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1 Introduction

The transition to a low-carbon economy entails large-scale structural shifts in the

global economy; shifts that most likely come with shocks and financial disruptions

(Bolton et al., 2020). High carbon-emitting firms are exposed to these transition

risks. Profound policy, legal and technological developments as well as changes in

consumer preferences, will particularly target corporate carbon and other greenhouse

gas emissions. Many firms face increasingly high emission expenses as emission

taxation and pricing strengthen. Moreover, climate litigation gains momentum,

exemplified by impactful cases such as Milieudefensie et al. v. Shell.1 This trend is

anticipated to grow further, with financial institutions becoming increasingly subject

to climate-related legal actions (Setzer and Higham, 2022). As networks of firms,

financial institutions, and households are intricately connected, transition risk may

reverberate and pose a threat to overall financial stability (Battiston et al., 2017;

Campiglio and der Ploeg, 2021). Price discovery of transition risks in financial

markets is therefore essential; it supports adequate risk management and an efficient

allocation of resources in the economy.

Investors in financial assets issued by high-emission firms demand compensation

for transition risk in the form of a “carbon premium”, where they regard a firm’s

carbon emissions as a reliable risk indicator (Giglio et al., 2021). Moreover, investors

seek compensation for uncertainties surrounding impending climate policies, legis-

lation and regulations. Investors may also opt to avoid high-emitting firms due to

ethical, moral, or reputation considerations. Consequently, this exerts downward

pressure on the prices of securities from high-emitting firms.

A number of papers confirm the presence of a positive carbon premium across

different asset classes and regions, predominantly in US bond and equity markets

1The verdict in the Milieudefensie v. Shell case, in which the District Court of The Hague
ruled that Shell is obligated to reduce emissions from its operations by 45% by 2030 compared to
2019 levels, is poised to have significant implications throughout the corporate landscape (Setzer
and Higham, 2022).
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(Bolton and Kacperczyk, 2020, 2021b; Alessi et al., 2019; Xia and Zulaica, 2022;

Brown and Watkins, 2015; Dell’Anna and Bottero, 2021). Boermans et al. (2024)

document a carbon premium which is significantly lower for companies engaging in

green innovation. Interestingly, other studies present contrasting findings of a nega-

tive carbon premium, suggesting that investors prefer to invest in carbon-intensive

firms and assets (In et al., 2017; Bernardini et al., 2021; Huij et al., 2022; Pástor

et al., 2021), while there are also papers that find no statistically significant pre-

mium associated with carbon emissions (Aswani et al., 2023; Witkowski et al., 2021).

Loyson et al. (2023) deploy several econometric methods to test the presence of a

carbon premium and find mixed results; while they find evidence for a rising car-

bon premium after the Paris Agreement using treatment effect models, they find no

support using a panel regression, a long-short portfolio and error correction model.

Bauer et al. (2022) attribute inconsistencies in the current literature to varying

choices in sample periods and compositions, and in measures of environmental per-

formance and statistical approaches.2 In order to go beyond the discussion centred

on sampling choices, enhancing our understanding necessitates evaluations at more

detailed levels that fluctuate with time and sample composition.

Research on the carbon premium in European markets is limited. A few papers

focus on the pricing of transition risks in European stock markets (Bernardini et al.,

2021; Alessi et al., 2019). So far Bats et al. (2023) is unique in exploring transi-

tion risk pricing in the European bond market using textual analysis. Research on

the carbon premium in the European bond market is essential for two key reasons.

First, the carbon premium in the European market may be further developed than

in other regions, reflecting the heightened progressiveness of the European Union’s

dedication to attaining net-zero status and the stringent implementation of com-

2A firm’s environmental performance can be inferred from emission level data, emission in-
tensity figures, or composite environmental scores. Other discrepancies emerge from variations
in statistical approaches, particularly in clustering standard errors and including specific control
variables. The composition of firms in the sample and the chosen sample period further contribute
to the inconsistencies (Bauer et al., 2022).
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prehensive climate policies. Second, debt financing carries substantial significance

in the European bank-based economy (Bats et al., 2023), implying again that the

European carbon premium could appear differently than in the US or other regions.

In this paper, we quantify the carbon premium that investors demand when

investing in bonds issued by high carbon-emitting firms in the euro area. Specifically,

we derive time-average and time-varying coefficients for the carbon premium in a

sample of 1,751 corporate bonds issued by 368 non-financial firms situated in the

euro area. Our analysis covers the period from January 2016 to December 2022.

We use firm-level emission data from MSCI ESG Manager and bond- and firm-level

variables from Bloomberg and Refinitiv to construct a panel regression explaining

bond yield spreads relative to the risk-free rate. We calculate the carbon premium

by quantifying the effect of a firm’s carbon emissions on bond yield spreads, after

controlling for bond- and firm-specific variables. Furthermore, we extend the model

to a time-varying panel regression to obtain monthly coefficients for the carbon

preference premium over the sample period. We also study how the carbon premium

term structure develops over time.

Our main finding is a positive carbon emission premium in euro area corporate

bonds. The premium has been significant and positive since mid 2020, after being

negative or insignificant for years. The result is statistically and economically sig-

nificant. Over the full sample period, we estimate that a doubling in a firm’s Scope

1 and 2 emissions increases the spread on the firm’s issued bonds by an average of

6.6 basis points. This is almost twice as high as the carbon premium in the US

bond market that Xia and Zulaica (2022) estimate. Moreover, we find that the

carbon premium has rapidly increased in recent years starting from early 2020. For

example, by 2022, we find that the same doubling of carbon emission increases the

average spread on euro area corporate bonds by 13.9 basis points. Hence, European

firms with high levels of carbon emissions face increasingly high cost of debt.

We also document a term structure of the carbon premium. Our findings reveal
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a positive relationship between the size of the carbon premium and bond maturity.

Notably, the upward trajectory is particularly pronounced in short-term maturities,

gradually levelling off as maturities extend. We also observe that the term structure

flattens during the years in our sample period, as the difference in carbon premium

between short- and long-term maturity bonds diminishes. This suggests that in-

vestors are confidently anticipating ongoing carbon pricing in the European Union

at a stable pace.

Finally, we observe that the carbon premium moves in tandem with the price of

emission allowances issued under the EU Emissions Trading System (EU ETS). More

research is needed to assess a potential causality between the two prices. Potential

co-integration of the two prices can provide insights into how the carbon premium

might develop in various scenarios of emission pricing and consequently, how the

carbon premium affects corporate financing costs.

We add to the existing literature in two key ways. First, we bridge a geographical-

asset class gap in existing literature by examining the carbon premium in the euro

area bond market. Bats et al. (2023) is the only reference investigating transition

risk pricing in the European bond market, but in this study, transition risk is derived

from the bond’s sensitivity to climate news, rather than from firm-level emissions.

Second, we take a time-varying approach to make our results less sensitive to sam-

pling decisions and to obtain insights in the time dynamics of the carbon premium.

Our results suggest that prior studies attempt to identify a carbon premium in

a sample period starting well before its discernible emergence, resulting in often

statistically insignificant findings.

The remainder of this paper is structured as follows. Section 2 explores the

theoretical and conceptual foundation of transition risk pricing and the carbon pre-

mium. Section 3 describes the data sets we use, as well as statistical properties of the

sample of bonds that we analyse. Section 4 explains the set-up and documents the

results of the empirical analysis for the carbon premium and the carbon premium
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term structure over the whole sample period. In Section 5 we describe how the

carbon premium develops over time. Finally, Section 6 concludes with a discussion

for further research.

