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Abstract

We analyze trends and persistence in the misallocation of labor and capital using

firm-level panel data for the Netherlands in the period 2001–2017. We use the dis-

persion in marginal revenue products of labor and capital to measure the extent of

misallocation. Compared to a counterfactual efficient allocation we find that mis-

allocation has had a sizable negative impact on aggregate productivity. Especially

capital misallocation has increased over time. The relatively high and rising capital

misallocation is caused by a combination of small, highly productive firms facing

relatively high capital wedges and large and unproductive firms facing relatively low

capital wedges. Exploiting a panel data error components model we find that cap-

ital misallocation has a much more permanent character than labor misallocation.

Moreover, it is the permanent component of capital misallocation that has increased

over time. Finally, we show that in our sample the measurement of misallocation

is largely insensitive to capital adjustment costs and alternative specifications of

the production function. The contribution of heterogeneous markups to observed

misallocation, however, is non-negligible.
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1 Introduction

Many countries have experienced an aggregate productivity slowdown in the last decades.

To shed light on the causal mechanisms behind the stagnation of macro-economic pro-

ductivity growth, the recent literature has increasingly made use of micro-economic data

sets. It is now widely accepted that the large heterogeneity in firm-level outcomes plays

a key role in explaining macro-economic developments. An often analyzed micro-founded

explanation for the aggregate productivity slowdown is misallocation of resources across

firms. The empirical evidence suggests that the productivity loss caused by misallocation

can be large, see e.g. Hsieh and Klenow (2009) or Gopinath et al. (2017) among others.

In this paper we estimate the negative impact of misallocation of labor and capital

on aggregate productivity in the Netherlands. To the best of our knowledge the size of

resource misallocation in the Dutch business sector has not been analyzed before. In our

empirical analysis we use the model of Hsieh and Klenow (2009), further referred to as

the Hsieh and Klenow model. This set up is attractive because it is able to estimate

distortions in output and capital allocation for each year at the firm-level. Furthermore,

the Hsieh and Klenow model is able to construct counterfactual productivity levels as-

suming an efficient allocation of production factors. We show that misallocation in the

Netherlands has increased by 14 percentage points in the period 2001–2017 compared to

this counterfactual.

Apart from providing firm-level evidence on misallocation for the Netherlands, our

contribution to the empirical literature on allocative efficiency is twofold. First, we ana-

lyze the relation between estimated firm-level distortions and firm-characteristics in more

detail. Throughout the analysis we distinguish industry, size and productivity as rele-

vant firm-characteristics. We use ordered probit-regressions to estimate the probability

of a high or low distortion conditional on these firm-characteristics. We find that smaller

firms at the productivity frontier have the highest probability of facing relatively large

distortions, while non-productive firms have the highest probability of facing relatively

small distortions.

Second, we analyze the persistence of the variables underlying the misallocation mea-

sures, i.e. the Marginal Revenue Product of Capital (MRPK) and the Marginal Product

of Labor (MRPL). We exploit error component models from the earnings dynamics litera-

ture (see e.g. Moffitt and Gottschalk, 2011 and Doris et al., 2013) to discriminate between

the permanent component and the transitory component of the variances of the marginal

revenue products. We find that the permanent component of capital misallocation has
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increased over time. Furthermore, the permanent component of capital misallocation is

highest for small firms and for firms operating at the productivity frontier, corroborating

the earlier empirical findings.

The recent literature on misallocation has questioned the underlying assumptions of

the Hsieh and Klenow model. Crucial question in this literature is whether we should

attribute measured distortions to misallocation, or alternative explanations for the ob-

served distortions. In other words, are the estimated distortions due to misallocation

or misspecification? We assess the importance of some often raised conjectures (see e.g.

David and Venkateswaran, 2019) to the modeling framework of Hsieh and Klenow (2009).

First, we analyze the importance of capital adjustment costs (see e.g. Asker et al., 2014)

and we find that it explains only 5% of the observed misallocation. Second, we show that

allowing for heterogeneous production technologies across firms does not have an impact

on our empirical results. Also we analyze how our measure of misallocation changes if

we allow for non-unitary substitution between the production factors labor and capital.

Third, we analyze the impact of heterogeneous markups across firms. Using methodology

of De Loecker and Warzynski (2012) we find that firm-level heterogeneity in markups is

able to explain a sizable part of the observed variation in marginal revenue products, i.e.

approximately 25%. Taken together we conclude that in our case the majority of the mea-

sured distortions (around 70%) is a consequence of either capital or labor misallocation.

The remainder of this paper is structured as follows. Section 2 describes our base-

line model to measure misallocation and presents empirical results for the Netherlands.

Section 3 analyzes the relation between the firm-level distortions and firm-characteristics

in more detail. Section 4 analyzes the evolution of misallocation focusing on persistence

and trends. Section 5 analyses the sensitivity of our outcomes to recent criticism in the

literature. Section 6 concludes.

2 Measuring misallocation

To quantitatively assess the effect of within-industry resource misallocation on aggregate

total factor productivity we build on the framework developed by Hsieh and Klenow

(2009), recently applied by i.e. Gopinath et al. (2017), Gamberoni et al. (2016), Calli-

garis (2015), Calligaris et al. (2018) and others. The Hsieh and Klenow model formally

shows that frictions distorting the marginal revenue products of capital and labor lower

aggregate factor productivity. We estimate the model using a rich and tailored data set

containing the annual balance sheet and the profit and loss statements of all Dutch firms
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that are legally obliged to declare corporate income tax. Our final data set contains

1,831,5757 firm-year observations for the period 2001–2017, and contains 342,245 unique

firms. Appendix A contains a detailed description of the sources and cleaning procedure

used to construct this data set.

2.1 Model

The Hsieh and Klenow model makes two crucial assumptions. First, firms are hetero-

geneous in their productivity level and in the extent of factor-market distortions they

face. Second, every firm supplies a heterogeneous good which is priced individually in the

market. Aggregate economy wide output is defined by a Cobb Douglas (CD) production

technology:

Yt =
S∏
S=1

Y θs
s,t where

S∑
s=1

θs = 1, (1)

where Ys,t denotes industry-specific output in industry s in year t and Yt is the product

of all industry-specific outputs Ys,t raised to their individual industry-output share θs. At

the industry level, s, the output is a Constant Elasticity of Substitution (CES) aggregate

of Ms differentiated products:

Ys,t =

(
Ms∑
i=1

Y
σ−1
σ

is,t

) σ
σ−1

, (2)

where Yis,t denotes output of firm i –i.e. the heterogeneous good produced by firm i–

in industry s at time t. The parameter σ is the time-invariant elasticity of substitution

between firm value added or the substitutability of competing manufacturers. The higher

σ the more substitutable the goods become and the less the firm can control the market

price via its mark-up. For comparability with Hsieh and Klenow (2009) and Gopinath

et al. (2017) we set σ at 3.1

Each individual firm produces its unique good according to a standard CD production

function:

Yis,t = Ais,tK
αs
is,tL

1−αs
is,t , (3)

where Ais,t, Kis,t and Lis,t are total factor productivity, real capital and labor input of firm

i, in industry s at time t, respectively. We measure the firm’s nominal value added Pis,tYis,t

as the difference between gross turnover minus materials used in production. Real firm-

level output Yis,t equals nominal value added deflated with a firm-specific output price

1 Note that as σ goes to ∞ the economy leaves monopolistic competition and approaches perfect
competition.
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deflator Pis,t. Since we do not observe prices at the firm-level in our data set, we revert to

using two-digit industry deflators, following e.g. Dias et al. (2016), Gorodnichenko et al.

(2018) and Gopinath et al. (2017). This implies we calculate Yis,t actually as Pis,tYis,t/Ps,t,

where Ps,t is the industry deflator. We measure labor input Lis,t as the firm’s wage bill

deflated by the same two-digit industry deflators used to deflate nominal firm-level output,

i.e. Wis,tLis,t/Ps,t. We use the nominal wage bill instead of employment to control for

differences in the quality of the workforce across firms, as argued in e.g. Hsieh and

Klenow (2009) and Gopinath et al. (2017). Finally, we measure the firm-specific real

capital stock Kis,t with the book value of fixed tangible assets deflated with the total

deflator of non-financial corporations gross fixed capital formation, PK
t . This implies we

actually calculate Kis,t as PK
is,tKis,t/P

K
t .

The idea of the Hsieh and Klenow model is that each firm acts a monopolist in its

differentiated product and faces two types of distortion: a capital wedge τKis,t, that changes

the relative marginal revenue product of capital with respect to labor, and an output

wedge τYis,t, that changes the marginal product of capital and labor by the same proportion.

Market distortions appear in the firm’s profit equation:

πis,t = (1− τYis,t)Pis,tYis,t − wtLis,t − (1 + τKis,t)RsKis,t, (4)

where wt is the wage faced by all firms and Rs is the time-invariant industry specific

real rental price of capital, i.e. the sum of the nominal interest rate per industry rs and

the industry-specific depreciation rate δs minus the average headline inflation, ∆HICPt,

where HICPt is the natural logarithm of the Harmonized Index of Consumer Prices

(HICP). We assume an average inflation rate of 2% in our sample, in line with the average

HICP-inflation rate in the Netherlands during the period 2001–2017. We estimate rs

and δs from the firm-level data in two steps. First, we calculate the firm-specific time-

varying implicit interest rate ris,t and depreciation rate δis,t, by dividing the firm’s interest

payment by total debt and depreciation divided by total fixed tangible assets. Second,

we aggregate the firm-specific time-varying implicit interest rate and depreciation rate to

industrial averages by weighting with the average industrial real value added shares over

the period 2001–2017.2 Before aggregation we clean δis,t and ris,t by setting δis,t or ris,t

equal to missing when it is in the top/bottom 5% of the respective distributions.

