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7This section provides an overview of the data used in the stress test. 

Sections 1.1 through 1.3 explain the various ways in which we enriched our 

dataset to make it fit for our purposes.

Table 1.1 Overview of data sources

Bond and equity holdings DNB’s security holdings statistics for banks, insurers and 
pension funds. For banks we use the consolidated holdings 
of ABN AMRO, ING Bank and Rabobank. For insurers and 
pension funds we perform a one-step “look-through” for 
holdings in investment funds when the bond and equity 
allocation of the investment is available.

Corporate loan exposures Corporate loan exposures of ABN AMRO, ING Bank 
and Rabobank, acquired through a targeted survey. 
The exposures in both the internal risk based (IRB) and 
standardized approach (SA) portfolios are disaggregated 
by industry. For IRB loans the exposures are further 
disaggregated by internal risk bucket, probability of default, 
loss given default and maturity.

Industry classification of 
bonds

Centralized Securities Database, Thomson Datastream  
(for details, see Section 1.1.).

Bond ratings Thomson Datastream, Bloomberg and OpenDataSoft  
(for details, see Section 1.2)

1.1 Industry classification of stocks and bonds
Our dataset contains information on the bond and equity holdings of 

banks, insurers and pension funds at the level of individual stocks and 

bonds. For our stress test, we primarily need the International Security 

Identifier Number (ISIN) and the NACE code that indicates the economic 

sector in which the issuing party of a stock or bond is active. Using ISINs, we 

were able to retrieve NACE codes from the Centralized Securities Database 

(CSDB) for the majority of the securities in our sample.

1 Data



8 The initial assignment of NACE codes to the bond and equity holdings in 

our sample presented two issues. First, a large amount of securities was 

classified with NACE code K.64 (finance). Upon closer inspection, however, 

many of these K.64-classified securities were issued by financing vehicles 

of firms that are active outside of the financial sector. For example, a bond 

issued by BMW Finance is marked as K.64 (finance), while for our purposes 

it would be more appropriate to assign it to C.29 (manufacturing of motor 

vehicles), i.e. the industry of the parent company. The second issue was 

that there was still a share of the data for which no NACE code had been 

identified.

To address these issues we cross-checked the stock and bond holdings 

against Thomson Datastream ratings database. Industry classifications 

in NACE, NAICS, GICS, TRBC and SP format were collected for all stocks 

and bonds in the banks’, insurers’ and pension funds’ portfolios. We used 

mappings to translate the alternative classification formats to the NACE 

format at the two-digit level. We then cross-checked our initial NACE 

classifications against these alternative classifications, adding NACE codes 

that were initially missing and replacing the NACE codes of securities with 

code K.64 if one of the five databases had a different industry classification. 

Overall, the NACE classifications from Thomson Datastream were the most 

useful for the (re-)classification of stocks, while for bonds both the NACE 

and SP classifications were fruitful.

By cross-checking the industry classifications we were able to (re-)assign  

a NACE code to about 8 percent of the total equity holdings and 24 

percent of the total bond holdings. Despite the re-/ new assignments, 

the number of missing industry classifications remains at about a quarter 

of the total equity portfolio and less than five percent for the bond portfolio 

measured in terms of market value. Inspection revealed that stocks and 



9bonds without a NACE code are primarily exposures to investment funds for 

which we do not have information on the investment portfolio. 

1.2 Obtaining bond ratings
The bond ratings for the 23,383 unique bonds in our sample were 

obtained through a four-step process. Taken together, these steps allowed 

us to assign a rating to about 81 percent of all the unique bonds, which 

corresponded to 95 percent of the market value of the bond holdings in our 

sample. The process was as follows:

1. First, we obtained rating information from S&P, Moody’s, Fitch and 

Dominion using Thomson Datastream, where we used the bond ISINs 

to match each bond with the corresponding rating. As we use the S&P 

rating scale for all bonds, ratings from other rating agencies were mapped 

to this scale. Whenever the rating for a bond varied between rating 

agencies, we used the lowest rating. This approach is in line with the 

purpose of the stress test, which is to consider worst-case scenarios, and 

partially hedges against the potential incentive of rating agencies to bias 

ratings upwards. With this first step, 69 percent of the total number of 

bonds could be assigned a rating.

2. For the bonds that could not be assigned a rating in the first step, we 

collected rating information from S&P, Moody’s, Fitch and Dominion using 

Bloomberg. We then assigned ratings in the same way as in the first step. 

This step allowed us to assign a rating to an additional 9 percent of bonds.