2 Theoretical Background

European firms subject to the regulatory framework of the EU ETS face increasingly

high prices for carbon emission allowances, which will likely continue to rise in

the coming years (Gerlagh et al., 2022). The escalating prices for carbon emission

allowances pose financial challenges for firms, impacting their operational costs and

necessitating strategic adjustments to mitigate economic implications. Moreover,

firms may be negatively affected by heightened volatility in carbon prices. Especially

in times of economic downturn or decreased confidence in the EU ETS, prices may

be volatile (Lutz et al., 2013). Moreover, changing consumer preferences, negative

screening by investors, legislative restrictions, a deteriorated reputation or higher

imposed taxes may increase business costs. High-emission firms are at a greater risk

of encountering frequent negative cash-flows and more volatile asset values compared

to their lower-emission counterparts (Kabir et al., 2021).

Recently, climate litigation has emerged as a prominent new form of transition

risk; the increasingly recognized and utilized role of courts in climate governance

underscores its significance. The definition of climate litigation itself has gener-

ated extensive debate (Peel and Osofsky, 2020); climate-related court cases may

support or prevent climate action and this outcome may be intentional or unin-

tentional. However, it is evident that the number of strategic climate-related cases

is significantly on the rise, now encompassing a broad spectrum of actors such as

governments, firms, and financial institutions (Setzer and Higham, 2022). Some

important wins have occurred, which have already had major repercussions across

the corporate community. In 2015, the case Urgenda Foundation v. State of the
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Netherlands was the first case in which the inaction of a national government was

successfully challenged. Many litigation cases followed this landmark case (Setzer

and Higham, 2022). Firms have been subject to climate litigation since the case

of Milieudefensie v. Shell, in which the District Court of the Hague ruled that the

major oil company Shell was obliged to cut emissions from its operations by 45%

by 2030 compared to 2019 levels. Future trends in climate litigation are expected

to progressively target financial institutions who finance high carbon-emitting firms

(Koeman et al., 2023; Setzer and Higham, 2022).The risk of litigation has become a

pressing component of transition risk, exerting an increasing impact on the financial

system.

The academic literature typically distinguishes between two mechanisms in which

financial markets price transition risk in corporate bonds (Xia and Zulaica, 2022).

The first mechanism, known as the risk channel, involves the quantitative assessment

of the potential extra credit risks associated with a firm’s transition towards a more

sustainable business model. This entails an analysis of the inherent uncertainties and

vulnerabilities linked to the transition process, influencing the pricing of corporate

bonds. The second mechanism, referred to as the preference channel, underscores

the role of investors’ preferences and sentiments in pricing dynamics. This may

lead to an additional, credit-risk adjusted, premium that emerges from investors’

preferences due to moral or reputation considerations, or from a general belief that

not all transition risks are reflected in existing measures of credit risk.

Through the risk channel, transition risk increases conventional credit risk mea-

sures, such as credit-default swap spreads, Merton’s distance-to-default measures

and Bloomberg’s DRSK default probabilities.3 Blasberg et al. (2021) show that a

firm’s exposure to transition risk is a relevant determinant for the level of its CDS-

spreads, from which again several market-based measures of corporate credit risk

3Bloomberg’s DRSK default probabilities refer to a risk assessment model developed by
Bloomberg, which estimates the likelihood of a firm defaulting on its debt obligations (Bondi-
oli et al., 2021). This model is widely used in financial analysis and investment decision-making.
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are derived. Further, Capasso et al. (2020) find that there is a negative correlation

between a firm’s distance-to-default and its carbon emissions and carbon intensity.

This implies that, all else being equal, the market perceives firms with larger carbon

footprints as having a higher default probability.

Through the preference channel, investors seek additional compensation for tran-

sition risks that are assumed not to be reflected in corporate credit risk measures.

According to Pástor et al. (2021), the assets managed with a sustainability focus

now amount to tens of trillions of dollars, with the potential for further growth. This

preference may lead to an increase in the prices of assets for low-emission firms and

a decrease for high-emission firms. Pástor et al. (2021) indicate that investors are

willing to pay more for green assets, for the sake of social impact rather than risk

exposure reduction. Xia and Zulaica (2022) find that a significant carbon premium

exists in the US corporate bond market that is uncorrelated with default probability.

Interestingly, climate-related transition risks are often referred to as tail risks,

which are not adequately captured by conventional risk metrics due to their low

probability yet potentially high-impact nature.4 These tail risks can encompass

sudden and severe events like regulatory changes or technological breakthroughs that

drastically alter the market for carbon-intensive firms. Moreover, the dynamics of

contagion through banks and investment funds are often underestimated or omitted

(Roncoroni et al., 2021). As such, the carbon premium may reflect not only risks

or preferences, but also an assessment of these less predictable, high-impact factors.

We now turn to a description of the data that we use in our empirical study.

3 Data

Our sample consists of 1,751 corporate bonds issued by 368 non-financial firms

located in the euro area, which are observed monthly between January 2016 and

4In this paper we focus on transitions risk. Climate-related physical risks are also tail risks
and surrounded with fundamental uncertainty.
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December 2022. The panel is unbalanced, meaning that not all bonds are observed

in each month: the total sample comprises 82,486 observations. Monthly bond-

and firm-level variables are collected from MSCI ESG Manager, Refinitiv Eikon and

Bloomberg. The sample period starts just after the adoption of the Paris agreement,

as several studies have demonstrated structural breaks or jumps in carbon emission

pricing after the Paris agreement (Bolton and Kacperczyk, 2021a; Monasterolo and

de Angelis, 2018; Monasterolo and De Angelis, 2020).

We draw static variables from Refinitiv Eikon: these variables include the bond’s

unique ISIN, maturity, issue date, coupon, whether or not the bond is callable, and

the amount issued (in EUR). We then provide the list of ISINs as input to Bloomberg

and extract monthly data between January 2016 and December 2022 on bond- and

firm-specific variables. For bond prices, we use option-adjusted spreads relative to

the risk-free rate. On the bond-level, we further include credit rating, age, coupon,

duration, issued amount (log), illiquidity (measured through bid-ask spreads), and

whether or not the bond is callable by the issuer. On the firm-level, we include

default probability and volatility of the return on equity measured as the six-month

trailing standard deviation of the firm’s stock returns.

Below we discuss the sample’s composition of bonds (Section 3.1), the credit

spread (Section 3.2), the emission data (Section 3.3), and the choice of control

variables influencing credit spreads (Section 3.4).

3.1 Bond selection

In the sample selection process, we start with the comprehensive universe of all bonds

and then refine the sample by applying various criteria within the Refinitiv Eikon

database. The initial criterion for reduction centres on the geographical jurisdiction

of the firm’s incorporation; specifically, only bonds issued by firms incorporated

within the euro area are considered for inclusion.5 We then apply a set of filters -

5We restrict the sample area to the euro zone as this ensures uniformity in monetary policy
and substantial economic integration.
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in line with Bali et al. (2021), Xia and Zulaica (2022) and Bats et al. (2023) - to

ensure sufficient homogeneity of the sample. We exclude the following:

a) Bonds issued by banks and other financial institutions;

b) Perpetual bonds;

c) Floating coupon rate securities;

d) Structured notes, and asset-backed or equity- or index-linked securities;

e) Bonds issued through private placement and issued under the 144A rule;

f) Convertible bonds;

g) Bonds with a maturity shorter than one year;

h) Unrated bonds; and

i) Bonds trading under EUR 5 or above EUR 1,000.6

We exclude bonds issued by banks and other financial institutions from our

analysis because, although prolific bond issuers, these entities generally do not emit

substantial amounts of carbon. Additionally, financial institutions typically operate

with high leverage. Consequently, their risk profiles may differ significantly from

those of non-financial bonds, potentially leading to distinct risk premiums (Foerster

and Sapp, 2005). Further, we exclude perpetual bonds as they are not redeemable;

floating coupon securities are far less exposed to interest rate risk as the coupon

adjusts with interest rate changes; the returns on structured notes are based on the

performance of underlying assets, such as options, indices and swaps, which can

result in dynamics that vary across different structured notes (Tuckman and Serrat,

