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Abstract

How important is the planning horizon of households for the effects of fiscal plans?
We address this question through the lens of a New-Keynesian model where households
are boundedly rational and plan over a finite number of periods. We show that the
planning horizon affects the medium-run cumulative multipliers significantly. Government
spending cumulative multipliers increase with the horizon while labor tax cumulative
multipliers drop, in absolute terms. In light of the recent debt crisis in the Euro Area, we
look at spending cuts and labor income tax hikes. In line with the empirical literature,
we find in our benchmark calibration that spending cuts are less recessionary than tax
hikes. Looking at the interaction between the planning horizon and the persistence of
the fiscal plans, we find that spending cuts become less recessionary while tax hikes more
recessionary when the persistence of fiscal plans rise, and that this effect is amplified
by shorter planning horizons. Introducing wage stickiness, we show that for very sticky
wages, tax hikes become less recessionary than spending cuts, but that intermediate levels
of wage stickiness have the opposite effect on fiscal multipliers when planning horizons
are finite.
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1 Introduction

The effects of changes in fiscal policy on the economy have attracted much attention in the

empirical literature to date. There are a number of contributions that have focused on the

distinct effects of changes in government spending and/or tax revenues (Alesina and Perotti

(1995), Alesina et al. (2019a), Blanchard and Perotti (2002), Mountford and Uhlig (2009)

among others). Furthermore, there is a long-standing debate in the empirical literature about

fiscal multipliers. The consensus, here, has become that, normally, government spending

multipliers are smaller in absolute value than labor tax multipliers. At the same time, the

theoretical literature has rested on models featuring various frictions in order to explain key

empirical findings. The vast majority of the theoretical literature, though, has embarked on

models where agents plan and form expectations over an infinite number of periods into the

future. Moreover, the largest part of the literature assumes that agents have fully rational

expectations even if they might have finite lifetimes à la Blanchard-Yaari. To that end,

there has been little attention in the theoretical literature on the effects of forecast errors on

multipliers, as documented empirically in Blanchard and Leigh (2013).

In this paper, instead, we develop a New-Keynesian model where agents have finite plan-

ning horizons and exhibit dynamic inconsistency in their consumption plans due to forecast

errors that arise from the cognitive limitations of their planning horizon. We find that fiscal

multipliers are considerably affected by the length of agent’s planning horizons. Moreover,

finite planning horizons and the induced forecast errors contribute to explaining the difference

between government spending and labor tax multipliers. Finally, we find interesting inter-

actions between planning horizons and other features of the model (e.g. persistence of fiscal

plans, wage stickiness, intertemporal substitution) that affect the difference between these

two fiscal multipliers.

We introduce finite planning horizons into a closed economy dynamic stochastic general

equilibrium model with nominal rigidities, investment adjustment costs and labor unions.

Embarking on Woodford (2018), we assume that households decide upon their consumption,

capital accumulation and asset accumulation over a finite number of future periods. Decisions
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over a finite number of periods into the future, in our framework, lead to dynamic inconsis-

tency in consumption plans. As regards firms, we consider two cases, namely one where they

are also assumed to have finite planning horizons and another where they are rational and

plan over the infinite future. We show that these two cases lead to very similar results, imply-

ing that the main findings of the paper are driven by finite planning horizons of households.

Agents’ finite horizons imply that the model has a non-recursive representation so that we

have to embark on non-standard solution techniques.

In the literature, there have been other approaches as well which break down the Ricar-

dian equivalence. Gaĺı et al. (2007) assume that a fraction of households have rule-of-thumb

behavior in a dynamic stochastic general equilibrium model. This type of households have

zero net worth and decide their consumption upon their current disposable income. Hence the

permanent income hypothesis does not hold for those households. The rest of the households

are conventional infinite-horizon Ricardian consumers. In our model, there is only one type

of household that maximizes over a finite number of periods into the future. Consumption

decisions depend both on their current disposable income as well as on the stream of their

wealth within their finite planning horizon. As such, our agents are non-Ricardian but not as

mechanical as rule-of-thumb agents. In Gaĺı et al. (2007) the effects of changes in government

spending depend crucially on the fraction of non-Ricardian households and its interaction with

price and wage stickiness. In our model instead, the effects of changes government spending

depend entirely on the households’ planning horizon and the resulting expectations, as well

as on the interactions with the persistence in the model and in the fiscal interventions.

Blanchard (1985) examines the dynamic effects of government deficit finance when the

lifetime of the representative household is finite.1 In the Blanchard-Yaari approach, house-

holds can save, but discount the future heavily which makes them non-Ricardian and which

causes the permanent income hypothesis not to hold. Moreover, in a Blanchard-Yaari struc-

ture, households’ commit to a consumption plan which, abstracting from shocks, they will

stick to. Our approach differs in that we allow for dynamic inconsistency in consumption

1This approach, known as the Blanchard-Yaari structure, has been used extensively in the literature in the
analysis of monetary and fiscal policy interactions. See Devereux (2010), Mavromatis (2020), Richter (2015),
Smets and Trabandt (2012) and the references therein.
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plans.2 Furthermore, in Blanchard-Yaari households have fully rational expectations.

Finite planning horizons in our model, instead, are associated with cognitive limitations

and can result in suboptimality of decisions. The first one is that agents ignore what happens

after their horizon, completely. The second is that, because of the cognitive limitations of

their planning horizons, agents are incapable of forming fully rational expectations even for

the periods that lie within their horizon. Consequently, their expectations are subject to

errors. This is entirely due to their finite planning horizons and the fact that they can be

wrong in their assessments of the true state of the economy at the end of their planning

horizon.3

Our model is symmetric in the sign of fiscal changes (cuts or increases) and our main focus

lies on fiscal multipliers. However, in light of the recent debt crisis in the Euro Area and the

fiscal packages followed by some of its member states in order to guarantee fiscal solvency,

we consider the effects of government spending cuts and labor income tax hikes as particular

examples of fiscal policy changes. Following an approach similar to Alesina et al. (2017), we

assume fiscal consolidations are persistent changes in government spending or taxes. Alesina

et al. (2017) and Alesina et al. (2018) distinguish between anticipated and unanticipated fiscal

plans. We restrict our focus on unanticipated changes in government spending or in taxes

only. As regards spending-based consolidations we distinguish between changes in wasteful

government spending and government lump-sum transfers and we look at them separately.

Our finite planning horizon structure implies that Ricardian equivalence breaks down allowing

thus for lump-sum transfers to have real effects.4

We show that planning horizons matter for the effects of fiscal plans, especially in the

medium-run. In particular, we find that as the planning horizon falls, the medium-run cu-

mulative labor tax multiplier becomes more negative. This implies that, following tax hikes,

2This feature is also absent in Gaĺı et al. (2007). Our approach is closer to a myopic individual consumption
decision which is time-inconsistent. That is, actual consumption at date t may be different from what the
household had previously planned to consume at that date. This is because at any date t, the household plans
its consumption accounting for elements not considered in its plans computed previously. For a more detailed
analysis of those issues see Lovo and Polemarchakis (2010) and the references therein.

3Blanchard and Leigh (2013) highlight the impact of forecast errors on multipliers following fiscal consoli-
dations and find that growth has been lower than expected in advanced economies. Our model captures these
discrepancies whereas the models discussed above cannot.

4Given that transfers are lump-sum, changes in lump-sum taxes simply mirrors our results from transfers.
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recessions become deeper in the medium-run as agents’ planning horizon falls. This is ex-

plained by the response of investment for various horizons, which differs due to differences in

expectations. As horizons shorten, investment drops even more after tax hikes. In fact, for

infinite horizons, investment drops slightly for only a few quarters and then stabilizes until it

reverts back to its pre-shock level. Finite planning horizons, on the other hand, can capture

continued declines in investment that are closer to those documented empirically (see e.g.

Alesina et al., 2017, Blanchard and Perotti, 2002 and Mountford and Uhlig, 2009).5

At the same time, medium-run cumulative spending multipliers decrease as planning hori-

zons shorten. This result is stronger as the cumulative multiplier is calculated over more peri-

ods. The intuition for this result is the stronger investment crowding-in effect as the planning

horizon falls. Lower real interest rates after government spending cuts imply an increase in

investment for any planning horizon.6 However, as real rates start to increase again, the total

increase in investment is of limited magnitude under longer planning horizons. Due to the

limitations of their planning horizons, agents with shorter planning horizons, on the other

hand, overestimate the response of the real interest rate and increase investment more. As a

result, the shorter the planning horizon the stronger the crowding-in effect in investment and

the faster the induced recovery of the economy.

In line with the existing literature on the effects of spending cuts and tax increases (Alesina

et al. (2015), Alesina et al. (2017), Guajardo et al. (2014) among others), we find that tax-

based consolidations are more contractionary, both on impact and in the medium-run.7 Im-

portantly, we show that the differences in the performance of the two types of consolidation

5In their seminal paper Baxter and King (1993) introduce capital in a neoclassical model to analyze the
effects of permanent changes in government purchases and find that the effects on investment and hence on
output to be highly persistent.

6Alesina et al. (2019a) uncover some strong empirical regularities about the effects of austerity. One of
those regularities is that investment responds positively to spending-based plans and negatively to tax-based
plans.

7There has been much research over the effects of different types of fiscal consolidations (e.g. spending-based
and tax-based). A large empirical literature provides evidence supporting the expansionary fiscal consolidations
hypothesis (see Alesina and Perotti (1995), Perotti (1996), Alesina and Ardagna (1998, 2010), Ardagna (2004)).
On the other hand, another strand of the empirical literature, using narrative data to identify consolidations,
initially introduced by Romer and Romer (2010), finds that output drops following both types of consolidations
and that recessions are deeper after tax hikes (Guajardo et al. (2014)). Along the same lines Alesina et al.
(2015) find that spending-based consolidations are less costly, in terms of output losses, than tax-based ones.
However, as Guajardo et al. (2014) argue the negative effects of consolidations on output may be understated
due to the induced bias. This is the case with spending cuts in many instances, where the announced cuts
were stronger than those actually implemented (Beetsma et al. (2016)).
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depend on the planning horizon as well, and they widen as horizons shorten. Moreover, by

changing one by one different parts of the calibration, we are able to obtain insight in what

is making spending multipliers smaller in absolute value than tax based ones.

In our benchmark calibration, we assume a persistent autoregressive process for spending

and labor income taxes similar to Alesina et al. (2017). In general, we find that spending-

based consolidations become less recessionary the more persistent are the cuts in spending.

Conversely, for labor tax hikes we find that when they are very persistent the tax hikes to

deeper recessions, regardless of the planning horizon. Persistent increases in labor taxes make

the static substitution effect between labor and leisure more permanent, increasing thus the

tax multiplier (in absolute value).8 These results are in line with evidence on the persistence

of fiscal plans (e.g. Alesina et al. (2017), Alesina et al. (2019b) among others). As regards

the interaction between planning horizons and persistence, we find that there are stronger

planning horizon effects on medium-run cumulative multipliers when consolidations are very

persistent. In particular, for shorter planning horizons, the gap between spending and tax-

based consolidations widens more as their persistence increases.

Wage stickiness is an additional factor determining the performance of fiscal plans. We

find that when wages are very sticky, tax-based consolidations result in milder recessions

than spending cuts, independently of planning horizons. The intuition is that, in the absence

of sticky wages, labor unions bargain higher wages to offset the drop in current disposable

labor income. As a result, real wages increase. Higher wages lead to lower labor demand

and a decline in firms’ profits, causing a recession. When wages are very sticky, instead, this

mechanism is very weak simply because labor unions reset wages infrequently. As a result, the

recession is milder than under fully flexible wages. Tax multipliers are then lower which makes

tax-based consolidations less costly in terms of output losses. For shorter planning horizons,

very sticky wages additionally imply larger government spending multipliers, which further

improves the relative performance of tax-based consolidations. For intermediate or low degrees

of wage stickiness, on the other hand, spending multipliers remain considerably smaller, in

8In a model without labor unions, the static substitution between labor and leisure would be directly made
by the household. In our model, this trade-off is made indirectly by labor unions who set wages in order to
maximize the utility of households and thereby indirectly determine the amount of labor that will be supplied
by households given the labor demand curve of firms.
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absolute value, than labor tax multipliers. In fact, for shorter planning horizons the absolute

difference between the two multipliers becomes even larger (spending multipliers decrease

while tax multipliers become more negative) for intermediate values of wage stickiness.

Finally, a lower elasticity of intertemporal substitution increases government spending

multipliers and decreases, in absolute value, labor tax multipliers. This is because agents

with a lower elasticity of intertemporal substitution smooth consumption more and, there-

fore, respond less strongly to temporary changes in their expected future disposable income

and in expected future real interest rates. We find, however, that medium-run cumulative

government spending multipliers under shorter planning horizons remain lower in absolute

value than cumulative labor tax multipliers, also for relatively low values of the elasticity of

intertemporal substitution. This is not the case for larger planning horizons.

The paper is organized as follows. In the next section, we briefly discuss the literature

dealing with the optimization problem of boundedly rational agents who form expectations

over a finite number of periods, and explain how our approach differs from the existing litera-

ture. In Section 3, we present the New Keynesian model with finite planning horizons. Section

4 presents the relation between the planning horizon and fiscal multipliers as well as impulse

responses to fiscal shocks. In Section 5, we investigate what features of the model make gov-

ernment spending multipliers smaller in absolute value than labor tax multipliers. Section 6

considers the case where firms have infinite planning horizons, and Section 7 concludes.

2 Literature on Bounded Rationality and Bounded Optimality

Our model is related to a large literature on bounded rationality and bounded optimality.

First of all, under Euler equation learning (see Honkapohja et al. (2013)) agents form expec-

tations only up to one period into the future. When these expectations are not fully rational

(and hence do not implicitly take the infinite future into account through a recursive for-

mulation), agents have a one-period-ahead planning horizon. Resting on this finite horizon

learning approach, Evans and McGough (2015) build a framework that formulates the agents’
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optimization in a way that is consistent with their short-sightedness in forecasting.9 In their

approach, agents learn about the shadow price of their wealth in a recursive way. They show

that such a problem can be cast in a dynamic programming setting, which is consistent with

the time inconsistency of consumption plans.

