Relative Price Shocks and Inflation

Francisco Ruge-Murcia Alexander L. Wolman¹

McGill University

Federal Reserve Bank of Richmond

25th Annual DNB Research Conference, Amsterdam November 10, 2022

¹The views here are those of the authors alone. They do not represent the views of any part of the Federal Reserve System. $(a \cap b) (a \cap b)$

Intro	Model	Estimates	Properties	Applications	COVID	Conclusion
●0000	000	00	000000	0000000	000	
Overvie	W					

- There are large monthly relative price changes across consumption categories.
- What role do the factors driving those *relative* price changes play in the behavior of inflation in a stable monetary regime?
- Study U.S. from 1995 to 2019, multi-sector NK model.
 - overall contrib'n of relative price shocks to inflation
 - in sample application to inflation shortfall (2012-2019)
 - out of sample application to COVID (maintained assumption regime remained stable)

• Additional discussion of COVID inflation, does it seem to come from same stable regime?

Intro	Model	Estimates	Properties	Applications	COVID	Conclusion
0●000	000	00	000000	0000000	000	00000
Outline						

- Motivation and literature
- Ø Model
- General properties of model
- Stimated parameters
- Properties of estimated model
- O Applications: shortfall, COVID
- OVID inflation without a theoretical model

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Onclusion

Intro	Model	Estimates	Properties	Applications	COVID	Conclusion
00●00	000	00	000000	0000000	000	00000
Motiva	tion					

- Practical central banking question: to what extent is inflation driven by real shocks when CB is following a stable policy?
- To answer that question we need two things:
 - A model
 - Data from a stable regime
- We have a model, and arguably data from a stable regime.

Intro	Model	Estimates	Properties	Applications	COVID	Conclusion
000●0	000	00	000000	0000000	000	00000
Literati	ure					

- Many, many papers. A few especially relevant:
- Models where distribution of "relative price shocks" matters for inflation:
 - Ball and Mankiw (1995): fixed costs, so firms only adjust if large desired price change
 - Balke and Wynne (2000): sectoral productivity shocks interact with; flexible prices, constant money growth

- Smets et al. (2019): emphasize input-output mechanism
- Reis and Watson (2010) factor model, argue inflation associated to a large extent with relative price changes.

Intro	Model	Estimates	Properties	Applications	COVID	Conclusion
0000●	000	00	000000	0000000	000	00000
More n	notivatio	on				

- U.S. data 1995-2019
- Monthly inflation (y-axis) closely related to monthly share of relative price increases (x-axis).
- To understand inflation, need to understand distrib'n of relative price changes (*in a stable monetary regime*).

Intro	Model	Estimates	Properties	Applications	COVID	Conclusion
00000	●○○	00	000000	0000000	000	00000
The n	nodel in	one slide				

- Basic NK model, 15 consumption categories ("sectors")
 - Cobb-Douglas across sectors

$$C_t = \prod_j \xi_j^{-\xi_j} c_{j,t}^{\xi_j} \tag{1}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• CES within sectors (Dixit-Stiglitz)

$$c_{j,t} = \left(\int \left(c_{l,j,t}\right)^{(\theta-1)/\theta} dl\right)^{\theta/(\theta-1)}, \qquad (2)$$

- Heterogeneity across sectors:
 - Productivity process persistence ρ_j , shock variance σ_i^2
 - Price stickiness parameter (Rotemberg), ϕ_j
- Standard Taylor-type rule
- Local analysis around target inflation rate

Intro
00000Model
00Estimates
00Properties
0000000Applications
00000000COVID
0000Conclusion
00000General properties of model (1)

Feasible to perfectly stabilize inflation

- Sectoral productivity shocks (we call them relative price shocks) mean cannot stabilize ALL prices.
- But no problem *in the model* to hit π^* every period: policy rule $\pi_t = \pi^*$.
- Intuition from flex price model: real shocks determine relative prices and monetary policy determines inflation.
- With sticky prices, no dichotomy, but monetary policy can still choose inflation (*in the model*).

