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We develop a methodology to assess the exposure of euro area companies to physical climate risks by 

incorporating the geographic distribution of their production facilities. We apply this approach by linking 

company-level data from the Register of Institutions and Affiliates Data (RIAD) with facility-level data from the 

European Pollutant Release and Transfer Register (E-PRTR) using a fuzzy string matching algorithm enhanced 

with machine learning. The methodology is applied to estimate expected annual losses (EAL) from floods and 

windstorms, following the framework developed by the European System of Central Banks. Our findings show 

that accounting for local units significantly affects the quantification of flood risk exposure, for both river and 

coastal floods, while the impact on windstorm risk is limited. We further analyze the spatial distribution of EAL 

differences across NUTS 3 regions, highlighting areas where relying solely on headquarter locations leads to 

substantial underestimation of risk. 

Abstract 
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The economic losses triggered by extreme weather events in Europe have increased in recent decades. The 

European Environment Agency reports that in the last four decades (1980-2022) losses related to weather and 

climate-related extremes in Europe totaled 650 billion, of which 53.2 occurred in 2022 alone (EEA, 2023). 

Although the losses vary strongly from one year to another, the 30-year moving average indicates an upward 

trend. Furthermore, the exposure of losses is heterogeneously distributed throughout Europe , not only depending 

on the type of extreme weather event, but also on the insurance rate as insurance coverage ratios differ from 

country to country (EIOPA, 2022). 

  

The exposure of the financial system to physical climate risks is of great relevance for the European System of 

Central Banks (ESCB) and to other market participants due to the potential impact that extreme weather events 

have on asset prices, financial stability and the implementation of monetary policy. For instance, several papers 

have investigated the effect of climate events on asset prices. Braun et al. (2024) find evidence for a large and 

statistically significant hurricane premiums for firms that were affected by a hurricane. On the other hand, Hong 

et al. (2019) find that stock markets do not sufficiently incorporate information about drought trends in asset 

prices. Additionally, the ESCB Statistical Committee releases statistical climate risk indicators and the respective 

methodologies on an annual basis to improve awareness and facilitate the analysis of exposure to physical 

climate risk within the financial system (ECB, 2023, 2024). The climate risk indicators aim to capture potential 

losses for the financial system by quantifying the expected annual losses for the non-financial companies they 

invest in. The methodologies to estimate the exposure of companies to floods and windstorms derived by the 

ESCB are based on the location of assets together with regionally calibrated damage functions to estimate the 

expected annual losses on a company level. However, the location used in the analysis is based mainly on the 

exposure of companies’ headquarters to floods and windstorms. The location of these headquarters, however, 

might not coincide with the location of most of the company’s assets. 

  

The current finance literature shows significant improvements in the precision of loss estimates by including 

information on production facilities in financial analysis. For example, Bressan et al (2024) show that climate-

related losses faced by European Investors in publicly traded equities of Mexican issuers are underestimated by 

70% when ignoring asset-level information. Atlan et al. (2024) build on the work of the ESCB Statistical 

Committee by analyzing the impact of including local units of French companies on the flood risk and drought 

indicators. The results do not indicate a structural underestimation of the physical risk at the aggregate level. 

However, for individual companies, the risk profile of the headquarter location and its local units can differ 

significantly. On the other hand, Loberto & Russo (2024) find that around 17% of the companies that were 

impacted by the flood of May 16-17 2023 in Emilia-Romagna have a headquarter outside of the region. 

 

Multiple studies have worked on linking the European Pollutant Release and Transfer Register (E -PRTR) to 

company registers. While Germeshausen et al. (2022) linked the E-PRTR data to financial information using Orbis 

from Bureau van Dijk, we extend their methodology by matching the data set with the  Register of Institutions 

and Affiliates Data (RIAD) and using a machine learning algorithm to improve the fuzzy string matching. 

Additionally, Bauer et al. (2025) merge publicly available local unit data with companies' headquarters 

information to analyze how local institutional ownership shapes price discovery around extreme weather events. 

We contribute to the literature in two ways: first, we provide the first Europe wide analysis investigating the 

impact of local units on the assessment of physical risk exposure using the ESCB methodology (Atlan et al., 

2024; Loberto & Russo, 2024), second we replicate the name matching algorithm developed in Bauer et al. 

(2025) using central bank data on companies and providing free access to the name matching algorithm.  