3. For the bonds that could not be assigned a rating in steps one and two, 

we consulted the freely available online database OpenDataSoft. This 

database acquires rating information on the basis of the U.S. regulation 

that obligates rating agencies to publish their rating assignments (SEC 

Regulation 17g-7). As only Fitch, Dominion, Japan Credit Agency LTD and 

A.M. Best use an ISIN code as identifier in this database, we could only 

collect information from these rating agencies. This step allowed us to 

assign a rating to an additional 2 percent of bonds.



10 4. As a final step, we performed an issuer name matching for sovereigns. 

When the database contains no rating for a specific bond, but when the 

issuing sovereign is known, we assign the rating of the issuing sovereign 

to this bond. We obtained issuer information from the ESCB’s Centralized 

Securities Database. This step allowed us to assign a rating to an 

additional 1 percent of bonds.

In order to assign a risk class to the remaining bonds we took a closer 

look at the characteristics of these bonds. It turned out that the majority 

of bonds without a rating consisted of junior tranches from Mortgage 

Backed Securities (MBS) for which no rating is available. We made the 

simplifying assumption that all bonds to which no rating could be assigned, 

have rating B. This assumption reflects that, on the one hand, junior tranches 

of MBSs are relatively risky, while on the other hand, Dutch mortgages are 

overall (historically) relatively safe investments.

1.3 Obtaining bond durations
The duration of a bond captures the bond’s sensitivity to interest rate 

changes. To calculate the price impact due to changes in interest rates, we 

simply multiply the change in the interest rate by the duration of the bond. 

Our measure for duration is the widely used Macaulay duration.1 In order 

to calculate the Macaulay duration we first calculate the present value of a 

future cash flow i of a bond (PVi):

 

 

 

1 See e.g. Ross, S.A., Westerfield, R.A.  and Jaffe, J. (2002). Corporate Finance (Sixth Edition). New York: 
McGraw-Hill, pp. 716-718.



11where CFi,t is the cash flow (coupon or principal) at time t and r is the 

relevant discount rate for the specific bond. Given a certain maturity date of 

the bond (N), we can then calculate the Macaulay duration as:

 

 

 
where PVi is the present value of cash flow i that occurs at time period t. 

We define the duration of a zero coupon bond to be equal to its residual 

maturity. We further assume that the duration of a floating rate bond is 

equal to zero, as the floating rate coupon is generally based on the interest 

rate that prevails at the moment that the coupon needs to be paid. Lastly, 

we make the simplifying assumption that all bonds are bullet bonds, with 

the exception of perpetuals. While the vast majority of bonds in the sample 

are indeed bullet bonds, this assumption may lead to a slight overestimation 

of the duration of bonds that have a prepayment option.

To calculate the duration of bonds with a very long term, or bonds for 

which information on coupon payments was missing, we made some 

additional assumptions. In order to calculate the duration of perpetuals we 

project cash flows up to sixty years in the future (more distant payments will 

only have a minor impact on the duration). Bonds for which information on 

coupon payments is missing are treated as zero-coupon bonds, such that 

the calculated duration is an upper bound.
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2 Macroeconomic 
modelling approach

The macroeconomic simulation of the stress test scenarios was conducted 

using NiGEM version V1.18-b. Section 2.1 describes which model changes 

were made to make the model suited to our particular scenarios. Section 2.2 

discusses which shocks were applied to the variables in NiGEM.

2.1 Adjustments to the model
Since NiGEM does not include a renewable energy sector, we had 

to make several model changes to accommodate the technological 

breakthrough in the technology shock and double shock scenarios. 

Specifically, we changed the role of fossil fuel energy in the production 

function and the energy intensity functions. Below we describe the changes 

for the Dutch economy, but we apply the same changes to all other 

countries.

As a first step, we adjusted the production function to reflect that in 

the technology shock scenario, energy is increasingly produced from 

renewable sources. Consider the production function in NiGEM, which is 

based on capital (DNLCAP), labor (DNLLAB) and energy (NLOIVOL*NLY):

 

NLYCAP = nlgamma*((((DNLCAP+DNLLAB)**(1./(-nlrho)))**(1.-nlalpha))* 
((wdgreen*NLOIVOL*NLY)**nlalpha)),

where NLYCAP represents trend output for capacity utilization, NLOIVOL 

represents the volume of fossil fuels used in production and NLY is real 

output. Nlgamma, nlrho and nlalpha are parameters. The parameter 

wdgreen is not normally part of the production function, but was 

introduced by us to capture the energy efficiency gains that result from 

the technological breakthrough in the technology shock and double 

shock scenarios. When wdgreen is equal to one, the production function 

corresponds to the baseline case. The technology shock can then be 



13modeled by increasing wdgreen to a value larger than one, which implies 

that agents need less fossil fuels to achieve the same level of output. For 

example, if wdgreen is 1.25, NLOIVOL can be reduced by 20 percent to 

achieve the same production level. Note that, depending on the elasticity 

of substitution nlalpha, an adjustment in wdgreen could lead agents to 

substitute the capital-labor complement for energy.