For a "typical" policy rule, relative price shocks move inflation:

- Sectoral shocks are aggregate shocks, and as such, they move the inflation rate.
- Under a perfect inflation peg $\pi_t = \pi^*$, equilibrium function for R_t involves large responses to all sectoral productivity shocks.

• In contrast, with Taylor type rule, equilibrium R_t has small responses to all sectoral shocks (*but not zero*).

Intro	Model	Estimates	Properties	Applications	COVID	Conclusion
00000	000	●0	000000	0000000	000	00000
Estimat	tion					

- Maximum likelihood using Kalman filter.
- Observables: sectoral price changes and fed funds rate.
- U.S. data, 1995-January 2020.
- Calibrate parameters that determine steady state.
- Linearize model around steady state with balanced growth:
 - Inflation target $\pi^* \approx 2\%$.
 - Sectoral trend prod. growth from trends in relative prices.
 - Accommodate trend in interest rate with time-varying r*: fit quadratic time trend to r_t.

Estimat	ted pa	rameters (highlights	:)		
Intro	Model	Estimates	Properties	Applications	COVID	Conclusion
00000	000	⊙●	000000	0000000	000	00000

Heterogeneity in price stickiness and shock processes

Category	Price stickiness ϕ_j	Shock σ_j
Motor vehicles and parts	7.32	0.46
Furnishings and household durables	0.19	0.39
Recreational goods	0.68	0.38
Other durable goods	0.00	0.58
Food at home	4.23	0.32
Clothing and footwear	0.52	0.55
Gasoline and other energy goods	3.67	6.14
Other nondurable goods	0.03	0.32
Housing and utilities	8.49	0.19
Health care	4.09	0.18
Transportation services	0.26	0.53
Recreation services	2.09	0.24
Food services and accommodations	111.12	1.99
Financial services and insurance	0.00	0.71
Other services	12.89	0.27

- Fits sectoral and aggregate price change data, by construction.
- Sectoral productivity shocks drive own relative prices, small opposite effect on other relative prices (by definition, zero effect on average relative price).
- Sectoral productivity shocks primary driver of inflation $(\approx 75\%)$, rest monetary policy (stable regime).
- Model matches empirical relationship between inflation and share of relative price increases.
- Clear heterogeneity in price stickiness, but heterogeneity in shock volatility more important for matching relationship between relative price changes and inflation.

Intro	Model	Estimates	Properties	Applications	COVID	Conclusion
00000	000	00	0●0000	0000000	000	00000
Prope	rties of	estimated	model:	2nd moment	s	

	St	Dev	Autocorre	lation
Variable	Data	Model	Data	Model
	(1)	(2)	(3)	(4)
Nominal interest rate	0.110	0.043	0.992	0.939
Aggregate inflation	0.187	0.252	0.387	0.139
Sectoral price changes:				
Motor vehicles and parts	0.315	0.348	0.307	0.325
Furnishings and household durables	0.377	0.432	-0.019	0.000
Recreational goods	0.355	0.415	0.026	0.047
Other durable goods	0.597	0.628	-0.170	-0.013
Food at home	0.263	0.307	0.266	0.228
Clothing and footwear	0.517	0.566	0.016	0.039
Gasoline and other energy goods	4.986	4.828	0.349	0.211
Other nondurable goods	0.303	0.382	-0.140	-0.024
Housing and utilities	0.140	0.197	0.338	0.324
Health care	0.148	0.224	0.116	0.207
Transportation services	0.511	0.558	-0.045	0.005
Recreation services	0.208	0.273	0.097	0.127
Food services and accommodations	0.169	0.211	-0.056	0.288
Financial services and insurance	0.722	0.762	-0.236	-0.012
Other services	0.171	0.221	0.356	0.410

