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Abstract The aim of this paper is to show that measures on tail dependence can be

estimated in a convenient way by regression analysis. This yields the same estimates as

the non-parametric method within the multivariate Extreme Value Theory framework. The

advantage of the regression approach is contained by its straightforward extension to the

estimation of higher dimensional tail dependence. We provide an example on international

stock markets. The regression approach to tail dependence can be applied to estimate several

measures of systemic importance of financial institutions in the literature.
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1 Introduction

Tail dependence refers to the dependence among extreme events. This dependence struc-

ture is not necessarily similar to the tail dependence structure among ordinary observations.

A fascinating example is observed in financial markets: the dependence among asset returns

increases during volatile periods, and especially during strong market downturns, see Longin

and Solnik (1995, 2001), Ang and Chen (2002), Ang and Bekaert (2002) among others.

The major difficulty of measuring tail dependence is the scarcity of observations on ex-

treme events. The developments in multivariate Extreme Value Theory (EVT) allow assess-

ing the tail dependence structure based on observations close to the tail. For example, in the

applications by Poon et al. (2004) and Hartmann et al. (2004), measuring tail dependence

reveals which stock market pairs are likely to crash jointly or which are likely to exhibit

flight-to-quality phenomenons.

One often applied measure on tail dependence is the τ -measure, see e.g. Straetmans et al.

(2008), De Jonghe (2010), Pais and Stork (2010) and Beine et al. (2010).1 The pairwise τ -

measure compares the probability of a joint tail event to that of a tail event of one variable,

where ‘tail events’ occur only with very low probability. Formally, the τ -measure for the

pairwise dependence between the left tails of two random variables x and y is given by

τy|x = lim
p→0

Pr(y < Qy(p) and x < Qx(p))

p
= lim

p→0
Pr(y < Qy(p)|x < Qx(p)),

where Qy(p) denotes the quantile of the distribution of y at probability level p.2 Although

the notation τy|x can be read as the conditional probability of a tail event of y given the

occurrence of a tail event of x, it does not necessarily imply any causality. Similar to

correlation, the τ -measure ranges from 0 to 1 indicating the level of tail dependence. The

1Some studies report manipulations of τ : Hartmann et al. (2004, 2010) and De Vries (2005) report
2/(2 − τ); Garita and Zhou (2009) report τ/(2 − τ).

2The definition of τ is sufficiently flexible to define tail dependence among all tail pairs, i.e. to vary among
the left and right tails. In addition, several studies choose to replace Qy(p) and Qx(p) in the definition of τ
by a sufficiently low threshold −u. The regression approach can deal with both definitions of τ .
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case τy|x = 0 corresponds to tail independence, while the case τy|x = 1 corresponds to

complete tail dependence.

Under the multivariate EVT framework, the τ -measure can be estimated non-

parametrically, see e.g. Embrechts et al. (2000). Our paper provides a simple ordinary

least squares (OLS) regression approach to estimate τ . Our estimator exactly coincides with

the non-parametric estimator. Because pairwise tail dependence is only a projection of the

multidimensional tail dependence structure, it is crucial to have an accessible instrument to

investigate multidimensional tail dependence. The advantage of our regression approach is

contained by the straightforward extension of analyzing tail dependence to higher dimen-

sional levels. We provide an empirical example on multidimensional tail dependence among

international stock markets. Finally, we report how the regression approach can be applied

to estimate the measures of systemic importance in the banking system developed in various

papers: the Probability of Cascade Effects (PCE) in Segoviano and Goodhart (2009) and

the Systemic Impact Index (SII) in Zhou (2010).

2 Indicator regression

The non-parametric estimator of the τy|x-measure is calculated as the ratio between the

number of observations in which both x and y are extreme and those in which variable x is

extreme. Here being extreme is defined as having a value below the k-th lowest observation

in the sample, given a sufficiently low k, see Embrechts et al. (2000). With observations xt

and yt for t = 1, 2, ..., n, the non-parametric estimator of τy|x is given by

τ̂y|x =

∑n
t=1 Iy and x,t∑n

t=1 Ix,t

,

where Iy and x,t = 1(yt < Qy(k/n) and xt < Qx(k/n)) and Ix,t = 1(xt < Qx(k/n)) with 1()

denoting the indicator function, and where the quantile function Q(k/n) is usually estimated

by the k-th lowest observation. With a similar notation for Iy,t, we have Iy and x,t = Iy,tIx,t,
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and rewrite the estimator τ̂y|x as

τ̂y|x =

∑n
t=1 Iy,tIx,t∑n
t=1 Ix,tIx,t

.

