Controlling inflation with timid monetary-fiscal regime changes

Guido Ascari, University of Oxford Anna Florio, Politecnico di Milano Alessandro Gobbi, Università di Pavia

20th Annual DNB Research Conference "Fiscal and Monetary Policy in a changing Economic and Political Environment" De Nederlandsche Bank, 9-10 October 2017

Introduction •0000000000	Model and methodology	Monetary/Fiscal Frontiers	Dynamics 000	Uniqueness 0000000	Policy Implications	ZLB 000
Motivat	ion					

• Inflation depends from Monetary and Fiscal Policy interaction

Introduction •00000000000	Model and methodology	Monetary/Fiscal Frontiers	Dynamics 000	Uniqueness 0000000	Policy Implications	ZLB 000
Motivat	ion					

- Inflation depends from Monetary and Fiscal Policy interaction
 - $\rightarrow\,$ Under which conditions can monetary policy control inflation?
 - $\rightarrow\,$ Is fiscal policy getting in the way?
 - $\rightarrow\,$ Need/gain from coordination?

Introduction •00000000000	Model and methodology	Monetary/Fiscal Frontiers	Dynamics 000	Uniqueness 0000000	Policy Implications	ZLB 000
Motivat	ion					

- Inflation depends from Monetary and Fiscal Policy interaction
 - $\rightarrow\,$ Under which conditions can monetary policy control inflation?
 - $\rightarrow\,$ Is fiscal policy getting in the way?
 - $\rightarrow\,$ Need/gain from coordination?
- Policies change over time

Introduction •0000000000	Model and methodology	Monetary/Fiscal Frontiers	Dynamics 000	Uniqueness 0000000	Policy Implications	ZLB 000

Motivation

- Inflation depends from Monetary and Fiscal Policy interaction
 - $\rightarrow\,$ Under which conditions can monetary policy control inflation?
 - $\rightarrow\,$ Is fiscal policy getting in the way?
 - $\rightarrow~$ Need/gain from coordination?
- Policies change over time
 - $\rightarrow\,$ How expectations of future policy switch affects: (i) equilibria; (ii) dynamics

Introduction •0000000000	Model and methodology	Monetary/Fiscal Frontiers	Dynamics 000	Uniqueness 0000000	Policy Implications	ZLB 000
	-					

Motivation

- Inflation depends from Monetary and Fiscal Policy interaction
 - $\rightarrow\,$ Under which conditions can monetary policy control inflation?
 - $\rightarrow\,$ Is fiscal policy getting in the way?
 - \rightarrow Need/gain from coordination?
- Policies change over time
 - $\rightarrow\,$ How expectations of future policy switch affects: (i) equilibria; (ii) dynamics
- Characterize the properties of the economy when both monetary and fiscal policies change over time

Introduction	Model and methodology	Monetary/Fiscal Frontiers	Dynamics	Uniqueness	Policy Implications	ZLB
0000000000	000	000000000	000	0000000	00	000

Motivation: Monetary and Fiscal Policy Interaction

Leeper (1991): Equilibria under *active* and *passive* monetary and fiscal policies

	AM	PM
	Evalorivanass	Determinacy
AF	Explosiveness	(non-Ricardian case, FTPL)
DE	Determinacy	Indeterminacy
PF	(Ricardian case)	Indeterminacy

Introduction	Model and methodology	Monetary/Fiscal Frontiers	Dynamics	Uniqueness	Policy Implications	ZLB
0000000000	000	000000000	000	0000000	00	000

Motivation: Monetary and Fiscal Policy Interaction

Leeper (1991): Equilibria under *active* and *passive* monetary and fiscal policies

	AM	PM
AF	Explosiveness	Determinacy (non-Ricardian case, FTPL)
PF	Determinacy (Ricardian case)	Indeterminacy

FTPL features wealth effect (Non-Ricardian) \rightarrow more difficult to control inflation

Introduction	Model and methodology	Monetary/Fiscal Frontiers	Dynamics	Uniqueness	Policy Implications	ZLB
0000000000	000	000000000	000	0000000	00	000

Motivation: Monetary and Fiscal Policy Interaction

Leeper (1991): Equilibria under *active* and *passive* monetary and fiscal policies

	AM	PM
	Explosiveness	Determinacy
AF	Lypiosiveness	(non-Ricardian case, FTPL)
DE	Determinacy	Indeterminacy
PF	(Ricardian case)	materininacy

<code>FTPL</code> features wealth effect (Non-Ricardian) \rightarrow more difficult to control inflation

However, policy regimes change over time \rightarrow **Expectations about** future policies are crucial: affects dynamics and eq. uniqueness

Introduction	Model and methodology	Monetary/Fiscal Frontiers	Dynamics	Uniqueness	Policy Implications	ZLB
0000000000000000	000	000000000	000	0000000	00	000

The Long-run Taylor principle

Davig and Leeper (2007, AER): Markov switching in monetary policy rule

Introduction	Model and methodology	Monetary/Fiscal Frontiers	Dynamics	Uniqueness	Policy Implications	ZLB
000000000000000000000000000000000000000	000	000000000	000	0000000	00	000

Motivation: Changes in Monetary Policy

Davig and Leeper (2007, AER):

 $\rightarrow\,$ DSGE model with Markov switching in monetary policy rule

Introduction	Model and methodology	Monetary/Fiscal Frontiers	Dynamics	Uniqueness	Policy Implications	ZLB
000000000000000000000000000000000000000	000	000000000	000	0000000	00	000

Motivation: Changes in Monetary Policy

Davig and Leeper (2007, AER):

- $\rightarrow\,$ DSGE model with Markov switching in monetary policy rule
- $\rightarrow\,$ Fiscal policy in the background, always PF

IntroductionModel and methodologyMonetary/Fiscal FrontiersDynamicsUniquenessPolicy ImplicationsZLB000000000000000000000000