As a result of the wedges τYis,t and τKis,t, there will be differences in the marginal products

of labor and capital across firms. The first order conditions for profit maximization with

2 All deflators, the HICP-index and the real value added shares are publicly available data from
Statistics Netherlands
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respect to labor and capital, are given by:

Pis,t
∂Y

∂L
= MRPLis,t = (1− αs)

(
σ − 1

σ

)(
Pis,tYis,t
Lis,t

)
=

(
1

1− τYis,t

)
wt, (5)

Pis,t
∂Y

∂K
= MRPKis,t = αs

(
σ − 1

σ

)(
Pis,tYis,t
Kis,t

)
=

(
1 + τKis,t
1− τYis,t

)
Rs,t, (6)

The estimated distortions to capital (τKis,t) and output (τYis,t) are estimated relative to

labor. An observationally equivalent, and in our case more useful, expression is in terms

of distortions in absolute levels of capital and labor. Denote level distortions of capital

and labor as τK∗is,t and τL∗is,t, respectively. Hsieh and Klenow (2009) show that the firm’s

first order conditions are identical to those with τKis,t, τ
Y
is,t assuming 1− τYis,t = 1/(1 + τL∗is,t)

and 1 + τKis,t = (1 + τK∗is,t )/(1 + τL∗is,t).

Following Foster et al. (2008) we make a distinction between revenue productivity

(TFPR) and physical productivity (TFPQ), i.e. the Solow-residual. Using this terminol-

ogy we can define TFPQ by rewriting equation (3):

TFPQis,t = Ais,t = κs,t
Pis,tY

σ
σ−1

is,t

Kαs
is,tL

(1−αs)
is,t

, (7)

Where the scalar is κs,t = (Ps,tYs,t)
1

σ−1/Ps,t. The calculation of TFPQis,t warrants some

explanation. We do not observe each firm’s real output Yis,t, but only its nominal output

Pis,tYis,t, i.e. we lack data on firm’s prices (Pis,t), and only have information on sectoral

prices (Ps,t). Plants with high real output, however, must have a lower price to explain

why buyers would demand the higher output. Following the assumption of an isoelastic

inverse demand curve we raise Pis,tYis,t to the power σ/(σ−1) to arrive at Yis,t. That is, we

infer price versus quantity value added from revenue and our assumed (constant) elasticity

of demand. Elegantly, equation (7) requires only the assumptions about technology and

demand plus maximization. Then TFPR is defined as:

TFPRis,t = Pis,tAis,t =

(
σ

σ − 1

)(
MRPKis,t

αs

)αs (MRPLis,t
1− αs

)1−αs
. (8)

In this model TFPR does not vary across firms within an industry unless firms face

output and/or capital distortions. The idea is that in a friction-less economy more capital

and labor should be allocated to firms with higher physical productivity, Ais,t, to the point

where higher output results in lower price and the same TFPR compared to firms with

lower physical productivity. When there are frictions, however, economy wide output can

be (much) lower. Imagine an economy with two firms that have identical technology but
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in which one firm benefits from subsidized credit (say from a state-owned bank), and the

other firm can only borrow at high rates from informal capital markets. Assuming that

both firms equate their MRPK with the interest rate, the marginal revenue product of

the firm with access to subsidized credit will be lower than the MRPK of the firm that

only has access to informal financial markets. This is a clear case of capital misallocation:

aggregate output would be higher if capital was reallocated from the firm with a low

MRPK to the firm with a high MRPK. The misallocation of capital results in lower

aggregate output per worker and TFPQ (see e.g. Gopinath et al., 2017).

We follow Hsieh and Klenow (2009), and estimate the impact of misallocation thus

defined on the TFPQ level by defining the “efficient” level of TFPQ, as the TFPQ-level

we would observe in the first-best allocation in absence of dispersion in MRPK, MRPL

and TFPR such that TFPRis,t = TFPRs,t, where:

TFPRs,t =
Ps,tYs,t

Kαs
s,tL

(1−αs)
s,t

, (9)

It can then be shown that the difference in log(TFPQ) arising from misallocation – the

misallocation-gain Λs,t– can be written as a combination of the variables introduced in

equations (3)–(9). See equations (1)–(11) in Gopinath et al. (2017) for a formal derivation

of this misallocation measure. In Section 2.2 we will express the misallocation-measure

Λs,t in percentage point differences with respect to the first-best allocation in absence of

dispersion in MRPK, MRPK and TFPR in 2001.

Our misallocation measure represents an upper limit to intra-industry misallocation,

given that all variation in the marginal revenue product is attributed to misallocation.

This is assuming that firms are at their long-term static equilibrium at any given moment

in time, irrespective of the scope, type and frequency of firm-specific shocks. Each di-

version from the equilibrium is regarded as misallocation, which constitutes a substantial

assumption. The model assumptions are relatively strict: all firms have a productiv-

ity level with the same mark-up and the same capital intensity, adjustment costs are

absent, and the substitution elasticity with respect to capital and labor is equal to a CD-

production function with constant revenues of scale. In our view the the model is still a

suitable model to measure misallocation in the economy, despite these limitations. We

elaborate on the sensitivity of our misallocation measures to the model assumptions in

Section 5.
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2.2 Estimation results misallocation total economy

Figure 1 shows the allocative efficiency for both factors of production, labor and capi-

tal, in the period 2001–2017 according to the Hsieh and Klenow model outlined above,

reflecting the standard deviation of the log of the marginal revenue product of capital

(black line) and the log of the marginal revenue product of labor (grey line). In the re-

mainder of the text we will also refer to these measures as capital misallocation and labor

misallocation.3 The larger the standard deviation, the higher the degree of misallocation.

Capital misallocation shows a clearly discernible upward trend over the period 2001–2013,

interrupted briefly between 2005 and 2007. After 2013 misallocation of capital has lev-

eled out. On balance, capital misallocation in the Netherlands increased by 18% in the

period 2001–2017. Labor misallocation developed quite differently. Labor misallocation

increased much less strongly than capital misallocation but fluctuated much more. In the

period 2002–2006 labor misallocation even dropped below the level recorded in 2001. In

2017 the level of labor misallocation exceeded the 2001 level by a “mere” 6%.

[INSERT FIGURE 1 ABOUT HERE]

Figure 2 shows the possible gain from reducing capital and labor misallocation to zero

using our misallocation-gain measure Λs,t introduced in Section 2.1. According to this

measure, removing all distortions would increase aggregate TFPQ in the Netherlands by

43% in 2001. This gain increases to 57% in 2017, indicating that since 2001 there has

been a decline in allocative efficiency by 14 percentage points. Interestingly, the worsening

of allocative efficiency started long before the Great Recession (2008) and the European

Debt crisis (2011). During these crisis-years misallocation losses kept rising. After 2013,

the misallocation loss dropped somewhat and has been fluctuating around 57% in the

period 2014–2017. Comparing our results to recent findings in the literature seems to

indicate that the measured increase in misallocation is more comparable to the Southern

EU-member states than the Northern EU-member states. Similar to the Netherlands,

Gopinath et al. (2017) observe significant increased in misallocation in Spain and Italy,

but quite stable levels of misallocation in Germany, France and Norway. Calligaris (2015)

and Calligaris et al. (2018) also find steadily increasing misallocation in Italy.

[INSERT FIGURE 2 ABOUT HERE]

3 Economy-wide measures are calculated by the weighted mean, using real industrial value added
weights, calculated as the average share in real value added over the period 2001–2017, according to the
National Accounts.
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2.3 Misallocation per firm-characteristic

In the period 2001–2017, the level and development in misallocation was not evenly spread

across industries. The level of our misallocation measure in the services sector clearly ex-

ceeds that in the manufacturing sector.4 This is clear from Figure 3, which plots the

measured capital and labor misallocation in the total economy, the manufacturing sector

(dashed line) and the services sector (dotted line). Panel A and B show the evolution of

capital and labor misallocation, respectively. These results confirms the outcomes of ear-

lier studies addressing misallocation in the services sector. For Portugal, Dias et al. (2016)

find that the level of misallocation in the services sector exceeds that in the manufacturing

sector by a large amount. Busso et al. (2013) find the same result for a number of Latin

American countries. de Vries (2014) finds substantial misallocation in the Brazilian retail

sector. Dias et al. (2016) suggest that the relatively high misallocation in the services

sector vis-à-vis the manufacturing sector could be driven by lower competition, limited in-

ternational trade-ability, relatively high regulatory barriers an the location-specific nature

of services.5

[INSERT FIGURE 3 ABOUT HERE]

Moreover, the evolution of labor misallocation in manufacturing is markedly different

from the services sector (Panel B of Figure 3). In the manufacturing sector labor mis-

allocation has steadily increased in the period 2005–2017, whereas misallocation in the

services sector more or less stabilized during this period. Unlike the diverging evolution

of labor misallocation in the manufacturing and services sector, capital misallocation rose

in roughly the same amount in both the manufacturing sector and services sector.