1 Introduction 



 
 

  5 

 

1.1 Downside of current approach and scope of the analysis 

The methodology developed in ECB (2023, 2024) uses the addresses provided in the Register of Institutions and 

Affiliates Data (RIAD) as the location of exposure of companies to physical risks. However, RIAD collects 

information at the level of the legal entity and of a single branch per country. Consequently, in the case of 

multiple locations of a single company (e.g. production sites that are at a different location from the 

headquarters), the information necessary for a full assessment of physical risk is not available in this dataset.  

 

We overcome this issue by exploiting publicly available production facility data, such as the European Pollutant 

Release and Transfer Register (E-PRTR) provided by the European Commission. Due to the absence of identifiers 

to link the E-PRTR and RIAD data, we enhance the company string matching algorithm by Nijhuis (2022). We 

then replicate the methodology of ECB (2023, 2024) for floods and storms, including the location of linked 

production facilities, and investigate the difference in the indicators by NUTS 3 regions. We perform both the 

name matching and the calculation of losses on the single entity level, meaning that we do not take into account 

group structure. 

 

We find that adding information on local units (𝐿𝑈) is relevant for river and coastal floods but less for windstorms: 

the average Expected Anual Loss (𝐸𝐴𝐿) for local units due to floods can be up to 10 percentage points higher than 

that of the headquarter. Furthermore, while for windstorms the results are more aligned in Europe, some regions 

are more exposed than others to river and coastal floods, showing that for some regions it is more important than 

others to account for 𝐿𝑈. For instance, companies with headquarters in urban centers such as Madrid and Paris 

experience on average, respectively, up to -6.28 and -3.5 percentage points difference in 𝐸𝐴𝐿 for river floods 

when accounting for local units. The setup of the paper is as follows: in Section 2, we explain the fuzzy string 

matching algorithm and the ESCB methodology for physical risk, in Section 3 we present the results of the 

analysis and in Section 4 we explain limitations and extensions of our work, thus concluding the analysis.  
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2.1 The name matching algorithm 

Merging large data sets when facing inconsistencies in company names requires an approach that balances 

efficiency and accuracy. In an attempt to extend the methodology proposed by Nijhuis (2022), we implement 

several machine learning algorithms that take advantage of different measures of similarity to evaluate the match 

between the company name in the two data sets. 

 

While preserving the use of cosine similarity in combination with various more complex similarity measures as 

outlined in Nijhuis (2022), we also enhance the approach by incorporating a machine learning model that 

optimizes the weighting factors of the complex similarity measures for improved matching accuracy. The 

enhanced approach consists of four steps: the initial data cleaning, the identification of potential matches using 

cosine similarity matching on the whole dataset, the calculation of similarity scores using different similarity 

measures, and a machine learning classification of the possible matches. Figure 2.1 gives a schematic overview of 

these steps. In the following, the four steps are explained in more detail.  

2.1.1 Step 1: Data cleaning 

The data cleaning consists of the transliteration of non-ASCII characters, the removal of punctuation, the removal 

of legal prefixes and suffixes and the removal or abbreviation of common terms like "International". More 

information on the pre-processing stage can be found in Appendix B. 

2.1.2 Step 2: Cosine similarity matching 

The second step involves quickly identifying potential matches within the entire dataset to limit processing times 

in the next steps of the name matching. The identification of potential matches begins by generating trigrams (all 

chunks of three consecutive characters) for each name in both datasets (see Figure 2.1). Next, a term frequency-

inverse document frequency (TF-IDF) algorithm is applied to the trigrams, which reduces the weight of commonly 

occurring ones. Afterward, the cosine similarity is calculated between a name in one data set and all names in the 

other dataset (see Figure 2.1). For each name in E-PRTR we select the 50 most similar names in RIAD in terms of 

cosine similarity. The number of potential matches is limited to 50, as the similarity score of the last match is 

typically lower than 0.3, indicating minimal similarity. 

2.1.3 Step 3: Calculation of similarity measures 

Although cosine similarity is commonly used for name matching, it is a limited way to determine whether two 

strings match. Many kinds of variation are not distinguished by the cosine similarity on the trigrams. Take for 

instance the names 𝑠𝑎𝑟𝑎 and 𝑠𝑎𝑟𝑎ℎ. The trigram decomposition of the names are [𝑠𝑎𝑟, 𝑎𝑟𝑎] and [sar,ara,rah]. The 

only overlapping trigram is 𝑎𝑟𝑎, leading to a relatively low cosine similarity. However, the addition of one letter 

transforms 𝑠𝑎𝑟𝑎 into 𝑠𝑎𝑟𝑎ℎ, meaning that the edit-based distance is small. 

