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Abstract

We assess the robustness of monetary policy under shock uncertainty based on a novel empirical

method. Shock uncertainty arises from the inability to observe the output gap in real time, by which

the contribution of supply and demand shocks to inflation is unknown. We apply our method in a

medium-scale Dynamic Stochastic General Equilibrium (DSGE) model to the recent inflation surge

in the US. We find that robust monetary policy aimed at limiting extreme welfare losses under shock

uncertainty should neither be too strong nor too mild, given the probability that supply shocks are

a dominant driver of economic fluctuations. An overly strong response to inflation in supply driven

scenarios is associated with large tail losses due to adverse output dynamics.
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1 Introduction

The recent series of demand and supply shocks hitting the global economy created large uncertainty

about the inflation outlook. The economy faced a mixture of negative supply shocks – like the Covid-19

pandemic and the surge in energy prices - and positive demand shocks, driven by fiscal spending and

pent-up consumer demand. The shocks resulted in soaring inflation. Monetary policymakers faced

considerable challenges to understand the nature of the shocks and their impact on the economy, which

complicated their policy reactions. Waller (2023) emphasizes that central bankers have to deal with

elevated uncertainty regularly.

Powell (2023) pointed out the need for a risk management approach of monetary policy in order

to assess the impact of the shocks and hedge against unforeseen risks. Schnabel (2023a) mentions

that high uncertainty can also be observed in financial markets, particularly in market-based measures

of inflation compensation. This is amongst others reflected in an increased dispersion of inflation

expectations, following the shocks that hit the US economy between 2019 and 2022 (Figure 1, left

panel).

Figure 1: Distributions of inflation expectations (left) and estimates of the output

gap (right), in the US

The left panel shows probability density functions (p.d.f.) of the one year ahead expected inflation in

the US (p.d.f. on vertical axis; inflation in percentage on horizontal axis), source: Consensus Economics.

The right panel includes output gap estimates of different institutions on an annual basis.

This unprecedented combination of shocks in the last years have made projections of inflation and

output highly uncertain, also because model relationships based on past regularities broke down (Bobe-

ica and Hartwig, 2021). In this context, Schnabel (2023b) refers to model and parameter uncertainty,

as well as policy mistakes due to the reliance of policymakers on model outcomes. The right panel of

Figure 1 illustrates the uncertainty of output gap estimates. In contrast to the inflation rate, which is

an observable variable, different institutions disagree markedly on estimates of the output gap. These
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discrepancies have important policy implications. According to the IMF estimate of the output gap,

the US economy seems to be dominated by demand shocks, with high inflation and a positive output

gap, requiring tight monetary policy. In contrast to that, the Congressional Budget Office output gap

estimate implies that supply shocks likely drive the high inflation, since the output gap is negative

(around -2.8%). The latter suggests that an overly tight monetary policy would be counter-productive,

since it can provoke a recession (Jiménez et al. 2022).

The contradictions of these estimates introduce the key issue that we address in this paper: if it is

not possible to observe (or reliably estimate) the output gap, then it is not possible to identify the true

combination of shocks that drives observed inflation. Thus, monetary policymakers suffer from missing

information due to shock uncertainty. Our research question is which monetary policy reaction, aimed

at inflation and output stabilization, is most robust to shock uncertainty. We define robustness as the

ability of the central bank to limit adverse tail outcomes, while achieving an inflation rate sufficiently

close to target.

Model simulations suggest that supply and demand factors played broadly similar roles in the

increase of inflation, as shown by Gonçalves and Koester (2022) or Ascari et al. (2023). Their research is

based on VAR models and related assumptions about shock identification. However, the precise sources

of the inflation surge are hard to identify given the unprecedented nature of the shocks. This makes

the inflation process fundamentally uncertain. According to Knight (1921), such epistemic uncertainty

relates to events with unknown or objectively unmeasurable probabilities. This contrasts to measurable

uncertainty or risk, which can be quantified based on known probability distributions of events. In case

of fundamental uncertainty however, the data distribution is unknown, either intrinsically or because

of practical limitations. This goes with an unknown event space and indeterminate outcomes.

Structural macroeconomic models, such as Dynamic Stochastic General Equilibrium (DSGE) mod-

els, are not tailored to analyze fundamentally uncertain shocks, since the models are calibrated or

estimated on past regularities and shocks that are expected or have a known distribution. DSGE mod-

els usually take into account deterministic simulations or stochastic simulations. In case of deterministic

simulations, agents have perfect foresight and shocks are entirely expected. The assumption of fully

anticipated shocks is relaxed in models with bounded rationality, related to backward looking agents,

adaptive expectations and learning (see Woodford, 2013 for an overview). In stochastic simulations,

agents in the model behave as if expected future shocks have zero mean; this is the certainty equivalence

property. The uncertainty about the shocks is expressed in confidence intervals based on the known

distribution of the shock. Hence, stochastic shock simulations deal with aleatory uncertainty, in the

sense that randomness is based on a known distribution of shocks.

Our approach is different as it takes into account epistemic uncertainty by assuming that the

distribution of shocks is unknown. We develop a novel empirical method that generates combinations

of supply and demand shocks causing the observed high inflation. The relative contribution of the

shocks to inflation is unknown, while output gap estimates are uncertain. The shock combinations
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represent the central bank‘s ‘informed guess’, which is shaped solely by the structure of the economy,

via the shock marginal rate of substitution (SMRS) as defined in section 2, plus observed inflation and

past information. The methodology can be applied to any DSGE model, and generalized to consider

any number of observables and shocks in appendix A. This is our main contribution to the literature.

Our paper is divided into two parts, first, we apply our methodology in a small-scale New Key-

nesian model in which we isolate the effects of shock uncertainty. We conclude that monetary policy

tightening in response to soaring inflation should be moderate, neither too mild nor too strong if there

is fundamental uncertainty about the nature of the shocks. The intuition is that if the tightening is too

mild, and the unobserved true shock combination is largely demand-driven (i.e. the true output gap is

positive), the economy will overheat too much for too long. On the other hand, if monetary tightening

is strong and inflation is driven by supply factors (i.e. the true output gap is negative), the policy

response will cause a deep recession. This result is in line with Brainard’s attenuation principle (1967),

which implies that under uncertainty the central bank should respond to shocks more cautiously and

in smaller steps than in conditions without uncertainty due to a fundamental lack of information.