Motivation: Changes in Monetary Policy

Davig and Leeper (2007, AER):

- $\rightarrow\,$ DSGE model with Markov switching in monetary policy rule
- ightarrow Fiscal policy in the background, always PF
- \rightarrow Findings:

Determinacy Long-run Taylor principle (LRTP): "even while deviating from [the Taylor principle] substantially for brief periods or modestly for prolonged periods"

 \rightarrow "on average" AM

 \rightarrow allows timid temporary deviations

IntroductionModel and methodologyMonetary/Fiscal FrontiersDynamicsUniquenessPolicy ImplicationsZLB000000000000000000000000

Motivation: Changes in Monetary Policy

Davig and Leeper (2007, AER):

- $\rightarrow\,$ DSGE model with Markov switching in monetary policy rule
- ightarrow Fiscal policy in the background, always PF
- \rightarrow Findings:

Determinacy Long-run Taylor principle (LRTP): "even while deviating from [the Taylor principle] substantially for brief periods or modestly for prolonged periods"

 \rightarrow "on average" AM

 \rightarrow allows timid temporary deviations

Dynamics **Cross-regime spillovers:** equilibrium properties are "contaminated" both by the characteristics of the other regimes and by the probability of shifting towards those alternative regimes
 Introduction
 Model and methodology
 Monetary/Fiscal Frontiers
 Dynamics
 Uniqueness
 Policy Implications
 ZLI

 Research questions:
 Changes in Monetary and Fiscal
 Policy
 Policy

AIM: Study the properties of the economy when both monetary *and fiscal* policies change in a New Keynesian model

 Introduction
 Model and methodology
 Monetary/Fiscal Frontiers
 Dynamics
 Uniqueness
 Policy Implications
 ZLB

 Research questions:
 Changes in Monetary and Fiscal
 Policy
 Policy

AIM: Study the properties of the economy when both monetary *and fiscal* policies change in a New Keynesian model

■ Equilibrium properties: uniqueness → specify the role of fiscal policy (extending Davig-Leeper, 2007)

 Introduction
 Model and methodology
 Monetary/Fiscal Frontiers
 Dynamics
 Uniqueness
 Policy Implications
 ZLB

 Research questions:
 Changes in Monetary and Fiscal
 Policy
 Policy

AIM: Study the properties of the economy when both monetary *and fiscal* policies change in a New Keynesian model

- Equilibrium properties: uniqueness → specify the role of fiscal policy (extending Davig-Leeper, 2007)

 Introduction
 Model and methodology
 Monetary/Fiscal Frontiers
 Dynamics
 Uniqueness
 Policy Implications
 ZLB

 Research questions:
 Changes in Monetary and Fiscal
 Policy
 Policy

AIM: Study the properties of the economy when both monetary *and fiscal* policies change in a New Keynesian model

- Equilibrium properties: uniqueness → specify the role of fiscal policy (extending Davig-Leeper, 2007)
- Olicy implications: → Useful framework to interpret the data: Great Moderation, policy response to the Great Recession

Introduction	Model and methodology	Monetary/Fiscal Frontiers	Dynamics	Uniqueness	Policy Implications	ZLB
000000000000	000	000000000	000	0000000	00	000

① The long-run fiscal principle

Introduction	Model and methodology	Monetary/Fiscal Frontiers	Dynamics	Uniqueness	Policy Implications	ZLB
000000000000	000	000000000	000	0000000	00	000

• The long-run fiscal principle

 $\rightarrow\,$ Conditions that a switching fiscal policy needs to satisfy to yield a unique rational expectations, when MP is always active

Introduction	Model and methodology	Monetary/Fiscal Frontiers	Dynamics	Uniqueness	Policy Implications	ZLB
00000000000	000	000000000	000	0000000	00	000

• The long-run fiscal principle

- $\rightarrow\,$ Conditions that a switching fiscal policy needs to satisfy to yield a unique rational expectations, when MP is always active
- \rightarrow Similar to LRTP: the long-run fiscal principle entails some fiscal policy flexibility: it could deviate from PF substantially for brief periods or timidly for prolonged periods.

Introduction 000000000000	Model and methodology	Monetary/Fiscal Frontiers	Dynamics 000	Uniqueness 0000000	Policy Implications	ZLB 000
Results						

Output Importance of Coordination *across* regimes

Introduction	Model and methodology	Monetary/Fiscal Frontiers	Dynamics	Uniqueness	Policy Implications	ZLB
000000000000	000	000000000	000	0000000	00	000

2 Importance of Coordination across regimes

 $\rightarrow\,$ Multiplicity: Monetary and fiscal policy need to be balanced across regimes to have a unique equilibrium

Introduction	Model and methodology	Monetary/Fiscal Frontiers	Dynamics	Uniqueness	Policy Implications	ZLB
000000000000	000	000000000	000	0000000	00	000

2 Importance of Coordination across regimes

- $\rightarrow\,$ Multiplicity: Monetary and fiscal policy need to be balanced across regimes to have a unique equilibrium
- $\rightarrow\,$ New taxonomy: overall AM/PF vs overall switching policy mix

Introduction	Model and methodology	Monetary/Fiscal Frontiers	Dynamics	Uniqueness	Policy Implications	ZLB
000000000000	000	000000000	000	0000000	00	000

2 Importance of Coordination *across* regimes

- $\rightarrow\,$ Multiplicity: Monetary and fiscal policy need to be balanced across regimes to have a unique equilibrium
- $\rightarrow\,$ New taxonomy: overall AM/PF vs overall switching policy mix

③ These two regimes have different dynamic behaviour

Introduction N	Model and methodology	Monetary/Fiscal Frontiers	Dynamics	Uniqueness	Policy Implications	ZLB
00000000000000	000	000000000	000	0000000	00	000