2022; Fabozzi, 2007); privately placed bonds are usually less liquid than publicly

sold bonds; bonds issued under the 144A rule are privately placed and do not have

to comply with disclosure regulations required for registered securities (Livingston

and Zhou, 2002); convertible bonds have characteristics of both bonds and stocks;

6In accordance with Xia and Zulaica (2022), our selection procedure includes bonds issued in
currencies other than the euro. We also consider bonds issued by firms in the euro area but traded
on markets outside the euro area. 17.7% of the bonds in our sample are denominated in currencies
other than the euro and 2.5% are traded in non-euro area markets. The issue volume of a bond
issued in different currencies is converted to euros.
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bonds with a maturity lower than a year are typically removed from market indices

(Bai et al., 2019); unrated bonds complicate risk assessment; and finally, very low-

or high-priced bonds may indicate liquidity concerns.

3.2 Credit spread

For the dependent variable, we download option-adjusted bond spreads (OAS) from

Bloomberg. The sample of bonds for this study holds a large proportion of callable

bonds and hence option-adjusted spreads should be used to incorporate the bond’s

risk of early redemption. The calculation of the Bloomberg OAS uses a one-factor,

arbitrage-free binomial tree to establish a distribution of interest rate scenarios.

OAS then deals with the bond’s call schedule to establish the evolution of rates over

time. The present value of the callable bond is determined by using the discount

rates found in the tree (Boliari and Topyan, 2022). Spreads on non-callable bonds

represent the difference in yield between the bond and a risk-free Treasury bond.

We winsorise the option-adjusted spreads at 2.5% in the lower and upper quantile

to limit the disturbance of outliers.

3.3 Emission data

Our main variable of interest is carbon emission data. We obtain yearly firm-level

carbon emission data from MSCI ESG Manager for all firms in our sample for the

years 2015 to 2021.7,8 This MSCI database provides annual emission levels starting

from 2008; coverage has gradually increased over the years, as can be seen in Figure

1. Emission levels are published with a one year delay so that we effectively include

one-year-lagged carbon emissions in the model. Hence, the sample period of the

7Some studies do not employ absolute emissions and advocate for the use of emission intensity
as a proxy for transition risk. Emission intensity is emissions per unit output, e.g. sales. We align
with Bolton and Kacperczyk (2023), asserting that investors probably do not consider transition
risk normalised to sales; emission intensity might depict a firm as decarbonising even if it is rapidly
increasing emission levels, as long as total sales are on the rise.

8The database does not offer bond-level identifiers; issuer names are paired using string simi-
larity matching and manually matching undetected pairs.
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Figure 1: Firm coverage of the MSCI ESG Manager emissions date gradually in-
creases over time. EU firms make up a relatively large part of the sample and have
been growing in number.

emission data starts and ends one year before the bond sample.

We retrieve time series data for Scope 1 and Scope 2 emissions for each firm. We

leave Scope 3 emissions out of analysis. Scope 1 emissions encompass all emissions

originating from sources owned or controlled by the firm, such as direct combustion

of fuel in furnaces or vehicles. Scope 2 emissions arise from the generation of elec-

tricity procured by the firm. Scope 2 emission levels are typically higher than scope

1 emission levels and demonstrate more variability. Scope 3 emissions encompass

all other indirect emissions occurring throughout a company’s entire value chain.

(MSCI, 2020). These are emissions that are not directly controlled by the firm but

are linked to its operations. Scope 3 emissions often constitute the largest portion of

a firm’s carbon emissions due to their extensive reach. However, quantifying Scope 3

emissions is typically model-based and subject to significant ambiguity and variabil-

ity, given the absence of a standardized methodology for assessment. Consequently,

we choose to exclude scope 3 emissions from our analysis. Figure 2 displays the

average level and index of dispersion (variance to mean ratio) for each scope per

year.

The emission levels are either reported by the firm or estimated by an MSCI

ESG model. In the latter case, MSCI assigns a confidence score to each estimate;
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Figure 2: Left: Scope 1, 2 and 3 emissions per year for our sample. Scope 3 is
dominant but its measures are often model-based and ambiguously defined. Right:
the normalised variances per scope of emissions (variance-to-mean ratio); Scope 3
is omitted given its ambiguous definition and inconsistent documentation. Notably,
Scope 1 has much higher variance than Scope 2, also in normalized terms.

we include all observations with a confidence level above “moderately high”. For

the regression analysis we log-transform the emission data.9

3.4 Credit spread determinants

In addition to emission levels, we incorporate bond- and firm-specific variables

known to influence bond yield spreads. These factors reflect credit risk, liquid-

ity risk, and refinancing risk. The variables we discuss below attempt to reflect

these various sources of risk. All dynamic variables are observed monthly. 10

To incorporate credit risk, we include the firm’s probability of default and the

bond’s credit rating. We use a probability of default score provided by Bloomberg

that reflects the cumulative probability of the firm defaulting within five years.11

9The log transformation helps to linearize the relationship between emissions and their impact
on credit spreads and leads to a more symmetrical distribution of the highly skewed emission data
(Xia and Zulaica, 2022), which is critical for the accuracy and validity of the statistical analyses.

10Even though several of the described variables reflect similar risks, we show that none of the
variables are highly correlated in Appendix A.1.

11The score employs a hybrid model incorporating both Merton’s distance to default at a spec-
ified time horizon t and firm-level variables in a logistic regression (Bondioli et al., 2021).
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We draw composite bond credit ratings from Bloomberg, being the averages of the

ratings assigned by Moody’s, Fitch and S&P.12 Bond ratings encapsulate crucial

aspects such as the bond’s payment priority. While the heterogeneity in risk expo-

sure amongst investors of different payment ranks does not necessarily manifest in

a firm’s probability of default, it is nonetheless reflected in bond ratings. Notably,

credit risk and credit ratings are correlated (Hilscher and Wilson, 2017).13

We extract the bond’s modified Macaulay duration from Bloomberg to quantify

the bond’s price sensitivity to changes in interest rates.14 A higher modified duration

reflects a higher price volatility risk.

In line with Xia and Zulaica (2022), we include bond age measured in years from

issue date to the month of observation. Seasoned bonds typically become less liquid;

newly issued bonds typically demonstrate longer maturities and therefore bear more

interest rate risk. Studies (Han and Zhou, 2007; Xia and Zulaica, 2022; Lu et al.,

2010) have found conflicting results for bond age as a spread determinant. The sign

of the effect may change, for example, for low-rated bonds (high-yield bonds) as

compared to investment-grade bonds (Han and Zhou, 2007).

We draw the bond’s amount issued from Refinitiv, to reflect liquidity consider-

ations and market perception of the bond. As we assume the spread effect to be

nonlinear, we log-transform this variable.

We calculate the firm’s equity return volatility as the standard deviation over

a rolling six month window of monthly log returns, using monthly closing stock

prices from Bloomberg.15 Volatility risk is another significant driver of bond yield

spreads (Campbell and Shiller, 1991). This dynamic is partly captured by the

12We assign a numerical score to each rating, where 0 equals the rating C and 20 equals the
rating AAA.