To be consistent with the scenario storyline, the adjustment in the 

production function needs to be complemented by an adjustment in the 

fossil fuel intensities of output. In the default calibration of NiGEM, a value 

of wdgreen larger than one makes fossil fuels appear more efficient, which 

leads to an increase in fossil fuel use. In the scenario storyline, however, fossil 

fuel use should decrease because fossil fuels are replaced by renewables.  

To achieve this result, we adjust the fossil fuel intensities of output. First 

note that, in the expanded energy model, NiGEM contains three fossil fuels 

(coal, oil and gas), which have the following equations:

Coal: log(NLOIF) = log(NLOIF (-1)) - 0.025*(log(NLOIF (-1)) + 0.0025 + 

log(WDPF(-1)*NLRX(-1)/ NLCED(-1))) - 0.171057093 - log(wdgreen) + 

log(wdgreen(-1))

Gas: log(NLOIG) = log(NLOIG(-1)) - 0.025*(log(NLOIG(-1)) + 0.0025 

+ log(WDPG(-1)*NLRX(-1)/ NLCED(-1))) - 0.09464 - log(wdgreen) + 

log(wdgreen(-1))

Oil: log(NLOIO) = log(NLOIO(-1)) - 0.025*(log(NLOIO(-1)) + 0.0025 

+ log(WDPO(-1)*NLRX(-1)/ NLCED(-1))) - 0.07200 - log(wdgreen) + 

log(wdgreen(-1))



14 The equations show that the demand for fossil fuels is determined by the 

consumer price level (NLCED), the real exchange rate (NLRX) and the prices 

of the fossil fuels (WDPF, WDPG and WDPO). We then added the parameter 

wdgreen such that the demand for fossil fuels also depends on the efficiency 

of renewable energy.2 Together these variables determine total energy use 

NLOIVOL (fossil energy use proportion of GDP, 2011 prices):

NLOIVOL = DNLOI0 / ( 1000. * dpppnlwd / delrxwd ),

d DNLOI0 = dwdpobd * ( dnloils * dwdpowd * 100. * NLOIO + dnlgass * 

dwdpgwd * 100. * NLOIG + dnlcols * dwdpfwd * 100. * NLOIF ),

where dpppnlwd, delrxwd, dwdpobd, dnloils, dwdpowd, dnlgass, dwdpgwd, 

dnlcls and dwdpfwd are parameters.

2.2 Shocks by scenario
Policy shock scenario

In the policy shock scenario, the carbon price increases globally by 

USD 100 per ton of CO2 emitted, which we translate into price shocks 

in NiGEM. First, consider that an oil barrel contains 42 gallons of oil. 

Burning a gallon of crude oil emits 10.3 kg CO2. Hence, burning a barrel of 

crude oil emits 432 kg CO2. A CO2 price increase of USD 100 per ton would 

therefore raise the oil price by USD 100*0.432 = USD 43.20. To calculate 

the price increase for coal and natural gas, we need some additional steps. 

For coal, we know that 0.21 tons of coal are equivalent to one barrel of 

oil in terms of energy. Burning a ton of coal coke emits 3,107 kg CO2 (one 

short ton emits 2,819 kg and one short ton is about 0.9 metric tons). 

2 Since the equation is dynamic only changes in the log-level of wdgreen are taken into account. Otherwise 
the equation will become explosive.



15Hence, burning a “barrel” of coal emits 653 kg CO2, which implies a price 

increase of USD 65.30. Natural gas emits 0.054 kg CO2 per standard cubic 

foot (scf). Since 5801 scf are equivalent to one barrel of oil, we can now 

compute that burning a “barrel equivalent” of gas emits 316 kg CO2. The price 

increase for natural gas due to the carbon tax would then be USD 31.60. 

Thus, we can model this scenario by increasing the NiGEM baseline prices 

of coal (WDPF), gas (WDPG) and oil (WDPO) by USD 65.20, USD 31.60 and 

USD 43.20, respectively.