Our approach differs from Evans and McGough (2015) in some crucial aspects. First,

our agents are uncertain not only about the correct valuation of their end-of-horizon wealth

but also about the state of the economy at the end of their planning horizon. This means

that even if our agents might know the true valuation of their wealth, they can still be time-

inconsistent in their consumption decisions if their beliefs about the state of the economy at

the end of their horizon are wrong. As such, even though in a two-period setting our approach

is similar to theirs, the implied expectations path in our case is different. Moreover, we apply

our approach to cases where agents optimize and form expectations for more than two (but a

finite number of) periods. Consequently, our approach incorporates important wealth effects

that are absent in Evans and McGough (2015).

Branch et al. (2010) consider the case of finite horizons. In their model, it is however

required that agents form expectations about their end of horizon wealth and optimize based

on these expectations. In contrast, in our model, choosing optimal end-of-horizon bond

holdings and capital is in every period part of the agents’ optimization problem.

The analysis of the scenario where agents do not fully understand the world and especially

events that are far into the future is explored delicately in Gabaix (2020). In that model,

it is assumed that as agents simulate the future they tend to simplify their simulations by

narrowing them down to a simple benchmark, namely the steady state of the economy. In

that framework, agents solve infinite horizon problems but receive noise signals about the

economy. Consequently, an innovation happening far into the future is shrunk by a factor

less than unity relative to the rational response. In this way, agents are myopic with respect

to deviations around the steady state, especially when they are far in the future.

Our approach is very similar to recent work by Woodford (2018). Woodford argues about

the plausibility of designing the household maximization problem in a way that deviates from

9Essentially Evans and McGough (2015) highlight the difference between learning to forecast with learning
to optimize and build an optimizing framework satisfying both kinds of learning.
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the assumption that households plan over the infinite future and commit to their consumption

and saving plans. Instead, in his and our approach households decide over a finite number of

periods. Specifically, households decide upon their consumption path from period t up to a

finite period t+k. When period t+1, arrives households decide upon their consumption path

from period t+ 1 up to a finite period t+ k+ 1 and so on. In other words, the households in

period t+ 1 do not stick to the path that was decided in period t. Consequently, Woodford’s

and our approach account for the time inconsistency in consumption plans as well, in addition

to the short-sightedness of the households.

Our approach differs though from Woodford’s in what agents believe about the future

beliefs of all agents in the economy. In order to keep the whole planning problem within

the k period horizon, Woodford assumes that in period t, agents believe that all agents in

period t+ 1 will only have a planning horizon of k− 1 periods, that in period t+ 2 all agents

will only have a planning horizon of k − 2 periods, etc. We, on the other hand, assume that

all agents know that all agents in future periods will have the same planning horizon of k

periods (or T in the notation of our paper), but that they will think that from period t+k+1

onward the model will be in steady state. This alternative assumption allows us to make sure

that in period t, agents do not have to sophisticatedly think about periods after t + k. We

then assume that expectations are formed in a manner that is consistent with the cognitive

limitations of the planning horizon, which is not done in Woodford (2018).

Finally, we consider a model with government debt and distortionary taxes and look at

fiscal consolidations whereas Woodford (2018) focuses on the implications for the conduct of

monetary policy.

3 The model

Below we outline the model. In Section 3.1 we discuss the optimization problem and first-

order conditions of households, and in Section 3.2 we present the wage setting of labor unions.

In Section 3.3 we discuss the firm problem, and the government sector, monetary policy rule

and market clearing are presented in Section 3.4. In Appendix D the model is log-linearized
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and aggregated. Finally, we discuss how expectations are formed in Section 3.5 and present

our calibration in Section 3.6.

3.1 Households

We assume that the economy is made up of a large number of infinitely lived identical house-

holds that plan over a finite number of periods into the future. Households want to maximize

their discounted utility of consumption and leisure over their planning horizon (T periods),

and they also value the state they expect to end up in at the end of these T periods (their

state in period T+1). They are however not able to rationally induce (by solving the model

forward until infinity), how exactly they should value their state in period T+1. Instead,

households use a rule of thumb to evaluate the value of their state. Household i chooses

consumption, Cit , investment, Iit , capital (Ki
t) and bond (Bi

t) holdings and capital utilization,

Zit , so as to maximize the following objective function:

Ẽit

t+T∑
s=t

βs−tu(Cis, Hs) + βT+1V i,t

(
Bi
t+T+1

Pt+T
,Ki

t+T+1

)
, (1)

subject to

PsC
i
s+PsI

i
s+
Bi
s+1

Rs
≤
(
1− τWs

)
WsHs+B

i
s+R

k
sZ

i
sK

i
s−Psa

(
Zis
)
K̄i
s+PsΞs−Ts, s = t, t+1, ...t+T.

(2)

where Bs is a one period riskless bond issued by the government, yielding interest rate Rs.

Ws is the nominal wage and τWs is a distortionary labor income tax rate. Ht denotes hours

worked, while RKs is the return on capital ownership.10 α(Zs) captures costs related to capital

utilization and is a strictly convex function, so that α′() > 0 and α′′() > 0. Ξs denotes real

profits from firm ownership while Ts denotes lump-sum taxes. The value function V i,t(.) of

the household at the end of her horizon T takes the following form:

V i (B,K) = (1− β)−1u

(
(1− β)

(
1

β
K +

B

Π̄

)
+ X̄

)
, (3)

10As will be discussed in the next section, wages are set by labor unions. As it is assumed that the continuum
of different labor types and corresponding labor unions is distributed equally across households, the individual
quantity of hours worked is common across households. We therefore denote Ht without an i superscript.
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where X̄ consists of steady state labor income, profits and taxes/transfers. In Appendix B we

derive and discuss this value function in detail in the same spirit as in Woodford (2018). In

particular, this value function is the solution of a simplified dynamic programming problem,

where there are no shocks and where it is assumed that the variables outside the direct control

of the household are at their steady state levels.

The real budget constraint reads as

Cis+I
i
s+

Bi
s+1

RsPs
≤
(
1− τWs

)
wsHs+

Bi
s

Ps
+
RksZ

i
sK

i
s

Ps
−a
(
Zis
)
K̄i
s+Ξs−

Ts
Ps
, s = t, t+1, ...t+T,

(4)

where ws is the real wage rate. The capital accumulation equation is

Ki
s+1 = (1− δ)Ki

s +

[
1− S

(
Iis
Iis−1

)]
Iis, s = t, t+ 1, ...t+ T. (5)

The function S (.) in the capital accumulation equation (5) is the adjustment cost function,

with S (θ) = 0, S′ (θ) = 0, S′′ (.) > 0. The amount of effective capital that households can

rent to the firm is:

K̃i
t = ZisK

i
s. (6)

The income from renting capital services to firms is RksZ
i
sK

i
s, while the cost of capital

utilization is Psa
(
Zis
)
K̄i
s.

In line with CEE and SGU we set

S

(
Iis
Iis−1

)
=
κ

2

(
Iis
Iis−1

− 1

)2

, (7)

and

a
(
Zis
)

= γ1

(
Zis − 1

)
+
γ2

2

(
Zis − 1

)2
. (8)

The composite consumption good, Cis, is a Dixit-Stiglitz aggregate,

Cis =

[∫ 1

0

(
Cis(j)

) θ−1
θ dj

] θ
θ−1

, (9)
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of the household’s expenditure Cis(j) on each of the continuum of differentiated varieties j,

where θ > 1 is the intertemporal elasticity of substitution across varieties.

Households are identical in our model which means that they have the same utility function

and face the same constraints. The first order conditions of the maximization problem are:

Cit : $i
s = uC(Cis, Hs), s = t, t+ 1, ...t+ T, (10)

Bi
t+1 : $i

s = βEis

[
$i
s+1Rs

Πs+1

]
, s = t, t+ 1, ...t+ T − 1, (11)

Ki
t+1 : γis = βEis

[
$i
s+1

(
RKs+1

Ps+1
Zis+1 − α(Zis+1)

)
+ (1− δ) γis+1

]
, s = t, t+ 1, ...t+ T − 1,

(12)

Iis : $i
s = γis

[
1− S

(
Iis
Iis−1

)
− S′

(
Iis
Iis−1

)
Iis
Iis−1

]
+ βEs

[
γis+1S

′
(
Iis+1

Iis

)(
Iis+1

Iis

)2
]
, s = t, t+ 1, ...t+ T − 1, (13)

Zis :
RKs
Ps

= α′
(
Zis
)
, s = t, t+ 1, ...t+ T. (14)

where $i
t and γit are the lagrange multipliers associated with the budget constraint and the

capital accumulation constraint respectively. Πs = Ps/Ps−1 is gross inflation in any period

s. In the F.O.C. above, the optimal decisions capital utilization, Zit , concerns the entire

planning horizon of households. The optimal decisions instead for bond holdings, Bi
t, capital,

Ki
t , and investment, Iit , derived above concern the optimal path up to period T − 1. That

is, one period before the end of its horizon. This is because these three are state variables

and determine the end-of-horizon continuation value of households’ utility. For Bi
t+T , Ki

t+T

and Iit+T , different first-order conditions follow from the above optimization problem. These

conditions determine the optimal trade-off between consumption, saving and investing at the

very end of their horizon. These conditions capture the fact that households care about how

much wealth they will have after the end of the planning horizon and need thus to determine

the optimal trade-off. The three conditions read as follows:
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Bi
t+T+1 :

$i
t+T

Rt+T
=
β

Π̄
Eit

[
u′

(
(1− β)

(
1

β
Ki
t+T+1 +

Bi
t+T+1

Pt+T Π̄

)
+ X̄

)]
, (15)

Ki
t+T+1 : γit+T = Eitu

′

(
(1− β)

(
1

β
Ki
t+T+1 +

Bi
t+T+1

Pt+T Π̄

)
+ X̄

)
, (16)

Iit+T : $i
t+T = Eitγ

i
t+T

[
1− S

(
Iit+T
Iit+T−1

)
− S′

(
Iit+T
Iit+T−1

)
Iit+T
Iit+T−1

]
. (17)

Our utility function takes the functional form u(Cis, Hs) = (Cis)
1−σ

1−σ − (Hi
s)

1+η

1+η , so that

households have CRRA preferences where σ is the inverse of the elasticity of intertemporal

substitution and η is the inverse of the Frisch elasticity of labor supply. Defining Tobin’s

Qit =
γit
$it

and using the first order condition with respect to investment (13) we receive the

following:

1 = Qis

(
1− S

(
Iis
Iis−1

)
− S′

(
Iis
Iis−1

)
Iis
Iis−1

)
+ β

$i
s+1

$i
s

[
Qis+1S

′
(
Iis+1

Iis

)(
Iis+1

Iis

)2
]
, s = t, t+ 1, ...t+ T − 1. (18)

Using the first order condition with respect to capital, Ki
s, we end up to the following

expression for the law of motion of Tobin’s Qis

Qis = β
$i
s+1

$i
s

[
rks+1Z

i
s+1 − a

(
Zis+1

)
+Qis+1 (1− δ)

]
, s = t, t+ 1, ...t+ T − 1,(19)

with rks+1 =
Rks+1

Ps+1
. (20)

Tobin’s Q in the terminal period T is specified as Qit+T =
γit+T
$it+T

.

Finally, using Equation (8) for α(Z), the first order condition (14) with respect to capital

utilization, Zs, reads as follows:
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Rks
Ps

= a′ (Zs) = γ1 + γ2

(
Zis − 1

)
, (21)

r̂ks =
γ2

γ1
Ẑis.

3.2 Wage setting

In the monopolistic competitive labor market, labor unions act as wage setters. We assume

a continuum of labor types j which are distributed uniformly across households. Each labor

union sets the wage of a given labor type j. This means that there is a continuum of labor

unions which coincides with the labor types. Households always offer the demanded quantity

of labor of type j at the current wage W j
t+s of the labor union of type j (as in Gaĺı et al.,

2007).

We assume that labor unions set wages in a flexible manner at date t.11 Unions set the

nominal wage by maximizing the expected discounted sum of the utility of the households

subject to the households’ budget constraint and the demand for labor of type j.

hjt =

(
W j
t

Wt

)−θw
Ht, (22)

where θw is the intratemporal elasticity of substitution between labor types and Wt is the

nominal wage aggregated over all labor types. Ht is the aggregate demand for labor given by

Hs =

[∫ 1

0

(
hjs
) θw−1

θw dj

] θw
θw−1

. (23)

Since the union sets the wage at every date, the maximization problem of the union

becomes static. At a generic time t, it reads as follows:

max
W j
t


(
Cjt+s

)1−σ

1− σ
−

(
hjt+s

)1+η

1 + η

 (24)

subject to (22) and (4). The first order condition is:

11In Section 5.2 and Appendix C.1 we also consider the case where labor unions set the wages infrequently
assuming Calvo-type wage stickiness.
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W j
t (1− τwt ) =

θw
θw − 1

(
hjt

)η
(
Cjt

)−σ . (25)

From the equation above, it becomes clear that the labor union sets the wage with a

mark-up above the marginal rate of substitution between consumption and labor.

3.3 Firms

There is a continuum of monopolistically competitive firms producing the final differentiated

goods. Each firm produces its good using all differentiated labor types. Each firm then

combines its share of the aggregate labor input, Ht, with the capital, K̃t that it rents from

households, using a Cobb-Douglas technology:

Yt(j) = AK̃t(j)
ζHt(j)

1−ζ , (26)

where A is aggregate productivity, which is assumed to be constant. Firm’s j nominal profit

is given by:

PtΞt(j) = Pt(j)Yt(j)−WtHt(j)−Rkt K̃t(j) (27)

Cost minimization implies that the marginal cost is equal to:

MCt = ζ−ζ (1− ζ)−(1−ζ)W 1−ζ
t Rk ζt (28)

or in real terms:

mct = ζ−ζ (1− ζ)−(1−ζ)w1−ζ
t rk ζt (29)

Since all firms face the same marginal cost, we have dropped the j indicator.