Importance of Coordination across regimes

- $\rightarrow\,$ Multiplicity: Monetary and fiscal policy need to be balanced across regimes to have a unique equilibrium
- $\rightarrow\,$ New taxonomy: overall AM/PF vs overall switching policy mix

③ These two regimes have different dynamic behaviour

 \rightarrow overall AM/PF mix \Rightarrow NO WEALTH EFFECTS

Introduction N	Model and methodology	Monetary/Fiscal Frontiers	Dynamics	Uniqueness	Policy Implications	ZLB
00000000000000	000	000000000	000	0000000	00	000

Importance of Coordination across regimes

- $\rightarrow\,$ Multiplicity: Monetary and fiscal policy need to be balanced across regimes to have a unique equilibrium
- \rightarrow New taxonomy: overall AM/PF vs overall switching policy mix

③ These two regimes have different dynamic behaviour

- $\rightarrow\,$ overall AM/PF mix \Rightarrow NO WEALTH EFFECTS
- $\rightarrow~$ overall switching mix \Rightarrow WEALTH EFFECTS

Introduction 00000000000000	Model and methodology	Monetary/Fiscal Frontiers	Dynamics 000	Uniqueness 0000000	Policy Implications	ZLB 000
Results						

• Timidity trap (Krugman, 2014)

Introduction 00000000000000	Model and methodology	Monetary/Fiscal Frontiers	Dynamics 000	Uniqueness 0000000	Policy Implications	ZLB 000
Results						

• Timidity trap (Krugman, 2014)

 $\rightarrow\,$ If only timid deviation into PM/AF \Rightarrow overall AM/PF \Rightarrow no wealth effects needed to reflate the economy

Introduction 00000000000000	Model and methodology	Monetary/Fiscal Frontiers	Dynamics 000	Uniqueness 0000000	Policy Implications	ZLB 000

• Timidity trap (Krugman, 2014)

 $\rightarrow\,$ If only timid deviation into PM/AF \Rightarrow overall AM/PF \Rightarrow no wealth effects needed to reflate the economy

O Application to ZLB and US data

Introduction	Model and methodology	Monetary/Fiscal Frontiers	Dynamics	Uniqueness	Policy Implications	ZLB
0000000000000	000	000000000	000	0000000	00	000

• Timidity trap (Krugman, 2014)

 $\rightarrow\,$ If only timid deviation into PM/AF \Rightarrow overall AM/PF \Rightarrow no wealth effects needed to reflate the economy

O Application to ZLB and US data

 $\rightarrow\,$ BVAR on US data for the recent ZLB period \Rightarrow IRFs: a deficit shock do not spur inflation

Introduction	Model and methodology	Monetary/Fiscal Frontiers	Dynamics	Uniqueness	Policy Implications	ZLB
0000000000000	000	000000000	000	0000000	00	000

• Timidity trap (Krugman, 2014)

 $\rightarrow\,$ If only timid deviation into PM/AF \Rightarrow overall AM/PF \Rightarrow no wealth effects needed to reflate the economy

O Application to ZLB and US data

- $\rightarrow\,$ BVAR on US data for the recent ZLB period $\Rightarrow\,$ IRFs: a deficit shock do not spur inflation
- $\rightarrow~ZLB$ + "timidity" in fiscal action \Rightarrow multiple equilibria \Rightarrow agents coordinating on the solution with no wealth effects

Introduction	Model and methodology	Monetary/Fiscal Frontiers	Dynamics	Uniqueness	Policy Implications	ZLB
0000000000000	000	000000000	000	0000000	00	000

Related literature

Regime changes in monetary policy

- Davig and Leeper (2007) \Rightarrow determinacy condition (LRTP)
- Liu, Waggoner and Zha (2009) \Rightarrow asymmetric expectation effects under the dovish and the hawkish monetary regime
- Bianchi (2013) ⇒ counterfactuals to show how equilibrium outcomes depend on agents' beliefs about alternative dovish or hawkish monetary regimes

Introduction	Model and methodology	Monetary/Fiscal Frontiers	Dynamics	Uniqueness	Policy Implications	ZLB
00000000000	000	000000000	000	0000000	00	000

Related literature

Regime changes in both monetary and fiscal policies

- Davig and Leeper (2006, 2011), Chung, Davig and Leeper (2007), Bianchi (2012), Bianchi and Ilut (2014) ⇒ Estimate Markov switching monetary and fiscal regimes for the U.S. and study the impact of policy shocks employing actual and counterfactual IRF
- Bhattarai, Lee and Park (2012): allow for indeterminacy in the estimate à la Lubik and Shorfheide (2004) \Rightarrow PM/PF in pre-Volcker, AM/PF in post-Volcker
- Bianchi and Melosi (2013, 2016) ⇒ study the link between inflation and fiscal imbalances

Introduction	Model and methodology	Monetary/Fiscal Frontiers	Dynamics	Uniqueness	Policy Implications	ZLB
0000000000	000	000000000	000	0000000	00	000

Related literature

Technical literature on solving DSGE models with MS parameters

 Blake-Zampolli (2006), Davig-Leeper (2007), Farmer-Waggoner-Zha (2009, 2011), Cho (2014), Foerster (2013), Foester-Rubio Ramirez-Waggoner-Zha (2014), Maih (2014), Barthelemy-Marx (2015)
 Introduction
 Model and methodology
 Monetary/Fiscal Frontiers
 Dynamics
 Uniqueness
 Policy Implications
 ZLB

 0000000000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

Model: simple structure in nonlinear form

 ϕ

$$\phi_t = \frac{Y_t}{Y_t - G} + \alpha \beta \mathbb{E}_t \left(\Pi_{t+1}^{\theta - 1} \phi_{t+1} \right),$$

$$\frac{b_t}{R_t} = \frac{b_{t-1}}{\Pi_t} + G - \tau_t, \quad \text{with } b_t = \frac{B_t}{P_t}.$$

(govt b.c.)