In the second part, we draw some policy conclusions in the context of the 2022 inflation surge in

the US economy. We apply our method to the model of Smets and Wouters (2007) (SW, henceforth)

in a calibrated exercise built to match the US inflation peak in 2022Q2. It shows that there is a

high probability that the shock combination that drove the inflation peak is roughly equally driven

by supply and demand shocks, in line with previous research, however there is a non-negligible chance

(close to 5%) that inflation is almost entirely driven by supply factors. In that case, a strong central

bank response to inflation generates large losses, implying that a moderate response is desirable.

Our approach relates to Giannoni (2007), who simulates the effects of a variety of exogenous shocks,

instead of a single exogenous innovation, with a New Keynesian model. He distinguishes efficient from

inefficient supply shocks and considers uncertainty about the relative importance of each shock, as well

as uncertainty about the persistence in the shock processes. In disagreement with our results, he finds

that the robust optimal policy rule requires the interest rate to respond more strongly to fluctuations

in inflation and the output gap than in the absence of uncertainty. Another related paper is Grassi et

al. (2016), who select shocks in a DSGE model to avoid the estimation bias arising from imposing non-

observable shocks. These are generated by non-existing exogenous processes. Based on the SW model,

they find that selecting instead of imposing shocks substantially affects the values of the parameters

that drive the propagation in the model. Our approach relates to theirs, as we also generate shocks

instead of inferring them from the data.

A related strand of the literature assumes fundamental uncertainty about deep model parameters or

key variables. Orphanides and Williams (2007) for instance assume that the central bank has imperfect

knowledge about the natural rate of interest and unemployment, which may be related to structural

economic changes. They examine the performance and robustness of monetary policy rules to this

uncertainty and conclude that a more aggressive response to inflation and greater policy inertia (i.e.
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a higher degree of interest rate smoothing) would be optimal compared to a situation with perfect

knowledge. Ben-Haim and Van den End (2022) follow a similar approach based on a small-scale New

Keynesian model. They find that a monetary policy strategy which sufficiently responds to inflation

and the output gap is more robust against natural rate uncertainty than a response function equivalent

to an estimated Taylor rule. Dennis et al. (2009) come to a similar conclusion based on a robust control

method that supports decision making under model uncertainty. They find that if the central bank is

uncertain about the persistence of inflation as modeled by a DSGE model, the optimal response is to

be more aggressive in response to shocks.

The rest of this paper is structured as follows. In section 2 we theoretically show how uncertainty

plays a role in the dynamics of inflation and output in a small-scale New Keynesian model. Section

3 presents the methodology developed to simulate the shock scenarios that form the central bank’s

guess, which is applied to the New Keynesian model in section 4, where we also assess robust monetary

policy. In section 5 we apply our methodology to SW to the recent inflation surge in the US. Section 6

discusses the results in the wider context of policy responses to fundamental uncertainty, after which

section 7 concludes.

2 Theoretical framework

We start our analysis focusing on a small scale forward looking NK model in the spirit of Gali (2008),

augmented with a preference and a mark up shock as in Bhattarai et al. (2018),

πt = βEt(πt+1) + κYt + κγµµt (1)

Yt = Et(Yt+1)− σ(it − Et(πt+1) + φt − Et(φt+1)) (2)

it = ϕππt + ϕY Yt (3)

Where Yt, πt and it represent output, the inflation rate and the nominal policy rate as deviations

from their respective steady state values. Furthermore, µt and φt represent a mark-up and a preference

shock, which both follow an AR(1) process with persistence parameters ρµ and ρφ. Shock innovations

follow a zero-mean distribution, and we don’t impose further assumptions on its functional form. Also

γµ = 1
σ−1+ϕ . E(·) is the expectations operator, assumed to be rational, which implies that agents

understand the structure of the economy and know the composition of shocks. Furthermore, σ and

ϕ represent the intertemporal elasticity of substitution and the Frisch elasticity of labor supply. The

central bank reacts with full and credible commitment following a standard Taylor Rule that is known

by the agents.

This set of assumptions does not mean that inflation expectations cannot de-anchor, or drift away

from target, though this will then be based on the underlying economic conditions and model relations.

We are able to isolate the impact of shock uncertainty from assumptions about expectation formation,
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which in itself would add an additional layer of uncertainty. This distinguishes our approach from for

instance Orphanides and Williams (2007), who assume that the central bank is uncertain about the

formation of expectations by economic agents.

Lastly, to determine optimal policy, which minimizes welfare losses in the context of uncertainty,

we specify the following canonical loss function.

L =

∞∑
j=0

(π2
t+j + λyY

2
t+j) (4)

Where λy is the relative weight of the output gap in the loss function. Here we assume that the

policymaker aims to limit squared deviations from the steady state of inflation and output, optimizing

household welfare, as in the canonical New Keynesian model.

Central bank uncertainty is modeled in a similar way as in Giannoni (2007), in which the central

bank faces the issue of choosing a policy to commit to, with imperfect information. In the approach

presented in our paper, the central bank fully understands the structure of the model, however in period

t the information set includes solely πt. This implies that the central bank is not able to trace back µt

and φt since Yt is unknown.

The central bank cannot observe Yt by assumption, which is problematic when determining mone-

tary policy. Nonetheless, it is possible to use its knowledge about the true structure of the economy in

the following way. Given the rational expectations assumption, after a preference shock the model has a

solution of the form Yt = Zy
φφt and πt = Zπ

φφt
1, where Z represents different model parameters. This

implies that the one period rational expectation of any of these three variables x is Et(xt+1) = Zx
φρφφt.