Cost minimization also implies:

rkt = mctAζ

(
K̃t(j)

Ht(j)

)ζ−1

(30)
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wt = mctA(1− ζ)

(
K̃t(j)

Ht(j)

)ζ
(31)

Firms are run by households, and hence we assume they also have finite planning horizons.

That is, they will form expectations about their marginal costs and the demand for their

product for T periods ahead only. In Section 6 we check robustness to this assumption by

considering the case where firms have an infinite planning horizon.

We assume that in each period a fraction (1 − ω) of firms can change their price. The

problem of firm j that can reset its price is then to maximize the discounted value of its

nominal profits for the next T periods.

Ẽjt

 T∑
s=0

ωsQjt,t+s

[
pt(j)Yt+s(j)− Pt+smct+sYt+s(j)

]
+ ωT+1βT+1 Pt(

Cjt

)−σ Ṽ (
pt(j)

Pt+T
)

 , (32)

where

Qjt,t+s = βs

(
Cjt+s

Cjt

)−σ
Pt
Pt+s

. (33)

is the stochastic discount factor of the household that runs firm j. Moreover, as in Woodford

(2018), Ṽ () describes the continuation value of real profits in utility terms as a function of the

relative price. As in case of the household, this value function is obtained from the assumption

that all variables other than the price of the firm (such as output, wages and the aggregate

price level) are in steady state. Assuming zero steady state inflation, this value function

therefore satisfies

Ṽ (r) = max
c
{
(
C̄
)−σ (

r1−θȲ − r−θȲ m̄c
)

+ ωβṼ (r) + (1− ω)βṼ opt}, (34)

where Ṽ opt is next periods value for a firm that can re-optimize next period. Since Ṽ opt does

not influence the current decision problem of the firm (since it is independent of r), we ignore

it and let the functional form of Ṽ (r) be

Ṽ (r) =
1

1− ωβ
(
C̄
)−σ (

r1−θȲ − r−θȲ m̄c
)
. (35)
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Using the demand for good j, and multiplying by
(Cjt )

−σ

Pt
, the firm’s profit maximization

problem writes as follows

max Ẽjt

( T∑
s=0

ωsβs
(
Cjt+s

)−σ [(pt(j)
Pt+s

)1−θ
Yt+s −mct+s

(
pt(j)

Pt+s

)−θ
Yt+s

]
(36)

(ωβ)T+1

1− ωβ
(
C̄
)−σ [(pt(j)

Pt+T

)1−θ
Ȳ − m̄c

(
pt(j)

Pt+T

)−θ
Ȳ

])
.

The first order condition for pt(j) is

Ẽjt

T∑
s=0

ωsβs

(
Cjt+s

)−σ
Pt+s

Yt+s

[
(1− θ)

(
p∗t (j)

Pt+s

)−θ
+ θmct+s

(
p∗t (j)

Pt+s

)−1−θ
]

(37)

+
(ωβ)T+1

1− ωβ

(
C̄
)−σ

Pt+T
Ȳ

[
(1− θ)

(
p∗t (j)

Pt+T

)−θ
+ θm̄c

(
p∗t (j)

Pt+T

)−1−θ
]

= 0,

where p∗t (j) is the optimal price for firm j if it can re-optimize in period t. Multiplying by

p∗t (j)1+θ

1−θ , this can be written as

p∗t (j)

Pt

[
Ẽjt

T∑
s=0

ωsβs
(
Cjt+s

)−σ (Pt+s
Pt

)θ−1

Yt+s +
(ωβ)T+1

1− ωβ
Ȳ (C̄)−σ

(
Pt+T
Pt

)θ−1
]

(38)

=
θ

θ − 1

[
Ẽjt

T∑
s=0

ωsβs
(
Cjt+s

)−σ (Pt+s
Pt

)θ
Yt+smct+s +

(ωβ)T+1

1− ωβ
Ȳ (C̄)−σm̄c

(
Pt+T
Pt

)θ]

Finally, the aggregate price level evolves as

Pt = [ωP 1−θ
t−1 + (1− ω)

∫ 1

0
p∗t (j)

1−θdj]
1

1−θ . (39)

3.4 Completing the model

In this section, we close the model by characterizing the budget constraint of the government,

the interest rate rule of the central bank and the market clearing condition. The government

issues bonds and levies lump-sum taxes, Tt, and labor income taxes, τWt , to finance its

(wasteful) spending, Gt, as well as Transfers to households, Transt. Its budget constraint is
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given by

Bt+1

Rt
= PtGt − τWt WtHt − Tt +Bt, (40)

with Ht =
∫
H i
tdi and Bt =

∫
Bi
tdi aggregate labor and aggregate bond holdings respectively.

Dividing by Ȳ Pt gives

bt+1

Rt
= gt − τWt wt

Ht

Ȳ
− τt +

bt
Πt
, (41)

where bt = Bt
Pt−1Ȳ

and gt = Gt
Ȳ

are the ratios of debt to steady state GDP and government

expenditure to steady state GDP, respectively. Lump-sum taxes as a fraction of steady-state

nominal output at current prices, τt ≡ Tt
PtȲ

, are adjusted to stabilize public debt. Additionally,

there may be transfers which are equivalent to negative lump-sum taxes. The evolution of

lump-sum taxes hence is given by

τt = φBy
(
bt − b̄

)
− τ rt , (42)

where τ rt ≡ Transt
PtȲ

. gt, τ
w
t and τ rt are exogenously set by the government. In particular, these

are the three fiscal instruments of which we study multipliers in the next section. Here, these

variables will be assumed to follow AR(1) processes.

The central bank sets the policy rate following a Taylor rule targeting inflation and output:

Rt =
( πt
π∗

)φπ (Yt
Ȳ

)φY
(43)

where π∗ denotes the inflation target which we assume to coincide with steady state inflation.

Ȳt is steady state output.12

Finally, market clearing is given by:

Yt = Ct + It + Ȳ gt + α (Zt)Kt (44)

12We derive the steady state of the model in appendix A.
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3.5 Expectations

We assume that agents form expectations in a forward-looking manner that is as close to

rational expectations as the cognitive limitations of their planning horizon allow. Forming

fully rational expectations would, however, require agents to anticipate what the future paths

of all variables will be until infinity. This is not consistent with the assumption of finite

planning horizons.

We, therefore, assume that agents rationally use the model equations within their horizon

to form model consistent expectations, but that they are not able to form expectations for

variables outside their horizon in a sophisticated manner. Agents thus know the structural

form of the minimum state variable solution of the model but are not always fully correct in

computing the parameters of this solution, as we describe below.

Agents start with forming expectations about the final period of their horizon. To do

this, they take the model equations of period t + T . However, the IS curve, Phillips curves

and investment equation contain finite sums up to T periods ahead (see the equations in

Appendix D.5). Therefore, when these equations are forwarded T periods, finite sums with

expectations about period t + T + 1 up to period t + T + T appear. That is, in the model

equations that agents are considering, expectations of variables outside their planning horizon

show up. Since agents are not able to solve, in a sophisticated manner, what will happen

after their planning horizon, they cannot come up with a rational value for these expectations.

Instead, they assume that in the periods after their horizon, the model will have converged

to its steady state.

With this assumption, agents are able to solve for period t + T variables in terms of the

state variable in period t + T . They then move to the model equations of period t + T − 1.

Here, they plug in the solution of period t + T variables as expectations about period t + T

and again assume steady state levels for expectations of variables outside their horizon. They

can then solve for period t + T − 1 variables in terms of state variable of period t + T − 1.

This process goes on until they have solved for all expectations within their horizon in terms

of the observed state variables of period t. Expectations of variables for the periods within

the horizon can then be obtained from these policy functions by plugging in the values of the
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current state variables.

To what extent expectations formed in this manner deviate from fully rational expectations

depends on the persistence of the model, the shocks hitting the economy and, mainly, on

agents’ planning horizon. First of all, if the planning horizon is large enough relative to the

persistence in the economy, the assumption that the model will have returned to steady state

after the horizon is rational. In that case, the above algorithm converges to the fully rational

expectation solution.

If, on the other hand, the model is so persistent relative to the planning horizon that

shocks hitting the economy will have effects that last longer than the planning horizon, then

the expectations of agents with finite planning horizons will be biased. This is because, when

forming expectations about variables in periods towards the end of their horizon, agents

ignore the effect that expectations about periods after the end of their horizon will have on

the realizations of these variables.

The impact of this bias on the dynamics in the economy crucially depends on the planning

horizon. When agents have longer planning horizons, their decisions will only marginally be

affected by biases in their expectations, even if the economy is very persistent. This is because

the cognitive limitations of their planning horizon will bias only expectations about periods

that are close to the end of their horizon. Their expectations about all other periods will be

close to fully rational.

In case of shorter planning horizons, this is different. Here, a considerable bias in the

expectations about all periods within their horizon can arise when the economy is very per-

sistent. This can potentially lead agents to make considerably different decisions about, e.g,

investment than fully rational agents.

3.6 Calibration

In this section, we discuss the calibration of the deep parameters of the model. Our intension

is to assign values to parameters which are as close as possible to the existing theoretical

or empirical literature on DSGE models. One period corresponds to a quarter. Regarding

the finite planning horizons in our model, we focus on analyzing the effects of changing
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this parameter and do not consider a benchmark horizon. In illustrations and exercises

where we change other parameters, we always show two cases: a horizon of T = 20 which

is representative for shorter horizons, and a horizon of T = 100 which is representative for

longer (and infinite) planning horizons. The rest of the model parameters are specified in

table 1 below.

Table 1: Parameter values

Parameter Description Value

β Subjective disc. factor 0.99
σ Inv. intertemp. substitution 2
η Inv. Firsch elasticity 1.5
θ
θ−1 Price mark-up 2

ω Calvo - price 0.66
ζ Share of capital 0.2
γ1 Capital utilization 0.035
γ2 Capital utilization 0.05
δ Capital depreciation 0.025
κ Capital adjustment cost 17
θw
θw−1 Wage mark-up 1.3

φπ Taylor Rule - inflation 1.5
φY Taylor Rule - output 0.05
φBy Tax Rule - debt 0.06
ρg AR(1) coef. gov’t spending 0.97
ρτ AR(1) coef. labor income tax 0.97
τ̄ Steady state tax rate 0.4
ḡ Steady state gov’t spending 0.15

4 Fiscal multipliers under finite planning horizons

In this section, we study the role of planning horizons for fiscal multipliers. It turns out

that especially medium-run cumulative multipliers are affected by agents’ planning horizon

considerably. We first present, in Section 4.1, fiscal multipliers for government expenditures,

labor taxes and transfers for different planning horizons. Next, we investigate where the

differences in multipliers stem from by studying impulse response functions in Section 4.2.
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4.1 Multipliers

Following Mountford and Uhlig (2009) and Bi et al. (2013), we calculate present value mul-

tipliers as follows

Γyt+k =
k∑
j=0

(
j∏
i=0

r−1
t+i

)(
Y s
t+j − Y ns

t+j

)
/

k∑
j=0

(
j∏
i=0

r−1
t+i

)(
xst+j − xnst+j

)
, (45)

where rt is the gross interest rate, and x denotes the fiscal instrument considered: xt = Gt

for the government expenditure multiplier, xt = τwt w̄H̄ for the labor tax multiplier, and

xt = Transt
Pt

for the transfer multiplier.13 Y s
t and xst indicate values taken when there is a

fiscal shock, and Y ns
t and xnst indicate values that would have occurred in the absence of a

fiscal shock.

Figure 1 presents fiscal multipliers that we find under our benchmark calibration for

different planning horizons. Government expenditure multipliers, labor tax multipliers and

transfer multipliers are depicted in respectively panels (a), (b) and (c). The dashed blue

curves present impact multipliers. In all figures, the effect of planning horizons on impact

multipliers is negligible, the only exception being very short (less than 15 quarters) planning

horizons.

This is different for the other two curves which represent cumulative present value mul-

tipliers in the medium run. The dotted orange curves depict cumulative multipliers after

12 quarters, whereas the solid green curves depict cumulative multipliers after 20 quarters.

In all graphs, there is a clear effect of the planning horizon on the medium-run cumulative

multipliers.

In particular, in panel (a) of Figure 1 it can be seen that once agents have a planning

horizon that is shorter than approximately 50 quarters, the medium-run cumulative effect

13We multiply taxes by w̄H̄ to get a change in tax income due to a changed tax rate, rather than
the change in the tax rate itself. This facilitates compatibility with changes in government spending and
transfers. Using the definitions of (log)-linearized variables, we can calculate the labor tax multipliers

as Γyt+k =
∑k
j=0

(∏j
i=0 r

−1
t+i

)(
Ŷ st+j − Ŷ nst+j

)
/
∑k
j=0

(∏j
i=0 r

−1
t+i

) (
w̄(τ̃w,st+j − τ̃w,nst+j )

)
, the government spending

multiplier as Γyt+k =
∑k
j=0

(∏j
i=0 r

−1
t+i

)(
Ŷ st+j − Ŷ nst+j

)
/
∑k
j=0

(∏j
i=0 r

−1
t+i

) (
g̃st+j − g̃nst+j

)
, and the transfer mul-

tipliers as Γyt+k =
∑k
j=0

(∏j
i=0 r

−1
t+i

)(
Ŷ st+j − Ŷ nst+j

)
/
∑k
j=0

(∏j
i=0 r

−1
t+i

) (
τ̃r,st+j − τ̃r,nst+j

)
. In computing the mul-

tipliers, we use the realized real interest rates under the transition path with the fiscal shock.
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of a change in government spending on output starts becoming smaller. For a planning

horizon of 20 periods, the 20-quarter cumulative government spending multipliers are more

than 0.1 lower than for large planning horizons. Planning horizons of this kind of magnitude

can definitely be considered relevant, as many households report relatively low values when

they are asked about their financial planning horizon. Hong and Hanna (2014), for example,

report a median reported planning horizon of “the next few years” in the Survey of Consumer

Finances (SCF).