Ascari, Florio and Gobbi MP and FP Interactions

12 / 39
Introduction Model and methodology Oon 2000 Monetary/Fiscal Frontiers Oon 2000 Oon 2

Fiscal and Monetary Policy Rules

Fiscal policy

$$\tau_t = \tau_{ss} \left(\frac{b_{t-1}}{b_{ss}}\right)^{\gamma_\tau(s_t)} e^{\sigma_\tau u_{\tau,t}}$$

Monetary policy

$$R_{t} = R_{ss} \left(\Pi_{t} \right)^{\gamma_{\pi}(s_{t})} e^{\sigma_{r} u_{m,t}}$$

both depend on the underlying Markov process s_t

Introduction 00000000000	Model and methodology ○○●	Monetary/Fiscal Frontiers	Dynamics 000	Uniqueness 0000000	Policy Implications	ZLB 000
Method	ology					

• We follow the method in FRWZ \Rightarrow regime-dependent recursive MSV solutions perturbed around the non-stochastic steady state

Introduction 00000000000	Model and methodology ○○●	Monetary/Fiscal Frontiers	Dynamics 000	Uniqueness 0000000	Policy Implications	ZLB 000
Method	ology					

- We follow the method in FRWZ \Rightarrow regime-dependent recursive MSV solutions perturbed around the non-stochastic steady state
- $\bullet~\text{UCM} \Rightarrow \text{MSV}$ solutions, no sunspots

Introduction 00000000000	Model and methodology	Monetary/Fiscal Frontiers	Dynamics 000	Uniqueness 0000000	Policy Implications	ZLB 000
Method	lology					

- We follow the method in FRWZ \Rightarrow regime-dependent recursive MSV solutions perturbed around the non-stochastic steady state
- UCM \Rightarrow MSV solutions, no sunspots
- System of quadratic equations ⇒ Groebner basis algorithm using Matlab's Symbolic Toolbox to get all the solutions

Introduction 00000000000	Model and methodology	Monetary/Fiscal Frontiers	Dynamics 000	Uniqueness 0000000	Policy Implications	ZLB 000
Method	lology					

- We follow the method in FRWZ ⇒ regime-dependent recursive MSV solutions perturbed around the non-stochastic steady state
- UCM \Rightarrow MSV solutions, no sunspots
- System of quadratic equations \Rightarrow Groebner basis algorithm using Matlab's Symbolic Toolbox to get all the solutions
- Stability: Mean Square Stable

Introduction 00000000000	Model and methodology	Monetary/Fiscal Frontiers	Dynamics 000	Uniqueness 0000000	Policy Implications	ZLB 000
Method	lology					

- We follow the method in FRWZ ⇒ regime-dependent recursive MSV solutions perturbed around the non-stochastic steady state
- UCM \Rightarrow MSV solutions, no sunspots
- System of quadratic equations \Rightarrow Groebner basis algorithm using Matlab's Symbolic Toolbox to get all the solutions
- Stability: Mean Square Stable
- Unique solution when a single MSV MSS solution exists

Introduction	Model and methodology	Monetary/Fiscal Frontiers	Dynamics	Uniqueness	Policy Implications	ZLB
00000000000	000	000000000	000	0000000	00	000

Uniqueness under fixed coefficients

Recasting Leeper (1991) in the context of our model

monetary policy active (AM) when

 $\gamma_{\pi} > 1$

and passive (PM) otherwise

fiscal policy passive (PF) when $\left|\frac{1}{\beta} - \frac{1}{\beta} \frac{\tau_{ss}}{b_{ss}} \gamma_{\tau}\right| < 1$, i.e.

$$\gamma_{ au} > rac{b_{ss}}{ au_{ss}} \left(1 - eta
ight) = 0.0196$$

and active (AF) otherwise (e.g. $\gamma_{ au} = 0$)

IntroductionModel and methodologyMonetary/Fiscal FrontiersDynamicsUniquenessPolicy ImplicationsZLB0000000000000000000000000000000000

Uniqueness under fixed coefficients

AM/PF uniqueness PM/AF uniqueness PM/PF multiplicity AM/AF no stable solutions

Introduction	Model and methodology	Monetary/Fiscal Frontiers	Dynamics	Uniqueness	Policy Implications	ZLB
00000000000	000	000000000	000	0000000	00	000

Uniqueness under regime switching

- We consider two regimes: $s_t = 1, 2$
- Contemporaneous switching in monetary and fiscal policy
- We focus on scenarios where one regime is AM/PF
- Reduce to a two dimensional graph:

 $\rightarrow\,$ fix a given (monetary or fiscal) policy in both regimes $\rightarrow\,$ fix a given regime (AM/PF)

Introduction 00000000000 Model and methodology

Monetary/Fiscal Frontiers

ers Dynamic 000 Uniqueness Policy Implications

s ZLB 000

The Monetary Policy Frontier (MPF)

Given Passive Fiscal Policy (Davig and Leeper, 2007)

Introduction 0000000000 Model and methodology

Monetary/Fiscal Frontiers

ooo

Uniqueness Policy Implications

The Monetary Policy Frontier (MPF)

Given Passive Fiscal Policy (Davig and Leeper, 2007)

Introduction Model and methodology October Oct

The Fiscal Policy Frontier (FPF)

Given Active Monetary Policy

The Fiscal Policy Frontier (FPF)

Given Active Monetary Policy

If monetary policy stays active in both regimes

- $\rightarrow\,$ uniqueness allows timid deviations into AF $\rightarrow\,$ overall PF
- → MPF unaffected if LRFP holds (above FPF)

The Fiscal Policy Frontier (FPF)

Proposition. The FPF and the long-run Fiscal Principle

For any policy parameter combination, there always exists a particular solution such that in each regime:

$$h_i = \frac{1}{\beta} \left(1 - \frac{\tau}{b} \gamma_{\tau,i} \right) \equiv \bar{h}_i(\gamma_{\tau,i})$$
 and $g_{\pi,i} = 0$, for $i = 1, 2$.