13We incorporate credit ratings in the model as fixed effects so that the correlation and depen-
dency of default risk and credit ratings does not pose a problem of multicollinearity; see Appendix
A for further discussion of multicollinearity in the regressors.

14If no data are available, we use the closest value available in a time span of three months,
before or after the observed month.

15If not all six months are available, the number of months is reduced to a minimum window
of three months.
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default probability, as the default probability encapsulates Merton’s distance to

default (DD), which has volatility on equity return as a key input (Bondioli et al.,

2021). However, the default probability is based on a hybrid model, combining

Merton’s DD with several other factors, so that risk of volatility in the firm’s equity

value is only included indirectly.

Additionally, we include a measure of a bond’s illiquidity via the bid-ask spread

on the last day of the month.16 Illiquidity compounds the uncertainty and perceived

risk associated with a bond, since the prices of illiquid bonds often exhibit greater

volatility as it may not be possible to sell the bond at any given moment (Helwege

et al., 2014).

Finally, we include the bond’s potential call option as a dummy variable. This

dummy variable equals one if the bond is callable and zero otherwise. Given the

definition and methodology of option-adjusted spreads, callable bonds typically have

narrower spreads.

3.5 Descriptive statistics

Table 1 summarises the key statistics of the variables included in the model. The

average option-adjusted credit spread across bonds and time is 149 basis points and

spans a wide range from -14 to 580 basis points. Negative spreads can be observed as

we use option-adjusted spreads which account for the call option of early redemption.

The default probability ranges from 3.4% to 49.0%; this range is large due to our

use of the cumulative default probability over five years. The average credit rating is

12, which equals a BBB rating. In line with the selection procedure, the lowest time

to maturity is one year. The average age is 3.7 years and the average coupon 2.7

percent. The average amount outstanding is €627 million, while the largest bond

is close to €3 billion. The average monthly equity return volatility is 1.8 percent.

The median parameter for illiquidity, measured as the spread between the bond’s

16If no bid-ask spread is available for the observed month, the closest available spread for that
bond within a time span of three months, before or after the observed month, is taken as the value.

15



Summary statistics sampled bonds

Mean Std. dev. Min Median Max

Option-adjusted spread (bps)1 149.3 132.9 -14.4 111 579.8

Default probability2 3.4 3.8 0 2.4 49.0

Credit rating 12.3 2.4 2.0 13.0 20.0

Maturity (years) 9.6 10.4 1.0 6.9 98.1

Duration (years) 6.6 3.4 0.0 6.0 23.5

Age (years) 3.7 3.7 0.0 2.7 27.8

Coupon (pp) 2.7 1.9 0.0 2.2 10.0

Amount outstanding (EUR mln)3 627.2 332.7 7.4 559.0 2,992.2

Equity return volatility 1.8 1.9 0.0 1.2 34.2

Illiquidity (bps) 77.7 72.4 0.0 64.0 1922.7

Callable (pp) 61.4 - 0.0 1.0 1.0

Table 1: Corporate bond summary statistics; sample period January 2016 to December
2022; sources: Refinitiv, Bloomberg. 1Option-adjusted spreads are winsorised at the
2.5% fraction. 2Cumulative five-year-ahead probability of default from Bloomberg. 3The
amount outstanding of bonds issued in currencies other than the euro are converted to
euro.

bid and ask price, stands at 77.7 basis points. The maximum illiquidity is 1,922.7

basis points; the high value may arise as we use a single spread at the end of the

month, which may temporarily be very high. Finally, note that 61.4% of the sample

comprises callable bonds, which reemphasises the need for option-adjusted spreads,

rather than regular credit spreads.

To get a better understanding of the data, we also provide summary statistics

for the data grouped per sector (Table 2). This makes sense as carbon emissions

vary substantially across sectors in the economy (Broeders et al., 2023). We see

from the table that the electronics and chemicals sectors typically have low yield

spreads; this corresponds to the observed probabilities of default, which are lower

in this segment. We also see that the automotive manufacture industry and the

transportation industry typically have the highest yield spreads. These two sectors

also show the highest average probabilities of default.

Rating-grouped statistics show that, in line with expectations, yield spreads

16



Summary statistics of sampled bonds by sector

Mean
OAS

Std.dev.
spread

PD1 Bond ma-
turity

No. obser-
vations:

Chemicals 80 77 1.3% 9.5 4,437

Electronics 81 85 1.1% 7.2 4,510

Gas Utility 92 60 1.9% 6.8 3,956

Beverage/Bottling 96 53 1.3% 10.9 5,639

Oil and Gas 101 87 2.7% 10.5 6,220

Conglomerate/Diversified 103 87 1.6% 7.8 4,911

Service 132 137 3.3% 7.8 12,287

Utility 133 95 3.9% 15.3 12,903

Home Builders 135 83 4.2% 7.2 4,931

Telecommunications 158 122 2.9% 9.7 7,695

Automotive Manufacturer 166 134 4.4% 7.2 4,593

Transportation 177 143 5.1% 7.1 3,943

Table 2: Corporate bond summary statistics by sector; it is clear that bond spreads are
higher for higher average default probabilities. The smallest spreads are observed in the
electronics and chemicals sectors and the largest in the automotive and transportation
sector.1Firm default probability is measured as the five-year cumulative probability of
default as provided by Bloomberg.

increase almost monotonically with decreasing rating (Table 3). Some exceptions

to this increasing trend occur in rating categories where fewer bonds are observed.

Further, we observe that junk-rated bonds (lower than BB) have lower average bond

maturities in our sample. We now turn to the estimation of the carbon premium.

4 The carbon premium

This section describes the bond spread model and results. Our model in Section 4.1

explains the variance in credit spreads by using various bond- and firm-level spread

determinants, as well as a measure of firm-level carbon emissions. In Section 4.2 we

present the baseline estimation of the model. Further, in Section 4.3 we analyse the

term structure of the carbon premium.
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Summary statistics of sampled bonds by credit rating

Mean
OAS

Std.dev.
OAS

PD1 Bond matu-
rity

No. obser-
vations:

AAA 36 23 1.4% 8.7 138

AA+ 68 13 3.1% 8.8 84

AA 43 16 2.0% 7.3 396

AA- 62 27 3.2% 10.6 663

A+ 79 51 3.1% 8.8 2,489

A 76 56 3.5% 10.2 5,793

A- 85 65 3.3% 12.1 13,272

BBB+ 99 66 2.4% 9.7 19,953

BBB 104 79 2.5% 8.8 15,091

BBB- 153 110 3.7% 8.9 8,958

BB+ 246 119 4.3% 10.4 5,219

BB 273 123 4.9% 10.1 3,742

BB- 349.8 134.0 7.7% 5.9 2,109

B+ 402 133 7.7% 5.8 1,613

B 452 126 8.7% 5.1 1,075

B- 491 116 10.3% 5.3 1,148

CCC+ 474 186 12.7% 4.4 320

CCC 562 42 13.9% 3.8 249

CCC- 551 141 13.3% 4.5 122

CC 591 0 29.3% 4.5 8

C 591 0 30.2% 2.9 44

Table 3: Corporate bond summary statistics by credit rating. Notably, mean yield spreads
increase almost monotonically with decreasing credit rating and increasing default prob-
ability (except for categories with few observations). The probability of default is the
cumulative five-year ahead probability of default, as given by Bloomberg (Bondioli et al.,
2021). 1Firm default probability is measured as the five-year cumulative probability of
default as provided by Bloomberg.
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4.1 The baseline model

Our model is intentionally very similar to the model introduced by Xia and Zulaica