By substitution, one can derive the following expressions:

Zy
φ =

σ(1− ρφ)(1− βρφ)

(1− βρφ)(1− ρφ + σϕy) + σκ(ϕπ − ρφ)
(5)

Zπ
φ =

σκ(1− ρφ)

(1− βρφ)(1− ρφ + σϕy) + σκ(ϕπ − ρφ)
(6)

The same holds for a mark-up shock µt, which yields the following coefficients Zy
µ and Zπ

µ :

Zy
µ =

−σκ(ϕπ − ρµ)

(1− βρµ)(1− ρµ + σϕy) + σκ(ϕπ − ρµ)
γµ (7)

Zπ
µ =

κ(1− ρµ + σϕy)

(1− βρµ)(1− ρµ + σϕy) + σκ(ϕπ − ρµ)
γµ (8)

These four coefficients contain all necessary information to understand the dynamics of the economy.

Considering that the model is linearized, a given observation π̄t of inflation can be explained for any

combination of shocks (µt, φt) such that:

1Note in the monetary policy setting of (3), the interest rate rule if fully endogenous since we don’t consider monetary policy shocks.
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π̄t = Zπ
φφt + Zπ

µµt (9)

Re-writing (9) and assuming for simplicity but without loss of generality that ρµ = ρφ:

µt =

(
(1− βρφ)(1− ρµ + σϕy) + σκ(ϕπ − ρµ)

γµκ(1 + σϕy − ρµ)

)
π̄t −

(
σ(1− ρφ)

γµ(1 + σϕy − ρµ)

)
φt (10)

The term multiplying π̄t broadly determines the magnitude of the shocks, whereas σ(1−ρφ)
γµ(1+σϕy−ρµ)

can be defined as the shock marginal rate of substitution (SMRS), which determines by how much φt

has to increase for a marginal decrease in µt in such a way that both shocks together still explain π̄t.

Broadly speaking, one can infer that the SMRS is determined by the persistence of the shocks (via the

expectations channel) and by the magnitude in which supply shocks affect the natural output (γµ). In

section 3 we explain how the SMRS is a key source of information that, under the assumption that

shocks have a finite variance, can help understand (not pin down) potential sources of observed inflation.

Within the information set of the central bank, any shock combination that fulfills the restriction (10)

is a potential candidate to explain π̄t. The infinite number of shock combinations that explain a certain

observation of inflation lies on the line formed by this function, which for a positive π̄t looks as follows:

Figure 2: Shock drivers of π̄t as determined by the shock marginal rate of substitution

Graphical representation of (10). The points on the black line represent shock combinations that

explain a given inflation observation (π̄t), while the red dot shows the point in which π̄t is equally

explained by supply and demand factors.

Note that the values of this function that intersect the vertical and horizontal axes represent the

unique single shocks that yield observed inflation without further interference from the other shock.
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The values on the line correspond to shock combinations with various shares of mark-up and preference

shocks, that together attain π̄t. The red dot represents a scenario in which inflation is equally driven

by supply and demand factors, therefore shock combinations to the left of this point represent a state

of the world dominated by supply effects and vice versa for points at the right.

Yt is by assumption unknown, however, the central bank knows that (10) holds, given the observed

value of π̄t. The shock combinations, that determine a certain observed inflation rate π̄t, have signif-

icantly different effects on the output gap. Similar to (9), the impact of any combination of shocks

on the output gap can be expressed as a linear combination of the shocks and the coefficients defined

before,

Ȳt = Zy
φφt(π̄t) + Zy

µµt(π̄t) (11)

Where Ȳt represents the realized value of the output gap generated by the pair of shocks (φt(π̄t), µt(π̄t))

that satisfies the constraint (10). Substituting and simplifying we derive the following expression, sum-

marized in Figure 12,

Ȳt =

(
Zy
φ − σ(1− ρφ)

γµ(1 + σϕy − ρµ)

)
φt + π̄t

Zy
µ

Zπ
µ

(12)

Figure 3: Illustrative example of output gap movements as a function of φt,

fulfilling the constraint defined by eq.(12)

Graphical representation of (12).

Intuitively, (12) determines that the output gap will be negative if the observed level of inflation π̄t

is solely explained by a mark-up shock (note that Zy
µ is negative), and vice versa if inflation is driven
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by a preference shock. The higher the weight of the demand shock that drives inflation, the higher the

output gap, becoming positive eventually. This stylized framework helps to point out how the sources

of inflation matter, since the trade-off between inflation and output gap stabilization depends on the

direction of the shock effects on inflation and output.

Hence, assessing the source of inflation is crucial for the central bank. Theoretically, any combi-

nation of shocks that satisfies restriction (10) is a potential scenario that explains the observed level

of inflation. Nonetheless, the policy implications differ markedly according to equation (12). These

two restrictions summarize the information set of the central bank, which involves a large degree of

uncertainty considering that welfare is defined by equation (4). In the next section we introduce our

novel approach which helps the central bank to make an informed guess about the potential sources of

inflation.

3 Methodology

Due to the lack of information the central bank cannot statistically pin down the true shock combination

that determines the observed inflation rate. Therefore it must assess the potential welfare losses of

its reaction function (i.e. the parameters of the Taylor rule) without knowing whether inflation is

determined by supply and/or demand factors. We define robust monetary policy to shock uncertainty

as the policy parameters that mitigate the risk of extreme welfare losses. In this section we explain how

the central bank can use its knowledge about the structure of the economy, provided by the SMRS,

and how it can cope with uncertainty to provide an informed guess of the potential range of shock

scenarios. This helps to determine the optimal policy stance.

As shown in the previous section, any shock combination that fulfills equation (10) is a potential

scenario to explain π̄t. Observing the structure of the economy implies that the central bank observes

the Shock Marginal Rate of Substitution as defined above, which is a function of the structural param-

eters of the model. Following (10), note that if the SMRS → ∞ (i.e. a very steep slope in Figure 2),

the relative size of a supply shock necessary to explain inflation is significantly larger than demand

shocks, and vice versa if the SMRS tends to approach 0. This implies that, for shock innovations with

finite variance, the SMRS by itself is somewhat informative in providing a general sense of what can

be the main driver of the observed fluctuations of inflation and output. However it is not sufficient

information for point estimates.