Then, this solution:

- (i) Is MSS, if above the Fiscal Policy Frontier (eq. (22));
- (ii) Depends only on $\gamma_{\tau,i}$ for i = 1, 2, and it is independent of the monetary policy coefficients;
- (iii) If MSS, it yields no wealth effects in both regimes because $g_{\pi,i} = 0$, so it is a Ricardian solution.

Introduction	Model and methodology	Monetary/Fiscal Frontiers	Dynamics	Uniqueness	Policy Implications	ZLB
00000000000	000	0000000000	000	0000000	00	000

Switching Policies

We want now consider a switching monetary policy:

- consider an AM regime 1
 - ightarrow for example $(\gamma_{\pi,1}=1.5)$

Introduction	Model and methodology	Monetary/Fiscal Frontiers	Dynamics	Uniqueness	Policy Implications	ZLB
000000000000	000	0000000000	000	0000000	00	000

Switching Policies

We want now consider a switching monetary policy:

• consider an AM regime 1

- ightarrow for example $(\gamma_{\pi,1}=1.5)$
- the central bank switches to PM in regime 2...

Introduction	Model and methodology	Monetary/Fiscal Frontiers	Dynamics	Uniqueness	Policy Implications	ZLB
00000000000	000	0000000000	000	0000000	00	000

Switching Policies

We want now consider a switching monetary policy:

• consider an AM regime 1

- ightarrow for example $(\gamma_{\pi,1}=1.5)$
- the central bank switches to PM in regime 2...
- How should fiscal policy be in order to have uniqueness? \rightarrow Need to distinguish two cases: timid vs. substantial switch

IntroductionModel and methodologyMonetary/Fiscal Frontiers
0000000000DynamicsUniquenessPolicy ImplicationsZLB0000000000000000000000000000000000

Timid Switching Monetary Policy

Introduction Model and methodology Monetary/Fiscal Frontiers Dynamics Uniqueness Policy Implications ZLB

Timid Switching Monetary Policy

Introduction Model and methodology Monetary/Fiscal Frontiers Dynamics Uniqueness Policy Implications ZLB

Timid Switching Monetary Policy

Introduction Model and methodology Monetary/Fiscal Frontiers Dynamics Uniqueness Policy Implications ZLB

Timid Switching Monetary Policy

Introduction	Model and methodology	Monetary/Fiscal Frontiers	Dynamics	Uniqueness	Policy Implications	ZLB
00000000000	000	0000000000	000	0000000	00	000

Switching Monetary Policy

Introduction Model and methodology Ococococo Dynamics Uniqueness Policy Implications ZLB

Switching Monetary Policy

IntroductionModel and methodology
000Monetary/Fiscal Frontiers
000000000Dynamics
000Uniqueness
00000000Policy Implications
000ZLB
000

Switching Monetary Policy

Introduction Model and methodology Ococococo Dynamics Uniqueness Policy Implications ZLB

Switching Monetary Policy

Introduction	Model and methodology	Monetary/Fiscal Frontiers	Dynamics	Uniqueness	Policy Implications	ZLB
00000000000	000	00000000	000	0000000	00	000

Given an AM/PF regime 1, monetary and fiscal policies need to be **overall balanced** to obtain a unique stable equilibrium:

Given an AM/PF regime 1, monetary and fiscal policies need to be **overall balanced** to obtain a unique stable equilibrium:

Overall AM: monetary policy combination inside Monetary Policy Frontier \Rightarrow only timid deviations into PM are allowed

Given an AM/PF regime 1, monetary and fiscal policies need to be **overall balanced** to obtain a unique stable equilibrium:

Overall AM: monetary policy combination inside Monetary Policy Frontier \Rightarrow only timid deviations into PM are allowed

Overall PF: fiscal policy combination inside Fiscal Policy Frontier \Rightarrow only timid deviations into AF are allowed

Given an AM/PF regime 1, monetary and fiscal policies need to be **overall balanced** to obtain a unique stable equilibrium:

Overall AM: monetary policy combination inside Monetary Policy Frontier \Rightarrow only timid deviations into PM are allowed

Overall PF: fiscal policy combination inside Fiscal Policy Frontier \Rightarrow only timid deviations into AF are allowed

Overall AM/PF Mix: overall AM + overall PF \Rightarrow **Ricardian solution**: no wealth effects in both regimes

Given an AM/PF regime 1, monetary and fiscal policies need to be **overall balanced** to obtain a unique stable equilibrium:

Given an AM/PF regime 1, monetary and fiscal policies need to be **overall balanced** to obtain a unique stable equilibrium:

Overall switching monetary policy: monetary policy combinations outside Monetary Policy Frontier \Rightarrow substantial deviations in PM

Given an AM/PF regime 1, monetary and fiscal policies need to be **overall balanced** to obtain a unique stable equilibrium:

Overall switching monetary policy: monetary policy combinations outside Monetary Policy Frontier \Rightarrow substantial deviations in PM

Overall switching fiscal policy: fiscal policy combinations outside Fiscal Policy Frontier \Rightarrow substantial deviations into AF

Given an AM/PF regime 1, monetary and fiscal policies need to be **overall balanced** to obtain a unique stable equilibrium:

Overall switching monetary policy: monetary policy combinations outside Monetary Policy Frontier \Rightarrow substantial deviations in PM

Overall switching fiscal policy: fiscal policy combinations outside Fiscal Policy Frontier \Rightarrow substantial deviations into AF

Overall SWITCHING Mix: overall switching monetary policy + overall switching fiscal policy \Rightarrow **Non-Ricardian solution**: wealth effects in both regimes

Introduction	Model and methodology	Monetary/Fiscal Frontiers	Dynamics	Uniqueness	Policy Implications	ZLB
00000000000	000	000000000	000	0000000	00	000

IRFs to a tax shock under MS and fixed coefficients

Introduction	Model and methodology	Monetary/Fiscal Frontiers	Dynamics	Uniqueness	Policy Implications	ZLB
00000000000	000	000000000	000	0000000	00	000

The importance of coordination

IntroductionModel and methodologyMonetary/Fiscal FrontiersDynamicsUniquenessPolicy ImplicationsZLB0000000000000000000000000000000

What determines uniqueness?