Figure 4 shows a more detailed picture of capital misallocation at the five-digit in-

dustry level in 2001 and 2017, respectively. Our data set contains 93 industries in the

manufacturing sector and 240 industries in the services sector. In both 2001 and 2017

most firms were active in the services sector, i.e. 78% and 81% of all firms in our sam-

ple, respectively. Panel A and B show scatter diagrams of capital misallocation for each

five-digit industry in manufacturing and services, respectively. The grey dots show cap-

4 The manufacturing sector is comprised of (NACE-industry two-digit codes in brackets): manufac-
turing (10–33) and construction (41–43). The services sector is comprised of: wholesale and retail trade;
repair of motor vehicles and motorcycles (45–47), transportation and storage (49–53), accommodation
and food services (55–56), information and communication (58–63), professional, scientific and technical
activities (69–75) and administrative and support service (77–82).

5 As pointed out by Restuccia and Rogerson (2017) the difference in the level of misallocation between
the manufacturing and services sector might also be partly driven by measurement problems specific to
the services sector. Defining and measuring quality change is perhaps the single most severe problem
contributing to poorer measurement of real output in services.

9



ital misallocation measures in 2001 and 2017, expressed against the same misallocation

measure for the total economy in 2001. Dots lying above/below the 45◦-line indicate that

capital misallocation has increased/decreased. The main take-away from Figure 4 is that

capital misallocation increased in the period 2001–2017 for the vast majority of industries

in both the manufacturing and services sector, i.e. most grey dots are above the 45◦-line.

We observe increases of capital misallocation in 90% and 93% of all five-digit industries in

the manufacturing and services sectors, respectively. Figure 5 shows the same measures

as plotted in Figure 4, but for labor misallocation instead of capital misallocation. In con-

trast to capital misallocation, the number of industries showing an increase or decrease

in labor misallocation is approximately the same in the services sector. This implies

that the industry-level heterogeneity in labor misallocation is much larger than capital

misallocation.

[INSERT FIGURES 4 AND 5 ABOUT HERE]

Misallocation is also related to firm-size for various reasons. First, larger firms tend

to be older than smaller firms, and may therefore be able to self-finance more easily via

build up reserves than the smaller ones and, hence, be less exposed to financial constraints

(Gopinath et al., 2017). Consequently, larger firms might be less vulnerable to misalloca-

tion caused by changing conditions in capital markets and bank-credit-standards. Second,

the size of a firm might be a signal for good management practices and more efficient al-

location of resources (see e.g. Calligaris, 2015). Recently, Gopinath et al. (2017) provided

evidence that credit restrictions in a low-interest environment prompt large enterprises to

invest too much and small enterprises to invest too little, because the latter face credit-

restrictions, also in a low inflation environment.

[INSERT FIGURE 6 ABOUT HERE]

Figure 6 reports the evolution of the capital misallocation, according to firm-size. We cat-

egorize all firms as either micro, small, medium, or large based on the number of employees

and annual balance sheet following the firm-size division of the European Commission.6

During the period 2001–2012, capital misallocation increased for all business sizes. More-

over, there is a (strong) negative relation between the level of capital misallocation and

the size of the firm. Averaged over the period 2001–2017 capital misallocation of micro

6 Micro (small) enterprises have less than 10 (50) employees and an annual balance sheet total of
below EUR 2 (10) million. Medium-sized (large) enterprises have less (more) than 250 employees and an
annual balance sheet total of no more (less) than EUR 43 million. A firm’s number of employees includes
the firm’s owner(s). This means that sole proprietors are classified as firms with one employee.
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firms is around 24% higher than capital misallocation of large firms. Remarkably, this dif-

ference was much larger in the years leading up to the financial crisis of 2008–2009. In the

period 2001–2007 the difference was 36%, but in the years 2008–2011 capital misalloca-

tion of large firms increased much faster than for small firms decreasing the gap in MRPK

dispersion between micro and large firms to 15% averaged over the period 2008–2011. In

2017 the gap was “just” 10%.

Figure 7 reports the evolution of the labor misallocation, according to firm-size. The

figure broadly resembles the Figure 6, but the convergence of the relatively low level of

labor misallocation of large firms to the average level is much faster. Remarkably, the

level of labor misallocation of large firms was even higher than the average level in the

period 2010–2017.

[INSERT FIGURE 7 ABOUT HERE]

3 Misallocation in terms of the capital and labor

wedge

As discussed in the previous section the within-industry dispersion of revenue productivity

of firms is quite large. Moreover, there are sizable differences according to industry and

firm-size. What the misallocation measures do not indicate is whether the distortion lead

to a firm to use “too much” or “too little” capital and labor. However, in the Hsieh

and Klenow framework this can be analyzed by estimating the absolute capital and labor

“wedges”, described in Section 2.1. A relatively high capital/labor wedge indicates a firm

has “too little” capital/labor, whereas a relatively low capital/labor wedge indicates a

firm has “too much” capital/labor. In this section we correlate the estimated wedges

with firm characteristics to determine which type of firm has relatively high/low wedges.

3.1 Estimation results wedges total economy

Figure 8 shows the distribution of the estimated capital and labor wedges in our sample

of firms. The figure reports the distribution of the logarithm of the absolute wedges on

capital and labor, defined as ln(τK∗is,t +1) and ln(τL∗is,t+1) respectively. Both measures were

described in Section 2.1. Noticeably, the distribution of the capital wedge has a much

higher standard deviation than the labor wedge, which is in line with the relatively low

standard deviation of labor misallocation presented in Section 2.2.
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[INSERT FIGURE 8 ABOUT HERE]

Figure 9 reports the evolution of the capital and labor wedges. Panel A shows the

distribution of the capital wedge in 2001, 2008 and 2017. The distribution of the capital

wedge has become much more compressed over time. Among other things, the right tail

of the distribution has become thicker, i.e. the percentage of firms with a relative high

capital wedge has increased in our sample period. Panel B of Figure 9 reports the labor

wedge in 2001, 2008 and 2017. In contrast to the capital wedge, the shape of the labor

wedge distribution has changed very little over time. Interestingly, the distribution of the

labor wedge has shifted to the right, indicating that firms on average faced somewhat

higher labor distortions in the later years of our sample.

[INSERT FIGURE 9 ABOUT HERE]

As emphasized in Restuccia and Rogerson (2017) and Hsieh and Klenow (2009), dis-

tortions would be particularly costly if they are positively correlated with a firm’s physical

productivity. To investigate this, we examine the relation between the capital and labor

wedges on the one hand and the firm’s factor inputs (K, L) and TFPQ on the other hand

by calculating the correlations between these variables. We denote deviations of variables

from their industry means as, T̃FPQis,t, τ̃
K∗
is,t , τ̃L∗is,t, L̃is,t and K̃is,t, respectively.

The correlation matrix, shown in Table I, provides a number of interesting insights.

First, firms with a higher TFPQ-level face higher “taxes” on both capital and labor. The

correlation between the capital wedge and total factor productivity is 0.49, while between

the labor wedge and total factor productivity is only 0.21. Second, the negative effect of

the labor distortions on the level of total factor productivity is lower than for the capital

distortion, because the correlation between labor input and total factor productivity is

relatively high. This is different for the firm’s capital input, which seems to be much more

distorted. Third, the correlation between capital input and total factor productivity is

very modest, signaling that firms with a high level of total factor productivity are unable

to attract enough capital. Finally, the labor and capital wedges are very weakly correlated

in our sample. In line with the outcomes for for capital and labor misallocation presented

in the Section 2.2, we can conclude from these simple correlations that the capital wedge

seems to be the most important factor behind the total factor productivity loss reported

in Figure 2.

[INSERT TABLE I ABOUT HERE]
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3.2 Capital wedges per firm-characteristic

The high correlation between the capital wedge and total factor productivity warrants

further analysis. To establish what type of firm is especially influenced by the high capital

wedges, we estimated an ordered probit-regression of the capital wedge on a set of firm-

characteristics. The dependent variable is the capital wedge split up in five categories.7

Each category contains 20 percent of all capital wedges ordered from low to high, based

on the distribution of the capital wedge in the period 2001–2017. We label firms that fall

into the first two deciles of the capital wedge distribution as “very low”, the third and

fourth decile as “low”, the fifth and sixth decile as “average”, the seventh and eight decile

as “high” and the ninth and tenth decile as “very high”. As regressors we included firm-

size, industry, year fixed-effects and the position in the firm’s productivity distribution.

The inclusion of the latter variable was induced by recent research of, among others,

Andrews et al. (2016), Andrews et al. (2018) and van Heuvelen et al. (2018). Using

cross-country firm-level data, Andrews et al. (2016) reveal an increasing productivity-gap

between so-called “frontier” and “laggard” firms. For each year they define“ frontier”

firms as the top 5% of firms in terms of labor productivity levels within each industry.

All other firms are defined as “laggards”. We deviate somewhat from this definition and

define three groups of firms, i.e firms at the national frontier (“frontier” firms), firms

that have an average productivity level (“average” firms), and firms at the low-end of

the productivity distribution (“laggard” firms). Frontier, average and laggard firms are

defined as firms being in the 10th decile, the 2nd up to the 9th decile, and 1st decile of

the TFPQ-distribution within each two-digit industry, respectively. We determine these

groups for each year separately.