To introduce this information in the central bank’s guess of the potential drivers of inflation, we

employ the algorithm of Sims and Zha (2012) by minimizing the following function,

MINζt Ft(πt) = (π̄t − πt)
2 (13)

Where function F (πt) is a standard loss function (not to be confused with 4) used to minimize the

distance between observed inflation π̄t at time t, and the inflation rate (πt) determined by the shock
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vector ζt = [φt, µt]
′. Note that the gradient of F (πt) depends on the structure of the economy, πt is

determined directly by equation (9), and for a simple model as the one described in section 2 can be

derived analytically.2

We exploit the property that, since ζt is composed of more shocks than observables included in

F (πt), there is an infinite amount of shock combinations ζ∗t that will yield F (πt) = 0. Particularly,

these shock combinations by construction are represented by the line (9). Note that if the number

of shocks in ζt is the same as the number of observables in (13), all state variables of the model are

observed and therefore the result of the algorithm is a standard shock decomposition.

The key contribution of our paper comes from applying the Sims and Zha (2012) algorithm to the

uncertainty in the central bank information set. The algorithm, formalized in (13), runs K iterations

until it finds a (either local or global) minimum of F (πt), starting at an initial guess in which both

shocks are zero.3 In each iteration k the vector ζt,k−1 is updated with the gradient of (13), found by

the algorithm. This is formalized by the following iterative process,µt,k

φt,k

 =

µt,k−1

φt,k−1

+

∆µt,k

∆φt,k

 (14)

with µt,0 = φt,0 = 0

Where ∆µt,k is the gradient of (13) evaluated in µt,k−1 (the same procedure is applied to ∆φt,k).

AfterK iterations, the algorithm converges to a solution that, by construction of this particular exercise,

minimizes F (πt), selecting a point on the line plotted in Figure 2.

In a general sense, Sims and Zha (2012) is designed to minimize any numerical function with a

gradient descent approach.4 This algorithm estimates the gradient of the function via quasi-Newton

methods and BFGS update, implying that it is able to accurately estimate the gradient of F (πt), even

with a high degree of curvature. Our use of the Sims and Zha (2012) algorithm can be applied to

any DSGE model, regardless of the size and complexity, since it is able to estimate the gradient when

analytical solutions are untractable. It can also include a larger central bank information set as detailed

in appendix A.

This exercise allows the central bank to use the information given by the SMRS. Furthermore, we

extend this approach in order to account for uncertainty. This is done by a Monte Carlo experiment

in which we run the above-mentioned version of Sims and Zha (2012) N times. In each simulation n,

2Precisely: [
2Zπ

φ(π̄t − Zπ
φφt − Zπ

µµt), 2Zπ
µ (π̄t − Zπ

φφt − Zπ
µµt)

]
3This condition responds to economic intuition. If the gradient of a shock is null then it implies that the shock has no implications

in terms of inflation dynamics. Thus, the best guess for that hypothetical shock is 0.
4This algorithm is used in the literature for different purposes, such as for finding policy and value functions, or for calibrating

parameters via impulse response matching.
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the estimated gradient is interacted with a random variable dn that is governed by a Uniform(0, 1)

distribution in the following setting,µt,k

φt,k

 =

µt,k−1

φt,k−1

+

∆µt,k · (1− dn)

∆φt,k · dn

 (15)

with µt,0 = φt,0 = 0

In each iteration k of simulation n, the algorithm computes the gradient of F (πt), which we then

multiply by different random numbers dn or 1 − dn. This implies that the combination of shocks,

once the algorithm found the solution (ζ∗n), is tilted towards either a mark-up or a preference shock

dominated scenario, depending on dn. Note that in a random draw in which dn = 1 we find the shock

combination [φt, µt] = [π̄t/Z
π
φ , 0], thus, a state of the world in which inflation is fully determined by a

demand shock. On the contrary, with a random draw of dn = 0, we locate [φt, µt] = [0, π̄t/Z
π
µ ]. The

Monte Carlo exercise therefore yields a distribution of paired shocks that lie on the line defined by (10)

and so explaining π̄t.

With a sufficiently large N we are able to find a guess of the range of shock combinations in (10)

considering that the iterative process described in (15) tilts the results towards a particular region of

Figure 2, according to the structure of the economy and dn. For a large enough N , it is possible to

map the entire relevant region of the shocks, determined by the sign of the gradient of (13). For an

observation of a positive inflation rate this implies a strictly positive supply or demand shock. This is

another piece of information as proceeded by the SMRS.

The entire set of ζ∗n shock combinations constitute the central bank’s informed guess. This set of

combinations includes the information given by the structure of the model, as well as uncertainty by

considering the full range of potential weights of supply and demand forces to explain inflation. This

way we find N shock combinations that first incorporate the information of the economy via the SMRS,

and also account for uncertainty given that the shock combinations found are potential scenarios. This

way the central bank has the capacity to analyze what monetary policy is robust to uncertainty by doing

a welfare analysis on the full range of shock combinations N (Appendix A elaborates on the conditions

and the procedure to enrich the exercise proposed in this section with more variables, shocks and larger

scale models). In the next section we apply the methodology, based on the small-scale New Keynesian

model described in section 2, to understand the use of the algorithm for monetary policy.

4 Shock analysis and robust policy responses

In this section we analyze the outcome of the shock exercise through the lens of the small-scale New

Keynesian model described in section 2, to assess the robustness of monetary policy under uncertainty.

We compute the ζ∗n shock combinations and analyze the distribution of potential losses under N po-

tential scenarios. The robustness of monetary policy, which aims at minimizing tail risks instead of the
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average expected loss, is assessed, taking into account the drivers of potential extreme welfare losses.

To understand the results of the proposed method, we consider a standard calibration of the model

taken from Gali (2008) and determine the potential causes of an observed positive inflation rate π̄t > 0.5

We find the set of shock combinations ζ∗n as plotted on the downward sloping red line in Figure 4.

Figure 4: Simulated shock combinations based on small-scale New Keynesian

model and a standard calibration

ζ∗n for the New Keynesian model and a standard calibration (N = 1000) and π̄t = 2%. The red x shows

the N combinations of shocks ζ∗n, while the blue dot 50-50 represents the point in which inflation is

equally driven by supply and demand factors, which is also reflected in the dotted vertical lines in the

left and lower panels.