How to define timid vs. substantial deviations?
Uniqueness under fixed coefficients

AM/PF uniqueness PM/AF uniqueness PM/PF multiplicity AM/AF no stable solutions

Uniqueness under regime switching

Introduction	Model and methodology	Monetary/Fiscal Frontiers	Dynamics	Uniqueness	Policy Implications	ZLB
00000000000	000	000000000	000	0000000	00	000

"Timid" deviations: relaxing Leeper's conditions

If regime 1 is AM/PF and absorbing, uniqueness:

Upper-right region

$$\begin{split} \gamma_{2,\tau} &> \frac{b_{ss}}{\tau_{ss}} \left(1 - \frac{\beta}{\sqrt{p_{22}}} \right) \\ \gamma_{2,\pi} &> \sqrt{p_{22}} - \frac{\left(1 - \beta\sqrt{p_{22}} \right) \left(1 - \sqrt{p_{22}} \right)}{\lambda} \end{split}$$

Introduction	Model and methodology	Monetary/Fiscal Frontiers	Dynamics	Uniqueness	Policy Implications	ZLB
00000000000	000	000000000	000	0000000	00	000

"Timid" deviations: relaxing Leeper's conditions

If regime 1 is AM/PF and absorbing, uniqueness:

Upper-right region

$$\begin{split} \gamma_{2,\tau} &> \frac{b_{ss}}{\tau_{ss}} \left(1 - \frac{\beta}{\sqrt{p_{22}}} \right) & \text{PF: } \gamma_{\tau} > \frac{b_{ss}}{\tau_{ss}} \left(1 - \beta \right) \\ \gamma_{2,\pi} &> \sqrt{p_{22}} - \frac{\left(1 - \beta\sqrt{p_{22}} \right) \left(1 - \sqrt{p_{22}} \right)}{\lambda} & \text{AM: } \gamma_{\pi} > 1 \end{split}$$

Uniqueness under regime switching: absorbing case

"Timid" deviations: relaxing Leeper's conditions

If regime 1 is AM/PF and absorbing, uniqueness:

Upper-right region

$$\begin{split} \gamma_{2,\tau} &> \frac{b_{ss}}{\tau_{ss}} \left(1 - \frac{\beta}{\sqrt{p_{22}}} \right) & \text{PF: } \gamma_{\tau} &> \frac{b_{ss}}{\tau_{ss}} \left(1 - \beta \right) \\ \gamma_{2,\pi} &> \sqrt{p_{22}} - \frac{\left(1 - \beta\sqrt{p_{22}} \right) \left(1 - \sqrt{p_{22}} \right)}{\lambda} & \text{AM: } \gamma_{\pi} &> 1 \end{split}$$

ightarrow timid deviations from AM and PF still grant uniqueness

 $\rightarrow\,$ Same intuition as for Davig & Leeper for the LRTP

Uniqueness under regime switching: absorbing case

"Timid" deviations: relaxing Leeper's conditions

If regime 1 is AM/PF and absorbing, uniqueness:

Upper-right region

$$\begin{split} \gamma_{2,\tau} &> \frac{b_{ss}}{\tau_{ss}} \left(1 - \frac{\beta}{\sqrt{p_{22}}} \right) & \text{PF: } \gamma_{\tau} &> \frac{b_{ss}}{\tau_{ss}} \left(1 - \beta \right) \\ \gamma_{2,\pi} &> \sqrt{p_{22}} - \frac{\left(1 - \beta\sqrt{p_{22}} \right) \left(1 - \sqrt{p_{22}} \right)}{\lambda} & \text{AM: } \gamma_{\pi} &> 1 \end{split}$$

 $\rightarrow\,$ timid deviations from AM and PF still grant uniqueness

- $\rightarrow\,$ Same intuition as for Davig & Leeper for the LRTP
- \rightarrow deviations can be larger the smaller p_{22}

Introduction	Model and methodology	Monetary/Fiscal Frontiers	Dynamics	Uniqueness	Policy Implications	ZLB
00000000000	000	000000000	000	0000000	00	000

"Timid" deviations: relaxing Leeper's conditions

Lower-left region

$$\gamma_{2,\tau} < \frac{b_{ss}}{\tau_{ss}} \left(1 - \frac{\beta}{\sqrt{p_{22}}} \right)$$
$$\gamma_{2,\pi} < \sqrt{p_{22}} - \frac{\left(1 - \beta\sqrt{p_{22}} \right) \left(1 - \sqrt{p_{22}} \right)}{\lambda}$$

 $\rightarrow\,$ monetary policy needs to deviate substantially from AM

- $\rightarrow\,$ fiscal policy needs to deviate substantially from PF
- $\rightarrow~$ substantial and coordinated deviations to get uniqueness

Dynamic response of the model

Introduction	Model and methodology	Monetary/Fiscal Frontiers	Dynamics	Uniqueness	Policy Implications	ZLB
00000000000	000	000000000	000	0000000	● O	000

Several Implications

 Establish conditions for dynamics to exhibit wealth effects with MS changes

Introduction	Model and methodology	Monetary/Fiscal Frontiers	Dynamics	Uniqueness	Policy Implications	ZLB
00000000000	000	000000000	000	0000000	•0	000

- Establish conditions for dynamics to exhibit wealth effects with MS changes
- Timidity Trap (Krugman, 2014)