 

To capture different ways in which strings can be similar, we calculate three different similarity metrics for each 

of the 50 potential matches, namely the Levenshtein distance, the Jaro-Winkler similarity and the Q-gram 

distance. Each of these three similarity measures addresses different aspects of string comparison (Van Der Loo, 

2014). More information on the calculation of the similarity measures can be found in Appendix B. 

 

2 Methodology 
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Figure 2.1 The Name Matching algorithm in a chart: A top-bottom visualization of 

the algorithm. 

 

2.1.4 Step 4: Machine learning 

By applying the three algorithms to all potential matches, we obtain three scores per potential match. It still 

needs to be determined whether any of the potential matches is an actual match. To facilitate this determination, 

a machine learning approach is applied (see Figure 2.1). The machine learning approach takes the scores from 

the different similarity measures of a potential match as input and tries to classify whether a match is a true 

match or not. For this approach to work, there needs to be a training set of verified matches. A subset of 5% of 
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the data is manually matched and used to train the model and validate the results. This training dataset is highly 

imbalanced, as there is at most one true match amongst the 50 potential candidates. To address this imbalance, 

all actual matches are retained in the training data, while a strategically selected subset of non-matches—those 

with the highest similarity scores—is included. This approach, known as undersampling, helps create a more 

balanced training set, which is crucial for enabling the model to effectively learn to identify true matches. The 

resulting dataset is used to train a variety of machine learning models. Model performance is evaluated using 

cross-validation on the training set, as well as on an original, unbalanced test set. The use of the unbalanced test 

set provides a more realistic assessment of the model’s performance, while the use of the balanced training set 

ensures that the recall of the trained model will be high enough. More information on the model selection and 

performance can be found in Appendix B. 

 

2.2 The ESCB methodology for physical risk scores 

We replicate the ECB (2024) framework to calculate expected annual losses (𝐸𝐴𝐿) using data from local units 

(production facilities), land use, extreme weather events, distribution maps of type of buildings and damage 

functions, as shown in Figure 2.2. 𝐿𝑈 data is sourced from the E-PRTR (mid-left panel of Figure 2.2), while the 

land use maps are provided by Copernicus Land Monitoring (upper left panel of Figure 2.2). Land use refers to the 

management and designation of land for specific activities, such as residential, commercial, agricultural, 

industrial, and recreational purposes. 

 

To compute 𝐸𝐴𝐿 from extreme weather events at 𝐿𝑈 level, we follow three main steps. First, we calculate the 

probabilities of events with specific intensities occurring at the local unit’s location. Second, we identify the 

damage functions associated with these intensities to estimate the losses incurred by the facility. Third, we 

compute 𝐸𝐴𝐿 as the weighted average of probabilities and losses for all potential events that could affect 𝐿𝑈. 

Figure 2.2 is a reference to guide the understanding. 

 

To compute 𝐸𝐴𝐿 from storms, we first calculate the probability of an event with a given intensity occurring at the 

facility location within the next year. To achieve this, we use maps of the intensities of extreme weather events 

based on historical occurrences of storms (lower left panel of Figure 2.2). Specifically, we use historical footprint 

maps and for each pixel, we derive a distribution of wind intensity recordings. Return periods or probabilities of a 

storm occurring within a given wind intensity range in a year are calculated by fitting the historical distribution of 

events at each geographic pixel to a Gumbel distribution (lower middle panel of Figure 2.2)1. We then identify the 

level of damage that a local unit would incur from an event with a specific wind intensity. To do this identification, 

we require the type of building of the facility, the intensity of the wind event, and the associated loss. Since the 

E-PRTR does not provide information on the type of building of 𝐿𝑈, we use a proxy suggested by ECB (2023, 

2024) the combination of land use and the distribution of buildings by land use for each country in Europe. 

Furthermore, the damage functions for Europe are already calibrated for different types of buildings ECB (2023, 

2024). An example of this step is provided in the upper middle panel of Figure 2.2. Consequently, the damage 

functions for storms at the local unit level result from the weighted average of the damage functions associated 

with the different types of buildings in the land use code of the facility location where the weights are given by 

the frequencies of different building types in that area. Given the probabilities of the occurrence of different 

events, the wind intensities of these events, and the damage functions just introduced, we can compute the 𝐸𝐴𝐿 

at the facility level as in ECB (2023, 2024) (right panel of Figure 2.2). 