Figure 10 shows the estimated marginal effects of the ordered probit-regression, with

the absolute capital wedge as dependent variable. All reported marginal effects are calcu-

lated by varying one of the following variables, i.e. firm-size, productivity-level (frontier,

average, laggards) or sample year, while keeping all other covariates at their sample mean.

[INSERT FIGURE 10 ABOUT HERE]

Panel A reports the marginal effects for firm-size. The figure shows that the capital

wedges are unevenly distributed across firm-size. Large firms have a high probability

(53%) facing “very low” capital wedges, while the opposite holds for small and, especially,

micro firms. The probability of facing a “very low” capital wedge is 23% for small firms

7 All model-estimates, marginal effects and expected values of the models presented in this section are
available in the online appendix, here.
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and only 12% for micro firms. The probability of facing a high capital wedges is inversely

related to firm-size too. According to our estimation results, large firms face a 2% prob-

ability of facing “very high” capital wedges, whilst micro firms face a 21% probability of

“very high” capital wedges instead.

Panel B reports the marginal effect of the firms position in the TFPQ distribution.

Interestingly, laggard firms have the highest probability of facing a relatively “very low”

capital wedge (61%), whilst firms at the productivity frontier face a 53% probability

of facing a relatively “very high” capital wedge. From a policy perspective this is a

disturbing outcome, because it indicates that low productivity firms have a “subsidy”

on capital inducing them to produce more than would be optimal. Moreover, highly

productive firms face a “tax” on capital inducing them to produce less than optimal,

thereby reducing economy-wide TFPQ. Panel C indicates that in the period 2001–2017

(very) high capital wedges have increased and (very) low capital wedges have decreased.

To get a better understanding of the interaction between TFPQ-level, firm-size and the

evolution of the capital wedge, we estimated a separate ordered probit-model where the

dummy variables on firm-size, position in the TFPQ-distribution and year are interacted.

This specification enables enough flexibility for possible time-dependent relations between

the capital wedge on the one hand and the firm’s position in the TFPQ-distribution,

firm-size and survey year on the other hand.8 Figure 11 shows the expected capital wedge

from this exercise. The expected values vary between -2 (very low) to +2 (very high).9

The reported expected values in panels A, B and C are calculated by varying firm-size

and sample year and setting the firm’s TFPQ level in the laggards, average and frontier

category respectively. For readability we used a color-code to indicate the size of the

expected capital wedge. A “very low” capital wedge is color-coded white and a “very

high” is color-coded black.

The expected values in Figure 11 show a number of interesting results. First, the

(slight) increase in capital wedges, which we observed in Figure 10, seem to be largely

concentrated among frontier firms, as can be seen from the darker colors in 2017 in this

category at the end of our sample period. Second, micro firms face the highest capital

wedges, which holds for laggards, average and frontier firms. According to our estimation

8 We included a total of 201 dummy variables in this specification, i.e. we constructed a dummy for all
possible interactions of firm-size, position in the TFPQ-distribution and year, i.e. 132 (triple and double)
interaction dummy variables, 2 dummy variables for the position in the TFPQ-distribution, 2 size-class
dummy variables, 16 year dummy variables and 49 sector dummy variables.

9 The expected capital wedge is calculated as -2*P(very low capital wedge)-1*P(low capital
wedge)+1*P(high capital wedge)+2*P(very high capital wedge). We combined medium and large firms
in one group, because we had problems with convergence of the model if we specified both medium and
large firms separately, most probably because of the relatively small number of large firms in our sample.

14



results, in 2017, micro firms at the productivity frontier had a 48% probability of facing

a very high capital wedge, versus 26% for medium and large firms. Micro firms that were

classified as laggards faced a 2% probability of a very high capital wedge, versus 0.1% for

medium and large firms.

[INSERT FIGURE 11 ABOUT HERE]

3.3 Labor wedges per firm-characteristic

We estimated similar probit models for the labor wedge.10 The estimation results are

reported in Figure 12 and Figure 13.

[INSERT FIGURE 12 AND 13 ABOUT HERE]

Overall, Figure 12 and Figure 13 show the same picture as the outcomes for the capital

wedge, i.e. smaller firms face higher labor wedges, firms at the frontier face low wedges

and laggard firms face low labor wedges. There are two main differences between the

probit-outcomes for the capital and labor wedges, however. First, in contrast to the large

differences in capital wedges according to firm-size and the firm’s position in the TFPQ-

distribution, the differences in labor wedges are (much) smaller. Second, the evolution of

relatively high and low wedges is much more dynamic than the capital wedge, i.e. the

decrease/increase in “very low”/“very high” labor wedges is much larger compared to

capital wedges. This evolution is largely disguised in the evolution of the average labor

wedge, because the shifts occurred in the top and bottom deciles of the distribution. The

decrease/increase in “very low”/“very high” labor wedges seems to be relatively evenly

spread over firm-size and the firm’s position in the TFPQ-distribution as can be seen from

the darker colors moving from 2001 to 2017 in Panel A through C in Figure 13.

These results imply that the loss in TFPQ compared to an efficient allocation of capital

and labor can largely be attributed to a combination of Dutch highly productive (frontier)

firms facing relatively high capital wedges and Dutch low productive (laggard) firms facing

relatively low wedges. The effect of firm-size class is interesting as well, because the high

wedges are concentrated among micro firms at the productivity frontier, while the low

wedges are concentrated among large firms in the lowest decile of the TFPQ distribution

(laggards). Furthermore, the clustering of high and low wedges by size class and level of

TFPQ increased over time.

10 All model-estimates, marginal effects and expected values of the models presented in this section are
available in the online appendix, here.
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4 Trends and persistence in misallocation

Section 2 indicates that capital misallocation is trending upward over time and that

there can be substantial differences in capital and labor misallocation depending on firm-

characteristics. A related question is for what period the observed firm-specific differences

in capital and labor misallocation persist. To analyze the trends and persistence of capital

and labor misallocation we use panel data specifications from the literature on individual

earnings dynamics, see e.g. Ng (2008), Guvenen (2009), Moffitt and Gottschalk (2011),

Browning and Ejrnæs (2013) and Doris et al. (2013). The basic idea is that misalloca-

tion can be modeled with an error component model, which allows identification of the

permanent and transitory components of the observed capital and labor misallocation.

4.1 Permanent and transitory misallocation

To identify the separate contributions of the permanent and transitory component of

capital and labor misallocation we use the following model:

yi,t = yPi,t + yTi,t, (10)

where yi,t is either log(MRPK) or log(MRPL) of firm i in year t. The first and second

term in (10) are the permanent and transitory components, respectively. There is a large

literature on the precise formulation of such a decomposition and many specifications are

possible. For example, the basic random effects model assumes an i.i.d. time-invariant

permanent component (yPi,t = ηi) independent from an i.i.d. transitory component. Ex-

tensions allow for (1) a random walk in the permanent component; (2) a stationary

ARMA-process for the transitory component; (3) time series heteroscedasticity or factor-

loadings for both components; (4) heterogeneity in model parameters across individuals.

We note that, irrespective of the chosen specification, there is inevitably some degree of

arbitrariness in distinguishing permanent and transitory components.

We use the modeling framework of Doris et al. (2013) and estimate:

yi,t = ptηi + λtvi,t, (11)

where ptηi and λtvi,t are defined as the permanent (yPi,t) and transitory error component

(yTi,t), respectively. The factor-loadings pt and λt allow the variances of the permanent and

transitory misallocation to change over time. Furthermore, vi,t is modeled as a stationary
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AR(1) process to account for persistence in transitory shocks:11

vi,t = ρvi,t−1 + εi,t. (12)

Finally, regarding the initial observation it is assumed that V ar(vi1) = σ2
v1. It is easily

seen (Doris et al., 2013) that the cross-sectional variance implied by the model (11)–(12)

is equal to:

Vt,∞ = p2tσ
2
η + λ2tσ

2
v1, t = 1,

Vt,∞ = p2tσ
2
η + λ2t (ρ

2t−2σ2
v1 + σ2

ε

t−2∑
w=0

ρ2w), t > 1. (13)

The permanent component of the cross-sectional variance at time t is given by the first

term p2tσ
2
η, while the second term is the transitory component. In case of covariance

stationarity we have that pt = λt = 1 and σ2
v1 = σ2

ε/(1 − ρ2). Any deviation from these

values will cause the cross-sectional variance to change over time. Note that pt and λt are

unknown parameters, hence can be trending over time. Note also that when −1 < ρ < 1

the impact of a non-stationary initial observation will gradually vanish over time.

We estimate the model by using the Generalized Method of Moments (GMM) estima-

tor of Doris et al. (2013). The parameters are ρ, σ2
ε , σ

2
η, σ

2
v1, p1 − pT and λ1 − λT . The

coefficient estimates are then used to predict the portion of variance due to the permanent

and transitory components, e.g. the former is estimated by p̂2t σ̂
2
η. Note that the pattern

of pt fully determines the trend in the permanent component. Regarding the transitory

component more parameters are involved, hence there is no one-to-one mapping from

parameters to cross-sectional variance.12

Figure 14 reports the evolution of the permanent and transitory variances for capital

and labor misallocation. The figure shows some interesting results. First, the permanent

component of capital misallocation (Panel A) strongly increased over our sample period,

whilst the transitory component was approximately the same size in 2017 as in 2001. From

2008 onwards, the permanent capital misallocation is larger than the transitory misalloca-

tion. Second, the relative size and evolution of the permanent and transitory component

of capital an labor misallocation are quite different. In contrast to the evolution of capital

misallocation, the transitory labor misallocation has been larger than the permanent com-

ponent over our whole sample period. Third, the transitory nature of labor misallocation

11 We experimented with adding a random walk element to the permanent component and higher-order
autoregressive or moving-average processes in vi,t, but these components were generally not significant.