Technology shock scenario

We model the technology shock scenario by applying two shocks in 

NiGEM: (i) adjusting the production function such that fewer fossil 

fuels are used to produce a given amount of output, and (ii) increasing 

the speed of depreciation of fossil fuel intensive fixed capital. Shock (i) 

is modelled by gradually increasing the parameter wdgreen from 1 to 1.25 

during the five year scenario horizon. As a result of this shock, the share of 

fossil fuels required to produce a given amount of energy falls by 20 percent 

at the end of the five year horizon. Shock (ii) is modelled by imposing an 

additional 6 percent of depreciation of the capital stock in the first year, and 

an additional 4 percent of depreciation of the capital stock in the second 

year. In total, 10 percent of the current capital stock is written off because of 

the technological breakthrough.

Double shock scenario

The double shock scenario contains all of the shocks from the policy 

shock and technology shock scenarios. No additional shocks are applied 

and no additional assumptions are made about the interaction between the 

shocks.



16 Confidence shock scenario

We model the confidence shock scenario by applying three shocks 

in NiGEM: (i) an increase in the investment premium (IPREM), (ii) an 

increase in the equity risk premium (PREM), and (iii) confidence shocks 

which reduce private consumption (C). The investment and equity risk 

premiums each receive a one percentage point permanent increase. For 

private consumption, we shock the residual by subtracting -0.25 percentage 

points from the residual in each quarter. The shocks are applied to all 

economies globally.



17We calculate transition vulnerability factors for all scenarios to capture 

each industry’s sensitivity to the scenario developments. We assume 

that an industry’s vulnerability to the energy transition mainly arises from 

its reliance on fossil fuels and the resulting CO2 emissions. Therefore, we 

use industry specific risk factors that capture an industry’s reliance on CO2 

emissions, relative to the economy as a whole. These risk factors, or TVFs, 

should be interpreted as capturing the relative riskiness of an industry to the 

shocks in a particular energy transition scenario. The transport industry, for 

example, depends relatively heavily on the use of fossil fuels and therefore 

emits a lot of CO2 relative to its value added. As a result, the transport 

industry has a high TVF. To make the calculations we used emissions and 

value added data from EXIOBASE 2015 and followed NACE 2.2 industry 

classifications.

The TVFs are calculated taking the policy shock scenario as a starting 

point. In the policy shock scenario, government policies jointly lead to an 

increase of the effective carbon price by USD 100 per ton of CO2 emitted. 

To construct the corresponding TVFs, we make the simplifying assumption 

that the costs of the carbon price are fully passed on by intermediate good 

producers to final good producers. Hence, the carbon price affects an 

industry proportionally to the amount of CO2 emitted in the total supply 

chain for its final goods and services.

Illustrative example

To illustrate our approach, we provide the example of a stylized input-

output table for the production of apple syrup (Table 3.1, numbers are 

fictional). The table contains an agricultural sector (“Agri”) and a food 

production sector (“Food”). The column “Total production” displays the total 

value of the production of each industry. The column Agri shows that the 

agricultural sector does not buy any inputs from other industries, while 

3 Calculation of 
transition vulnerability 
factors (TVFs)



18 the column Food shows that the food production sector buys inputs from 

the agricultural sector and from firms within the food production sector.3 

The column Consumption shows the value of the final goods and services 

delivered to consumers. The row Value added displays each industry’s total 

value added (total production value minus the value of inputs used). The two 

rows below the input-output table display the amount of CO2 emitted (in 

tons) and the resulting TVF for both industries.

Table 3.1 Stylized input-output table for apple syrup and 
CO2 emissions

Agri Food Consumption Total production

Agri 0 50 50 100

Food 0 50 100 150

Value added 100 50

CO2 (tons) 80 40

TVF 0.67 2.67

Using the input-output table and the emissions data, the TVFs are 

calculated as follows. Consider the food production sector: first, we 

determine how many of each industry’s emissions should be attributed to 

the food production sector’s final goods. Thus, we assign a share of the total 

emissions of the agricultural sector (80 tons) to the final goods of the food 

production sector:

 

 

 

 

 

3 This can arise if one company in the food industry supplies inputs to another company in the food industry.



19Similarly, we assign a share of the total emissions of the food production 

sector (40 tons) to that industry’s final goods: (40 x 50) / 50 = 40 tons.  