––––––––––––– 
1 The Gumbel distribution is commonly used to model the distribution of the maximum (or minimum) of a number of samples from va rious 

distributions. For example, in this context, it represents the distribution of maximum wind intensity in a specific region.  
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Figure 2.2 The relevant steps to compute the expected annual loss 𝐸𝐴𝐿 from storms 
at a group level using the ESCB method2 

 

 

To compute 𝐸𝐴𝐿 from floods, we follow the same steps as for storms, albeit more straightforwardly. First, flood 

hazard maps provide event intensities linked to specific return periods and their associated probabilities of 

occurrence. These maps were sourced from Delft University (Paprotny et al., 2017). Second, flood damage 

functions are calibrated at the level of country and land use and are provided for different levels of flood depths 

(Huizinga et al., 2017). Third, using the location 𝐿𝑈, which is associated with a specific land use (see the left 

middle and upper panels of Figure 2.2), we combine flood depth maps by return period with the respective 

damage functions to calculate the 𝐸𝐴𝐿 for floods at the facility level. 

––––––––––––– 
2 From left to right, we outline the steps to compute the 𝐸𝐴𝐿 for group 𝑋 based on the framework developed by the European System of 

Central Banks (ESCB) (ECB, 2023, 2024). Red dashed lines indicate the data sources used to compute damage functions for a specific 

event occurrence. Blue dashed lines represent the sources required to compute the probability of an event with a specific wind intensity, 

modeled using a Gumbel distribution, where the probability mass is concentrated on less extreme events. Finally, this information is 
combined to calculate the 𝐸𝐴𝐿 at the facility level that is then aggregated to derive the company-level 𝐸𝐴𝐿. 
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In this analysis, we compare the 𝐸𝐴𝐿 obtained at the headquarter (𝐻𝑄) level from single entities in the Euro Area 

of RIAD with the average 𝐸𝐴𝐿 obtained using only local units (𝐿𝑈) derived from the E-PRTR database.3 We analyze 

results for the Euro area distribution of 𝐸𝐴𝐿 differences between 𝐻𝑄 and 𝐿𝑈 at a company level. In a second step, 

we plot the differences using the NUTS 3 region of the companies and show for which regions and physical 

climate risks there are bigger differences in the Euro Area. 

 

We link 43% of the E-PRTR facilities to RIAD single entities, applying expert judgment on potential matches to 

avoid the presence of false positives. We achieve this result starting with a sample of 11,600,142 RIAD entities 

and 63,106 E-PRTR facilities. The resulting sample is 27,022 E-PRTR facilities linked to 19,049 RIAD single 

entities.  

 

Although we match 27,022 E-PRTR facilities to RIAD single entities, only a fraction of these facilities has an 

exposure to windstorms, river and coastal floods. Wind impacts broad regions; therefore, we compute an 𝐸𝐴𝐿 

from windstorms for 26,530 facilities. Floods impact regions near rivers or the coast, as such only 3,468 facilities 

are exposed to river floods, and 936 facilities to coastal floods. In the complete E-PRTR sample, we computed 𝐸𝐴𝐿 

for 97% of the sample for wind storms, 13% for river floods, and 4% for coastal floods. In the sample matched 

with RIAD the percents are 98%, 13% and 3%, respectively, thus mirroring the data for the full sample. 

 

We identify significant differences for river and coastal floods and negligible ones for windstorms. In  Figure 3.1 

we plot the differences between 𝐻𝑄 and 𝐿𝑈 for all matched 𝐿𝑈. Negative values indicate that the 𝐸𝐴𝐿 of the 

headquarter location is lower than the average 𝐸𝐴𝐿 for all local units. For instance, a value of -1 means that the 

average 𝐸𝐴𝐿 of the 𝐻𝑄 is 1 percentage point lower than the average 𝐸𝐴𝐿 of the 𝐿𝑈. In this case, only including the 

headquarter location would lead to an underestimation of risk. For river floods, it is visible from Subfigure (a) of 

Figure 3.1 that 𝐿𝑈 has up to 10% percentage points higher 𝐸𝐴𝐿 for 𝐿𝑈 compared to 𝐻𝑄. Similar findings are visible 

for coastal floods in Subfigure (b) of Figure 3.1. Finally, as far as windstorms are concerned, the 𝐸𝐴𝐿 differences 

are largely distributed around zero or above, indicating that 𝐸𝐴𝐿 computed at an 𝐻𝑄 level are mostly higher than 

those computed at 𝐿𝑈 level. 