Introduction	Model and methodology	Monetary/Fiscal Frontiers	Dynamics	Uniqueness	Policy Implications	ZLB
000000000000	000	000000000	000	0000000	•0	000

- Establish conditions for dynamics to exhibit wealth effects with MS changes
- Timidity Trap (Krugman, 2014)
- Expectation effects are asymmetric (e.g., Liu-Waggoner-Zha, 2009)

Introduction	Model and methodology	Monetary/Fiscal Frontiers	Dynamics	Uniqueness	Policy Implications	ZLB
00000000000	000	000000000	000	0000000	•0	000

- Establish conditions for dynamics to exhibit wealth effects with MS changes
- Timidity Trap (Krugman, 2014)
- Expectation effects are asymmetric (e.g., Liu-Waggoner-Zha, 2009)
- Wealth effects and FTPL is not always at work if agents attach a positive probability of moving towards active fiscal policy (e.g., Chung-Davig-Leeper, 2007)
 - $ightarrow \ \textit{overall}$ policy stance matters
 - $\rightarrow~$ estimation and multiple equilibria

Introduction	Model and methodology	Monetary/Fiscal Frontiers	Dynamics	Uniqueness	Policy Implications	ZLB
000000000000	000	000000000	000	0000000	•0	000

- Establish conditions for dynamics to exhibit wealth effects with MS changes
- 2 Timidity Trap (Krugman, 2014)
- Expectation effects are asymmetric (e.g., Liu-Waggoner-Zha, 2009)
- Wealth effects and FTPL is not always at work if agents attach a positive probability of moving towards active fiscal policy (e.g., Chung-Davig-Leeper, 2007)
 - $ightarrow \ \textit{overall}$ policy stance matters
 - $\rightarrow~$ estimation and multiple equilibria
- Segime persistence is key (Bianchi and Melosi, 2013) → define "timid deviations", MPF and FPF, and type of regimes

Introduction	Model and methodology	Monetary/Fiscal Frontiers	Dynamics	Uniqueness	Policy Implications	ZLB
00000000000	000	000000000	000	0000000	00	000

ZLB: Matching theory and evidence

ZLB: Matching theory and evidence

Assume expected AM/PF and now ZLB

• If ZLB is short-lasting \Rightarrow multiplicity irrespective of FP

ZLB: Matching theory and evidence

- If ZLB is short-lasting \Rightarrow multiplicity irrespective of FP
- If ZLB long-lived ⇒ Uniqueness unattainable if PF

ZLB: Matching theory and evidence

- If ZLB is short-lasting ⇒ multiplicity irrespective of FP
- If ZLB long-lived \Rightarrow Uniqueness unattainable if PF
- The more ZLB short-lived, the more active should be FP

ZLB: Matching theory and evidence

- If ZLB is short-lasting ⇒ multiplicity irrespective of FP
- If ZLB long-lived \Rightarrow Uniqueness unattainable if PF
- The more ZLB short-lived, the more active should be FP
- Switching regime \Rightarrow wealth effects

ZLB: Matching theory and evidence

IRFs to a deficit shock from a BVAR on US data 2008q4 - 2015q4

 Output and inflation do not move, debt increases

ZLB: Matching theory and evidence

IRFs to a deficit shock from a BVAR on US data 2008q4 - 2015q4

 Output and inflation do not move, debt increases ZLB

 Consistent with PM/AF regime in a overall AM/PF mix ⇒ timid AF and indeterminate equilibrium Model and methodology

Monetary/Fiscal Frontiers

Policy Implications

ZLB 000

ZLB: Matching theory and evidence

IRFs to a deficit shock from a BVAR on US data 2008q4 - 2015q4

- Output and inflation do not move, debt increases
- Consistent with PM/AF regime in a overall $AM/PF mix \Rightarrow timid AF$ and indeterminate equilibrium
- Agents coordinating on the Ricardian one

roduction Model a

Model and methodology

Monetary/Fiscal Frontiers

ontiers Dynam 000

imics Uniqueness

Policy Implications ZLB

ZLB: Matching theory and evidence

IRFs to a deficit shock from a BVAR on US data 2008q4 - 2015q4

- Output and inflation do not move, debt increases
- Consistent with PM/AF regime in a overall AM/PF mix ⇒ timid AF and indeterminate equilibrium
- Agents coordinating on the Ricardian one
- More aggressive active fiscal policy ⇒ unique switching mix ⇒ inflation upswing

Introduction 00000000000	Model and methodology	Monetary/Fiscal Frontiers	Dynamics 000	Uniqueness 0000000	Policy Implications	ZLB oo●
Conclus	ions					

In this paper we study the equilibria in a model with shifts in monetary and fiscal policy.

Introduction 00000000000	Model and methodology	Monetary/Fiscal Frontiers	Dynamics 000	Uniqueness 0000000	Policy Implications	ZLB oo●

In this paper we study the equilibria in a model with shifts in monetary and fiscal policy.

Research questions:

• Under which conditions can monetary policy control inflation? Is fiscal policy getting in the way?

Introduction 00000000000	Model and methodology	Monetary/Fiscal Frontiers	Dynamics 000	Uniqueness 0000000	Policy Implications	ZLB oo●
- ·	_					

In this paper we study the equilibria in a model with shifts in monetary and fiscal policy.

- Under which conditions can monetary policy control inflation? Is fiscal policy getting in the way?
 - \rightarrow Long-run Fiscal Principle: timid deviation from PF to avoid wealth effects and enhance CB's controllability of inflation

Introduction 00000000000	Model and methodology	Monetary/Fiscal Frontiers	Dynamics 000	Uniqueness 0000000	Policy Implications	ZLB oo●
<u> </u>						

In this paper we study the equilibria in a model with shifts in monetary and fiscal policy.