The total amount of emissions associated with the production of final goods 

for the food production sector is therefore 40 + 40 = 80 tons of CO2. This is 

because the Agricultural sector needs to emit 40 tons of CO2 to produce the 

inputs of the Food industry. The amount of embodied emissions per unit of 

value added then equals:

 

 

 

 

 
To calculate the TVF, we scale the embodied emissions per unit of value 

added by dividing it by the total embodied emissions of the economy, i.e.: 

 

 

 

 

 

The above example is simplified and only considers a closed economy. In the 

actual calculations we also take the CO2 emissions from foreign suppliers 

into account when calculating the TVFs, and all deliveries to foreign 

industries and consumers are taken into account as well.

Implication of chosen approach

Note that this methodology ensures that the weighted average TVF for 

the global economy is equal to 1. The weights are here given by the relative 

share of the value added of each industry.



20 We assume that the industry-specific TVFs are identical across countries. 

While this is a simplifying assumption, calculating TVFs at the country level 

could also lead to noisier estimates when industries are relatively small 

within certain countries. Country-specific TVFs may furthermore be less 

reliable for multinational companies, which typically dominate the portfolios 

of institutional investors.

Our approach to calculating TVFs has several advantages. First, this 

approach effectively punishes final goods and services which require  

a lot of CO2 emissions to be produced. Not only direct emissions are taken 

into account, but also emissions by firms upstream in the value chain. 

Second, calculations with the input-output table and CO2 emissions to 

obtain embodied CO2 emissions in final products are well established in 

the literature.4 Third, the calculation of the TVFs is straightforward and 

transparent.

One consequence of the suggested approach is that industries that 

do not emit a lot of CO2 directly, but use inputs from industries with 

many emissions appear more carbon intensive. This is a conscious choice 

because we want to take emissions in the entire production process into 

account. A possible disadvantage of this approach is that it considers only 

the amount of CO2 emitted in the production of final goods and services and 

not the CO2 emitted when consumers use the final good. Put differently, this 

methodology takes all emissions from producing a car into account, but not 

the emissions from using the car. This latter shortcoming can potentially 

4 For an overview of methodologies for calculating embodied CO2 emissions, see e.g., Wiebe, K. and 
Yamano, N. (2016), Estimating CO2 Emissions Embodied in Final Demand and Trade Using the OECD ICIO 
2015: Methodology and Results, OECD Science, Technology and Industry Working Papers, 2016/05, OECD 
Publishing, Paris, as well as Owen, A. (2017), Techniques for Evaluating the Differences in Multiregional Input-
Output Databases, A Comparative Evaluation of CO2 Consumption-Based Accounts, Calculated Using Eora, GTAP 
and WIOD, Springer International Publishing AG.



21be addressed by extending the TVF calculation to include data on CO2 

emissions during the use phase of products. At this stage such data is not at 

our disposal.

TVFs for the technology shock scenario

We adapt the TVFs for the technology shock scenario which assumes  

a technological breakthrough in electricity production, storage and 

smart grids. The technology shock leads to a scenario in which the 

transition risks are more concentrated in a select group of industries.  

As electricity can in this scenario be produced to a larger extent by more 

climate friendly technologies, we assume that firms that use electricity 

benefit, while those relying on fossil fuels cannot switch easily and end up 

with stranded assets. To model this, we remove all CO2 emissions from the 

electricity producing industry and redistribute them across the industries 

that are expected to be hit particularly hard as a result of the reduced 

demand for fossil fuels. These industries are Mining and quarrying, Utilities 

(i.e. electricity, gas, steam and air conditioning supply) and Manufacture 

of coke and refined petroleum products. The distribution of the additional 

CO2 emissions across these industries is ½, ¼, and ¼, respectively. After the 

redistribution of CO2 emission the TVFs are calculated in the same way as 

before.

Figure 3.1 illustrates how the technology shock scenario TVFs differ from 

the policy shock scenario TVFs. The additional emissions that we assign 

to the Mining and quarrying industry and Manufacture of coke and refined 

petroleum products industry have a significant impact on the TVFs for these 

sectors. The TVFs for the other industries, on the other hand, are highly 

correlated between the two scenarios (dashed line in Figure 3.1).  

The solid line in Figure 3.1 reflects the 45 degree and makes it easier to 

see how the TVFs per scenario differ from each other. As the Mining 



22 and quarrying industry and Manufacture of coke and refined petroleum 

products industry have larger TVFs in this scenario, all other TVFs are pushed 

downward somewhat to ensure that the TVFs average out to 1. 