 

––––––––––––– 
3 More information on RIAD, E-PRTR and the exposure risk maps is available in Appendix A. 

3 Results 
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Figure 3.1 The distribution of the 𝐸𝐴𝐿 differences between 𝐻𝑄  and 𝐿𝑈  4 

 

(a) River Floods 

 

(b) Coastal Floods 

 

 

(c) Windstorms 

 

 

Zooming into NUTS 3 regions gives a geographical indication of which areas are more prone to differences 

between the 𝐸𝐴𝐿 of the 𝐻𝑄 and the 𝐸𝐴𝐿 of the 𝐿𝑈. In Figure 3.2 we present the map of NUTS regions. Negative 

values (red) indicate that the 𝐻𝑄 located in that NUTS region have on average lower 𝐸𝐴𝐿 than the 𝐿𝑈 associated 

with those 𝐻𝑄. For river floods, there are significant differences in some regions in France, Germany, Ireland, 

Italy, and Spain. For coastal floods, differences are mainly in located in Belgium, France, Germany, Ireland, Italy, 

and the Netherlands. We do not find differences for any specific region in windstorms. 

 

––––––––––––– 
4 The density plot shows the difference between 𝐸𝐴𝐿 at the 𝐻𝑄 and the average at the 𝐿𝑈 level in percent (y-axis). 0.25 stand for % of 

observations. The frequency is based on the absolute number of RIAD companies linked to 𝐿𝑈. Negative values show higher 𝐸𝐴𝐿 
estimates at the 𝐿𝑈 level. 
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Figure 3.2 Euro area maps on NUTS 3 region level of differences in 𝐸𝐴𝐿 estimates 

between 𝐻𝑄  and 𝐿𝑈  5 

 

(a) River Floods 

 

(b) Coastal Floods 

 

 

(c) Windstorms 

 

––––––––––––– 
5 The map shows the difference in the estimates at a NUTS region level between 𝐻𝑄 and the average between the 𝐿𝑈. Red indicate higher 

𝐸𝐴𝐿 values for 𝐿𝑈 with respect to the 𝐻𝑄. The NUTS regions plotted is the one from the 𝐻𝑄 and differences are in percentage points. 
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In this paper, we leverage the methodology developed by Nijhuis (2022) to investigate the advantages of 

accounting for local units (𝐿𝑈) in the calculation of expected annual loss (𝐸𝐴𝐿) for different physical climate risks. 

To do so, we perform a fuzzy string matching between the companies available in RIAD and the production 

facilities in the E-PRTR. We then replicate the ESCB methodology to compute the exposure of companies to 

physical risk and find that the differences in the estimates of those companies that are linked to 𝐿𝑈 depend on the 

type of physical risk. 

 

Storms and floods are different in their intrinsic risk nature. For example, storms affect wide regions, while river 

and coastal floods are more location-specific. Therefore, for storms, it is less relevant to know the exact location 

of single entities’ production facilities as long as the headquarters are in the same country. In contrast, for river 

and coastal floods, location is crucial to know the exact exposure of the building. For instance, single entities with 

headquarters in urban centers such as Madrid and Paris experience, respectively, up to -6.28 and -3.5 percentage 

points difference for river floods when accounting for local units. Similarly, single entities located in the region of 

Mantova and Milan in Italy experience a difference of up to -4.5 and -2.9 percentage points for coastal floods 

when accounting for local units. Financial institutions investing in these regions would benefit from access to more 

granular information on the location of production facilities in the assessment of flood risk. Therefore, we advise 

the inclusion of local units in the analysis of climate risk for the financial sector, such as the climate -change 

related indicators of the ESCB (ECB, 2024). 

 

In this paper, we provided an analysis based on ESCB data sources and methodology and found that 𝐿𝑈 provides 

useful information for the analysis on climate risk. In particular for flood risk, including additional information on 

local units leads to a better risk assessment. This analysis showcases one way of using the fuzzy string matching 

algorithm to analyze physical climate risk. Specifically, we use RIAD to identify companies and the E-PRTR to link 

facilities to it. The algorithm can be used more generally to link financial data sources with non-financial data 

sources to facilitate more in-depth analysis of physical climate risk. The Spatial Finance Initiative in Oxford 

provided an extensive review of countries that provide databases on production facilities, their location, as well as 

other information (Christiaen et al., 2025). Additionally, an alternative source for finding company names and 

identifiers is the Global Legal Entity Identifier Foundation (GLEIF) dataset that provides company names and 

Legal Entity Identifiers (LEI). 