A similar pattern can be seen in panel (b) for labor-tax multipliers. However, here cu-

mulative multipliers become more negative for shorter planning horizons, meaning that they

become larger in absolute value. Shorter planning horizons hence lead to a smaller medium-

run cumulative effect of government spending changes on output but to a larger medium-run

cumulative effect of labor tax changes on output.

Further, comparing the multipliers in panel (a) and panel (b), it can be observed that

both impact multipliers and cumulative multipliers are lower in absolute value for government

spending than for labor taxes. Moreover, the difference between the cumulative multipliers

of the two instruments becomes larger for shorter planning horizons. We will investigate this

further in Section 5.

Finally, turning to panel (c) of Figure 1, a clear deviation of Ricardian equivalence can be

observed for shorter planning horizons. For planning horizons of 50 and larger, the effect of a

change on transfers is practically zero, both in the short- and in the medium-run. However, for

shorter planning horizons, the medium-run transfer multiplier becomes negative. Although

the multiplier is never more negative than −0.075, the deviation from Ricardian equivalence

for shorter planning horizons can be considered economically significant.

4.2 Impulse responses

To get more intuition about the mechanisms that lead to different multipliers for different

planning horizons, we now present impulse responses to a government spending shock, a labor

tax shock and a transfer shock. This is done in Figures 2, 3 and 4, respectively. In particular,

Figure 2 presents the case of a 1% cut in government spending, while Figure 4 presents the
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Figure 1: Fiscal multipliers (vertical axis) for government spending, labor taxes and transfers for
different planning horizons (horizontal axis). Dashed blue are impact multipliers and
dotted orange and solid green cumulative multipliers after respectively 12 and 20 quarters.
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case of a 1% cut in transfers. In Figure 3, we present an increase in labor taxes that is

scaled by 1
w̄ so that all fiscal shocks are comparable in terms of their (direct) effect on the

government budget constraint. In each figure, the red dashed curves depict responses for a

planning horizon of T = 100, while the solid blue curves depict the case of a planning horizon

of T = 20.

First focusing on the longer planning horizon case (red dashed curves), it can be seen in

Figure 2 that the persistent cut in government spending leads to a persistent fall in output

and to a reduction in the debt level. At the same time, there is an increase in consumption

and a fall in inflation and the nominal interest rate. Even though capital utilization falls as a

consequence of the recession, lower real interest rates lead to a slight increase in investment

and capital.

In Figure 3, the persistently higher labor income taxes reduce the stock of debt, but lead

households to cut consumption, and firms to increase prices. Given an active monetary policy,

the central bank raises the interest rate to combat the inflationary pressures. The resulting

increase in the real interest rate and in capital utilization lead households to cut investment,

so that the capital stock goes down. These eventualities lead to a persistent fall in output.

Finally, in Figure 4, it can be seen that no variable other than the stock of government

debt visibly responds to a persistent decrease in transfers when planning horizons are long

enough (red dashed lines). This reflects that Ricardian equivalence holds in our model when

agents have very long or infinite planning horizons. In the current model specification, a

planning horizon of 100 periods, hence, seems to be enough for agents to be almost fully

Ricardian.

Next, we turn to the comparison between impulse responses of long planning horizons and

those of shorter (20 quarters) planning horizons. The differences that arise here, are mainly

driven by different expectations of agents with different planning horizons. As discussed

in Section 3.5, a finite planning horizon not only limits an agent’s ability to make optimal

decisions but also her ability to form rational expectations. This is because forming fully

rational expectations requires taking account of the future evolution of all variables up to

infinity.
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Figure 2: Impulse responses after a persistent cut in government spending. The solid blue curves
depict the case of a shorter planning horizon (T = 20) and the dashed red curves the case
of a long planning horizon (T = 100).
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Figure 3: Impulse responses after a persistent increase in labor taxes. The solid blue curves depict
the case of a shorter planning horizon (T = 20) and the dashed red curves the case of a
long planning horizon (T = 100).
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Figure 4: Impulse responses after a persistent cut in transfers. The solid blue curves depict the
case of a shorter planning horizon (T = 20) and the dashed red curves the case of a long
planning horizon (T = 100).

27



Agents with a planning horizon of T = 100 use the model equations of 100 different

quarters to form expectations about all variables in all these periods. Using so many model

equations and sophisticatedly thinking about all these 100 quarters moves their expectations

very close to the fully rational expectations benchmark.

Agents with a planning horizon of T = 20, on the other hand, have the cognitive ability to

sophisticatedly think about what will happen for the next 20 quarters only. Therefore, when

forming expectations about what happens 20 quarters from now, they ignore any effects on

period 20 variables that arise due to expectations formed in period 20 about later periods.

This is because they lack the cognitive ability to form accurate expectations about what will

happen in these periods and hence on what expectations formed in period 20 about periods

21 to 40 should be. Since the model is highly persistent, all variables will actually deviate

from steady state in periods 21 through 40 significantly. Not being able to take this into

account biases the expectations of agents with short planning horizons.

In particular, it turns out that households with a planning horizon of 20 periods over-

estimate the effect that fiscal shocks will have on inflation and the nominal interest rate.

Therefore, for the case of a negative shock to government spending, they expect a more

negative path of the real interest than what the fully rational expectations path would be.

As can be seen in the solid blue curve in the bottom left panel of Figure 3, this leads

agents to invest more in response to a negative shock to government spending than in the

case of a large planning horizon. Higher investment accumulates over time and leads to a

considerably less negative path of output compared to the case of long planning horizons.14

The persistent increase in investment further leads to a larger accumulation of capital and a

fall in capital utilization.

For the case of labor tax increases, an overestimation of the responses of inflation and the

nominal interest rate implies that agents expect a path of the real interest rate that is too

high. This leads them to lower investment more than agents with long planning horizons,

which causes a deeper recession. At the same time, capital falls more, and capital utilization

14Note that, at the same time, deviations from model consistent expectations about other variables lead
to lower consumption than in the case of infinite planning horizons. This effect is, however, smaller and the
final effect of the planning horizon on the government expenditure multiplier is dominated by the investment
response.
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increases more when agents have shorter planning horizons.

Following spending cuts, the demand shift due to the spending cuts starts to be domi-

nated by the impact of forecast errors when planning horizons become shorter. In particular,

the adverse effect on demand is alleviated due to the fact that households expect even lower

real rates when they have shorter planning horizons compared to the case with long horizons,

as discussed above.15 This causes households to raise investment more, thus alleviating the

adverse effects on demand and lowering the spending multiplier. Similarly, when the govern-

ment raises labor income taxes, households with short horizons anticipate higher real rates

than under longer planning horizons. This causes a larger drop in investment and in aggregate

demand. This is the reason for the deeper recessions after tax hikes when horizons become

shorter.

Let us now consider the response of agents with a planning horizon of T = 20 to a transfer

shock. The fact that this shock leads the debt level to still considerably be different from

its steady state level in the periods after the agent’s horizon prevents agents from forming

fully rational expectations. As a result, they do not expect all variables other than debt and

transfer to remain at zero but, instead, expect a negative path of inflation and the nominal

interest rate. This leads them to increase investment in response to a cut in transfers, which

results in an increase in output. This implies a negative transfer multiplier for shorter planning

horizons.

One might think that our results and the mechanisms behind these are similar to those in

the Blanchard-Yaari framework where households have finite lifetimes. However, the intuition

behind the results obtained above is different than that in the Blanchard-Yaari setup in various

respects. In the latter setup, households commit to a specific path of consumption and do

not make expectational errors (i.e. they have fully rational expectations). Obviously, finite

lifetimes imply that households are non-Ricardian which means that bond holdings become

net wealth. At the same time, finite lifetimes create a stronger investment crowding-in effect

than infinite lifetimes. As a result, investment increases more than under infinite lifetimes.

Therefore, the recession is milder as lifetimes become shorter. Similar reasoning applies in the

15Importantly, this effect is stronger the more persistent the spending cuts are. This will be discussed in
detail in Section 5.1.
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case of labor income tax hikes or after increases in transfers. In our setup, instead, the driving

force behind the different investment responses and multipliers are the cognitive limitations

of households that result in expectational errors.

Another crucial difference between our setup and Blanchard-Yaari is that the interaction

of the persistence of the fiscal plan with the planning horizon matters for the comparison

between spending cuts and tax hikes, as we show below. This is not true in the Blanchard-

Yaari setup. Moreover, the notion of the horizon of the household in our setup is completely

different from that in the Blanchard-Yaari setup. In the latter, the horizon has the meaning of

the expected lifetime or the effective planning horizon corresponding to the average working

life, as in Trabandt and Smets (2012) and Mavromatis (2020). Importantly, in this setup and

in the absence of bequest motives, households do not care about their end of lifetime wealth

and they do not need to form expectations about what happens after that. In our framework,

instead, they care about what happens after the end of their planning horizon as they will be

alive. They form thus expectations about what they believe the state of the economy to be

after the end of their horizon. The shorter the horizons the more wrong these expectations are

and hence the larger their forecast errors. This feature is absent in Blanchard-Yaari. As we

show in our analysis in the following section, the planning horizons, their associated forecast

errors and their interactions with various parameters affect the effects of fiscal policy to a

great extent.

The mechanism behind our results is also quite different from that in models with rule-

of-thumb consumers. As these consumers consume only their disposable income, do not

accumulate wealth and do not form any expectations, any mechanism that goes through

expectations is absent for them. This in contrast to our model, where cognitive limitations

and the resulting expectations are the main drivers of results. Moreover, models with rule-

of-thumb consumers exhibit a dampened reaction of investment to fiscal changes rather than

an amplified reaction (which is what we find). This is because rule-of-thumb consumers do

not make any investment, independent of what happens to fiscal policy and other variables.
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5 Comparing government expenditure and labor tax multipli-

ers

In Section 4, we found that under the benchmark calibration, government spending multipliers

are lower in absolute value than labor tax multipliers. Moreover, for medium-run cumulative

multipliers, this difference is larger than for short-run multipliers. Finally, we found that

the differences in medium-run multipliers are amplified when agents have shorter planning

horizons. This implies that labor tax increases, as a means to consolidate government debt,

are considerably more harmful to output than government spending cuts.

In this section, we investigate why changes in government spending impact output less

than changes in labor taxes and what role is played here by agents’ planning horizon. We do

so by studying, one by one, different parameterizations and features of the model that could

potentially reverse this ranking of government spending and labor tax multipliers.

We start, in Section 5.1, with studying the role of the persistence of the fiscal shocks. In

Section 5.2, we consider what happens if we introduce sticky wages while in Section 5.3, we

vary the inter-temporal substitution of households.

5.1 Persistence of fiscal shocks

Figure 5 presents multipliers for different values of the persistence parameter in the fiscal

shocks. Panels (a) and (b) correspond to government spending and labor tax multipliers,

respectively. On the horizontal axis in each panel, we vary the persistence from 0.75 to 0.99.

Impact multipliers (dashed) and 20-quarter cumulative multipliers (dotted) for the case of

T = 100 are depicted in red. Impact and 20-quarter multipliers for the case of T = 20 are

depicted in solid and dash-dotted blue, respectively.

In the figure, it can be seen that the impact multipliers for T = 20 and T = 100 lie on top

of each other and are downward sloping. For both planning horizons, the downward slope of

impact multipliers in both panels implies that more persistent fiscal shocks lead to smaller

impact multipliers for government spending but to larger impact multipliers, in absolute value,

for labor tax cuts.
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Figure 5: Fiscal multipliers (vertical axis) for government spending and labor taxes for different
values of the persistence of the fiscal shocks (horizontal axis). The solid blue and dashed
red curves correspond to the impact multipliers for respectively T = 20 and T = 100.
The dash-dotted blue and dotted red curves depict the respective medium-run cumulative
multipliers (after 20 quarters).

We further find in Figure 5 that if the persistence of the fiscal shocks is lower than 0.85,

impact multipliers of labor taxes become smaller in absolute value than those of government

expenditures. It hence follows that the finding that government expenditure multipliers are

smaller in absolute value than those of labor taxes is for a large part driven by the persistence

of fiscal shocks.

The cumulative multiplier curves are also generally downward sloping in both panels.

However, the blue and red curves now do not lie on top of each other. After a government

spending shock, the cumulative multiplier is smaller for short planning horizons compared to

longer planning horizons. At the same time, shorter planning horizons lead to more negative

labor tax multipliers. Moreover, the gaps between the cumulative multipliers for the different

horizons widen as the persistence of the fiscal shock increases.

Alesina et al. (2017) and Alesina et al. (2018) show that spending cuts are less recessionary

the more long-lived they are, while tax hikes are more recessionary the longer lasting are the

increases in taxes. In fact, when spending cuts are very persistent, agents anticipate a very

persistent drop in interest rates. Investment then increases more, the more persistent are

those cuts. As a result, the adverse demand effect is alleviated, and the output contracts less.

At the same time, more persistent spending cuts lead to a larger increase in wages and lower

labor demand because households are expected to pay less lump sum taxes in the future.16

16In our model, this increase in wages arises because of labor unions that are optimizing the expected utility
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Persistent tax hikes, instead, lead to a more persistent substitution effect between labor

and leisure. In our model, this substitution is made indirectly by labor unions who set wages

in order to maximize the utility of households. In particular, persistently higher labor taxes

will induce labor unions to set higher wages, so that, given the labor demand curve of firms,

households will have to supply less labor.17 Moreover, the persistent increase in prices due to

persistently higher marginal costs creates expectations of a long-lived rise in the real interest

rate. As a result, the more persistent the tax hikes are, the deeper is the induced recession.