Intro 00000	Model 000	Estimates 00	Properties 0000●0	App 000	olications	000	000	00
Pro	perties of	estimated	model:	varia	nce de	compo	sitions	
				Bench	nmark	Flexible	e-Price	
			-	Own	Mon.	Own	Mon.	
		Variable		Shock	Policy	Shock	Policy	
-	Motor vehicl	es and parts		86.48	9.99	81.68	15.47	
	Furnishings a	and household	durables	78.46	15.44	86.02	11.87	
	Recreational	goods		79.42	14.98	83.97	13.43	
	Other durab	le goods		89.22	7.71	93.40	5.54	
	Food at hom	ne		77.91	16.67	73.18	22.58	
	Clothing and	l footwear		88.41	8.37	91.77	6.91	
	Gasoline and	other energy	goods	99.90	0.07	99.90	0.08	
	Other nondu	rable goods		71.31	20.54	79.14	17.45	
	Housing and	utilities		62.43	28.99	52.78	41.52	
	Health care			58.41	31.88	53.19	40.68	
	Transportation	on services		87.26	9.14	91.80	6.96	
	Recreation s	ervices		62.77	27.27	64.39	29.91	
	Food service	s and accomm	odations	94.81	3.06	55.79	36.98	
	Financial ser	vices and insur	ance	92.74	5.24	95.49	3.78	
	Other service	es		77.02	17.81	57.72	35.96	

Intro
00000Model
000Estimates
000000Properties
000000Applications
0000000COVID
0000000Conclusion
000000Properties of estimated model: inflation and the share of
relative price increasesInflation and the share of
0000000

= 900

イロト イヨト イヨト

Intro Model Estimates Properties Applications COVID Conclusion COVID inflation (out of sample)

- Decompose COVID inflation into contrib'ns of various shocks
- Strong caveats!
 - COVID is not in the sample.
 - We filter inflation and price change data under assumption the estimated parameters still apply: inflation anchored at target and only effect of policy is through shocks that are expected to fade.
 - The estimated model has sectoral supply shocks, no sectoral demand shocks.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• Etc.

00000	000	00	000000	000000	000	00000
COVID) inflati	ion				

 Intro
 Model
 Estimates
 Properties
 Applications
 COVID
 Conclusion

 COVID inflation (out of sample)

Contribution of monetary policy shocks

200

æ

Intro	Model	Estimates	Properties	Applications	000	Conclusion
00000	000	00	000000	0000000		00000
COVID	inflatio	n (out of	f sample)			

00000	000	00	oooooo	ococoooo	000	00000
COVIE) inflati	on (out o	f sample)			

æ

 Intro
 Model
 Estimates
 Properties
 Applications
 COVID
 Conclusion

 COVID inflation (out of sample)

Intro Model Estimates Properties Applications COVID Conclusion 00000 000 000000 0000000 000000 000000 000000

- Model-based decomposition of COVID inflation can't tell us whether inflation remains anchored.
- Can get *some* insight from recent behavior of inflation and share of relative price increases.
- Recall earlier picture: high inflation corresponded to low share of relative price increases.
- Will provide version of that picture using 208 categories, then add COVID data.
- Recent behavior of inflation seems to represent upward shift relative to prior relationship, but that could represent unusual shocks within same regime.

COVID: Inflation vs. share relative price increases

Intro	Model	Estimates	Properties	Applications	COVID	Conclusion
00000	000	00	000000	0000000	000	•0000
Conclusion						

- Within a stable monetary regime, "relative price shocks" can move around the inflation rate.
- We quantify this effect in an estimated 15-sector NK model; find relative price shocks account for majority of volatility in U.S. monthly inflation, 1995-2019.
- Use the framework to decompose inflation shortfall (in sample) and COVID inflation (out of sample)
- To do list (partial)
 - Add demand shocks (sectoral and aggregate)
 - Allow for lagged cross correlation between sectoral shocks