4 Discussion and conclusion 
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A.1 Hazard Data 

Storms: We compute the exposure of companies to storms in Europe using the storm footprints from the Climate 

Data Store, provided by the Copernicus Programme.6 The data set provides climatological indicators on European 

storms and their economic impact, derived from the ERA5 reanalysis. We focus on storm footprints, defined as 

the maximum 3-second 10-m wind gust speed in meters per second (m/s) over a 72-hour period at each model 

grid point for significant storms. Thus, a storm footprint shows the spatial distribution of maximum wind gust 

speed for a storm that crosses the area of interest. 

 

TU Delft floods: We calculate the exposures of local units and groups to river and coastal floods using the 

probabilities of occurrence and return periods developed in Paprotny et al. (2017). The maps are the result of a 

Bayesian network-based model which generates return period flow rates in European rivers with a catchment 

area larger than 100km2 with a simulation approach. The simulations are performed using a one -dimensional 

steady-state hydraulic model, and the results are post-processed using Geographical Information System (GIS) 

software in order to derive flood zones. The approach of the paper is validated by comparison with the Pan -

European map of the Joint Research Center and five local flood studies from different countries. In general, the 

two approaches show similar results in recreating flood zones from local maps. The simplified approach achieved 

a similar level of accuracy while substantially reducing computational time. The data also present aggregated 

results on flood hazards in Europe, including future projections. 

 

A.2 Register of Institutions and Affiliates (RIAD) 

RIAD is the ESCB’s shared dataset of reference data on individual entities and the relationships between them, as 

established by EUR-Lex - 02018O0016-20191002 - EN - EUR-Lex (europa.eu). RIAD facilitates the integration of 

several ESCB databases, namely the CSDB (Centralised Securities Database), the SHSDB (Security Holding 

Statistics Database) and AnaCredit (Analytical Credit dataset containing detailed information on individual bank 

loans in the euro area), with consistent entity information. The dataset has been building from 2018 onward and 

consist of all the entities present in the reporting of the AnaCredit data. The dataset contains over 18mln unique 

entities, mainly within the eurozone. The information of the entities is enriched from the national database of the 

eurozone entities. 

 

A.3 E-PRTR 

We derive information on the locations of facilities from the E-PRTR. The E-PRTR, as defined in Article 1 of the 

European Pollutant Release and Transfer Register (E-PRTR), is an integrated pollutant release and transfer 

register at the community level [...] in the form of a publicly accessible electronic database. It establishes rules 

for the implementation of the UNECE Protocol on Pollutant Release and Transfer Register, the facilitation of public 

participation in environmental decision making, and its contribution to preventing and reducing environmental 

pollution.  

 

According to Article 5 of the E-PRTR Regulation, all operators of facilities undertaking one or more activities listed 

in Annex I of the Regulation must report specific information if they exceed predefined capacity thresholds. These 

activities cover sectors such as energy; metal production and processing; the mineral and chemical industries; 

waste and wastewater management; paper and wood production; intensive livestock production and aquaculture; 

––––––––––––– 
6 More information can be found under Copernicus Program. 

Appendix A Data 

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02018O0016-20191002#B-1
https://ec.europa.eu/environment/industry/stationary/eper/legislation.htm
https://climate.copernicus.eu/
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food and beverage production; and other industrial activities. As a result, many companies are required to report 

the locations of their facilities. 

 

The E-PRTR is a public inventory of data submitted by facilities, including information on toxic chemical releases 

into the air, water, or land; recycling; energy recovery; and off-site transfers for treatment or disposal. A key 

application of PRTRs is to support sustainability-related decisions by providing insight into facility-level operations 

over time. Since 2007, the E-PRTR has expanded significantly and now comprises approximately 94,000 facilities 

across Europe. The E-PRTR provides facility locations, ownership details, and amounts of waste production. 

Through our data merge, we link approximately 19,049 unique facility owners and 27,022 unique facilities to 

RIAD.  