Hence, the non-parametric estimator is computationally equivalent to the OLS estimate of

the slope coefficient when the indicator for extreme values of y is regressed on the indicator

for extreme values of x without intercept. In other words, the OLS estimate of β in the

regression

Iy,t = β × Ix,t + εt

equals to the non-parametric estimate τ̂y|x.3

Studies in the literature focus on pairwise tail dependence only. However, this is in

general not sufficient to reproduce the higher dimensional tail dependence structure. For

example, consider a three-dimensional case with random variables y, x1 and x2 with all

pairwise τ -measures equal to 1/2, i.e. τy|x1 = τy|x2 = τx2|x1 = 1/2.4 Several potential tri-

variate dependence structures can lead to such pairwise τ -measures. One possibility is that

y is extreme if and only if x1 and x2 are both extreme. Another one is that y is extreme

if and only if one of x1 and x2 is extreme. The two tri-variate dependence structures are

very different, and so are their economic consequences. Hence, it is necessary to have an

instrument to investigate multidimensional tail dependence.

The indicator regression can be extended to multidimensional analysis. To analyze the

tail dependence among random variable y and multiple random variables x1, · · · , xm, one

should include all possible interactions among the indicators Ixi,t in the indicator regression.

The regression then gives a complete figure on tail dependence in the multidimensional

case. To illustrate this idea we consider the three-dimensional dependence structure between

3We remark that the usual standard errors of the OLS regression are meaningless. Correct standard
errors for τ̂ can be obtained by using a (block) bootstrap. To obtain the standard errors reported in Table
1, we followed Hartmann et al. (2010) and set the optimal block length equal to n1/3.

4This example is close to the findings of Poon et al. (2004) on pairwise tail dependence among the stock
markets of UK, Germany and France.
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variable y and variables x and z by estimating the following indicator regression:

Iy,t = βxIx,t + βzIz,t + βx,zIx,tIz,t + εt.

Similar to the pairwise case, the interpretation of the multidimensional tail dependence

structure follows the interpretation of a usual regression. That is, to get the non-parametric

estimate of the conditional probability of y being extreme given a certain scenario on x and

z, one has to calculate the predicted expectation of the left hand side indicator given the

value of the right hand side indicators under the scenario. A proof is given in the Appendix.

For example, for the scenario in which x is extreme and z is not extreme, the conditional

probability that y is extreme, τ̂y|x,z̄, equals to β̂x · 1 + β̂z · 0 + β̂x,z · 1 · 0 = β̂x.
5 Similarly, the

estimate of the probability that y is extreme, conditional on both x and z being extreme,

τ̂y|x,z, is given by β̂x + β̂z + β̂x,z.

The indicator regression in high dimensional cases may involve a large number of higher

dimensional interactions. The estimation of a full tail dependence structure suffers from a di-

mensional curse: with scenarios defined on m variables, 2m−1 parameters must be estimated.

Nevertheless, both complete tail dependence and tail independence among regressors provide

potential relief to this dimensional curse. First, if two regressors are recognized as completely

tail dependent, then the individual regressors can be left out. For instance, suppose that

in the three-dimensional example, x and z are completely tail dependent. Then a perfect

collinearity problem will occur in the indicator regression, since we have Ix,t = Iz,t = Ix,tIz,t.

Because the scenario in which only one of x and z is extreme has probability zero, the only

meaningful model is to regress Iy,t on Ix,tIz,t. The indicator regression coefficient gives the

estimate of τy|x,z. Second, if two regressors are recognized as tail independent, then the

interaction of the two is by definition zero. In this case all interaction terms that include

the two regressors can be omitted from the indicator regression. To summarize, identifying

5The absence (presence) of the bar on the subscript of τ̂ denotes a scenario with a particular variable
being (not) extreme.

5



completely tail dependent or tail independent regressors before performing the full indicator

regression provides relief to the dimensional curse problem.

3 Tail dependence among stock markets

We provide an empirical example of the indicator regression at work by extending some

of the pairwise results from Poon et al. (2004) to the multidimensional case.6 Poon et al.