For this particular model and calibration the algorithm finds that most shock scenarios are supply

driven (the mass of red dots on the downward sloping line in the top right panel is concentrated at

the left of the blue dot). There is also a large mass of demand driven scenarios, which are however

25% less likely than supply dominated scenarios. Without imposing the restriction that both shocks

must be inflationary, the algorithm finds shocks that meet this property, while being evenly spread

across the positive domain. Intuitively, in this stylized example, the SMRS determines that supply

shocks have to be slightly smaller in size compared to demand shocks to explain inflation dynamics

and therefore supply shocks are more likely according to Sims and Zha (2012). Furthermore, in this

particular case the distribution of shocks is bimodal and considerably evenly spread around the domain,

which implies that the model is not very informative about the potential causes of inflation. In a more

complex setting such as the case study discussed in section 5, we show that with more information the

5σ = 1, κ ≈ 0.05, ϕ = 1, ρφ = ρµ = 0.9, β = 0.99, ϕπ = 1.5, ϕy = 0.5/4
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algorithm can be highly informative.

The implications for the policy interest rate and the output gap are shown in Figure 5. Note that

the range of the interest rate outcomes is fairly stable and narrow. However, the shock scenarios have

a wide ranging impact on the output gap (as explained in Figure 3).

Figure 5: Simulated paths of interest rate and output gap in the small-scale New

Keynesian model based on the shock combinations in Figure 4

Variables expressed in p.p. deviation from the steady state.

If the central bank was able to observe the shock combination, the optimal Taylor rule response

depends on whether the shock scenario is supply or demand driven. In demand driven states of the

world, it is optimal to react aggressively to cool down the economy as fast as possible. However, if the

economy is hit by supply shocks, the central bank has to balance its response between the objectives of

inflation and output gap stabilization to limit welfare losses. We further explore these policy consider-

ations by analyzing the distribution of welfare losses associated with the shock combinations, shown in

Figure 6. We distinguish “supply” from “demand” states of the world by identifying the main source

of inflation in each ζ∗n.
6

The loss distribution displays bimodality (assuming the baseline Taylor rule with ϕπ = 1.5). The

biggest (left) hump is associated with shock combinations that are almost equally driven by supply

and demand shocks and the hump at the right tail by scenarios mainly driven by one of the shocks.

The intuition is that shocks that are almost equally driven by supply and demand have an output gap

closer to zero than scenarios that are dominated by one type of shock. Thus, the left hump corresponds

6According to this classification, if a given ζ∗n inflation is explained infinitesimally more by µt than φt, then it is considered a supply

driven state of the world, and vice versa.
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Figure 6: Loss (L) distribution generated by the shock combinations identified in

Figure 4 based on the small-scale New Keynesian model

The red line reflects the loss distribution of shock combinations mainly driven by demand shocks, and

the blue line the loss distribution of supply dominated shock scenarios. The thick black line shows the

loss distribution considering all scenarios together. The vertical dotted line E(dn = 0.5) determines the

expected scenario, which is equally driven by a supply and demand shock.

to shock combinations close to the expected shock combination E(dn), whereas the right hump, with

bigger losses, is mainly driven by one type of shock. While scenarios dominated by demand shocks are

more likely to generate larger losses (red line), the far right tail of the loss distribution is driven by

supply dominated shock scenarios (blue line).

For optimal monetary policy this generates a trade-off. On the one hand, the central bank would

like to react stronger to inflation to minimize the demand driven right tail of the loss distribution. On

the other hand, if the true shock combination is supply driven, a strong increase of the policy interest

rate would make the output gap more negative and so increases welfare losses. One could also argue

that the central bank must reduce tail losses, which in this case are driven by states of the world in

which supply shocks (µt) explain almost all observed inflation. Following this logic, the central bank

should react mildly to high inflation to limit tail losses, at the risk of incurring losses in demand driven

states of the world.

To assess the robustness of monetary policy to shock uncertainty, we take the loss distribution in

period t+ 1, which is influenced by different policy responses to inflation. Particularly, we look at the

case of a milder (ϕπ = 1) and stronger (ϕπ = 2.5) response to inflation by the central bank.

It shows that if the central bank would react mildly to inflation (ϕπ = 1 in the middle panel),
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Figure 7: Loss distribution generated by the shock combinations identified in Figure 4 for different ϕπ

The red lines are the shock combinations mainly driven by demand shocks (i.e. Monte Carlo simulations

with dn > 0.5), and the blue lines are the supply dominated shock scenarios. The loss distributions

E(dn = 0.5) relate to the expected scenario, which is equally driven by a supply and demand shock.

the entire loss distribution shifts to the right (i.e. higher losses for each possible scenario). There

are demand dominated scenarios in which losses are more than twice as high as in the case of supply

dominated scenarios. Supply shocks can generate large losses as well with a mild monetary policy

response compared to the baseline response, but the loss distribution of supply shocks looks Gaussian

and does not have a fat right tail.

In case the central bank reacts strongly to inflation (ϕπ = 2.5), the loss distribution of demand

dominated shock scenarios is centered towards its mean, while overall losses are limited (lower panel).7

However, in the case of supply driven scenarios, the losses can be more than eight times higher than in

demand driven scenarios. This is because reacting strongly to inflation in case of supply shocks more

likely worsens the output gap.

7A similar result is found in the learning literature, where under expectations based on adaptive learning, a stronger reaction to

inflation is deemed necessary (Gaspar et al., 2011). There, uncertainty amounts to learning about the true law of motion which in some

sense implies uncertainty about shocks.
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The results imply that robust monetary policy aimed at preventing extreme losses should react

neither too aggressively nor too mildly to inflation. Although a strong response to inflation is optimal

in the subset of demand driven scenarios, the right tail of the loss distribution of combined supply and

demand shock scenarios is fat and long, implying that an aggressive response to inflation is not robust

optimal. This holds in particular for supply driven scenarios. In the next section we use the intuition

from this exercise to extract conclusions about robust monetary policy responses to the inflationary

spiral in the US in the aftermath of the pandemic.