 

The E-PRTR covers various industrial sectors but does not encompass all facilities for every company within these 

sectors. Facility operators are required to report waste production if their facility ’s output exceeds predefined 

capacity thresholds. For example, ferrous metal foundries must report waste production if their capacity exceeds 

20 tons per day. However, for some industries, there is no capacity threshold.7 

  

––––––––––––– 
7 More details on general applications of PRTRs and reporting requirements are available in (EPA, 2006; OECD, 2017) 
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B.1 Data cleaning 

In the pre-processing stage, the main goal is to reduce the variability in company names, which is critical for the 

accuracy of the subsequent name matching steps. The first step involves minimizing the number of unique 

characters by transliterating non-ASCII characters, removing punctuation, and converting all characters to 

lowercase (see Figure 2.1). This reduces the character set from more than 300 distinct characters to around 40. 

 

In addition, company names often include acronyms or legal suffixes indicating the type of entity or generic terms 

commonly found in many names. These legal suffixes are removed to prevent any impact on matching 

algorithms, since companies that only differ by the legal suffix are most commonly all parts of the same corporate 

group. Common terms like "International" are abbreviated or omitted, minimizing their influence in string 

similarity measures. 

 

The process of standardizing company names in E-PRTR and RIAD leads to a reduction of unique company 

names. For instance, ‘Company Name # Ltd’ and ‘Company Name GmbH’ are identical after preprocessing, namely 

𝑐𝑜𝑚𝑝𝑎𝑛𝑦 𝑛𝑎𝑚𝑒. This can lead to an m:n-relationship of matches on the original company names. To limit the 

number of duplicate matches after preprocessing, we implement a waterfall approach to identify ‘perfect 

matches’, i.e. company names that are identical after preprocessing. In every preprocessing step the perfect 

matches between E-PRTR and RIAD are identified and the matched company names are not taken into account in 

later preprocessing steps. The preprocessing steps are as follows: 

1. preprocessing step 1: all names in lowercase, removal of special characters, transliteration non-ASCII 

characters; 

2. preprocessing step 2: abbreviation of all legal prefixes and suffixes, for instance ‘limited’ to ‘ltd’; 

3. preprocessing step 3: removal of all legal prefixes and suffixes; 

4. preprocessing step 4: removal or abbreviation common terms. 

 

The above waterfall approach leads to the identification of 22,469 perfect matches, of which 14,351 in step 1, 

4,011 in step 2, 3,077 in step 3 and 1,030 in step 4. Hence, most perfect matches are identified after minimal 

preprocessing (steps 1 and 2). However, not all perfect matches are meaningful. For instance, preprocessing step 

4 can result in empty names, such as ‘? ? ? GmbH’ to ‘’, or names that only consist of an abbreviation, such as 

‘International Ltd’ to ‘#int#’. We apply expert judgement to remove non-meaningful perfect matches and are left 

with a total of 25,541 E-PRTR facilities matched to 17,932 RIAD companies. After removing the perfect matches 

from the preprocessed E-PRTR company names, we are left with 23,477 unique E-PRTR company names and 

11,993,912 unique RIAD company names. For these remaining E-PRTR company names we apply the fuzzy name 

matching to identify non-perfect matches. 

 

 

B.2 Calculation of similarity measures 

Van Der Loo (2014) categorizes string distance algorithms into three types: edit-based distances, heuristic 

distances, and token-based distances, each addressing different aspects of string comparison. For each of these 

three categories, we select one similarity measure. 

 

In our paper, the first similarity measure we use is the Levenshtein distance, which falls into the edit-based 

category. It assigns a uniform cost of one unit for each operation, be it insertion, deletion, or substitution 

(Aouragh et al., 2015). The second metric that we examine is the Jaro-Winkler similarity, which belongs to the 

Appendix B Fuzzy name matching 



 
 

  17 

 

heuristic distance category. This measure calculates the shared characters between two strings, making it 

particularly effective for shorter strings such as company names. A modification of the Jaro distance, it 

emphasizes matching prefixes, which is especially useful in contexts where prefix alignment is crucial for 

identifying matching company names (Gali et al., 2019). Incorporating prefix length implies that matching 

prefixes suggest a higher likelihood of relatedness, resulting in a higher similarity score.  Finally, the Q-gram 

distance measures string similarity by comparing substrings of fixed length (q), such as bigrams (2 characters) or 

trigrams (3 characters). It counts the number of q-grams that do not match between two strings and divides this 

over the number of q-grams in the strings, with a count of 0 indicating a perfect match and a score of 1 indicating 

no overlap whatsoever (Denman et al., 2019). 

