32)

where B(q̃) denotes the inverse of q̃(B). With the inverse of equation (10) and the

derivative of the inverse of equation (10) this gives

fq(q̃) =
1

η
Θ1/η q̃−(1/η+1)fB(Θ

1/ηq̃−1/η), (33)

where

η =
1 + γ − θ

γ
.
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Hence, from (31) we seek

lim
t→∞

u 1
η
Θ1/η(tu)−(1/η+1)fB(Θ

1/η(tu)−1/η)
1
η
Θ1/η(t)−(1/η+1)fB(Θ1/η(t)−1/η)

= u−α with α ∈ R+;

lim
t→∞

u−1/ηfB(Θ
1/ηt−1/ηu−1/η)

fB(Θ1/ηt−1/η)
= u−α with α ∈ R+;

lim
s↓0

wfB(sw)

fB(s)
= wηα with α ∈ R+. (34)

where w = u−1/η and s = Θ1/ηt−1/η. Hence, given (10), if the condition in (34) holds for

the density function of B, we have that Pr(q̃ > u) ∼ L(u)u−α as u → ∞. Proposition 2

is then obtained by writing ξ = ηα in the condition in (34) and using η > 0.

C Appendix. Commodity selection

In this appendix we explain how the commodities for this research are selected. The

employed futures series need to satisfy two conditions: Availability and relevance from

the perspective of a US farmer. Initially, our sample contains all traded commodity

futures within the US. A list of 19 commodities remains after removing non-agricultural

and identical commodities. Four commodities from this list are removed because of data

availability (butter, milk, dry whey and rice are only available from 1996 onwards or even

later). Next, six of the remaining fifteen series are removed because of low relevance.

Because soybeans is included, soy meal and soybean oil are removed. Because live cattle

is included, cattle feeder is removed. Because lean hogs is included, frozen pork bellies

is dropped. Cocoa and coffee are removed because of relatively low relevance for US

farmers. This leaves us with corn (CC.), wheat (CW.), oats (CO.), soybeans (CS.), live

cattle (CLC), lean hogs (CLH), cotton (NCT), sugar (NSB) and orange juice (NJO).17

17Datastream codes between brackets.
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