12 All model-estimates and predicted permanent and transitory components presented in this section
are available in the online appendix, available here.
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has been on a steady increase since 2009. The relative stability of labor misallocation

over the whole sample period can therefore be largely ascribed to a simultaneous increase

and decrease in the transitory and permanent component, respectively. Overall, these

outcomes suggest that the Dutch firms have become more adaptive to changing labor

demand and supply conditions, i.e. quite effective in removing distortions. The opposite

is true for firm’s acquisition of capital, where the permanent component of misallocation

has increased by much more than the transitory component.13

[INSERT FIGURE 14 ABOUT HERE]

4.2 Variance decomposition per firm-characteristic

To determine the link between the permanent and transitory components of capital and

labor misallocation on the one hand and firm-level characteristics on the other hand,

we estimated the model (11)–(12) for various sub-samples, as defined in earlier sections.

Figure 15 shows the evolution of the permanent and transitory components of capital

misallocation for the manufacturing and services sectors. Interestingly, at the end of our

sample capital misallocation has a more permanent character in both the manufacturing

and services sectors. Since 2009 the transitory component and permanent components

of capital misallocation are of comparable size in the manufacturing sector, whilst the

permanent component of capital misallocation in the services sector has been larger than

the transitory component since 2006, albeit the difference has shrunk since 2013. These

results imply that the services sector not only has a higher level of capital misallocation

(see Figure 3), but the misallocation has become also more permanent in nature.

[INSERT FIGURES 15 ABOUT HERE]

Figure 16 shows the evolution of the permanent and transitory components of labor

misallocation for the manufacturing and services sector. In contrast to capital misalloca-

tion, the evolution of the permanent and temporary components in both sectors is roughly

the same, i.e. an increase of the temporary component after 2009 and a stabilization (man-

ufacturing sector) or small decline (services sector) in the permanent component. Another

take-away is that the convergence of the level of labor misallocation in the manufacturing

sector to the level of labor misallocation in the services sector, documented in Figure 3,

13 The online appendix, available here, also includes a decomposition of the capital and labor wedges.
Generally, the outcomes are quite comparable to the outcomes for capital and labor misallocation, so we
do not discuss them here, in order to keep the main text contained.
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can be attributed to the combination of a strong increase in the transitory component

of labor misallocation in the manufacturing sector and a decline of the permanent com-

ponent in the services sector. Overall, labor misallocation has gotten a less permanent

character in both the manufacturing and services sector.

[INSERT FIGURES 16 ABOUT HERE]

Figures 17 and 18 show the evolution of the permanent and transitory components

of misallocation for different firm-sizes. For all firm-sizes the permanent component of

capital misallocation has increased and surpassed the size of the transitory component

after 2001. Interestingly, the negative relation between the level of capital misallocation

and firm-size documented earlier (see Figure 6) seems to be mainly caused by differences

in the permanent component. This means that capital misallocation is most persistent for

micro firms. The evolution of the permanent and transitory component for large firms is

quite erratic, possibly caused by less precise GMM estimation due to the relatively small

number of firms in this firm-size category.

[INSERT FIGURES 17 AND 18 ABOUT HERE]

Finally, Figures 19 and 20 document the difference in persistence of capital and la-

bor misallocation depending on the firm’s position in the productivity distribution. For

all three productivity groups (frontier, average, laggards) the permanent component of

capital misallocation has increased over the period 2001–2017. The increased permanent

character of capital misallocation is most for frontier firms. This indicates that the rela-

tively high capital wedges for frontier firms that we estimated in Section 3.2 have become

more persistent over time. Turning to the persistence of labor misallocation according

to the firm’s position in the productivity distribution we note that the evolution of the

permanent and transitory components are comparable across productivity level, but the

bulk of labor misallocation is concentrated among the frontier firms.

[INSERT FIGURES 19 AND 20 ABOUT HERE]

4.3 Validation by Monte Carlo simulation

To determine if the error components model (11)–(12) is capable of reproducing the pat-

tern of the estimation results in Figure 1 and also the other figures we run a Monte Carlo

experiment. We use the estimated model to generate artificial MRPK and MRPL distri-

butions and analyze if the resulting time series pattern of the simulated cross-sectional
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variances coincides with the empirical cross-sectional variances. The outcome of the Monte

Carlo experiments are also used to evaluate the accuracy of the GMM estimator in finite

samples.

We generate data according to equations (11)–(12). For the error components we

assume ηi i.i.n.(0, σ2
η) independent from εit i.i.n.(0, σ2

ε). Regarding the initial observations

we assume vi1 i.i.n.(0, σ2
v1) independent from the error components. For the parameters

ρ, σ2
ε , σ

2
η, σ

2
v1, p1 − pT and λ1 − λT we choose the GMM estimates underlying Figure 14.

Finally, we choose T = 17 and N = 10, 000. The cross-sectional dimension is different

from the sample size in the empirical analysis, but we get similar results for different N .

Other differences with the empirical analysis are that in the simulations we use balanced

panel data and calculate unweighted cross-sectional variances.

For both MRPK and MRPL we create 1,000 data sets and calculate the time series of

cross-sectional variances for each replication. The mean of these 1,000 replications is then

compared to the empirical cross-sectional variances. Figure 21 shows the empirical MRPK

and MRPL variances (normalized at 1 in base year 2001), the average cross-sectional

variances of the Monte Carlo replications and the 99%-confidence interval. Panel A shows

that the simulated cross-sectional variances implied by the error component model are

capable of reproducing the upward trend in the MRPK dispersion. The error components

model seems flexible enough to describe the sometimes irregular development, e.g. in the

crisis years 2007–2009, of the empirical variances. Panel B shows the simulation results

for MRPL, which are also close to the observed empirical measure of labor misallocation.

Given the differences between simulation design and empirical estimates, we conclude that

the estimated error components model provides an accurate description of the evolution

of MRPK and MRPL dispersion.

[INSERT FIGURE 21 ABOUT HERE]

5 Sensitivity analysis

Recently, several studies have raised concern about the Hsieh and Klenow model. A

first source of concern is that capital might be subject to adjustment costs in investment

(“time-to-build”), which can lead to a higher dispersion simply due to technology-driven

adjustment processes, which in itself are not inefficient (see e.g. Cooper and Haltiwanger,

2006; Asker et al., 2014; David and Venkateswaran, 2019). The Hsieh and Klenow (2009)

model neglects this distinction between technology-driven adjustment costs, such as the
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natural time needed to build a new plant, and wasteful frictions, such as the bureaucratic

procedures of authorization that may delay the construction and activation of a new plant.

We estimate the importance of these non-wasteful adjustment costs for our measurement

in Section 5.1. Another concern is the functional form. Recently Haltiwanger et al. (2018)

showed that the model is only valid under quite strict assumptions which generally do not

hold in reality. In order to investigate the impact of the functional form we estimate the

effect of allowing for firm-specific labor and capital shares, and a different functional form

of the production function (i.e. CES instead of a CD functional form) in Section 5.2.14

Finally, in Section 5.3 we analyze the impact of heterogeneous markups using methodology

developed by De Loecker and Warzynski (2012).

5.1 Adjustment costs of capital

In order to explore whether adjustment costs are a significant driver of our measurement

of misallocation we use the methodology of David and Venkateswaran (2019). The model

is an extension of the Hsieh and Klenow (2009) framework to include dynamic consider-

ations in firm’s investment decisions. Furthermore, in the model a number of forces can

contribute to the observed dispersion in MRPK and MRPL, i.e.: (i) capital adjustment

costs, (ii) informational frictions, in the form of imperfect knowledge about firm-level

fundamentals and (iii) firm-specific factors, meant to capture all other forces influencing

investment decisions, such as unobserved heterogeneity in markups and/or production

technologies, financial frictions or institutional distortions. Appendix C.1 presents the

main model equations. David and Venkateswaran (2019) model capital adjustment costs

as a quadratic function:

Φ (Kis,t+1, Kis,t) =
ξ̂

2

(
Kis,t+1

Kis,t

− (1− δ)
)2

Kis,t, (14)

where δ is the depreciation rate.15 The coefficient ξ̂ determines the slope of the marginal

adjustment costs. For example, if δ = 0.10 and capital is doubled form time t tot t + 1

(Kis,t+1 = 2Kis,t), ξ̂ = 1 implies that the adjustment costs are 60.5% of the investment

(∆Kis,t+1). There is a rather large variation in estimates of ξ̂ in the literature. Investment-

regressions, derived from the Q-theory of investment usually find values for ξ̂ (> 10), see

14 Another concern with our quantification relates to measurement error in firms’ revenues and inputs.
As Bils et al. (2018) point out, mismeasurement distorts our analysis because a firm’s TFPR is higher when
revenues are overstated and/or inpts are understated, the dispersion of measured TFPR is unequivocally
biased upward. In our sample this form of mismeasurement is likely not a main concern, since we use
tax-data. Though self reported by the firm, these data are thoroughly checked by the tax authorities.