(2022). This allows us to verify the methodology and compare our results with what

has been found in the US bond market. Notably, through inclusion of the variables

discussed before, the model attempts to control for credit risk, liquidity risk and

refinancing risk. Finally, the model controls for different bond yield dynamics across

different firms, bond ratings and time by including time-, firm- and rating-fixed

effects. The model we adopt, as specified by Xia and Zulaica (2022), is formalized

as follows:

si,j,t = α+ βpPi,t +βZ
′Zi,j,t + βCarbon ln(Emissionsi,t−12) +µi + λt + γr + ϵi,j,t, (1)

where:

si,j,t is firm’s i OAS of bond j at time t, i=1,. . . ,N, j=1,. . . ,M, t=1,. . . ,T;

Pi,t is the cumulative five-year ahead probability of default of firm i at time t;

Zi,j,t is a vector of firm- and bond- specific controls at time t;

ln(Emissionsi,t−12) is the natural logarithm of firm’s i one-year lagged emissions;

µi is the firm-specific effect, containing one level for each of the 368 firms;17

γr is the rating-specific effect, where r is the rating of a bond at some observed

time. This effect encompasses 20 credit rating levels; 18

λt is the time-specific effect, containing one level for each of the 84 months;19

ϵi,j,t is the idiosyncratic error term.

The vector of bond- and firm-specific controls, Zi,j,t, contains the spread determi-

17Firm-specific characteristics such as leverage and firm size may affect yield spreads (Tang
and Yan, 2006). Moreover, emission levels not reported by the firm, but estimated by MSCI may
correlate with firm-level variables such as size and industry (Bauer et al., 2022).

18The bond’s credit rating may amplify or reduce the effect of other variables; for lower credit
ratings the unexplained variance, not explained by default risk, grows larger in absolute terms
(Amato and Remolona, 2003).

19Time-fixed effects portray macroeconomic conditions that may influence bond yields, including
the state of the yield curve and business cycle.
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nants discussed in Section 3.4:

• Durationj,t: the Macaulay duration of bond j in years at time t;

• Agej,t: the age of bond j in years at time t;

• Couponj: the coupon of bond j in percentage points;

• ln(amount-outstandingj): log of the amount outstanding of bond j in euro;

• Equity-Return-V olatilityi,t: the equity return volatility of firm i at time t;

• Liquidityj,t: the liquidity of bond j in basis points at time t;

• Callablej: binary variable indicating whether bond j is callable.

For estimation, we cluster standard errors at the bond level to account for serial

correlation and heteroskedasticity. Use of standard errors without clustering may

result in underestimated standard errors. We do not add emission levels of the two

scopes as separate explanatory in one model, but rather in a separate models, as the

scopes are highly correlated (Appendix A.1). We find no support for non-linearity

in the specification of model 1 and hence continue without squared or cubic terms

(Appendix A.2).

4.2 Baseline estimation

We conduct the estimation of Eq. 1 via a panel regression at the bond-level using

ordinary least squares (OLS). Table 4 presents the results.

The carbon premium is reflected by β̂P,Carbon and is significant for Scope 1 (99%

confidence), Scope 2 (90% confidence) and accumulated Scope 1 and 2 emissions

(99% confidence). To be concise, a 1% increase in Scope 1 carbon emissions is ex-

pected to result in a 0.05 basis point yield increment. A 1% increase in emissions

over Scope 1 and 2 combined is expected to result in a 0.09 basis point yield incre-

ment.20 These effects are substantially higher than the effects found in the US bond

20As the emission variable is log-transformed, the estimated effect of a 1% increase in a firm’s
emission level is equal to ln(1.01) x β̂P,Carbon.
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market (0.02 and 0.05, for scope 1 and scope 1 and 2 combined, respectively).21

A doubling of a firm’s Scope 1 emissions widens the spread on the firm’s issued

bonds by an average of 3.64 basis points. The same doubling of a firm’s Scope 1 and

2 emissions results in an average widening of bond yield spreads by 6.6 basis points.

Figure 3, we visualise the estimated coefficients of each scope and the implied spread

effect of a doubling in a firm’s emission level.

The coefficient for Scope 2 emissions is lower and less significant, compared to

the coefficient for Scope 1 emissions. This may be a result of investors considering

emission levels primarily on a cumulative basis.

Turning to the control variables, we find that their impacts align with theory.

The firm’s probability of default is highly significant in explaining bond yields; higher

default risk, logically, increases the bond yield spread to compensate for credit risk.

A higher duration reflects an investor’s increased exposure to interest rate risk and

hence increases the bond spread. A bond’s age typically relates negatively to the

bond’s credit risk, while relating positively to liquidity risk. We observe an average

negative effect of bond age on bond spreads in our sample. As expected, a higher

coupon increases the yield spread due to higher income of the investment. The

outstanding amount of the bond reflects the supply available and therefore exerts

downward pressure on the yield spread. Conversely, illiquidity increases the spread

due to liquidity risk.

21In Appendix A.2 we perform a robustness test by assessing a non-linear specification of Eq.
1. We find that adding quadratic and cubic terms does not lead to significant extra explanatory
power in our bond spread model.
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Effects of carbon emissions on euro area corporate bond spreads

(1) (2) (3) (4)

In(Scope 1 emissions) 5.25∗∗∗

[0.93]

In(Scope 2 emissions) 3.05∗

[1.39]

In(Scope 1+2 emissions) 9.54∗∗∗

[2.13]

Default probability (%) 3.80∗∗∗ 3.80∗∗∗ 3.79∗∗∗ 3.77∗∗∗

[0.37] [0.37] [0.37] [0.37]

Duration 5.73∗∗∗ 5.71∗∗∗ 5.73∗∗∗ 5.72∗∗∗

[0.36] [0.36] [0.36] [0.36]

Age −2.45∗∗∗ −2.43∗∗∗ −2.48∗∗∗ −2.48∗∗∗

[0.46] [0.46] [0.46] [0.46]

Coupon 14.54∗∗∗ 14.56∗∗∗ 14.58∗∗∗ 14.59∗∗∗

[1.03] [1.03] [1.03] [1.03]

In(amount outstanding) −7.12∗∗∗ −7.10∗∗∗ −7.14∗∗∗ −7.16∗∗∗

[1.16] [1.16] [1.16] [1.16]

Equity return volatility (%) 1.97∗∗∗ 1.97∗∗∗ 1.99∗∗∗ 1.96∗∗∗

[0.32] [0.32] [0.32] [0.31]

Illiquidity 0.14∗∗∗ 0.14∗∗∗ 0.14∗∗∗ 0.14∗∗∗

[0.02] [0.02] [0.02] [0.02]

Callable −16.87∗∗∗ −16.87∗∗∗ −16.95∗∗∗ −17.01∗∗∗

[2.42] [2.45] [2.45] [2.45]

Number of bonds 1, 751 1, 751 1, 751 1, 751

Observations 82, 486 82, 486 82, 486 82, 486

R-squared 0.86 0.86 0.86 0.86

Table 4: ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1. All OLS-specifications are with firm-, rating-
and time-fixed effects. Standard errors are clustered at the bond level (ISIN) to account
for heteroskedasticity and serial correlation. Sample period: January 2016 to December
2022. Sources: Refinitiv; Bloomberg; MSCI ESG. All bonds are observed monthly.
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Figure 3: Confidence intervals at 95%. Left: the mean parameter coefficients and
confidence intervals for Scope 1 and Scope 2 individually and for Scope 1 and 2
combined. Right: the estimated mean effect and confidence interval of a doubling
of carbon emissions on the bond spread (calculated as ln(2) ∗ β̂P,Carbon)

4.3 The term structure of the carbon premium

In addition, we examine whether the observed carbon premium differs depending

on the maturity of the corporate bond. Xia and Zulaica (2022), for instance, find

a distinctive hump-shaped term structure of the carbon premium in US corporate

bonds, with the highest premia observed in bonds with 15-20 years to maturity and

the least in those with under five years to maturity. The authors propose two pos-

sible explanations for this hump-shaped term structure, namely that transition risk

is more of a long-term issue according to investors due to carbon pricing in legisla-

tion, and that sustainability priorities of investors vary between maturity segments

depending on their investment goals.