For the case of a planning horizon of T = 100 (dotted red), there is however a rever-

sal around 0.97. When the persistence becomes larger than that, the 20-quarter cumulative

multiplier becomes somewhat smaller again for government expenditure shocks and less neg-

ative for labor tax shocks. This result reflects a more general property of infinite horizon

DSGE models. Alesina et al. (2017), for example, also find such a reversal in their model

when adopting the Christiano et al. (2011) calibration. Interestingly, our results show that

when horizons become shorter (i.e. T=20) the reversal disappears and multipliers change

monotonically with the persistence of fiscal plans. In fact, for a positive labor tax shock with

persistence of 0.99, we find that, for shorter planning horizons, output is not only very slow to

recover (as in Figure 3) but that it actually keeps decreasing further for a number of periods.

This leads to very negative cumulative multipliers.18

Moreover, the slopes of the dash-dotted blue curves are somewhat steeper than those of

the dotted red curves, also for lower persistence levels. This implies that, generally, for shorter

planning horizons, more persistence in fiscal shocks leads to a larger change in medium-run

multipliers than for longer horizons. Hence the difference in multipliers between shorter and

longer planning horizons becomes larger as the persistence of shocks increases.

The above implies that, for shorter planning horizons, persistent tax-based consolidation

packages are more recessionary in the medium run than spending based ones, especially

for very high persistence levels. This difference between the two fiscal instruments then is

of households. In a model without labor unions, an equivalent increase in wages would arise due to a lower
labor supply decision of the households themselves.

17In a model without labor unions, the same substitution from labor to leisure would be obtained directly,
through the labor supply decision of households.

18Using a New-Keynesian DSGE model, Alesina et al. (2017) show that output contracts for more than three
years after labor income tax hikes. Mountford and Uhlig (2009) find similar results.
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Figure 6: Fiscal multipliers (vertical axis) for government spending and labor taxes for different levels
of wage stickiness (horizontal axis). The solid blue and dashed red curves correspond to the
impact multipliers for respectively T = 20 and T = 100. The dash-dotted blue and dotted
red curves depict the respective medium-run cumulative multipliers (after 20 quarters).

considerably larger than under longer planning horizons.

5.2 Wage stickiness

So far, we have assumed that wages were flexible. Now, we consider how multipliers change

when wages are sticky. In particular, we assume Calvo wage stickiness where labor unions

have a probability ωw of not being able to reset the wage at any given time t. Details of this

model specification can be found in Appendix C.1.

In Figure 6, we present impact and 20-quarter cumulative multipliers for different degrees

of wage stickiness (along the horizontal axis). Again, impact multipliers and 20-quarter

cumulative multipliers for the case of T = 100 are depicted in respectively dashed and dotted

red, whereas impact and 20-quarter multipliers for the case of T = 20 are depicted in solid

and dash-dotted blue.

It can immediately be seen in Figure 6 that for low levels of wages stickiness (below

0.4) none of the multipliers are significantly affected compared to the case of flexible wages.

Moreover, government spending multipliers for the case of T = 100 (red curves in the left

panel) are also insensitive to larger degrees of wage stickiness.

Labor tax multipliers for the case of T = 100, on the other hand, considerably change when

wages become very sticky. Both red curves in the right panel of Figure 6 go up considerably,

especially for values of wage-stickiness above 0.8, implying lower multipliers in absolute value.
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In fact, as wage stickiness goes to 1, both the impact multiplier and the 20-quarter cumulative

multiplier go to 0. When wages are (somewhat) flexible, (some) labor unions bargain higher

wages when labor taxes increase in order to offset the drop in households’ labor income. The

resulting higher real wages lead to lower labor demand and a decline in firms’ profits, causing

a recession. Therefore, the more unions can re-optimize, the larger the recession and the

larger the multiplier. When, on the other hand, wagers are not at all allowed to change, firms

choose the same labor demand and same production, independent of the labor tax rate. In

this case, no recession arises and the multiplier is 0.

Next, turning to the case of T = 20 it can be seen that the effect of wage stickiness

on the labor tax multipliers is similar to the case of T = 100. However, for government

spending multipliers a different pattern arises. For larger values of ωw, these multipliers first

become smaller and then considerably larger for values of ωw above 0.9. This implies that for

shorter planning horizons, tax-based consolidations outperform spending-based consolidations

to an even larger extent when wages are extremely sticky compared to the case of larger

planning horizons. However, for wage stickiness around ωw = 0.7, the opposite case arises.

Here, shorter planning horizons lead spending-based consolidations to outperform tax-based

consolidation by more than would be the case under larger planning horizons.

5.3 Intertemporal substitution

Finally, we present, in Figure 7, multipliers for different values of σ, the inverse of the elasticity

of intertemporal substitution. Impact and 20-quarter multipliers for T = 20 and T = 100 are

presented by the same line styles and colors as in the previous two subsections.

In Figure 7, it can be seen that larger values of σ (lower elasticity of intertemporal sub-

stitution) lead to larger government expenditure multipliers and to less negative labor tax

multipliers. The reason for this is that agents with a lower elasticity of intertemporal substitu-

tion (higher σ) smooth consumption more and, therefore, respond less strongly to temporary

changes in their expected future disposable income and in expected future real interest rates.

Hence, agents with a low elasticity of inter-temporal substitution increase their consumption

by less in response to the anticipated low future real interest rates implied by spending cuts.
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Figure 7: Fiscal multipliers (vertical axis) for government spending and labor taxes for different
values of the inverse of the elasticity of intertemporal substitution (horizontal axis). The
solid blue and dashed red curves correspond to the impact multipliers for respectively
T = 20 and T = 100. The dash-dotted blue and dotted red curves depict the respective
medium-run cumulative multipliers (after 20 quarters).

Similarly, agents with a lower elasticity of intertemporal substitution (higher σ) reduce their

current consumption less when they anticipate a temporary lower income due to tax increases.

As a result, the recession after a spending cut becomes deeper and the recession after a

tax increase becomes smaller when σ is larger. For very large values of σ (around 4) impact

multipliers of government spending become larger in absolute value than those of labor taxes.

This holds for both short and long planning horizons.

Further, for T = 100, the same conclusion can be drawn for 20-quarter cumulative mul-

tipliers. For shorter horizons, on the other hand, we find that σ should be even larger for

tax-based consolidations to become less harmful than spending-based consolidations in the

medium run. This is because under shorter planning horizons the investment response of

households is amplified, leading to lower expenditure and more negative labor tax multipli-

ers, as was discussed in Section 4.2.

6 Robustness: Firms with infinite planning horizons

As discussed in Section 4, the finding that multipliers are different for shorter horizons is

mainly driven by the expectations of households and their resulting investment decisions.

The fact that firms also have finite planning horizons in our model plays little to no role for

the results of the paper.
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Figure 8: Fiscal multipliers (vertical axis) for the case of fully rational firms ( with an infinite planning
horizon) for government spending, labor taxes and transfers for different planning horizons
(horizontal axis). Dashed blue are impact multipliers and dotted orange and solid green
cumulative multipliers after respectively 12 and 20 quarters.

In this section, we show this with a robustness exercise where we let firms have an infinite

planning horizon and fully rational expectations. Pricing decisions are then made based on

the discounted sum of all expected future marginal costs until infinity.

Households, on the other hand, are still assumed to have finite planning horizons and form

expectations accordingly. Since they do not have the cognitive ability to anticipate how fully

rational firms with infinite planning horizons will set their prices in future periods, households

still need to rely on the same expectation algorithm outlined in section 3.5. Households

thereby implicitly assume that firms make their decisions and form expectations with the

same planning horizon and cognitive limitations as the households themselves. Given the

limitations of their planning horizon, these are the most sophisticated higher-order beliefs

about the expectations and future decisions of firms that households are able to form.

Comparing Figure 8 with Figure 1 it, first of all, can be seen that the dashed purple impact

multiplier curves are even flatter when firms have infinite planning horizons. Apparently,
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the difference in impact multipliers for very short horizons in Figure 1 are driven by an

interaction between boundedly rational firms and boundedly rational households. When

firms have infinite planning horizons and fully rational expectations, this impact effect largely

disappears.

This finding also somewhat alters the shape of the cumulative multipliers after 12 and

20 quarters (dotted orange and solid green respectively). However, the main results of the

paper still hold when firms have infinite planning horizons: there is a clear relation between

the planning of households and the cumulative multipliers. If anything, for planning horizons

between 15 and 50 quarters, this relation becomes even cleaner and smoother. Moreover, the

exact sizes of the multipliers for different planning horizons are also very similar in Figures 1

and 8.

Finally, we find that all exercises of Section 5 lead to qualitatively the same and quan-

titatively very similar results when firms have infinite planning horizons as when they do

not.19

7 Conclusion

In this paper, we analyze the effects of finite planning horizons on fiscal multipliers in a closed

economy dynamic stochastic general equilibrium model with nominal rigidities, investment

adjustment costs and labor unions. In particular, agents are infinitely lived but optimize over

a finite number of periods. This is because they do not have the cognitive ability to form

expectations and make rational inferences over an infinite horizon. Because of these cognitive

limitations, agents also make expectational errors which are the main driver of differences in

fiscal multipliers. Moreover, we find that all our main results are driven by the finite horizons

of households, as we show that similar results are obtained whether or not firms also have

finite planning horizons.

We show that especially medium-run fiscal multipliers are considerably affected by the

planning horizon. Medium-run government spending multipliers become smaller for shorter

planning horizons, whereas labor tax multipliers become more negative (i.e. larger in absolute

19Results are available on request.
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value). Finite planning horizons can hence contribute to explaining why, in the empirical

literature, spending-based consolidations are found to be considerably less recessionary than

consolidations based on labor tax increases.

We also find a breaking of Ricardian equivalence for shorter planning horizons, which

is most clearly reflected in negative transfer multipliers. The main driver of this Ricardian

equivalence are expectational errors due to the cognitive limitations of finite planning horizons.

This mechanism is, therefore, quite different than in models with a Blanchard-Yaari setup or

with Rule of thumb consumers.

We provide further insight into why government spending multipliers are smaller in abso-

lute value than labor tax multipliers by varying, one by one, different features of the model

that might reverse this finding. In particular, we find that the persistence of fiscal plans plays

an important role, and that the effects of this persistence on the difference between government

spending and labor tax multipliers are amplified by finite planning horizons. Additionally, we

find that very large degrees of wage stickiness make government spending multipliers larger

and labor tax multipliers smaller in absolute value. However, for intermediate values of wage-

stickiness, the difference between the two multipliers actually becomes larger under finite

planning horizons. Finally, a smaller elasticity of intertemporal substitution in households’

preferences leads to a relative advantage for tax-based consolidations. Under finite planning

horizons, medium-run government spending multipliers remain, however, lower in absolute

value than labor tax multipliers for all values of this parameter that we consider.
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Gaĺı, Jordi, J. David López-Salido and Javier Vallés (2007), ‘Understanding the Effects of

Government Spending on Consumption’, Journal of the European Economic Association

5(1), 227–270.

Guajardo, Jaime, Daniel Leigh and Andrea Pescatori (2014), ‘Expansionary Austerity? In-

ternational Evidence’, Journal of the European Economic Association 12(4), 949–968.

41



Hong, Eunice and Sherman D Hanna (2014), ‘Financial planning horizon: A measure of

time preference or a situational factor?’, Journal of Financial Counseling and Planning

25(2), 184–196.

Honkapohja, Seppo, Kaushik Mitra and George W. Evans (2013), Notes on Agents’ Behavioral

Rules Under Adaptive Learning and Studies of Monetary Policy, in T. J.In Sargent and

e.Vilmunen, J., eds, ‘Macroeconomics at the Service of Public Policy’, Oxford University

Press, Oxford, UK.

Lovo, Stefano and Herakles Polemarchakis (2010), ‘Myopia and monetary equilibria’, Journal

of Mathematical Economics 46(5), 925–936.

Mavromatis, Kostas (2020), ‘Finite horizons and the monetary/fiscal policy mix’, Interna-

tional Journal of Central Banking forthcoming.

Mountford, Andrew and Harald Uhlig (2009), ‘What are the effects of fiscal policy shocks?’,

Journal of Applied Econometrics 24(6), 960–992.

Perotti, Roberto (1996), ‘Fiscal consolidation in europe: Composition matters’, The American

Economic Review 86(2), pp. 105–110.

Richter, Alexander W. (2015), ‘Finite lifetimes, long-term debt and the fiscal limit’, Journal

of Economic Dynamics and Control 51(0), 180 – 203.

Romer, Christina D. and David H. Romer (2010), ‘The Macroeconomic Effects of Tax

Changes: Estimates Based on a New Measure of Fiscal Shocks’, American Economic Review

100(3), 763–801.

Smets, Frank and Mathias Trabandt (2012), ‘Government debt, the zero lower bound and

monetary policy’, Preliminary Paper .

Trabandt, Mathias and Frank Smets (2012), ‘Government debt, the zero lower bound and

monetary policy’.

42



Woodford, Michael (2018), Monetary Policy Analysis When Planning Horizons Are Finite,

in ‘NBER Macroeconomics Annual 2018, volume 33’, NBER Chapters, National Bureau of

Economic Research, Inc.

Appendices

A Steady state

In this section, we derive the steady state around which the model is log-linearized, where

gross inflation equals 1.