15 More general specification that also allow non-convex elements can be found in e.g. Cooper and
Haltiwanger (2006), Bloom (2009) and Asker et al. (2014).
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for instance Hayashi and Inoue (1991). Estimates based on the method of moments are

usually much lower, e.g. between 0.8 and 1.6 in Eberly et al. (2008) or close to zero

in Cooper and Haltiwanger (2006) and Bloom (2009). This could be partly driven by

different country samples. Asker et al. (2014) show that there is quite a large difference

in the estimated ξ̂ for the US (4.4) on the one hand and France (0.1) on the other.

The relevant model parameters to determine ξ̂ can be estimated from the following

dynamic model of the capital stock:

kis,t = π1kis,t−1 + π2ais,t−1 + ηi + uis,t, (15)

where kis,t and ais,t are the log of capital kis,t and TFPQis,t, respectively. Moreover, π1

measures capital adjustment costs, ηi measures firm-specific factors influencing invest-

ment decisions and the disturbance term uis,t captures all other possible frictions. In the

hypothetical case of no adjustment costs of capital π1 = 0 and when there are adjustment

costs π1 > 0. In the limit, when ξ̂ →∞ it holds that π1 → 1. The relevance of adjustment

costs is straightforward to test with the null-hypothesis H0 : π1 = 0 versus the alternative

hypothesis H1 : π1 > 0.

We estimate the dynamic panel data model in equation (15) directly using the fixed

effects OLS estimator.16 The estimate for π1 is 0.62 and the standard error is 0.002, which

implies a value of ξ̂ ≈ 0.4. The estimate indicates adjustment costs are a relevant source

of misallocation, although the coefficient of 0.4 is on the low-end of the estimations found

in the literature. Based on the estimated coefficients David and Venkateswaran (2019)

derive a measurement of the empirical relevance of adjustment costs. First, they assume

that adjustment costs are the sole source of between-firm variation in MRPK. In that

special case, equation (15) reduces to:

kis,t = π1kis,t−1 + π2ais,t−1, (16)

where ais,t is assumed to follow a stationary AR(1) process is. We can use equation (16) to

determine the variance of MRPK (σ2
MRPK) when adjustment costs are the only source of

misallocation. Appendix C.1 presents the formal derivation of σ2
MRPK in this special case.

Using our estimate of π1 we find σ2
MRPK = 0.16. This indicated that approximately 5% of

the measured total MRPK variance –2.97 in our sample– can be attributed to adjustment

costs. We therefore conclude that capital adjustment costs are not a sizable source of

MRPK dispersion in our sample. This outcome is in line with our previous outcome on

the persistent nature of capital misallocation as documented in Section 4.

16 Our estimation method is a simplification of the method of moments estimator of David and
Venkateswaran (2019), who use a set of non-linear moment conditions to estimate the parameters. We
are interested only in the adjustment costs parameter, hence the linear model in equation (15).
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5.2 Alternative functional form

Another concern of the Hsieh and Klenow approach is the strict assumptions on the

functional form of the production function, i.e. a CD-production function with firm-

invariant capital elasticities and a substitution elasticity of 1 between labor and capital.

We relax these assumptions one-by-one in Section 5.2.1 and Section 5.2.2. Our main

finding is that only a small fraction of the observed misallocation can be attributed to

one of these factors.

5.2.1 Firm-level heterogeneity in the production function

In the standard Hsieh and Klenow model the specified CD-production function has in-

dustry varying labor and capital shares, but these shares are constant within an industry,

as can be seen from equation (3). In other words, the capital and labor elasticities are as-

sumed to be equal for all firms within a five-digit industry. It follows from the model equa-

tions (1)–(8) that all firm-specific variation in labor or capital-elasticities automatically

lead to an increase in misallocation. We are able to relax this strong assumption, because

we are able to calculate firm-specific capital shares based on the data. In Appendix C.2

we derive an expression for the dispersion in (the log of) MRPK where misallocation is

solely caused by differences in firm-specific capital elasticities. By comparing this measure

with the observed dispersion in (the log of) MRPK in the data we can get a sense of the

impact on our results of the assumption of equal capital shares within an industry. We

find that the overall impact is rather small. The total variance of MRPK in the data

is 2.97, whilst our alternative firm-specific variation is only 0.03. This implies that only

approximately 1% of the observed variance of the (log of) MRPK can be attributed to

differences in firm-specific capital elasticities.

5.2.2 Constant Elasticity of Substitution production function

Another possible explanation for the observed misallocation misallocation could be that

the assumption of unity substitution in the CD-production function in equation (3) is

invalid. An alternative –often used– functional form is the CES-production function,

where the substitution-elasticity between capital and labor is freely estimated and not a

priori equalized to unity, i.e.:

Yis,t = Ais,t

(
αsK

σ−1
σ

is,t + (1− αs) (Lis,t)
σ−1
σ

) σ
σ−1

, (17)

where σ is the substitution elasticity between capital and labor. The CES-production

function reduces to the Hsieh and Klenow (2009) imposed CD-production function (3)
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when σ = 1. MRPK is defined as Pis,t
∂Y
∂K

, the product of marginal revenue (Pis,t) and

marginal product ( ∂Y
∂K

). In Appendix C.3 we derive that, in the absence of wedges τYis,t

and τKis,t, in this case the MRPK can be written as:

MRPKis,t = α1−σ
s Rσ

t

(
ασsR

1−σ
t + (1− αs)σ w1−σ

t

)
, (18)

Notice that when σ = 1 (CD-production function), the expression reduces to MRPK =

R. In the standard Hsieh and Klenow model the only source of variation in MRPK are

the firm-specific wedges τYis,t and τKis,t. In the case of a CES-production-function (σ 6= 1)

this is not any different since the parameters α and σ are not firm-specific, but only vary

between industries.

We also considered a CES-production function with labor-augmenting technological

process. In Appendix C.3 we derive that labor-augmenting technology can only have

impact on our measure of misallocation if it varies between firms within the same five-

digit industry. In policy discussions a concern is the negative impact of industrial robots

on employment growth (Acemoglu and Restrepo, 2017), which is an example of a labor

saving technology. Only if the use of robots has unequal effects on employment growth

across firms within an industry, the misallocation estimation based on a CES-production

function will lead to different results compared to the base model of Hsieh and Klenow

(2009). We leave it to future research to determine how relevant the variation in the

adaption of such technologies varies between firms in the same industry. We conclude

that, relaxing the (strong) assumption of a unity substitution elasticity between capital

and labor does not alter our estimate of misallocation.

5.3 Heterogeneous markups

In the standard Hsieh and Klenow (2009) model all firms within an industry have iden-

tical technologies and demand structure. Therefore, markups are identical as well. All

dispersion in marginal revenue products is therefore attributed to misallocation, while

heterogeneous markups could explain part of the observed MRPK and MRPL variance.

To measure dispersion in markups we follow the approach of David and Venkateswaran

(2019), which is based on the methodology of De Loecker and Warzynski (2012). We

generalize the CD-production function (3) with intermediate inputs Mis,t, which have an

industry specific elasticity ζs constant over time. Cost minimization then implies the

following optimality condition (David and Venkateswaran, 2019):

PM
is,tMis,t

Pis,tYis,t
= (1− ζs)

MCis,t
Pis,t

, (19)
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where MCis,t are (unobserved) marginal costs of the firm. From this equation it is seen

that the dispersion in the log share of intermediate inputs can be used as an estimator of

the heterogeneity in log markups. The materials share, i.e. the left hand side of (19), is

directly observed in the data. Using this estimator we find that heterogeneous markups

explain around 25% of the variation in MRPK.

5.4 Summary

Overall, our sensitivity analysis indicates that the factors raised in recent critique on the

misallocation measure of Hsieh and Klenow (2009) seem to have a limited impact on

the size of the misallocation loss we measured for the Netherlands. Capital adjustment

costs lower our misallocation loss with 5 percentage points, firm-level heterogeneity in the

production function with 1 percentage point, whilst the functional form has a negligible

effect. The most sizable effect on our measure stems from heterogeneity in markups (25%).

Taken together these factors –not taking into account inter-dependencies of the factors–

would lower our measured level of misallocation by roughly 31%, which would lower the

estimated efficiency loss from 43% to 30% percent in 2001, and from 56% to 39% in

2017.17 We have been mindful of the effect of these factors on the level of misallocation

in the previous sections by focusing on the differences in misallocation over time, i.e. we

normalized on the level of misallocation in the first year of our sample. The idea is that,

following Hsieh and Klenow (2009), some “base level” misallocation can be understood

as the result of misallocation originating from misspecification, and that a reasonable,

although admittedly debatable, starting point is to assume that this level is constant over

time (Restuccia and Rogerson, 2017).

6 Conclusion

Misallocation of capital has been on the rise since the turn of the millennium in several

European countries (see e.g. Gopinath et al., 2017, Gamberoni et al., 2016 and Calligaris

et al., 2018). Our analysis focuses on the evolution of resource misallocation in the

Netherlands. We use a very rich data set containing annual balance sheets as well as

profit and loss statements for all Dutch firms that had to declare corporate income tax

during the period 2001–2017. Our results shed new light on the evolution of capital and

17 We assumed adjustment costs, firm-level heterogeneity in the production function and the dispersion
of the markups remained constant in the period 2001–2017. Unreported results show that the dispersion
of markups, which is by far the largest contributing factor, has indeed remained constant in the period
2001–2017. Detailed results are available upon request with the authors.
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labor misallocation and underlines the importance of looking at the level and persistence

of misallocation at the firm-level.