To examine the term structure for the observed carbon premium in euro area

corporate bonds, we follow the approach outlined by Xia and Zulaica (2022) and

construct a variable representing bond maturity buckets, segmented in five-year in-
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crements. Subsequently, we introduce an interaction between the bucket variable

and the emission variable, estimating the coefficients associated with these interac-

tion terms.

Table 5 presents the results that indicate a significant term structure in the euro

area across maturity buckets. We observe significant coefficients for the interaction

terms across all scopes: emissions and maturity jointly contribute to explaining bond

yields. This likely reflects the uncertainty surrounding future climate policies, which

is more pronounced for the distant future. The carbon premium is noteworthy and

substantial for nearly all maturities, indicating that transition risk is perceived as

both a short- and long-term concern, and is consequently priced accordingly.

The carbon premium trend stabilises with increasing maturity length and does

not revert. This differs from Xia and Zulaica (2022), who observed a decline in pre-

mium magnitude for bonds exceeding 20 years to maturity. Figure 1 visually depicts

these dynamics across scope 1, scope 2, and combined scope 1 and 2 emissions. This

persistent pattern can be attributed to the EU’s definitive climate policy trajectory,

which shows no signs of plateauing in the foreseeable future. This suggests that

transition risk remains a significant factor in pricing, even for long-term securities.

Additionally, our findings indicate that, in comparison to their counterparts in the

US bond market, investors in European corporate bonds perceive transition risk as

a more immediate and enduring concern.
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Spread effects of carbon emissions by maturity

(1) (2) (2)

Maturity < 5 years x ln(emissions) 4.25∗∗∗ 1.36 8.60

[0.95] [1.36] [2.19]

Maturity 5-10 years x ln(emissions) 5.66∗∗∗ 2.88∗ 10.05

[0.93] [1.36] [2.17]

Maturity 10-15 years x ln(emissions) 6.54∗∗∗ 3.91∗∗∗ 11.00∗∗∗

[0.93] [1.37] [2.15]

Maturity 15-20 years x ln(emissions) 7.30∗∗∗ 4.66∗∗∗ 11.76∗∗∗

[0.95] [1.40] [2.15]

Maturity 20-25 years x ln(emissions) 8.22∗∗∗ 5.79∗∗∗ 12.70∗∗∗

[0.98] [1.44] [2.14]

Maturity > 25 years x ln(emissions) 8.68∗∗∗ 6.20∗∗∗ 13.12∗∗∗

[1.00] [1.47] [2.15]

Default probability (%) 3.86∗∗∗ 3.86∗∗∗ 3.83∗∗∗

[0.37] [0.38] [0.38]

Duration 2.10∗∗∗ 1.90∗∗∗ 1.74∗∗∗

[0.36] [0.53] [0.53]

Age −2.04∗∗∗ −2.04∗∗∗ −2.09∗∗∗

[0.43] [0.43] [0.42]

Coupon 11.83∗∗∗ 14.58∗∗∗ 11.71∗∗∗

[0.91] [0.91] [0.90]

In(amount outstanding) −7.43∗∗∗ −7.54∗∗∗ −7.49∗∗∗

[1.12] [1.13] [1.11]

Equity return volatility (%) 2.10∗∗∗ 2.13∗∗∗ 2.10∗∗∗

[0.31] [0.31] [0.31]

Liquidity 0.13∗∗∗ 0.13∗∗∗ 0.13∗∗∗

[0.02] [0.02] [0.02]

Callable −18.48∗∗∗ −18.12∗∗∗ −18.69∗∗∗

[2.35] [2.37] [2.32]

Number of bonds 1, 751 1, 751 1, 751

Observations 82, 373 82, 373 82, 373

R-squared 0.87 0.87 0.87

Table 5: ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1. Specifications with time-, firm- and credit
rating fixed effects. Standard errors are clustered at the bond level (ISIN) to account for
heteroskedasticity and serial correlation. Sample period: January 2016 to December 2022.
Sources: Refinitiv; Bloomberg; MSCI ESG. All bonds are observed monthly.
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Figure 4: Term structure of the carbon preference premium over increasing matu-
rities. Left: the term structure for Scope 1 emissions. Right: the term structure
for Scope 1 and 2 combined emissions. Confidence intervals are calculated at a 95%
level.

From the three figures we observe clearly that the carbon premium grows with

bond maturity, with the steepest incline observed for short-term bonds. As expected,

the premium is higher when we consider Scope 1 and 2 emissions together, albeit

accompanied by wider confidence intervals due to the amalgamation of uncertainties.

5 The time-varying carbon premium

The carbon premium may vary over time as new information on transition risks

becomes available. We therefore turn to the time-varying model to estimate how

the carbon premium develops over time. In Section 5.1 we present the model and

in Section 5.2 the results.

5.1 Time-varying model

We adopt an extension to the time-varying model by Li et al. (2011), who take a non-

parametric local linear approach to estimate the trend and coefficient function of a

panel regression with one-way fixed effects. Our original bond yield model requires
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the inclusion of three-way fixed effects as we control for heterogeneity across firms,

bond ratings and time. When allowing for time-varying coefficients, this model

reduces to a two-way fixed effects with firm- and rating fixed effects. Therefore, we

redefine the matrix algebra as proposed by Li et al. (2011) so that the model can

incorporate two-way or more fixed effects. The foundation of the model remains the

same: we deploy a non-parametric local linear method after within-transforming the

data to eliminate fixed effects.22

The model proposed by Li et al. (2011) relies on the knowledge that any function,

given that it has continuous derivatives up to the second order, can be approximated

linearly by a Taylor expansion. Hence, we first define the unknown smooth coefficient

function:

β∗(·) = β∗

(
t

T

)
, t = 1, . . . , t = T,

so that the time input is normalised to a number between 0 and 1, and

β∗(·) = (α(·), βP (·),βZ(·), βCarbon(·))⊤,

where α(·), βP (·),βZ(·), βCarbon(·))⊤, are the coefficient functions over time from Eq.

1.

Then, the regression coefficient function at any time t, β∗(t), can be approxi-

mated linearly using the coefficients, β∗(·), at some time τ and the derivatives of

β∗(·) at time τ :

β∗(t) = β∗(τ) + β′(τ)(t− τ) +O
(
(t− τ)2

)
(2)

where 0 < τ < 1. and β′
∗(·) is the derivative of β∗(·).

Given this notion, we can approximate every observation, i.e. any observed

22The within transformation eliminates fixed effects by demeaning the data on the fixed effects
axes. The demeaning matrix is given by QD = I − Df(D

′
fDf)

−1D′
f , where I is the identity

matrix and Df the matrix of firm-, rating- and time-fixed effects.
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bond spread, in our sample s′ =
{
s11t1 , s12t2 , . . . , s2jtj , . . . , sNMtM

}
in a similar

manner. However, the firm-, time-, and rating-fixed effects from Eq. 1 - µi, λt and

γj,t, respectively - pose a challenge for this representation. Therefore, we gather the

regressors from Eq. 1 in the design matrix X and within-transform the regressors

gathered in X and the spreads gathered in y. Now, instead of taking cross-sectional

averages as proposed by Li et al. (2011) for one-way effects, we apply the within

transformation to the design matrix, so that X̃ holds the demeaned design matrix

X̃ = XQD, with demeaning matrix QD Then, we have that:

si,j,t ≈ β(τ)X̃ i,j,t + β′(τ)(t− τ)X̃ i,j,t, (3)

Following Li et al. (2011), we then define a new design matrix:

D̃(τ ) =



1 X̃⊤
11t1,0

t1,0 − τT

Th

t1,0 − τT

Th
X̃⊤

11t1,0

...
...