5 Application to the US economy

5.1 Initial conditions

In this section we apply the algorithm to the US economy to analyze the inflation surge in the context

of shock uncertainty. Since 2020, the US and other advanced economies have faced a series of unprece-

dented inflationary shocks, which led to an increase in inflation substantially above target. The GDP

deflator in the US peaked at 8.8% in 2022Q2 (see left panel of Figure 8).

Figure 8: Observed inflation measured as annualized change of the US GDP deflator

We simulate shock scenarios with the method presented in section 3, based on the SW model.

This is a medium-scale log-linearized DSGE model, estimated for the US. The model equations pin

down the dynamics of capital formation, consumption, investment, the rental rate of capital, labor,

wages, inflation, and the value of the capital stock. The model dynamics are driven by supply shocks

(technology, wage and price mark-up), demand shocks (risk premium, government spending), and a

monetary policy shock. The mark-up and preference shocks affect the dynamics of the model through

the Phillips and IS curves, equations (16) and (17) respectively:

πt = π1πt−1 + π2πt+1 − π3(mplt − wt) + µt (16)
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ct = c1ct−1 + (1− c1)ct+1 + c2(lt − lt+1)− c3(it − πt+1) + c3(φt − φt+1) (17)

In (16) inflation depends on past and expected future inflation and on mark-up shock µt. The

effect of mark-up shocks on the economy is determined by the Calvo price adjustment parameter which

has a rather strong influence on π3. In (17), consumption ct depends on past and expected future

consumption, expected growth in hours worked (lt, lt+1), the real interest rate gap, and a preference

shock φt. A positive preference shock (demand shock) increases consumption and exerts upward

pressure on real factor prices, and thus on inflation via an increase of marginal costs. In order to

simplify and better understand the driving forces of our results we assume that the mark-up and

preference shock both follow an AR(1) process, instead of an ARMA(1,1) process as in SW.

To assess whether the response of the US Federal Reserve (Fed) was robust in an environment of

shock uncertainty, we calibrate the model on the recent macroeconomic outlook. Based on a Kalman

filter we estimate the initial conditions of the US economy in 2022Q1, which we then use to run the

algorithm detailed in section 3 to explain the observed inflation peak in 2022Q2 by scenarios of mark-

up and preference shocks.8 To run the Kalman filter, we use as calibration the posterior parameter

estimates and the same observables as in SW except for the short-term interest rate, which we proxy

by the shadow rate of Wu and Xia (2016), with quarterly observations for the 1991Q1- 2022Q1 period.

The shadow rate also reflects the effect on monetary conditions of Quantitative Easing by the Fed. The

Kalman filter estimates the unobserved variables as well.9 In this setting we find an estimate of the

output gap Y2022Q1 = −2.66%. Furthermore, our definition of F (·) in (13) considers only inflation as

an observable variable, as in section 3.1.

5.2 Shock scenarios and robust monetary policy

In this section, we use the algorithm defined in section 3 to determine the shock combinations that

define the central bank’s informed guess, conditional on posterior estimates of the parameters in the

SW model. The initial conditions of the model at t−1 follow from the Kalman filter. Figure 9 includes

the full range of ζ∗N potential shock drivers of peak inflation (π2022Q2), showing that most scenarios

are composed of an even mixture of supply and demand shocks (most mass of the red dots on the

downward sloping line in the top right panel - i.e. the SW equivalent of (10) - is centered around the

blue dot).

8For simplicity and comparability with the stylized example of section 2 we limit our analysis to these two shocks only, although

we could have chosen more shocks, up to all of the ones modeled in SW, to get a more comprehensive picture of inflation drivers.
9For the Kalman filter we assume that all shocks are MA. So we achieve that there is no influence of other shocks beyond the

mark-up and preference shock in driving the economy when we apply the algorithm. So we fully isolate the effect of the selected shocks.

17



Figure 9: Simulated shock combinations explaining the inflation rate in 2022Q2, based on SW

ζ∗n for the SW model (N = 1000) explaining observed peak inflation in 2022Q2) (ie GDP deflator under

the estimated initial conditions following from the Kalman filter estimates for 1991Q1-2022Q2). The red

x show the N combinations of shocks ζ∗n, while the blue 50-50 dot is the point in which inflation is equally

driven by supply and demand factors, which is also reflected in the dotted vertical lines in the left and

lower panels.

Note that the distribution of supply shocks has a fat right tail, also reflected in the low mass at the

right end of the top right panel. This suggests that it is unlikely that demand shocks alone were the

main driver of the inflation surge and that it is more obvious that inflation was driven by a roughly

equal share of supply and demand shocks. Furthermore, the considerable mass of supply driven shocks

implies that an overly strong reaction by the central bank likely leads to adverse welfare dynamics.

This finding is key for our assessment of the robustness of monetary policy to shock uncertainty, as we

discuss below. Figure 10 shows the median path of key model variables, based on the simulated shock

scenarios, accompanied by the 5 and 95 quantiles of the simulated path distribution implied by ζ∗N .
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Figure 10: Simulated path of the US economy based on the shock combinations shown in Figure 9

Inflation is the annualized quarterly change of the US GDP deflator. The output gap is the percentage

deviation from steady state value, estimated up to 2022Q1 with the Kalman filter used to determine the

initial conditions. The interest rate is the Wu and Xia (2016) shadow Federal funds rate (period averages).

The shadow area of each plot represents the simulated paths conditional on the shock combinations shown

in Figure 9.