Using conventional measures of misallocation, i.e. the dispersion in firm-level marginal

revenue products, we find a combination of steeply rising capital misallocation and rela-

tively stable labor misallocation in the period 2001–2017, indicating that capital frictions

account for most of the increase in measured misallocation in the Netherlands. Compared

to a counterfactual efficient allocation we find that total misallocation has increased 14

percentage points in the period 2001–2017. The level of capital and labor misallocation

is much larger in the services sector than the manufacturing sector. This result might be

driven by less competitive pressures in the services sector compared to the manufactur-

ing sector. The misallocation of capital and labor are inversely related to firm-size, i.e.

misallocation is smaller among large firms than under small firms.

The standard misallocation measures are silent about the magnitude of distortions

across firms. We therefore use the analytical framework to estimate capital and labor

wedges at the level of the firm. We find that small, highly productive firms face the

highest capital and labor wedges, whilst large, unproductive firms face relatively low

distortions. From a policy perspective this is a disturbing outcome, because it implies

that in the Netherlands, highly productive firms tend to be too small compared to the

optimal size and non-productive firms are too large compared to their optimal size.

We have exploited panel data specifications to analyze the persistence of misallocation

over time. Using an error components model we distinguish between permanent and

transitory components of misallocation. We find that the observed increase in capital

misallocation is permanent rather than transitory. The majority of the observed labor

misallocation is transitory in nature. In other words, the persistence of labor misallocation

is lower than capital misallocation and, on average, shocks in the allocation of labor die

out in a couple of years.

Finally, our findings are quite insensitive to recently raised concerns with the model of

Hsieh and Klenow (2009). We show that in our sample the measurement of misallocation

is largely insensitive to observed heterogeneity in the production function and to the

presence of capital adjustment costs. Although the contribution of heterogeneous markups

is non-negligible, we conclude that the majority of the observed dispersion in marginal

revenue products can be attributed to misallocation.
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A Data set

Our data set contains the complete population of Dutch firms that legally had to declare

corporate income tax during the period 2001–2017 (i.e., all firms with a legal person).

These confidential micro data are provided by Statistics Netherlands (CBS: Centraal

bureau voor de statistiek) and are based on a merger of the Dutch general business register

(ABR: Algemeen bedrijven register) and corporate tax declarations (NFO: Financiën van

niet-financiële ondernemingen). The matched data set includes annual balance sheets as

well as profit and loss statements. We restrict our sample to non-agricultural private firms

in the non-financial sectors. For multi-establishment firms we take the five-digit industry

code (NACE Rev. 2) of the establishment with the largest number of employees. The

raw data set contains 2,752,359 firm-year observations, and 491,313 unique firms for the

period we analyzed (2001–2017).

The original data come as a repeated cross-section, with unique identifiers for the

firm, and can be viewed as highly unbalanced panel data. We clean our data set for

outliers and minimum number of observation per industry following previous research of

e.g. Gamberoni et al. (2016) and Gopinath et al. (2017) by taking the following steps.

First, we drop firm-year observations for which no fixed tangible assets are available.

These steps reduce our sample to 2,305,977 firm-year observations and 396,235 unique

firms. Second, we drop observation when the ratio of tangible assets to the balance sheet

total is greater than one. This step reduces the sample by 915 observations. Next, we

drop firm-year observations where the ratio of the wage bill to value added is in the

top/bottom 1% of the distribution. This step reduces the sample by 42,798 observations.

In addition, following Gopinath et al. (2017), we drop firm-year observations if the wage

bill to value added ratio is larger than 1.1 or smaller than 0.1. This step reduces the sample

by 265,133 and 55,226 observations, respectively. Finally, we drop industries where the

minimum number of yearly observations or the average number of observations over the

whole sample is less than 30. This step reduces our sample by 110,330 observations. After

cleaning, our final data set contains 1,831,575 firm-year observations and 342,245 unique

firms.
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B Figures and tables main text

Figure 1: Evolution of MRPK dispersion and MRPL dispersion, 2001–2017, the Netherlands.
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Figure 2: Evolution of misallocation in the Netherlands, 2001–2017.
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Figure 3: Evolution of MRPK and MRPL dispersion in the manufacturing sector and the services
sector, 2001–2017, the Netherlands.
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Figure 4: Evolution of MRPK dispersion in the manufacturing sector and services sector, 2001
vs. 2017, NACE five-digit level, the Netherlands.

* Standardized with MRPK dispersion total economy in 2001.
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Figure 5: Evolution of MRPL dispersion in the manufacturing sector and services sector, 2001
vs. 2017, NACE five-digit level, the Netherlands.

* Standardized with MRPK dispersion total economy in 2001.
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Figure 6: Firm-size and the evolution of MRPK dispersion, 2001–2017, the Netherlands.
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Figure 7: Firm-size and the evolution of MRPL dispersion, 2001–2017, the Netherlands.
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Figure 8: Distribution of capital and labor wedge, 2001–2017, the Netherlands.
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Figure 9: Distribution of capital and labor wedge, 2001, 2008 and 2017, the Netherlands.
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Table I: Correlation matrix of TFPQ, factor-inputs and capital and labor wedges

T̃FPQis,t K̃is,t L̃is,t τ̃K∗is,t

K̃is,t 0.06 1 0.54 -0.70

L̃is,t 0.51 0.54 1 0.10

τ̃K∗is,t 0.49 -0.70 0.10 1

τ̃L∗is,t 0.21 0.08 -0.33 -0.08

Note: variables are in deviation from sectoral averages.
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Figure 10: Marginal effects ordered probit, capital wedge, 2001–2017, the Netherlands.
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Figure 11: Expected value of capital wedge, ordered probit, full set of interactions, 2001–2017,
the Netherlands
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Figure 12: Marginal effects ordered probit, labor wedge, 2001–2017, the Netherlands.
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Figure 13: Expected value of labor wedge, ordered probit, full set of interactions, 2001–2017,
the Netherlands
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Figure 14: Evolution of permanent and transitory components of MRPK and MRPL dispersion,
2001–2017, the Netherlands.
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Figure 15: Evolution of permanent and transitory components of MRPK dispersion, manufac-
turing and services, 2001–2017, the Netherlands.
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Figure 16: Evolution of permanent and transitory components of MRPL dispersion, manufac-
turing and services, 2001–2017, the Netherlands.
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Figure 17: Evolution of permanent and transitory components of MRPK dispersion, firm-size,
2001–2017, the Netherlands.
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Figure 18: Evolution of permanent and transitory components of MRPL dispersion, firm-size,
2001–2017, the Netherlands.
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Figure 19: Evolution of permanent and transitory components of MRPK dispersion, productivity
levels, 2001–2017, the Netherlands.
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Figure 20: Evolution of permanent and transitory components of MRPL dispersion, productivity
levels, 2001–2017, the Netherlands.
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Figure 21: Empirical and simulated evolution of MRPK and MRPL dispersion, 2001–2017, the
Netherlands.
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C Technical Appendix

C.1 Misallocation with capital adjustment costs

David and Venkateswaran (2019) develop a model to distinguish the various sources of

measured capital misallocation, i.e. dispersion in MRPK. They distinguish capital adjust-

ment costs, informational frictions and firm-specific factors. We first describe the main

model equations in David and Venkateswaran (2019). Next, we derive the variance of

MRPK when adjustment costs are the only source of misallocation.

Main model equations David and Venkateswaran (2019)

For ease of exposition, we suppress the sector subscript, hence consider a single sector only.

The main equations of the model, which are in logarithms, are as follows. An idiosyncratic

firm-specific fundamental, which can be interpreted as demand shifter and/or level of

efficiency, is generated by:

ai,t = ρai,t−1 + µi,t, µi,t ∼ i.i.d.(0, σ2
µ), (A.1)

where 0 < ρ < 1 measures the persistence of firm-fundamentals. The capital distortion is

modeled as:

τi,t = γai,t + εi,t + χi, εi,t ∼ i.i.d.(0, σ2
ε), χi ∼ i.i.d.(0, σ2

χ), (A.2)

where γ models the correlation of the distortion with the firm-fundamental. Furthermore,

εit and χi are the uncorrelated time-varying and permanent components respectively. The

equation for capital is:

ki,t+1 = ψ1ki,t + ψ2(1 + γ)Ei,t [ai,t+1] + ψ3εi,t+1 + ψ4χi, (A.3)

where

ξ
(
βψ2

1 + 1
)

= ψ1 ((1 + β) ξ + 1− α) ,

ψ2 =
ψ1

ξ (1− βρψ1)
,

ψ3 =
ψ1

ξ
,

ψ4 =
1− ψ1

1− α
.

The parameter β is the discount rate, which is an element of the optimized dynamic

profit function of the firm. The parameter α = α1

1−α2
where α1 and α2 are proportional
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to the capital and labor elasticities of the firm-level CD-production function. Finally, the

marginal revenue product of capital (MRPK) is equal to:

MRPKi,t = pi,t + yi,t − ki,t, (A.4)

where pi,t is the price of good i and yi,t is firm-level output. The assumed market structure

furthermore implies:

pi,t = −1

θ
(yi,t − yt) + âi,t, (A.5)

where ai,t = 1
1−α2

âi,t and αj = (1 − 1
θ
)α̂j, j = 1, 2. Furthermore, it can be shown that

profit maximization yields the following for labor:

li,t ≈
1

1− α2

(âi,t + α1ki,t), (A.6)

where ≈ means that we left out terms without cross-sectional dimension.