Evaluating (38) at the zero inflation steady state gives

m̄c =
θ − 1

θ
= ζ−ζ (1− ζ)−(1−ζ) w̄1−ζ (rK)ζ . (46)

From the first order conditions of the households it follows that in this steady state we

must have

R̄ =
Π̄

β
, (47)

rK =
1− (1− δ)β

βZ̄
, (48)

C̄−σ = γ̄, (49)

r̄K = γ1 + γ2

(
Z̄ − 1

)
. (50)

Normalizing Z to one yields:

r̄K = γ1. (51)
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Having set Z = 1 simplifies the resource constraint at the steady state which reads as:

Ȳ = C̄ + Ī + Ȳ ḡ. (52)

Moreover, from the wage setting equation of labor unions, it follows that

C̄−σw̄ (1− τ̄w) = H̄η θw
θw − 1

. (53)

Furthermore, normalizing technology A, to 1, it follows from (26) that

Ȳ = K̄ζH̄1−ζ . (54)

Using the law of motion of capital, we can express steady state investment as a function of

steady state capital:

Ī = δK̄. (55)

So that the resource constraint writes as:

Ȳ =
1

1− ḡ
(
C̄ + δK̄

)
. (56)

Using the steady state marginal cost (46) and (51), we derive the following relation for the

real wage at the steady state

w̄ =

(
θ − 1

θ

)(
1

1−ζ

)
ζ

ζ
1−ζ (1− ζ) γ

−ζ
1−ζ
1 . (57)

From the firm’s cost minimization problem we may write the steady state real wage and rental

rate of capital as follows:

r̄K = m̄cζ

(
H̄

K̄

)1−ζ

w̄ = m̄c (1− ζ)

(
K̄

H̄

)ζ
. (58)
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Combining the two equations above and (51) we receive:

H̄ = γ1
1

w̄

1− ζ
ζ

K̄. (59)

Substituting (59) in the production function (54), we get:

Ȳ =

(
γ1

w̄

1− ζ
ζ

)1−ζ
K̄. (60)

Combining (56) and (60), we receive:

(
γ1

w̄

1− ζ
ζ

)1−ζ
K̄ =

1

1− ḡ
(
C̄ + δK̄

)
. (61)

Solving for C̄, we get:

C̄ = (1− ḡ)

((
γ1

w̄

1− ζ
ζ

)1−ζ
− δ

1− ḡ

)
K̄. (62)

Plugging (62) into (53) we get:

[
(1− ḡ)

((
γ1

w̄

1− ζ
ζ

)1−ζ
− δ

1− ḡ

)
K̄

]−σ
(1− τ̄w) w̄ = H̄η θw

θw − 1
. (63)

Exploiting relation (59), we can expand further:

[
(1− ḡ)

((
γ1

w̄

1− ζ
ζ

)1−ζ
− δ

1− ḡ

)
K̄

]−σ
(1− τ̄w) w̄ =

[
γ1

1

w̄

1− ζ
ζ

K̄

]η θw
θw − 1

. (64)

Gathering terms and solving for K̄, we end up to the following expression:

K̄ =

{[
(1− ḡ)

((
γ1

w̄

1− ζ
ζ

)1−ζ
− δ

1− ḡ

)]−σ
(1− τ̄w) w̄

[
γ1

w̄

1− ζ
ζ

]−η θw − 1

θw

} 1
η+σ

, (65)

where the equilibrium steady state real wage is given by (57). Using (59) and (65) the

equilibrium value of labor reads as:
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H̄ =
γ1

w̄

1− ζ
ζ

{[
(1− ḡ)

((
γ1

w̄

1− ζ
ζ

)1−ζ
− δ

1− ḡ

)]−σ
(1− τ̄w) w̄

[
γ1

w̄

1− ζ
ζ

]−η θw − 1

θw

} 1
η+σ

.

(66)

Since we have expressed private consumption, C̄ and investment Ī as a function of K̄, we

are able to pin them down by plugging (65) in (55) and (62), respectively. We can pin down

output by plugging (65) into (60).

Then we turn to the government budget constraint. In steady state, it reduces to

b̄ =
Π̄
(
τ̄W w̄ H̄

Ȳ
− ḡ
)

1− β
, (67)

where we assume that steady state lump sum taxes and transfers are 0, and where we used

(47) to substitute for the gross interest rate. Having pinned down w̄, H̄ and Ȳ above, we are

able to also pin the steady state debt ratio down. Clearly, the model features a unique steady

state.

B Derivation of Household’s Value Function

Households solve a maximization problem that includes utility within the planning horizon

as well as a valuation of the state at the end of the horizon. This valuation can be seen as

an approximation of the utility that households are expected to obtain after the end of their

planning horizon, given their accumulated wealth at the end of their horizon. In particular,

in the spirit of Woodford (2018), we assume that this approximation is obtained by using a

value function which is consistent with a future stationary equilibrium where there are no

shocks or other frictions and all variables other than then the household’s own consumption,

bond capital holdings and investment/capital decision are at the steady state.20 Here we also

assume that capital utilization is fixed at Zi = 1, and that there are no investment adjustment

costs: S(.) = 0. The F.O.C. w.r.t. capital and investment, (14), at the stationary equilibrium

20Given that we also assume a non-stochastic steady state as well as no growth in total factor productivity
in the long-run, all variables do not grow at a stationary equilibrium, like the steady state.
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then implies:

Rk

P
= γ1. (68)

Our considerations regarding households’ assumptions about what happens after the end

of their horizon imply that the maximization problem can be cast as follows:

V (B,K) = max
C
{u(C) + βV (B′,K ′)} s.t. K ′ +

β

Π̄
B′ = X̄ + (1− δ + γ1)K +

B

Π̄
− C, (69)

where the last term of the RHS of the budget constraint, X̄, consists of labor income, profits

and taxes/transfers which the household considers to be at the stationary equilibrium. To

derive the value function, V (.), we implement value function iteration. We start with:

V i,0 (B,K) = 0. (70)

Here, the optimal consumption at the initial period (period zero) is determined by the house-

hold’s budget constraint, assuming K ′ = B′ = 0:

C = (1− δ + γ1)K +
B

Π̄
+ X̄. (71)

At the steady, we have that (1− δ + γ1) = 1
β . Therefore, optimal consumption at iteration 0

reads also as follows:

C =
1

β
K +

B

Π̄
+ X̄. (72)

The above expression produces an optimized value:

V i,1 (B,K) = u

(
1

β
K +

B

Π̄
+ X̄

)
, (73)

or

V i,1 (B,K) = u

(
1

β

(
K +

βB

Π̄

)
+ X̄

)
. (74)

which is the updated value function in the household’s new maximization problem in iteration
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1. Using thus this value function, the household’s maximization problem reads as follows:

V (B,K) = max
C,K′,B′

{u(C) + βu

(
1

β

(
K ′ +

βB′

Π̄

)
+ X̄

)
}

s.t. K ′ +
β

Π̄
B′ = X̄ +

1

β
K +

B

Π̄
− C. (75)

Plugging the budget constraint into the value function, the problem writes as follows:

V (B,K) = max
C
{u(C) + βu

(
1

β

(
X̄ +

1

β
K +

B

Π̄
− C

)
+ X̄

)
}. (76)

From the F.O.C. of the maximization problem above and by monotonicity of the utility

function we get that:

C =
1

1 + β

(
1

β
K +

B

Π̄

)
+ X̄, (77)

and the optimal decision for B′ and K ′ is thus:

K ′ +
βB′

Π̄
=

β

1 + β

(
1

β
K +

B

Π̄

)
. (78)

Therefore, the value function for optimization problem for iteration 2 is computed as follows:

V i,2 (B,K) = u (C) + βu

(
1

β

(
K ′ +

βB′

Π̄

)
+ X̄

)
. (79)

Substituting for the optimal consumption and optimal choice for the assets from (77) and

(78), we get

V i,2 (B,K) = u

(
1

1 + β

(
1

β
K +

B

Π̄

)
+ X̄

)
+ βu

(
1

β (1 + β)

(
K +

βB

Π̄

)
+ X̄

)
= (1 + β)u

(
1

1 + β

(
1

β
K +

B

Π̄

)
+ X̄

)
. (80)

Continuing in a similar vein up to infinity we get that the limiting function for the optimal

consumption decision is given by:

C = (1− β)

(
1

β
K +

B

Π̄

)
+ X̄, (81)
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and the optimal decision for B′ and K ′ is thus:

K ′ +
βB′

Π̄
= (1− β)β

(
1

β
K +

B

Π̄

)
, (82)

while the value function is given by:

V i (B,K) = (1− β)−1 u

(
(1− β)

(
1

β
K +

B

Π̄

)
+ X̄

)
. (83)

Similar toWoodford (2018), this problem describes the optimal intertemporal consump-

tion decision of the household assuming that all variables that the household is not directly

choosing are in steady state. Under this assumption households make fully optimal decisions

in steady state. Moreover, when they have more wealth at the end of the horizon, they realize

how this will allow them to consume more after their horizon and hence obtain more utility.

However, they are not sophisticated enough to plan how e.g. wages and profits would change

after their horizon if they would have different consumption levels. The value function hence

captures partly how future utility depends on end of horizon wealth, but in a boundedly

rational matter that only approximates the complete true value function.

C Sticky wages

C.1 Dynamic Wage setting

In Section 5.2, we assume Calvo wage stickiness with a probability ωw of not being able to

reset the wage at any give time t. Unions then still set the nominal wage by maximizing

the expected discounted sum of the utility of households subject to the households’ budget

constraint and the demand for labor,

hjt+s =

(
W j
t

Wt+s

)−θw
Ht+s, (84)

where Ht+s is defined as in (23).

When choosing the optimal nominal wage in period t, W̃t, re-optimizing unions will an-
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ticipate that in the future it might not be able to re-optimize. Unions have finite planning

horizons which we assume to be equal to that of households. Therefore, unions evaluates

all possible situations that may arise within their planning horizon, T , using a value func-

tion in order to estimate the continuation value of the maximization problem. Hence, the

maximization problem of labor unions that can re-optimize in period t receives the following

form:

max
W̃t

Et

T∑
s=0

ωswβ
s

C1−σ
t+s

1− σ
−

(
hjt+s

)1+η

1 + η

+ (βωw)T+1 υ

(
W̃t

Wt+T
,
W̃t

Pt+T

)
. (85)

In the maximization problem (85) above, hjt+s is given by (84). υ () represents the union’s

value function which we derive in Appendix C.2 and which receives the following form:

υjw (r, w) =
1

1− ωwβ

[
u
(

(1− τ̄w)w (r)−θw H̄ + Z̄
)
− f

(
(r)−θw H̄

)]
, (86)

where Z̄ captures wealth from profits, capital and bond holdings net of lump-sum taxes which

the union assumes to be at the stationary equilibrium beyond its planning horizon. Given

this maximization problem, the first order condition is

Et

T∑
s=0

(ωwβ)s$t+sh
j
t+s

[
W̃t −

θw
θw − 1

mrst+s

]

− (βωw)T+1

1− ωwβ
(
W̄ H̄ + Z̄

)−σ (
W̃t

)1−θw
(

1

Wt+T

)−θw
H̄

− (βωw)T+1

1− ωwβ
θw

θw − 1

(
W̃t

)−θw(1+η)
((

1

Wt+T

)−θw
H̄

)1+η

= 0, (87)

which can be written as
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Et

T∑
s=0

(ωwβ)s$t+s

(
W̃t

Wt+s

)−θw
Ht+s

(1− τwt+s) W̃t

Pt+s
− θw
θw − 1

(
W̃t

Wt+s

)−θwη
Hη
t+s

$t+s


+

(βωw)T+1

1− ωwβ
$̄

(
W̃t

Wt+T

)−θw
H̄ (88)

(
(1− τ̄w) W̃t

Pt+T

(
W̃t
Wt+T

)−θw
H̄ + Z̄

)−σ
$̄

(1− τ̄w)
W̃t

Pt+T
− θw
θw − 1

(
W̃t

Wt+T

)−θwη
H̄η

$̄

 = 0.

C.2 Derivation of the Value Function of the Union

As described in the main text, we consider a continuum of unions, each of which represents

a set of households specialized in given type of labor service. Unions set the wages on behalf

of the households they represent. To that end, they seek to maximize the utility of the

household. In deriving its value function, the union takes into account the fact that it sets

the wage infrequently. Moreover, analogue to Appendix B the labor unions assumes that all

variables that are not in their direct control are at the stationary equilibrium in the periods

that the concern the value function. Following these assumptions the budget constraint of

the household from the union perspective reads as follows:

C = (1− τw) w̃1−θw
(

1

W̄

)−θw
H̄ + Z̄, (89)

where we have used the demand for labor, (84), and where Z̄ = 1−β
β K̄ + (1 − β) B̄

Π̄
− T̄ + Ξ̄.

The value function of the union thus receives the following form:

υjw (w̃) =u((1− τw) w̃

(
w̃

W̄

)−θw
H̄ + Z̄)− f

((
w̃

W̄

)−θw
H̄

)
+ ωwβυ

j
w (w̃) (90)

+ (1− ωw)βυoptw ,

where, in the equation above, u(.) represents utility from consumption satisfying u′(.) >

51



0, u′′(.) < 0 and f(.) represents disutility from labor supply satisfying f ′(.), f ′′(.) > 0. In the

equation above, we have substituted individual labor in the disutility term by the demand

for labor condition (84) evaluated at the steady state.

Analogue to the firm case in Equation (34), υoptw represents the value in case the union

can re-optimize in the next period. Again, this term is independent of current decisions and

can be ignored in the derivation of the value function that we need. We therefore take

υjw (w̃, r) =
1

1− ωwβ

[
u
(

(1− τw) w̃r−θwH̄ + Z̄
)
− f

(
r−θwH̄

)]
, (91)

where r = w̃
W̄

.

D Log-linear model

D.1 Optimal consumption decision

The log-linearized optimality conditions of the household (including budget constraints) are

given by

Ĉis = Ĉis+1 −
1

σ
(EitR̂s − Eitπs+1), s = t, t+ 1, ...t+ T − 1, (92)

Îis =
1

1 + β
Îis−1 +

1

κ (1 + β)
Q̂is +

β

(1 + β)
Îis+1, s = t, t+ 1, ...t+ T − 1, (93)

Q̂is = β (1− δ) Q̂is+1 + $̂i
s+1 − $̂i

s + βrkr̂ks+1, s = t, t+ 1, ...t+ T − 1, (94)

b̃it+T+1 = − K̄

βȲ
K̂t+T+1 +

C̄

ΥȲ
Ĉit+T +

C̄

σΥȲ
R̂t+T , (95)

K̂i
t+T+1 = −βγ̄

− 1
σ

σΥK̄
γ̂it+T −

βȲ

K̄
b̃it+T+1, (96)

Îit+T = Îit+T−1 −
1

κ

(
σĈit+T + γ̂it+T

)
, (97)
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b̃is+1 =
w̄

β
((1− τ̄W )(Eitŵs+E

i
tĤs)− Eit τ̃Ws ) +

1

β
b̃is + b̄(R̂s −

1

β
Eit π̂s) +

Ξ̄

Ȳ β
EitΞ̂

i
s

+
γ1K̄

βȲ

(
r̂kt + K̂i

t

)
− C̄

βȲ
Ĉis −

Ī

βȲ
Îis −

1

β
τ̃s, s = t, t+ 1, ...t+ T.