...
...

1 X̃⊤
11t1

t1 − τT

Th

t1 − τT

Th
X̃⊤

11t1

...
...

...
...

1 X̃⊤
NMtM,0

tM,0 − τT

Th

tM,0 − τT

Th
X̃⊤

NMtM,0

...
...

...
...

1 X̃⊤
NMtM

tM − τT

Th

tM − τT

Th
X̃⊤

NMtM



(4)

where t1,0 is the first month and t1 the last month in which bond 1 is observed. Con-

sequently, all observations can be approximated linearly using D̃(τ), the coefficient

function β∗(·) evaluated at time τ and the derivative of function β∗(·) evaluated at

time τ :
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s ≈ D̃(τ)

β∗(τ)

β′
∗(τ)


Subsequently, we will estimate the coefficients by minimising the error of this ap-

proximation. However, when approximating time τ , the error of all bond spreads

observed at time τ should bear more weight compared to bond spreads observed

many months removed from time τ . Hence, we define the weight matrix:

W (τ) = diag

K

1− τT

Th

 , . . . , K

T − τT

Th


 , (5)

with Lipschitz continuous kernel function K(·) and bandwidth h. We select a band-

width of 18 months, after cross-validation of multiple possible choices (see Appendix

B.1) and use the Triweight function as kernel (Appendix B.2):

K(u) =
35

32
(1− u2)3 for |u| ≤ 1 and 0 otherwise. (6)

Finally, the OLS minimisation task is formulated as: (?)

arg min
β∗(τ)∈Rd+1,

β∗(τ)
′⊤∈Rd+1

s̃− D̃(τ)

β∗(τ )

β′
∗(τ )




⊤

W (τ)

s̃− D̃(τ)

β∗(τ )

β∗(τ )
′


 (7)

So that we obtain the coefficients at time τ :

β̂∗(τ) = [Id+1,0d+1][D̃
⊤
(τ)W (τ)D̃(τ)]−1D̃

⊤
(τ)W (τ)s̃ (8)

5.2 Time-varying results

Figure 5 displays the time-varying coefficients for β̂Carbon across scope 1, 2, and

both scopes combined. This figure illustrates the impact across different maturity

buckets through distinct curves. For clarity, only the mean estimates are depicted,
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omitting multiple confidence intervals to avoid clutter and enhance interpretation

of the results.

Figure 5: Term structure of the carbon preference premium by scope; darker colours
represent longer maturity lengths and vice versa; the premium has been steadily
rising from mid 2020, after being negative or insignificant for years. Confidence
intervals are excluded to ease visual interpretation of the term structure.

Figure 5 shows that a substantial rise in the carbon premium starts to occur in
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early 2020 for both Scope 1 and Scope 2 emissions. In 2020, the carbon premium for

Scope 1 emissions increase from near 0 to approximately 30 by early 2022. At the

same time, the carbon premium for Scope 2 emissions also exhibits an increase, al-

beit to a lesser degree. A potential explanation for the increase in Scope 1 and Scope

2 emission premiums may be that the pricing of transition risk is largely anchored

to the EU’s carbon emission allowance prices at the time. Intuitively, a firm’s short-

term transition risk is predominantly driven by emission expenditures. Although the

cap-and-trade system, under which carbon allowances are issued, has been in place

since 2007, carbon permit prices began to rise substantially from March 2020 on-

wards. However, disentangling the carbon permit price from broader climate policies

enacted from early 2020, such as the introduction of the Carbon Border Adjustment

Mechanism (CBAM) and European climate law, poses challenges. Moreover, cli-

mate litigation has started to target firms since the case Milieudefensie et al. v.

Shell in 2021, which was the first case to successfully hold a firm accountable for

climate damages. This is another form of climate transition risk urging investors to

price a carbon premium.

Figure 6 positions the curve of the EU carbon allowance price above the time-

varying carbon premium over all maturities for Scope 1 emissions. Although further

research is necessary in order to establish any causal relationship, our attention is

drawn to the break of both curves in early 2020, where both the carbon permit price

and the carbon premium start to rise steadily.

We also note a gradual flattening of the term structure of the carbon premium.

While the shortest-term maturity (0 to 5 years) maintains a slight separation from

the rest, all other buckets practically converge to the same premium by early 2022.

The increasing trend in the premium over maturity length, as depicted in Figure

4, seems to be losing strength over the years. This observation suggests that the

anticipated materialisation of transition risk is expected to be relatively consistent

today and in several years. Consequently, the premium on bonds maturing in ten
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Figure 6: Upper: Carbon permit price for emissions covered under the EU ETS cap-
and-trade system. Lower: the carbon premium coefficients for Scope 1 emissions
over all maturity lengths. Data points are observed on a monthly base. Source:
Bloomberg.

years is roughly equal to that for bonds maturing in twenty years. This conjecture

implies two assumptions: first, investors anticipate a relatively certain progression of

carbon pricing within the EU; second, this pricing is expected to progress in tandem

with the risk-free rate, resulting in similar perceived pricing today and in twenty

years.

This may seem counterintuitive at first, considering that both scopes exhibit

positive and significant pricing. However, as illustrated in Figure 2, a firm’s average

level of Scope 2 emissions typically exceeds that of Scope 1 emissions. Consequently,

a 1% reduction in a firm’s total emissions is likely to be more reflective of a decrease

in Scope 2 emissions. Given that the carbon premium for Scope 1 emissions is

significantly higher than for Scope 2, the aggregated impact on the bond spreads

could be less pronounced than that of Scope 1 emissions alone.
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6 Conclusions

We present evidence of the existence of a significant carbon premium in euro area

corporate bonds, which has steadily increased since early 2020. Over the whole

sample period, from 2016 to 2022, we observe that a doubling of a firm’s Scope 1

and 2 emissions on average implies 6.6 basis point higher bond yield spreads. This

pricing of transition risks appears to be more prevalent in the euro area than in

the US (Xia and Zulaica, 2022). Notably, the carbon premium emerged strongly

in early 2020, after being negative or negligible for several years. From early 2020,

the carbon premium increases steadily so that the effect more recently, in early

2022, is substantially higher than the sample average. A doubling of Scope 1 and

Scope 2 emissions by early 2022 on average results in a higher spread of 13.9 basis

points. This means that European firms with high levels of carbon emissions face

increasingly high financing costs.