 

B.3 Model selection and performance 

For every preprocessed name in E-PRTR 50 potential matches are selected from RIAD based on the cosine 

similarity of TF-IDF transformed trigrams. For each of the 50 potential matches, the chosen similarity measures 

are calculated. The similarity measures used for this analysis are the Levenshtein distance, the Jaro-Winkler 

distance, and the 3-gram distance. Next, we manually annotate 5% of the names in E-PRTR. To ensure enough 

actual matches, we only annotate company names for which at least one potential match has at least one 

similarity measure with a score of 50% or more. Of the annotated data, 240 company names in E-PRTR have a 

match in RIAD and 904 company names in E-PRTR do not have a match in RIAD. The resulting training and test 

set therefore contains 240 matches and 240 ∗ 49 +  904 ∗ 50 = 56,960 nonmatches. The annotated data are divided 

70%-30% into a training set and a test set. The training set is balanced by selecting for every match one 

nonmatch. Next, several supervised machine learning algorithms are trained on the training set and applied to 

the unbalanced test set. The machine learning models under consideration are Gradient Boost (GB), Random 

Forest (RF), logistic regression (Logit), Decision Tree (Tree), Naive Bayes (NB), AdaBoost (AB), Extra Tree (ET) 

and k-nearest neighbor (KNN). Figure B.1 shows the receiver-operating characteristic curve of the models. The 

figure shows that the Gradient Boost, logistic regression and AdaBoost perform better than the best performing 

single similarity measure (3-gram distance). The other algorithms do not outperform the 3-gram distance. 
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Figure B.1 Receiver-operating characteristic curve of the classification models8 

 

 

Next, the outcomes are cross-validated using the combined training and test set. The cross-validation is 

performed over five folds, where for every fold the annotated data are divided into a balanced training set and an 

unbalanced test set. Table B.1 shows the mean and the standard deviation of several classification performance 

measures over the five folds using a classification threshold of 0.9. The highest precision (true positives divided 

by true positives plus false positives) is obtained for the logit model at 90.8%, while still maintaining high 

accuracy (98.6%). Based on the model performance we select the logistic regression with a threshold of 0.9 to 

identify additional matches. This results in an additional 1,481 E-PRTR facilities being matched to 1,223 RIAD 

entities. 

 

––––––––––––– 
8 The figure shows the ROC curve of the classification models tested to match company names. Additionally, the figure shows the  ROC 

curve of the individual similarity measures underlying the classification models, namely Levenshtein, Jaro -Winkler and Q-gram. The ROC 
curve shows the relationship between the false positive rate and true positive rate for different thresholds on the unbalance d test set. 

The Area Under the Curve (AUC) shows how close the performance of a given machine learning model is to that of  a model that 
perfectly classifies matches and nonmatches (AUC of 1). 



 
 

  19 

 

Table B.1 Supervised machine learning algorithms by classification performance9 

 GB RF Logit Tree NB AB ET KNN 

Accuracy 
𝜇 98.5 98.5 98.6 90.2 98.8 98.6 98.6 98.5 

𝜎 0.2 0.0 0.1 13.0 0.0 0.1 0.1 0.1 

F1 
𝜇 58.9 48.2 49.4 38.2 0.0 53.0 53.0 46.9 

𝜎 5.1 0.9 6.1 16.2 0.0 2.1 2.1 4.5 

Precision 
𝜇 63.8 83.9 90.8 29.1 0.0 79.0 79.0 80.8 

𝜎 6.1 4.6 1.6 14.2 0.0 3.4 3.4 7.7 

Recall 
𝜇 54.7 33.9 34.3 69.5 0.0 39.9 39.9 33.2 

𝜎 4.5 0.9 6.0 5.1 0.0 1.8 1.8 4.0 

––––––––––––– 
9 The table reports the accuracy, F1 ratio, precision and recall for all classification models tested to match company names over the cross-

validation samples. The cross-validation was performed on the combined training and test set using five folds. For every fold the 
annotated data was divided into a training set and a test set, after which the training set was balanced. The reported result s are for a 

threshold of 0.9. The methods presented include Gradient Boost (GB), Random Forest (RF), logistic regressi on (Logit), Decision Tree 
(Tree), Naive Bayes (NB), AdaBoost (AB), Extra Tree (ET) and k-nearest neighbor (KNN). 
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