(98)

Plugging the capital accumulation equation (5) in its log-linear form to substitute out for

investment, Ît, we receive the following expression for the household budget constraint:

b̃is+1 =
w̄

β
((1− τ̄W )(Eitŵs + EitĤs)− Eit τ̃Ws ) +

1

β
b̃is + b̄(R̂s −

1

β
Eit π̂s) +

Ξ̄

Ȳ β
EitΞ̂s

+
γ1K̄

βȲ

(
r̂ks + K̂i

s

)
− C̄

βȲ
Ĉis −

K̄

βȲ

(
K̂i
s+1 − (1− δ) K̂i

s

)
− 1

β
τ̃s. s = t, t+ 1, ...t+ T,

(99)

Taking the K̂t+1 term to the LHS we receive:

b̃is+1 +
K̄

βȲ
K̂i
s+1 =

w̄

β
((1− τ̄W )(Eitŵs + EitĤs)− Eit τ̃Ws ) +

1

β
b̃is + b̄(R̂s −

1

β
Eit π̂s) +

Ξ̄

Ȳ β
EitΞ̂s

+
γ1K̄

βȲ

(
r̂ks + K̂i

s

)
− C̄

βȲ
Ĉis +

K̄

βȲ
(1− δ) K̂i

s −
1

β
τ̃s, s = t, t+ 1, ...t+ T. (100)

Gathering the K̂i
s terms and using the fact 1− δ + γ1 = 1/β, we receive the following:

b̃is+1 +
K̄

βȲ
K̂i
s+1 =

w̄

β
((1− τ̄W )(Eitŵs + EitĤs)− Eit τ̃Ws ) + b̄(R̂s −

1

β
Eit π̂s) +

Ξ̄

Ȳ β
EitΞ̂s

+
γ1K̄

βȲ
r̂ks −

C̄

βȲ
Ĉis +

1

β

(
b̃is +

K̄

βȲ
K̂i
s

)
− 1

β
τ̃s, s = t, t+ 1, ...t+ T. (101)
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Iterating the log-linearized budget constraints from period t+ T backward gives:

βT+1

(
b̃it+T+1 +

K̄

βȲ
K̂i
t+T+1

)
=

(
b̃it +

K̄

βȲ
K̂i
t

)
− C̄

Ȳ

T∑
s=0

βs(Ĉit+s) +
Ξ̄

Ȳ

T∑
s=0

βs(EitΞ̂t+s)

+ b̄
T∑
s=0

βs
(
βEitR̂t+s − Eit π̂t+s

)
+ w̄

T∑
s=0

βs
((

1− τ̄W
) (
Eitŵt+s + EitĤt+s

)
− Eit τ̃Wt+s

)
+
γ1K̄

Ȳ

T∑
s=0

βsEit r̂
k
t+s −

T∑
s=0

βsEit τ̃t+s. (102)

Using (95) we receive

βT+1 C̄

ΥȲ
Ĉit+T + βT+1 C̄

σΥȲ
EitR̂t+T

=

(
b̃it +

K̄

βȲ
K̂i
t

)
− C̄

Ȳ

T∑
s=0

βs(Ĉit+s) +
Ξ̄

Ȳ

T∑
s=0

βs(EitΞ̂t+s)

+ b̄
T∑
s=0

βs
(
βEitR̂t+s − Eit π̂t+s

)
+ w̄

T∑
s=0

βs
((

1− τ̄W
) (
Eitŵt+s + EitĤt+s

)
− Eit τ̃Wt+s

)
+
γ1K̄

Ȳ

T∑
s=0

βsr̂kt+s −
T∑
s=0

βsEit τ̃t+s. (103)

Next, we use the Euler equation to substitute for future consumption. Iterating the Euler

equation gives

Ĉit+s = Ĉit +
s−1∑
j=0

1

σ
(EitR̂t+j − Eitπt+j+1), T − s ≥ 1. (104)

54



Substituting for future consumption in (103) gives:

βT+1 C̄

ΥȲ

Ĉit +
T−1∑
j=0

1

σ
(EitR̂t+j − Eitπt+j+1)

+ βT+1 C̄

σΥȲ
R̂t+T

=

(
b̃it +

K̄

βȲ
K̂i
t

)
− C̄

Ȳ

T∑
s=0

βs

Ĉit +

s−1∑
j=0

1

σ
(EitR̂t+j − Eitπt+j+1)


+

Ξ̄

Ȳ

T∑
s=0

βs(EitΞ̂t+s) + b̄
T∑
s=0

βs
(
βEitR̂t+s − Eit π̂t+s

)
+ w̄

T∑
s=0

βs
((

1− τ̄W
) (
Eitŵt+s + EitĤt+s

)
− Eit τ̃Wt+s

)
+
γ1K̄

Ȳ

T∑
s=0

βsEit r̂
k
t+s −

T∑
s=0

βsEit τ̃t+s. (105)

Taking contemporaneous consumption to one side of the equation gives the current decision

of consumer i

C̄

Ȳ

(
βT+1

Υ
+

1− βT+1

1− β

)
Ĉit

=

(
b̃it +

K̄

βȲ
K̂i
t

)
− C̄

Ȳ

T∑
s=1

βs

s−1∑
j=0

1

σ
(EitR̂t+j − Eitπt+j+1)

+
Ξ̄

Ȳ

T∑
s=0

βs(EitΞ̂t+s)

+ b̄

T∑
s=0

βs
(
βEitR̂t+s − Eit π̂t+s

)
− βT+1 C̄

ΥȲ

T−1∑
j=0

1

σ
(EitR̂t+j − Eitπt+j+1)

+ w̄
T∑
s=0

βs
((

1− τ̄W
) (
Eitŵt+s + EitĤt+s

)
− Eit τ̃Wt+s

)
+
γ1K̄

Ȳ

T∑
s=0

βsEit r̂
k
t+s − βT+1 C̄

σΥȲ
R̂t+T −

T∑
s=0

βsEit τ̃t+s. (106)

Aggregating this equation over all households yields an expression for aggregate consumption
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as a function of aggregate expectations about aggregate variables, only.

C̄

Ȳ

(
βT+1

Υ
+

1− βT+1

1− β

)
Ĉt

=

(
b̃it +

K̄

βȲ
K̂i
t

)
− C̄

Ȳ

T∑
s=1

βs

s−1∑
j=0

1

σ
(EtR̂t+j − Etπt+j+1)

+
Ξ̄

Ȳ

T∑
s=0

βs(EtΞ̂t+s)

+ b̄
T∑
s=0

βs
(
βEtR̂t+s − Etπ̂t+s

)
− βT+1 C̄

ΥȲ

T−1∑
j=0

1

σ
(EtR̂t+j − Etπt+j+1)

+ w̄

T∑
s=0

βs
((

1− τ̄W
) (
Etŵt+s + EtĤt+s

)
− Etτ̃Wt+s

)
+
γ1K̄

Ȳ

T∑
s=0

βsEtr̂
k
t+s − βT+1 C̄

σΥȲ
R̂t+T −

T∑
s=0

βsEtτ̃t+s. (107)

D.2 Investment decision

Iterating (94) forward, we obtain

Q̂it = βT (1− δ)T Q̂it+T +
1

β (1− δ)

T∑
s=1

βs (1− δ)s $̂i
t+s −

T−1∑
s=0

βs (1− δ)s $̂i
t+s

+
βγ1

β (1− δ)

T∑
s=1

βs (1− δ)s r̂kt+s. (108)

From (10) we have that:

$̂s = −σĈs, s = t, t+ 1, ...t+ T. (109)

Plugging (109) into (108) we receive:

Q̂it = βT (1− δ)T Q̂it+T −
σ

β (1− δ)

T∑
s=1

βs (1− δ)s Ĉit+s + σ
T−1∑
s=0

βs (1− δ)s Ĉit+s

+
βγ1

β (1− δ)

T∑
s=1

βs (1− δ)s r̂kt+s. (110)

Plugging (104) into (110) we end up to the following expression for Q̂it:
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Q̂it = βT (1− δ)T Q̂it+T −
σ

β (1− δ)

T∑
s=1

βs (1− δ)s
Ĉit +

s−1∑
j=0

1

σ
(EitR̂t+j − Eitπt+j+1)


+ σ

T−1∑
s=0

βs (1− δ)s
Ĉit +

s−1∑
j=0

1

σ
(EitR̂t+j − Eitπt+j+1)

+
βγ1

β (1− δ)

T∑
s=1

βs (1− δ)s r̂kt+s.

(111)

Gathering the consumption terms yields:

Q̂it = βT (1− δ)T Q̂it+T − β (1− δ)
T∑
s=1

βs (1− δ)s
s−1∑
j=0

(EitR̂t+j − Eitπt+j+1)


+

T−1∑
s=0

βs (1− δ)s
s−1∑
j=0

(EitR̂t+j − Eitπt+j+1)

+
βγ1

β (1− δ)

T∑
s=1

βs (1− δ)s r̂kt+s. (112)

From (95) and (96) and by combining (109), we receive the following law of motion for Q̂it:

Q̂it = −βT (1− δ)T EitR̂t+T − β (1− δ)
T∑
s=1

βs (1− δ)s
s−1∑
j=0

(EitR̂t+j − Eitπt+j+1)


+
T−1∑
s=0

βs (1− δ)s
s−1∑
j=0

(EitR̂t+j − Eitπt+j+1)

+
βγ1

β (1− δ)

T∑
s=1

βs (1− δ)s r̂kt+s. (113)

Using (95) - (97) it follows that

Îit+T =

(
ÊtÎ

i
t+T−1 +

1

κ
R̂t+T

)
. (114)

This can be used to solve (93) from period t+ T − 1 backward to

Îit = Îit−1 +
1

κ

T−1∑
s=0

βsQ̂it+s + βT
1

κ
R̂t+T . (115)

Iterating (94) s times, in a similar way as the derivation of (113), we can obtain expressions

for Q̂it+s for any s < T :

57



Q̂it+s = −βT−s (1− δ)T−sEitR̂t+T − β (1− δ)
T−s∑
l=1

βl (1− δ)l
 l−1∑
j=0

(EitR̂t+s+j − Eitπt+j+s+1)


+
T−s−1∑
l=0

βl (1− δ)l
 l−1∑
j=0

(EitR̂t+s+j − Eitπt+j+s+1)

+
βγ1

β (1− δ)

T−s∑
l=1

βl (1− δ)l r̂kt+s+l.

(116)

Plugging in Qit+s in (115) gives

Îit =Îit−1 +
1

κ

T−1∑
s=0

βs
[
− βT−s (1− δ)T−sEitR̂t+T − β (1− δ)

T−s∑
l=1

βl (1− δ)l
 l−1∑
j=0

(EitR̂t+s+j − Eitπt+s+j+1)


+
T−s−1∑
l=0

βl (1− δ)l
 l−1∑
j=0

(EitR̂t+s+j − Eitπt+s+j+1)

+
βγ1

β (1− δ)

T−s∑
l=1

βl (1− δ)l r̂kt+s+l
]

+ βT
1

κ
R̂t+T .

(117)

Îit =Îit−1 −
βT

κ
EitR̂t+T

T−1∑
s=0

(1− δ)T−s + βT
1

κ
R̂t+T +

βγ1

β (1− δ)
1

κ

T−1∑
s=0

βs
T−s∑
l=1

βl (1− δ)l r̂kt+s+l

− β (1− δ) 1

κ

T−1∑
s=0

βs
T−s∑
l=1

βl (1− δ)l
 l−1∑
j=0

(EitR̂t+s+j − Eitπt+s+j+1)


+

1

κ

T−1∑
s=0

βs
T−s−1∑
l=0

βl (1− δ)l
 l−1∑
j=0

(EitR̂t+s+j − Eitπt+s+j+1)

 . (118)

Exploiting the definition for finite sums of fixed parameters, we may re-write equation
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(118) above as follows:

Îit =Îit−1 +

(
1− (1− δ)(1− (1− δ)T )

δ

)
βT

κ
EitR̂t+T +

βγ1

β (1− δ)
1

κ

T−1∑
s=0

βs
T−s∑
l=1

βl (1− δ)l r̂kt+s+l

− β (1− δ) 1

κ

T−1∑
s=0

βs
T−s∑
l=1

βl (1− δ)l
 l−1∑
j=0

(EitR̂t+s+j − Eitπt+s+j+1)


+

1

κ

T−1∑
s=0

βs
T−s−1∑
l=0

βl (1− δ)l
 l−1∑
j=0

(EitR̂t+s+j − Eitπt+s+j+1)

 . (119)

Aggregating gives

Ît =Ît−1 +

(
1− (1− δ)(1− (1− δ)T )

δ

)
βT

κ
EtR̂t+T +

βγ1

β (1− δ)
1

κ

T−1∑
s=0

βs
T−s∑
l=1

βl (1− δ)l r̂kt+s+l

− β (1− δ) 1

κ

T−1∑
s=0

βs
T−s∑
l=1

βl (1− δ)l
 l−1∑
j=0

(EtR̂t+s+j − Etπt+s+j+1)


+

1

κ

T−1∑
s=0

βs
T−s−1∑
l=0

βl (1− δ)l
 l−1∑
j=0

(EtR̂t+s+j − Etπt+s+j+1)

 . (120)

D.3 Wage setting

When wages are flexible, they are simply set according to the aggregated loglinearized version

of (25):

ŵt+s = ηĤt+s + σĈt+s +
τ̃wt+s

1− τ̄W
(121)