- Under which conditions can monetary policy control inflation? Is fiscal policy getting in the way?
 - \rightarrow Long-run Fiscal Principle: timid deviation from PF to avoid wealth effects and enhance CB's controllability of inflation
- Need/gain from coordination?

Introduction 00000000000	Model and methodology	Monetary/Fiscal Frontiers	Dynamics 000	Uniqueness 0000000	Policy Implications	ZLB oo●
_						

In this paper we study the equilibria in a model with shifts in monetary and fiscal policy.

- Under which conditions can monetary policy control inflation? Is fiscal policy getting in the way?
 - \rightarrow Long-run Fiscal Principle: timid deviation from PF to avoid wealth effects and enhance CB's controllability of inflation
- Need/gain from coordination?
 - \rightarrow New Taxonomy for uniqueness in MS:
 - $\rightarrow~$ Overall AM/PF mix \Rightarrow No wealth effects
 - $\rightarrow~$ Overall Switching mix \Rightarrow wealth effects from FTPL

Methodology

Following FRWZ, our model can be written as

$$\mathbb{E}_{t} \boldsymbol{f} \left(\boldsymbol{y}_{t+1}, \boldsymbol{y}_{t}, \boldsymbol{x}_{t}, \boldsymbol{x}_{t-1}, \boldsymbol{\varepsilon}_{t+1}, \boldsymbol{\varepsilon}_{t}, \boldsymbol{\theta}(\boldsymbol{s}_{t+1}), \boldsymbol{\theta}(\boldsymbol{s}_{t}) \right) = \boldsymbol{0}$$
$$\boldsymbol{x}_{t} = \boldsymbol{b}_{t}, \qquad \boldsymbol{y}_{t}' = \left[\boldsymbol{Y}_{t}, \boldsymbol{\Pi}_{t}, \boldsymbol{\phi}_{t}, \boldsymbol{R}_{t} \right]', \qquad \boldsymbol{\theta}'(\boldsymbol{s}_{t}) = \left[\gamma_{\pi}(\boldsymbol{s}_{t}), \gamma_{\tau}(\boldsymbol{s}_{t}) \right]'.$$

We look for recursive solutions in form

$$\begin{aligned} \mathbf{x}_{t} &= \mathbf{h}_{s_{t}}(\mathbf{x}_{t-1}, \boldsymbol{\varepsilon}_{t}, \boldsymbol{\chi}) \\ \mathbf{y}_{t} &= \mathbf{g}_{s_{t}}(\mathbf{x}_{t-1}, \boldsymbol{\varepsilon}_{t}, \boldsymbol{\chi}) \end{aligned}$$

perturbed around the non-stochastic steady state $[\bar{x}, \bar{y}]$. Note that the solutions are regime-dependent, while the steady state is not.
• Under regime *i*, the first order Taylor expansion of the solutions are

$$b_{t} \approx \bar{b} + h_{i,b}(b_{t-1} - \bar{b}) + h_{i,\varepsilon}\varepsilon_{t} + h_{i,\chi}\chi$$
$$y_{t} \approx \bar{y} + g_{i,b}(b_{t-1} - \bar{b}) + g_{i,\varepsilon}\varepsilon_{t} + g_{i,\chi}\chi$$

with the partial derivatives evaluated at the steady state.

- The derivatives of E_tf are equal to zero and depend on the unknown coefficients h_{i,b}, h_{i,ε}, h_{i,χ}, g_{i,b}, g_{i,ε}, g_{i,χ}.
- FRWZ show that the *h_{i,b}* and *g_{i,b}* are the roots of a separated system of quadratic equations, unsolvable with standard methods (Gensys, etc.)
- We use Matlab's Symbolic Toolbox to get all the solutions.

Stability

We use the concept of mean square stability (Costa et al. 2005)

 $\rightarrow\,$ MSS requires the existence of

$$\lim_{t\to\infty} \mathbb{E}_0\left(\begin{bmatrix} \mathbf{x}_t\\ \mathbf{y}_t\end{bmatrix}\right), \quad \text{and} \quad \lim_{t\to\infty} \mathbb{E}_0\left(\begin{bmatrix} \mathbf{x}_t\\ \mathbf{y}_t\end{bmatrix}\begin{bmatrix} \mathbf{x}_t\\ \mathbf{y}_t\end{bmatrix}'\right)$$

- $\rightarrow\,$ different concept of stability w.r.t. boundedness
- $\rightarrow\,$ see Farmer et al. (2009) for a discussion in the context of MS-DSGEs
- $\rightarrow\,$ with 2 regimes and 1 state variable, the solution $({\it h}_{1,\it b},{\it h}_{2,\it b})$ is MSS if

$$\begin{bmatrix} p_{11}h_{1,b}^2 & (1-p_{22})h_{2,b}^2 \\ (1-p_{11})h_{1,b}^2 & p_{22}h_{2,b}^2 \end{bmatrix}$$

has all its eigenvalues inside the unit circle.
• Back to Methodology

What happens when both monetary and fiscal policy shift?

Original taxonomy of little use

- ightarrow the clear cut results by Leeper (1991) are lost
- $\rightarrow\,$ policies must coordinate to get a determinate equilibrium
- $\rightarrow\,$ the expectation of a stable regime in the future is not sufficient to get uniqueness

Original taxonomy of little use

Point A first Figure: AM/PF + PM/AF = multiplicity

Original taxonomy of little use AM/AF + PM/PF = uniqueness

fixed coefficients taxonomy reg1 AM/AF: $\gamma_{\pi,1} = 1.5, \gamma_{\tau,1} = 0$ reg2 PM/PF: $\gamma_{\pi,2} = 0.97, \gamma_{\tau,2} = 0.2$

our taxonomy

glob. active monetary policy + glob. passive fiscal policy

 $\rightarrow\,$ coordination, uniqueness

Original taxonomy of little use

MSS vs BRS