The persistence of inflation varies from one state of the world n to another. Inflation is well behaved

as the quantiles of the distribution do not indicate excess dispersion. Compared to inflation, the ranges

of the interest rate and output gap outcomes are much wider. The median interest rate shows a

continuous increase until the end of 2023 when it peaks. The median interest rate is high relative to

the lower quantile, because the median value of the output gap becomes positive during the simulation

horizon, to which the central bank responds according to the Taylor rule, indicated by the rather

large median response of the interest rate. Nonetheless, there is also a probability that the output

gap remains negative for an extended period of time, and might not even reach the estimated 2022Q1

value (-2.66%) before 2025Q1. These states are reflected in the lower band of the range of output gap

outcomes. Such conditions present a risk for hawkish monetary policy, as we show below.
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Figure 11: Loss (L) distribution generated by the shock combinations identified in Figure 9 for SW

Demand shock driven scenarios represent the subset of shock combinations ζ∗N with dn > 0.5 and

supply shock driven scenarios with dn ≤ 0.5. The dotted line represents the realized loss E(dn = 0.5)

under the expected scenario the expected scenario.

The loss distributions following from the simulations for the US economy with the SW model display

similar features as the ones generated by the small-scale New Keynesian model in Figure 6. For the

largest mass of shock combinations, welfare losses are relatively low. However, there is bimodality in the

distribution of supply shock driven scenarios. Supply driven states likely generate lower welfare losses

than demand dominated ones, although the supply loss distribution has a small fat tail at the right. This

tail corresponds to the shock combinations that are explained almost entirely by the mark-up shock, as

shown in Figure 9. Contrary to the findings in the small-scale New-Keynesian model, demand shocks

do not present a tail risk in the simulations with the SW model. This implies that the information taken

into account in this exercise (via the Kalman filter initial conditions, observed inflation in 2022Q2, the

model structure of SW and the estimated parameter values) means that inflation is unlikely dominated

by demand factors. This provides evidence that the implied SMRS, together with the included data,

reveal key facts that are relevant for monetary policy under fundamental uncertainty.

To assess the robustness of monetary policy, we repeat the exercise conducted in section 4, with the

SW model, for the robust Taylor rule responses (ϕπ) summarized in Figure 7. The outcomes are used

to assess the impact of the central bank’s response to inflation on the loss distribution. Particularly,

we conduct experiments of more aggressive responses to inflation, both for demand and for supply

dominated shock scenarios. The resulting loss distributions are shown in the following figure.
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Figure 12: Loss (L) distribution of the shock combinations in Figure 9 differenti-

ated by the main inflationary driver for different ϕπ

Loss distributions associated with the main driver of the scenario being a mark-up shock (left panel) or

preference shock (right panel), for different values of ϕπ . Demand shock driven scenarios represent the

subset of shock combinations ζ∗N with dn > 0.5 and supply shock driven scenarios with dn ≤ 0.5.

In the demand driven shock scenarios, a stronger response to inflation lowers welfare losses (left

panel). Even more, increasing ϕπ reduces the tail losses for demand dominated shock combinations.

It implies that responding more strongly to inflation is robust optimal in demand driven states of the

world. This intuition does not hold for supply driven states (right panel). If in those states ϕπ is

raised, the tail of the loss distribution shifts to the right. When the mix of supply and demand shocks

is close to 50%, increasing ϕπ marginally improves welfare. The intuition behind this last finding is

that whenever there is a significant share of preference shocks driving the economy, even if supply

forces dominate, reacting more strongly to inflation has little impact. Nonetheless, if the output gap

is deeply negative (i.e. the mark-up shock heavily dominates) then increasing ϕπ is detrimental since

it lowers the output gap even further.

These findings imply that the central bank should take into account the tail losses associated with a

strong response to inflation. Robust monetary policy that aims at limiting tail losses should particularly

be careful to respond strongly to inflation in supply driven scenarios. Although such a response reduces

the mode of the loss distribution (the red and blue distributions shifting to the left in the left panel of

Figure 12) and so improves the expected policy performance, it also goes with an increased tail risk of

extreme losses.

To further explain the results, Figure 13 shows the median simulated path for the key US economic

variables, considering different Taylor rule responses to inflation. It distinguishes the full sample of

shocks pairs ζ∗N (solid lines) from those that are heavily driven by supply (dotted lines), meaning the

subset that satisfies ζ∗N |µn ≥ 3 · 10−3.
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Figure 13: Simulated median paths of the US economy, disaggregated to either

include the full range of shock scenarios (solid lines) or the supply drive tail

(dotted lines)

The solid lines represent the median outcome of the simulated inflation and output gap as a function of

ϕπ . The dotted lines represent the median path of each variable, considering only shock combinations

that are largely driven by supply factors (i.e. µt ≥ 3 · 10−3).

The left panel shows that inflation drops when ϕπ is raised. In each scenario, the inflation outcomes,

including the tail outcomes, become lower when the monetary policy response to inflation is stronger.

This desired effect of a stronger response to inflation also holds for the output gap in the median scenario

(right panel). In that case, raising ϕπ reduces the output gap, consistent with the loss distributions

analyzed above. However, in the supply driven tail outcomes the output gap is deeply negative on

impact. Hence, reacting more strongly to inflation leads to an even more negative output gap. This

adversely affects welfare even if inflation becomes close to target at the beginning of 2024.

In conclusion, our analysis of welfare losses and robust monetary policy suggests that, under the

central bank’s best guess of the drivers of observed inflation, it is not possible to reject the hypothesis

that supply shocks are the dominant source of fluctuations in the US economy. Therefore, a risk man-

agement approach for robust monetary policy calls for moderate policy responses, given the potential

tail risks.

6 Discussion

The desired policy rule would be different if the central bank had prior information. The central bank

can have optimistic expectations about the state of the economy, or have a particular information set

that allows it to determine the shock combination, and decide to react accordingly. Hence, if there

is certainty that the shock combination will yield limited losses (e.g. when inflation is mainly driven

by a demand shock, which supports output) then it would by definition be optimal to implement an

aggressive inflation focused policy rule to achieve a better performance in terms of a lower welfare loss.
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However, if the shock scenario is dominated by supply factors and subsequent losses are known to be

concentrated at the right side of the loss distribution, a very strong inflation response is less obvious.

In practice, it is unlikely that a policymaker has useful prior information in a situation where

unprecedented shocks create fundamental uncertainty. Such conditions call for a risk management

approach. This strategy consists of implementing a policy rule that aims to prevent tail losses; not

because the policymaker is certain that high losses will materialize (most likely via supply dominated

shock scenarios), but to avoid the small probability of large losses. Such a risk management strategy will

be desirable even if it implies that the best possible performance becomes less likely (as reflected by the

mode of the loss distribution being located more to the right). However, a risk management approach

would prefer robustness to extremely costly dynamics more than achieving the (small) possibility in

the best possible state of the world.