Figure 3.1 TVFs policy shock and technology shock

 Notes: B = Mining and quarrying, C19= Manufacture of coke and refined petroleum 
products, C23 = Manufacture of other non-metallic mineral products, D35 = Electricity, 
gas, steam and air conditioning supply and H50 = Water transport.  
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TVFs for the double shock scenario

The double shock scenario used the same TVFs as the technology shock 

scenario. In the double shock scenario, the technological breakthrough will 

again concentrate losses to the industries that have difficulty switching to 

electricity.



23TVFs for the confidence shock scenario

In the confidence shock scenario firms are not affected by their 

exposure to CO2 emissions. Therefore, we assume that in this scenario, all 

assets follow the aggregate returns that follow from the macroeconomic 

simulation. 



24

4 Calculating changes  
in the credit risk spread 
for bonds

To calculate changes in the credit risk spread of bonds we build on the 

corporate credit risk module in DNB’s top down stress test model for the 

banking sector, with some modifications. To explain the approach, we first 

provide a brief overview of the corporate credit module in Cassandra.5

4.1 Cassandra’s corporate credit module
In a nutshell, the corporate credit module in Cassandra exploits credit 

rating information to estimate the probability of default of a loan under 

stressed conditions. When applying the module to bank loans, the first step 

is to assign credit ratings to the banks’ loan portfolio. As we already obtained 

credit ratings for the bonds in our sample (see Section 1.2), however, we can 

skip this step.

Once credit ratings are known, the Cassandra corporate credit module 

can estimate how the probability of default of a bond would change 

under stressed conditions. As a starting point, the module uses a rating 

transition matrix (available from rating agencies), which contains the 

probability that a bond will transition to a higher/ lower rating during 

the course of a year, including the probability that a bond will transition 

into default. In a stress scenario, the probability of default increases. To 

calculate the probability of default in times of stress the module uses a 

stress factor, which is calculated on the basis of macroeconomic inputs (GDP 

and aggregate stock prices). The calculation is calibrated on the basis of 

historical data for the Netherlands.

5 Details on the top-down model are given in Daniëls, T., Duijm, P., Liedorp, F. and Mokas, D. (2017),  
A top-down stress testing framework for the Dutch banking sector, DNB Occasional Studies 2017 No. 3.



254.2 Adapting the module for corporate bond exposures
Using scenario- and industry-specific stress factors, Cassandra’s 

corporate credit module calculates a new probability of default for each 

bond. As NiGEM provides us with GDP growth and aggregate stock prices, 

it is possible to calculate a stress factor for each scenario. Moreover, stock 

prices can be multiplied with the transition vulnerability factors for each 

industry, such that we get an industry-specific stress factor. 

By calculating a new probability of default for each bond, we can 

calculate the change in credit spread as the difference between the 

new and old probability of default. The credit spread of a zero coupon 

bond with a residual maturity of one year is equal to the probability of 

default for that year, assuming 100 percent loss given default.6 The change 

in credit spread is therefore given by the difference between the new and 

old probability of default.7 When the residual maturity is longer than one 

year, the cumulative change in the probability of default can be calculated 

according to the following formula:

 
 

 

 

 

where ΔPDt stands for the difference between the new and old probability of 

default in year t, and T is the residual maturity (rounded up to whole years). 

As we consider a five-year period for the stress test, we assume that default 

probabilities return to normal after five years, i.e. ΔPDt = 0 for t > 5. 

6 Note that, for bank loans, we are able to use loss given default rates at the industry level, as reported to 
us through the targeted survey to banks. When applying the corporate credit module in the top down 
module to bank loans, we shock the loss given default with the TVFs to create scenario-specific loss given 
defaults at the industry level. This reflects that changes in collateral values will differ across industries.

7 For example, if PDold = 3.00 percent and PDnew = 5.50 percent, the credit spread increases with 550 – 300 
= 250 bp.



26 As a final step, we translate the change in credit spread to a change in the 

value of each bond:

 
 

 

 

 
Note that, in order to not overcomplicate the calculation, we ignore the 

coupon payments of the bonds.

To reflect that industries which suffer very large equity losses also suffer 

a large deterioration in credit quality, we make the additional step of 

linking industry specific stock returns to credit rating downgrades. 

Specifically, a bond whose issuer is in industry i receives a one notch 

downgrade (e.g. from A- to BBB+) if industry i’s stock price decreases by 

more than 20 percent. In case the stock price decreases by more than  

30 percent the rating downgrade is two notches, by more than 40 percent 

three notches, etc. Consequently, a rating downgrade will further increase 

the change in the credit risk spread in the corporate credit module.
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