If, instead, we have sticky wages, we log-linearize the FOC (88) around the zero steady

state wage inflation to receive:
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(
1 + θwη

1− ωwβ
− (ωwβ)T+1

1− ωwβ
(1− τ̄W )w̄H̄

C̄
(θw − 1)

)
ˆ̃wt = (122)

+

T∑
s=0

(ωwβ)s
(
ηĤt+s + σĈt+s +

τ̃wt+s
1− τ̄W

− ŵt+s
)

+ (1 + θwη)

T∑
s=1

(ωwβ)s
s∑

τ=1

πwt+τ

− (ωwβ)T+1

1− ωwβ

(
1 +

(1− τ̄W )w̄H̄

C̄

)
ŵt+T +

(ωwβ)T+1

1− ωwβ

(
1 + θwη −

(1− τ̄W )w̄H̄

C̄
(θw − 1)

) T∑
τ=1

πwt+τ ,

where where ˆ̃wt = ˆ̃Wt− Ŵt and πwt = Ŵt− Ŵt−1. Given the assumed wage setting structure,

the evolution of the aggregate log-linearized nominal wage index is given by:

Ŵt = ωwŴt−1 + (1− ωw) ˆ̃Wt, (123)

which after adding and subtracting (1− ωw) Ŵt and solving for ˆ̃Wt − Ŵt yields the following

expression:

ˆ̃wt =
ωw

1− ωw
πwt , (124)

Plugging (124) into (122) and writing the double sum as a geometric series, we can obtain

πwt = ϕw

T∑
s=0

(ωwβ)s
(
ηĤt+s + σĈt+s +

τ̃wt+s
1− τ̄W

− ŵt+s
)
− ϕwtŵt+T + ϕpw

T∑
s=1

(ωwβ)s πwt+s,

(125)

with

ϕw =
(1− ωw)(1− ωwβ)

ωw

C̄

C̄(1 + θwη)− (ωwβ)T+1 (1− τ̄W )w̄H̄(θw − 1)
, (126)

ϕwt =
(1− ωw) (ωwβ)T+1

ωw

C̄ + (1− τ̄W )w̄H̄

C̄(1 + θwη)− (ωwβ)T+1 (1− τ̄W )w̄H̄(θw − 1)
, (127)

ϕpw =
(1− ωw)

ωw
. (128)

60



D.4 linearized firm equations

Log linearizing (38) gives

p̂∗t (j)− p̂t

= (1− ωβ)Ẽjt

T∑
s=0

ωsβs (m̂ct+s + p̂t+s − p̂t) + (ωβ)T+1Ẽjt (p̂t+T − p̂t) ,

which can be written in terms of inflation expectations as

p̂∗t (j)− p̂t = (1−ωβ)

[
m̂ct + Ẽjt

T∑
s=1

ωsβs

(
m̂ct+s +

s∑
τ=1

πt+τ

)]
+(ωβ)T+1Ẽjt

T∑
τ=1

πt+τ . (129)

Next, (39) can be log-linearized to

p̂t = ωp̂t−1 + (1− ω)

∫ 1

0
p̂∗t (j)dj,

from which it follows that

πt =
1− ω
ω

(∫ 1

0
p̂∗t (j)dj − p̂t

)
. (130)

Aggregating (129) and plugging this in in the above expression gives

πt =
(1− ω)(1− ωβ)

ω

(
m̂ct +

T∑
s=1

ωsβsÊtm̂ct+s +

T∑
s=1

ωsβs
s∑

τ=1

Êtπt+τ +
(ωβ)T+1

1− ωβ

T∑
τ=1

Êtπt+τ

)
.

(131)

Writing the Double sum as a geometric series and combing with the final term we can

rewrite this as

πt = κmc

T∑
s=0

ωsβsÊtm̂ct+s +
(1− ω)

ω

T∑
s=1

ωsβsÊtπt+s, (132)

κmc =
(1− ω)(1− ωβ)

ω
. (133)
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D.5 Final model

The log-linearized version of the resource constraint (44) reads as follows:

Ŷt =
C̄

Ȳ
Ĉt +

Ī

Ȳ
Ît + g̃t +

γ1K̄

Ȳ
Ẑt. (134)

Plugging (134) into (106) to substitute out for consumption yields:

C̄

Ȳ

(
βT+1

Υ
+

1− βT+1

1− β

)(
Ȳ

C̄
Ŷt −

Ī

C̄
Ît −

Ȳ

C̄
g̃t −

γ1K̄

C̄
Ẑt

)

=

(
b̃it +

K̄

βȲ
K̂i
t

)
− C̄

Ȳ

T∑
s=1

βs

s−1∑
j=0

1

σ
(EtR̂t+j − Etπt+j+1)

+
Ξ̄

Ȳ

T∑
s=0

βs(EtΞ̂t+s)

+ b̄

T∑
s=0

βs
(
βEtR̂t+s − Etπ̂t+s

)
− βT+1 C̄

ΥȲ

T−1∑
j=0

1

σ
(EtR̂t+j − Etπt+j+1)

+ w̄
T∑
s=0

βs
((

1− τ̄W
) (
Etŵt+s + EtĤt+s

)
− Etτ̃Wt+s

)
+
γ1K̄

Ȳ

T∑
s=0

βsEtr̂
k
t+s − βT+1 C̄

σΥȲ
R̂t+T −

T∑
s=0

βsEtτ̃t+s. (135)

Rearranging terms and solving for output, Ŷt:

Ŷt =

1

ρ

(
b̃it +

K̄

βȲ
K̂i
t

)
− C̄

Ȳ ρ

T∑
s=1

βs

s−1∑
j=0

1

σ
(EtR̂t+j − Etπt+j+1)

+
1

ρ

Ξ̄

Ȳ

T∑
s=0

βs(EtΞ̂t+s)

+
1

ρ
b̄

T∑
s=0

βs
(
βEtR̂t+s − Etπ̂t+s

)
− 1

ρ
βT+1 C̄

ΥȲ

T−1∑
j=0

1

σ
(EtR̂t+j − Etπt+j+1)

+
w̄

ρ

T∑
s=0

βs
((

1− τ̄W
)

(Etŵt+s + EtĤt+s)− Etτ̃Wt+s
)

+
1

ρ

γ1K̄

Ȳ

T∑
s=0

βsr̂kt+s − βT+1 C̄

σΥȲ
R̂t+T −

1

ρ

T∑
s=0

βsEtτ̃t+s +
Ī

Ȳ
Ît + g̃t +

γ1K̄

Ȳ
Ẑt, (136)

where
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ρ =

(
βT+1

Υ
+

1− βT+1

1− β

)
. (137)

Next, log-linearizing profits of firm j to

Ξ̂t(j) =
1

1− m̄c
(p̂t(j)− p̂t) + Ŷt(j)−

m̄c

1− m̄c
m̂ct. (138)

Aggregate profits can be written as

Ξ̂t = Ŷt − (θ − 1)m̂ct, (139)

where we used that m̄c = θ−1
θ .

Next, we write marginal costs as

m̂ct = (1− ζ)ŵt + ζr̂kt , (140)

and use

r̂ks =
γ2

γ1
Ẑs. (141)

Finally, the loglinearized production function can be solved for aggregate labor as

Ĥt =
1

1− ζ
Ŷt −

ζ

1− ζ
K̂t −

ζ

1− ζ
Ẑt. (142)

We now assume that agents know, or have learned about the above relations between

aggregate variables (which hold in every period). Therefore, expectations about profits, the

price of capital and aggregate can be substituted for. This gives
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(1− νy) Ŷt =
1

ρ

(
b̃t +

K̄

βȲ
K̂t

)
+
Ī

Ȳ
Ît + g̃t +

γ1K̄

Ȳ
Ẑt −

1

ρ

T∑
s=0

βsEtτ̃t+s + νy

T∑
s=1

βs(ÊtŶt+s)

− νk
T∑
s=0

βs(ÊtK̂t+s) + νz

T∑
s=0

βs(ÊtẐt+s)− ντ
T∑
s=0

βs
(
Etτ̃

W
t+s

)
+ νw

T∑
s=0

βs (Etŵt+s)

− νr
T∑
s=1

βs
s∑
j=1

(ÊtRt+j−1 − Êtπt+j) +
1

ρ
b̄

T∑
s=0

βs
(
βEtR̂t+s − Etπ̂t+s

)

− 1

ρ
βT+1 C̄

ΥȲ

T−1∑
j=0

1

σ
(EtR̂t+j − Etπt+j+1)− βT+1 C̄

ρσΥȲ
R̂t+T , (143)

with

νy =
1

θρ
+
(
1− τ̄W

) w̄
ρ

1

1− ζ
, (144)

νz =
γ2

ργ1

(
γ1K̄

Ȳ
− θ − 1

θ
ζ

)
−
(
1− τ̄W

) w̄
ρ

ζ

1− ζ
, (145)

νk =
(
1− τ̄W

) w̄
ρ

ζ

1− ζ
, (146)

ντ =
w̄

ρ
, (147)

νw =
(
1− τ̄W

) w̄
ρ
− θ − 1

θρ
(1− ζ), (148)

νr =
C̄

Ȳ σρ
. (149)

Next, using (141) in (120) gives

Ît =Ît−1 +

(
1− (1− δ)(1− (1− δ)T )

δ

)
βT

κ
EtR̂t+T +

γ2

(1− δ)
1

κ

T−1∑
s=0

βs
T−s∑
l=1

βl (1− δ)l Ẑt+s+l

− β (1− δ) 1

κ

T−1∑
s=0

βs
T−s∑
l=1

βl (1− δ)l
 l−1∑
j=0

(EtR̂t+s+j − Etπt+s+j+1)


+

1

κ

T−1∑
s=0

βs
T−s−1∑
l=0

βl (1− δ)l
 l−1∑
j=0

(EtR̂t+s+j − Etπt+s+j+1)

 . (150)
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Using (134) and the production function we can write

ηĤt + σĈt = (
η

(1− ζ)
+
σȲ

C̄
)Ŷt −

ηζ

(1− ζ)
ˆ̃Kt −

σȲ

C̄
g̃t −

σĪ

C̄
Ît −

σγ1K̄

C̄
Ẑt (151)

= (
η

(1− ζ)
+
σȲ

C̄
)Ŷt −

ηζ

(1− ζ)
K̂t −

σȲ

C̄
g̃t −

σĪ

C̄
Ît −

(
σγ1K̄

C̄
+

ηζ

(1− ζ)

)
Ẑt.

When wages are flexible, we can plug this into (121) to obtain

πwt =ϕfy

T∑
s=0

(ωwβ)s Ŷt+s − ϕfk
T∑
s=0

(ωwβ)s K̂t+s − ϕfg
T∑
s=0

(ωwβ)s g̃t+s + ϕfτ

T∑
s=0

(ωwβ)s τ̃Wt+s

(152)

− ϕfi
T∑
s=0

(ωwβ)s Ît+s − ϕfz
T∑
s=0

(ωwβ)s Ẑt+s

Moreover, using (134) for the case of sticky wages, the wage Phillips curve, (125), becomes

πwt =ϕy

T∑
s=0

(ωwβ)s Ŷt+s − ϕk
T∑
s=0

(ωwβ)s K̂t+s − ϕg
T∑
s=0

(ωwβ)s g̃t+s + ϕτ

T∑
s=0

(ωwβ)s τ̃Wt+s

(153)

− ϕi
T∑
s=0

(ωwβ)s Ît+s − ϕz
T∑
s=0

(ωwβ)s Ẑt+s + ϕpw

T∑
s=1

(ωwβ)s πwt+s − ϕw
T∑
s=0

(ωwβ)s ŵt+s − ϕwtŵt+T ,

with

ϕy = ϕw(
η

(1− ζ)
+
σȲ

C̄
), (154)

ϕk = ϕw
ηζ

(1− ζ)
, (155)

ϕg = ϕw
σȲ

C̄
, (156)

ϕτ = ϕw
1

1− τ̄W
, (157)
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ϕi = ϕw
σĪ

C̄
, (158)

ϕz = ϕw

(
σγ1K̄

C̄
+

ηζ

(1− ζ)

)
. (159)

The flexible coefficients with superscript f in Equation (153) are obtained by replacing ϕw

with 1 in the above 6 definitions.

When wages are sticky, the evolution of the aggregate real wage, can then be calculated

as

ŵt = ŵt−1 + πwt − πt. (160)

Further, plugging in marginal costs in (132) gives

πt =κw

T∑
s=0

ωsβsÊtŵt+s + κz

T∑
s=0

ωsβsÊtẐt+s + κπ

T∑
s=1

ωsβsÊtπt+s,

κw = κmc(1− ζ), (161)

κz = κmcζ
γ2

γ1
, (162)

κπ =
(1− ω)

ω
. (163)

The capital accumulation equation can be log-linearized to

K̂t+1 = (1− δ) K̂t +
Ī

K̄
Ît. (164)

Log-linearizing (30) gives

r̂kt = m̂ct + (ζ − 1)( ˆ̃Kt − Ĥt). (165)

Combining this with (140), we can obtain an equation for capital utilization.

(
γ2

γ1
+

1

1− ζ

)
Zt =

1

1− ζ
Ŷt −

1

1− ζ
K̂t + ŵt. (166)

To complete the model we log-linearize the government budget constraint, and substitute
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for Labor using the production function (41), to

b̃t+1 =
1

β
g̃t −

w̄

β
(τ̄W (ŵt + Ĥt) + τ̃Wt ) +

1

β
b̃t + b̄(R̂t −

1

β
π̂t)−

1

β
τ̃t, (167)

b̃t+1 =
1

β
g̃t −

1

β
τ̃t −

w̄

β
τ̄W ŵt −

w̄

β
τ̄W

1

(1− ζ)
Ŷt +

w̄

β
τ̄W

ζ

(1− ζ)
K̂t

+
w̄

β
τ̄W

ζ

(1− ζ)
Ẑt −

w̄

β
τ̃Wt +

1

β
b̃t + b̄(R̂t −

1

β
π̂t). (168)
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