Our research also reveals a distinctive carbon premium term structure, rising

with longer maturities. This increase suggests that investors anticipate either in-

creasingly strict climate regulations or heightened uncertainty about future climate

policies and carbon emission pricing. Note that this term structure flattens over

time, so that the premium between short-term and long-term maturity bonds has

diminished in recent years. The carbon premium for buckets containing the 20-25

year and longer maturities converge; only the premium in very short-term maturities

(less than five years) is visibly distinguishable from other maturities. This finding

stands in contrast to the US, where a hump-shaped term structure is found that

is steeply rising for short-term maturities and declining for maturities longer than

20 years (Xia and Zulaica, 2022). We conjecture that the flattening term structure

indicates investors’ perception of a reasonably certain, progressive trajectory in the

EU’s climate policy. This trajectory advances at such a pace such that pricing today

is as challenging as pricing, say, twenty years from now.
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Our findings highlight, to some extent, why various studies have come to con-

flicting conclusions on the presence and magnitude of a carbon premium in financial

asset prices. We show that the choice of sample period is an important determinant

of the presence and extent of a carbon premium. Various developments may have

lead to the emergence of a significant carbon premium in early 2020 and its subse-

quent rise until 2022. We observe substantial similarity in the path of the carbon

premium and that of the EU carbon allowance price for emissions covered under the

EU Emission Trading System (EU ETS). Additionally, we illustrate how climate lit-

igation has become an important frontier of transition risk in the last years, which

may have urged investors to progressively price a carbon premium.

We believe the results offer opportunities for future research. First, our study

suggests that future research should aim to establish whether a causal relationship

exists between the EU’s carbon price and the carbon premium. In addition, it is

valuable to assess the effect of the carbon premium at a corporate level. To what

extent do increased financing costs pose threats to the viability of certain companies,

or what other implications could arise?
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Correlation of the regressors

log
Scope 1

log
Scope 2

log
Scope 1+2

Default
Probability

Duration Age Coupon
log(amount
outstanding)

Equity return
volatility

Illiquidity Callable

log(Scope 1) 1.00 0.58 0.93 -0.08 0.21 0.12 0.10 0.12 0.07 0.05 -0.18

log(Scope 2) 0.58 1.00 0.75 -0.11 0.15 -0.00 -0.05 0.12 0.03 -0.02 -0.09

log(Scope 1+2) 0.93 0.75 1.00 -0.10 0.23 0.11 0.08 0.11 0.07 0.04 -0.21

Default Probability -0.08 -0.11 -0.10 1.00 -0.14 -0.05 0.17 -0.03 0.30 0.22 0.06

Duration 0.21 0.15 0.23 -0.14 1.00 -0.04 0.06 -0.04 0.11 0.32 -0.08

Age 0.12 -0.00 0.11 -0.05 -0.04 1.00 0.52 -0.27 -0.06 0.08 -0.48

Coupon 0.10 -0.05 0.08 0.17 0.06 0.52 1.00 -0.20 0.08 0.32 -0.31

log(amount outstanding) 0.12 0.12 0.11 -0.03 -0.04 -0.27 -0.20 1.00 -0.00 -0.11 0.23

Equity return volatility 0.07 0.03 0.07 0.30 0.11 -0.06 0.08 -0.00 1.00 0.25 0.02

Illiquidity 0.05 -0.02 0.04 0.22 0.32 0.08 0.32 -0.11 0.25 1.00 -0.07

Callable -0.18 -0.09 -0.21 0.06 -0.08 -0.48 -0.31 0.23 0.02 -0.07 1.00

Table 6: This table shows the correlation coefficients of the explanatory variables included
in Eq. 1. Correlations above 0.5 are displayed in red; perfect collinear pairs are displayed
in blue on the diagonal and other correlations are displayed in green. Scope 1 and 2
emissions are highly correlated.

A Time-constant model validity

A.1 Correlation of the explanatory variables

Near perfect collinearity poses a problem for the estimation through inflation of the

coefficients’ standard errors. Hence, the confidence intervals are wider, making it

more difficult to find significant effects, even though the R2 measure of the model is

high (Greene, 2012). Moreover, small changes in the data can cause large changes in

the coefficient estimates when variables are near (Greene, 2012). Table 6 displays the

correlation between the regressors from Eq. 1. Clearly, scope 1 and scope 2 emissions

should not be included in one model as separate variables; this would lead to high

collinearity affecting precisely those coefficients we are interested in. Aggregating

scope 1 and scope 2 emissions into one new variable is beneficial though.

A.2 Ramsey RESET test for nonlinearity

To test for non-linearity we conduct the Ramsey RESET test. First, we fit the

original model from Eq. 1, again using the package ‘reghdfe’ in Stata. From the

fitted values, we create the square and cubic term of these values. These terms are
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added to the original model, so that we obtain:

si,j,t = α + βp,tPj,t + βZ,tZi,j,t + βCarbon,t ln(Emissionsj,t−12) + βsquaredŝ
2
i,j,t+

βcubicŝ
3
i,j,t + µj + λi,t + γt + ϵi,j,t

We now have two models: one restricted model where we impose βsquare = βcubic = 0

and one unrestricted model where quadratic or cubic variables may explain the

variance in the spread data. Then, we calculate the F-statistic:

F =
(SSRR − SSRUR)/p

SSRUR/(N − p− 1)

=
(SSRR − SSRUR)/2

SSRUR/(1314− 2− 1)
= 1.52

The p-value of the F-statistic having a value of 1.52 for an F(2,1314) distribu-

tion is 0.2183. Hence, we do not reject the null hypothesis of correct specification.

We find that adding quadratic and cubic terms do not lead to a significant extra

explanatory power in our bond spread model.

B Time-varying model validity

B.1 Bandwidth cross-validation

The bandwidth determines the range in which observations away from the time τ

contribute to the evalutation of the coefficient function at time τ . If the bandwidth

is set too small, the model is overly sensitive to noise in the data; if it is set too

large, the model overgeneralizes.

We use K-fold cross-validation to choose the best bandwidth in a range of tested

values. We partition the data set into k subsets, or ‘folds’. We estimate the model k

times, each time using k−1 folds for estimation and the remaining fold for validation.
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We repeat this process k times, where each subset is used exactly once as validation

data.

The minimization criterion for the optimal model is the Mean Squared Error

(MSE):

MSE =
1

n

n∑
i=1

(Yi − Ŷi)
2 (9)

where n represents the number of observations in the validation set, Yi is the actual

observation, and Ŷi is the predicted observation. Therefore, the bandwidth selection

criterion can be formally defined as

ĥ = argmin
h∈H

MSE(h) (10)

where ĥ is the optimal bandwidth, H is the set of possible bandwidths, andMSE(h)

is the mean squared error of the model with bandwidth h. This approach to band-

width selection ensures that we select the model that best fits our data in terms

of minimizing the prediction error. We first conduct cross-validation within the

bandwidth space H = [10, 14, 18, 22, 26] and then apply a narrower cross-validation

around the chosen optimal bandwidth from the previous set of bandwidths. Table

7 displays the cross-validation results. A bandwidth of 18 months yields the best

results: hence, we choose this value for the estimation of our time-varying bond

yield spread model.

B.2 Kernel selection

Results of a time-varying kernel model are relatively robust to various kernel choices,

but confidence intervals are more spiky and outlier-sensitive for finite support ker-

nels. We use the Triweight kernel, consisting of a sixth-order equation. This function

has infinite support on a compact set; this is a desirable property for both outlier

robustness and asymptotic properties. Additionally, this kernel has a high sensitiv-

43



Grid 1 Grid 2

Bandwidth MSE Bandwidth MSE

10 45,446.49 16 23,483.85
14 14,249.01 17 18,483.85
18 13,728.99 18 13,728.99
22 13,940.25 19 17,452.10
26 23,120.12 20 21,755.89

Table 7: Mean Squared Error (MSE) for various bandwidth values in the cross-
validation process. Grid 2 is the narrowed grid search around the optimal bandwidth
from grid 1. The lowest MSE is obtained when fixing the bandwidth on 18 months.

ity, meaning that more weight is given to data points close to the target point and

relatively little weight to data points far away.

K(u) =
35

32
(1− u2)3 (11)
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