Derivation of σ2
MRPK when adjustment costs are the only source of misalloca-

tion

Using the model’s equations we can rewrite equation (A.4) as:

MRPKi,t = −1

θ
yi,t +

1

θ
yt + âi,t + yi,t − ki,t

=

(
1− 1

θ

)
(α̂1ki,t + α̂2li,t) + (1− α2) ai,t − ki,t +

1

θ
yt

= α1ki,t + α2li,t + (1− α2) ait − kit +
1

θ
yt

≈ α1ki,t + α2

(
ait +

α1

1− α2

ki,t

)
+ (1− α2) ai,t − ki,t

=
α1 + α2 − 1

1− α2

ki,t + ai,t, (A.7)

where ≈ means that we left out terms without cross-sectional dimension. The reason is

that these terms will not contribute to dispersion in MRPK, which is defined as:

σ2
MRPK =

(
α1 + α2 − 1

1− α2

)2

σ2
k + σ2

a + 2

(
α1 + α2 − 1

1− α2

)
σka, (A.8)

where

σ2
a =

σ2
µ

1− ρ2
,

due to the assumption that the firm-fundamental follows a stationary AR(1) process.

The model distinguishes three main sources of dispersion in MRPK: (1) capital ad-

justment costs; (2) imperfect information; (3) distortions. In absence of adjustment costs

we have:

ψ1 = 0, ψ2 = ψ3 = ψ4 =
1

1− α
,
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while in case of perfect foresight we have:

Eit [ai,t+1] = ai,t+1,

and when there are no distortions we have:

γ = 0, σ2
ε = σ2

χ = 0.

Each of these three origins will show up in MRPK dispersion mainly through dispersion

in capital (σ2
k).

David and Venkateswaran (2019) assume the following:

Ei,t [ai,t+1] = ρai,t + s∗i,t+1, (A.9)

where the error s∗i,t+1 depends on the information a firm has on the next innovation µi,t+1.

We then have:

ki,t+1 = ψ1ki,t + ψ2(1 + γ)ρai,t + ui,t+1 + ψ4χi, (A.10)

where ui,t+1 = s∗i,t+1 + ψ3εi,t+1 ∼ i.i.d.(0, σ2
u). Using the lag operator, the model can be

written as

ki,t+1 = ψ2(1 + γ)ρ
1

(1− ψ1L) (1− ρL)
µit +

1

(1− ψ1L)
ui,t+1 +

ψ4

1− ψ1

χi. (A.11)

The development in a firms’ capital is the sum of three orthogonal components (µit, ui,t+1

and χi are uncorrelated), which are an AR(2), AR(1) and i.i.d. process respectively. The

AR(2) process:

φi,t+1 =
1

(1− ψ1L) (1− ρL)
µi,t+1

has variance:

σ2
φ = (1− (ψ1 + ρ) corr (φi,t+1, φit) + ψ1ρ corr (φi,t+1, φi,t−1))

−1 ,

with

corr (φi,t+1, φi,t) =
ψ1 + ρ

1 + ψ1ρ
,

corr (φi,t+1, φi,t−1) =
(ψ1 + ρ)2

1 + ψ1ρ
− ψ1ρ.

Hence, we find that dispersion in capital is:

σ2
k = (ψ2(1 + γ)ρ)2 σ2

φ +
1

1− ψ2
1

σ2
u +

(
ψ4

1− ψ1

)2

σ2
χ.
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Consider now the case σ2
u = σ2

χ = 0, i.e. only adjustment costs matter for dispersion in

MRPK. The model reduces to

ki,t+1 = ψ1ki,t + ψ2(1 + γ)ρai,t, (A.12)

which is basically equation (16). By repeated substitution we write:

ki,t+1 = ψ2(1 + γ)ρ
∞∑
s=0

ψs1ai,t−s, (A.13)

hence the covariance between capital ki,t+1 and fundamental ait becomes:

σka = Cov

(
ψ2(1 + γ)ρ

∞∑
s=0

ψs1ai,t−s, ai,t+1

)

= ψ2(1 + γ)ρ
∞∑
s=0

ψs1 Cov (ai,t−s, ai,t+1)

= ψ2(1 + γ)ρ2
∞∑
s=0

ψs1ρ
sσ2
a

=
ψ2(1 + γ)ρ2

1− ψ1ρ
σ2
a. (A.14)

Substituting σ2
a, σ

2
k and σka we find the analytical expression for σ2

MRPK for the specific

case that only adjustment costs matter for MRPK dispersion.

C.2 Derivation of σ2
MRPK with firm-level heterogeneity in the

production function

Consider the following generalized production function:

Yis,t = Ais,tK
αis,t
is,t L

1−αis,t
is,t , (A.15)

in which capital intensities are idiosyncratic and time varying. Suppose no distortions

exist. The first-order conditions for profit maximization are:

Pis,t
∂Y

∂L
= wt, (A.16)

Pis,t
∂Y

∂K
= Rt, (A.17)

with

∂Y

∂K
= Ais,tαis,tK

αis,t−1
is,t L

1−αis,t
is,t = αis,t

Yis,t
Kis,t

, (A.18)

∂Y

∂L
= ... = (1− αis,t)

Yis,t
Lis,t

. (A.19)
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Combining equation (A.17) and equation (A.18) and omitting constants we have:

MRPKis,t = log
Pis,tYis,t
Kis,t

≈ − log(αis,t), (A.20)

hence,

Var (MRPKis,t) = Var (log(αis,t)) . (A.21)

Summarizing, in a model without distortions, but including heterogeneous technolo-

gies, all dispersion in MRPK is caused by dispersion in production technologies. Following

Hsieh and Klenow (2009) we use 1 minus the labor share to estimate the elasticity of out-

put with respect to capital. For the purpose of estimating dispersion at the level of the

firm, we use firm-level labor shares.

C.3 Derivation of σ2
MRPK in case of a CES-production function

For ease of exposition we suppress time subscripts. Consider the same market structure as

in Hsieh and Klenow (2009), hence the demand curve and price setting for an individual

firm’s product follow from the first-order condition:

PsY
1
σ
s Y

− 1
σ

is = Pis. (A.22)

However, the individual firm has the CES-production function (17) with both a neutral

productivity component Ais and labor augmenting productivity Bis (see e.g. Raval, 2019).

Define ρ = σ−1
σ

with σ the substitution elasticity between capital and labor. Then we can

express the CES-production function (17) as:

Yis = Ais (αsK
ρ
is + (1− αs) (BisLis)

ρ)
1
ρ . (A.23)

Note that the CD-production function is the special case σ = 1 or ρ = 0. The marginal

products are:

∂Y

∂L
= Ais (αsK

ρ
is + (1− αs) (BisLis)

ρ)
1−ρ
ρ (1− αs) ρBρ

isL
ρ−1
is , (A.24)

∂Y

∂K
= Ais (αsK

ρ
is + (1− αs) (BisLis)

ρ)
1−ρ
ρ αsρK

ρ−1
is , (A.25)

hence,
∂Y
∂L
∂Y
∂K

=
1− αs
αs

Bρ
is

(
Kis

Lis

)1−ρ

. (A.26)

In the absence of distortions profits of each producer are given by:

πis = PsY
1
σ
s Y

σ−1
σ

is − wLis −RKis, (A.27)
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Each producer chooses Lis and Kis to maximize profits:

max
Lis,Kis

πis. (A.28)

The first order conditions for profit maximization are:

PsY
1
σ
s

(
σ − 1

σ

)
Y
− 1
σ

is

∂Y

∂L
= w, (A.29)

PsY
1
σ
s

(
σ − 1

σ

)
Y
− 1
σ

is

∂Y

∂K
= R. (A.30)

Dividing both equations and rearranging we get for the capital-labor ratio:

Kis

Lis
=

(
αs

1− αs

) 1
1−ρ

B
−ρ
1−ρ
is

(w
R

) 1
1−ρ

. (A.31)

Note that when ρ = 0, i.e. CD-production function, we get:

Kis

Lis
=

α

1− α
w

R
, (A.32)

which does not depend on Bis.

The firm’s output price Pis will be set as a fixed mark up σ
σ−1 over the firm’s marginal

costs. In case of the CES-production function (17), marginal costs are:

MCis =
ασsR

1−σ + (1− αs)σ
(

w
Bis

)1−σ
Ais

(
αs

(
R
αs

)1−σ
+ (1− αs)

(
w

(1−αs)Bis

)1−σ) σ
σ−1

, (A.33)

and

Pis =

(
σ

σ − 1

)
MCis. (A.34)

Combining these equations after some algebra we find that:

MRPKis = Pis
∂Y

∂K

= α1−σ
s Rσ

(
ασsR

1−σ + (1− αs)σ
(
w

Bis

)1−σ
)
. (A.35)

Without component Bis, i.e. the standard CES-production function, the result in equa-

tion (18) follows. The last equation shows that, for labor augmenting or labor saving

productivity to cause variation in MRPK, it should vary across firms within the same

industry.
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