The literature covers different risk management strategies that deal with uncertainty in monetary

policy. Most of these strategies deal with measurable uncertainty or risk. For instance Brainard’s

attenuation principle mentioned in the introduction. It would call for policy gradualism and less

aggressive responses to economic shocks. There are also risk management strategies that call for a

more aggressive response by the central bank, for instance if there is uncertainty about the persistence

of the rate of inflation (Tetlow, 2018). More aggressive policy measures could then be needed to prevent

an adverse shock from destabilizing inflation expectations.

A well-known strategy for managing Knightian uncertainty is robust control. Robust control insures

against the maximally worst outcome (min-max) as defined by the policymaker (see Hansen et al.,

2006; Hansen and Sargent, 2008, and Williams, 2007). Dennis et al. (2019) and Olalla and Gómez

(2011) apply robust control to a New Keynesian model to study the effect of model uncertainty in

monetary policy. Typically, policies derived through min-max are more aggressive compared to those

derived under no uncertainty. Orphanides and Williams (2007) add that a higher degree of interest

rate smoothing would be optimal under fundamental uncertainty. Simulating different smoothing

parameters is beyond the scope of our paper, as we stick to the parameter estimates of the SW model.

Similar to the robust control approach, we define a robust policy as a response that limits tail losses.

We add to this the trade-off between robustness against uncertainty and the performance of a policy

rule in terms of delivering inflation outcomes that are sufficiently close to target. Robust control does

not take into account this trade-off. However, our results demonstrate that this trade-off is relevant,

since containing extreme adverse losses may imply that the best possible performance is less likely.

In this regard, our approach is in line with info-gap theory, which defines that a robust risk man-

agement strategy aims at a loss to be small, and in any case less than a critical value: the largest

acceptable loss (Ben-Haim et al., 2018). Similarly, the central bank would like to know what values of

the critical loss are realistic and how confident it can be that these values won’t be exceeded. Based

on that information, the most robust reaction function can be selected. The loss distributions that we

simulate under shock uncertainty allow for such a selection method, since it generates distributions of
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the target variables.

7 Conclusion

We analyze the effects of shock uncertainty on a high inflation economy, taking into account that the

output gap is unobserved. In such conditions, the central bank cannot pin down the true cause of

observed inflation and takes a risk management approach to limit potentially large welfare losses.

Our main contribution to the literature is that we develop a new empirical method that allows

the central bank to make an informed guess about the potential causes of inflation, using the existing

knowledge about the economic dynamics, observed inflation, and the structure of the economy. The

latter is rationalized via the Shock marginal rate of substitution, which summarizes the structural

information about how different shocks affect inflation.

We apply our method first in a small-scale New Keynesian model, by which we are able to isolate

the effects of shock uncertainty, to find robust monetary policy responses, that aims at limiting extreme

welfare losses. We find that the central bank response should neither be too strong nor too mild under

uncertainty. If the response by the central bank is very aggressive, it runs the risk of deepening the

recession, in case of supply shock dominated inflation scenarios.

Based on the intuition from the small-scale model, we then study the role of shock uncertainty in

the US inflationary surge of 2022. Using Smets and Wouters (2007), in a calibrated exercise to mimic

the state of the US economy at the peak of the inflation surge, we find that there is a small (close

to 5%) but non-negligible probability that inflation is almost entirely driven by supply shocks. We

conclude that robust monetary policy to shock uncertainty in such conditions does not respond overly

strong to high inflation, given the large downside risks to output and welfare.
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Appendix

A Generalization of the algorithm

In section 3 we described the algorithm that defines the “best guess” of the central bank, which

determines its information set. The algorithm was explained for the case in which function (13) only

includes observed inflation, and the vector of shocks ζt includes only the mark-up and demand shocks.

However this algorithm, and therefore the approach we propose to define the information set of the

central bank can be generalized in order to be applied to larger DSGE models, and to incorporate a

larger number of shocks in ζt. Equation (13) is generalized as follows,

MINζt Ft(xt,1, ..., xt,j) =

J∑
j=1

ωj(x̄t,j − xt,j)
2 (18)

Where the function F (·) is the loss function used to minimize the distance between a vector of

observables x̄ at time t, and the values of the variables xt determined by the shock vector ζt using

any model. Note that in order to implement our methodology, x̄ must leave out at least one state

variable of the model, and ζt must contain at least one more shock than observables. ω represents the

vector of relative importance of minimizing the distance of each variable, decided by the researcher in

an informed way, which also tilts the final distribution of shocks in a certain direction.

Note that by defining the loss function like this, we are not introducing any restrictions in the

total number of state variables in the model to be used to apply this algorithm. In order to take our

approach and implement it the only necessary condition is to include at least one more shock in ζt

than the number of observables in x̄. Thus, the best guess of the central bank in order to implement

optimal monetary policy can be computed for every DSGE model regardless of the particular rigidities

that it encompasses.

Furthermore, equation (15) is generalized as follows,

ζt,k = ζt,k−1 +Dn∆k (19)

with

Dn =


D1

n

...

DP
n

 =


d1
n∑P

1 dp
n

...
dP
n∑P

1 dp
n

 where: dpn → U [0, 1]

Where P is the number of shocks in ζt, and Dn is the vector of random numbers bounded by [0, 1]

that alters the direction of the Monte Carlo exercise n towards a particular direction. If Dp
n = 1 then

the shock combination found will be fully driven by shock p, implementing the same intuition as in the

previous section. ∆k is the gradient of function (18) at ζt,k−1.
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As discussed in the previous section, the structure of the model is implicitly defining ∆k. This

implies that the N shock combinations found is determined, first by the structural information encoded

in the Multidimensional Shock Marginal Rate of Substitution, plus the uncertainty approach introduced

by the Monte Carlo exercise governed by Dn.
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