(2004) estimate the pairwise tail dependence among major stock indices. We replicate their

pairwise results on the tail dependence between the U.K. stock market and those of France,

Germany and the U.S. with the indicator regression, which gives

τ̂UK|US = 0.29 , τ̂UK|GE = 0.46 and τ̂UK|FR = 0.43.

The results on pairwise tail dependence suggest that the U.K. market suffers the least co-

crashes with the U.S. stock market, while its tail dependence with the German and French

stock market appears to be on a comparable level.

Subsequently, we estimate the full tail dependence structure among the four countries by

an indicator regression that includes all possible interactions, which gives

IUK,t ≈ 0.11 · IUS,t + 0.19 · IGE,t + 0.20 · IFR,t + 0.25 · IUS,tIGE,t+

−0.06 · IUS,tIFR,t + 0.13 · IGE,tIFR,t + 0.18 · IUS,tIGE,tIFR,t.

In Table 1 we calculate the conditional probabilities τ for all possible scenarios from the

regression coefficients as discussed in Section 2.

6The stock market indices are S&P500 for the U.S., FTSE100 for the U.K., DAX30 for Germany and
CAC40 for France. Our analysis regards the results on unfiltered data in the third subperiod: from November
28, 1990 to November 12, 2001. The total sample size is n = 2, 859. With an exception for τUK|FR our
pairwise estimates equal those in Poon et al. (2004), Table 3. This is due to the different choice of k. To
report estimates that are comparable to the multidimensional analysis, we choose a common k = 87 for all
market pairs.
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- TABLE 1 HERE -

Three results follow from the multidimensional analysis. First, considering the scenario

in which only one particular market suffers an extreme loss, then the U.K. market has the

weakest link with the U.S. market, while those with the German and French market are

comparable. This result matches the results from the pairwise analysis.

Second, given an extreme loss in the U.S. market, the link of the U.K. market with

the German market is stronger than the link with the French market. Hence, from the

multidimensional analysis we observe a distinction between the French and German market

that does not appear from the pairwise analysis.

Third, we observe that the U.K. market is expected to suffer an extreme loss with almost

certainty, if the other three markets are observed to suffer an extreme loss. In contrast to the

moderate levels of pairwise tail dependence, the multidimensional analysis reveals a strong

linkage among the four markets.

4 Systemic importance of financial institutions

With the failure of the investment bank Lehman Brothers in 2008, the financial system in

the US and the EU came close to a complete meltdown. This phenomenon falls in line with

the discussion on ”tail dependence”: crashes of financial institutions are likely to happen

simultaneously. Financial institutions that are more likely to co-crash with other institutions

within the financial system are sometimes considered as more systemically important. For

policymakers, measuring the systemic importance of financial institutions turns to be the key

issue in both financial stability assessment and macro-prudential supervision. Recent studies

propose a few measures on the systemic importance. For example, Segoviano and Goodhart

(2009) propose the Probability of Cascade Effects (PCE), which measures the probability
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of having at least one other bank crash given the crash of one specific bank. Zhou (2010)

proposes the Systemic Impact Index (SII), which measures the expected number of crashes

within the financial system given the crash of one specific bank. We demonstrate that these

two systemic importance measures can be estimated with the indicator regression method.

Consider a financial system consisting of d financial institutions, with variables x1,t, ..., xd,t

indicating their statuses in period t. An extremely low value in xi indicates that bank i is

distressed. Examples of such status variables are given by the returns on bank i’s equity

or by the returns on providing insurance on bank i’s debt, as reflected by the changes in

the price of credit default swaps (CDS). In correspondence with the foregoing, we use Ii,t to

indicate whether bank i is in distress at period t, i.e. Ii,t = 1(xi,t < Qi(p)).

We start with the PCE measure in Segoviano and Goodhart (2009). Segoviano and

Goodhart (2009) apply the CIMDO copula approach to estimate the PCE measure, while

Zhou (2010) provides a non-parametric estimate of the PCE measure. We show how to apply

the indicator regression to produce the non-parametric estimate. It is obvious that the event

”having at least one other bank crash” can be indicated by the indicator I�=i,t = maxj �=i Ij,t.

Similar to the estimation of τ , one can estimate the OLS regression

I�=i,t = PCEi · Ii,t + εt,

to obtain the estimate of the PCE measure for bank i. It is straightforward to see that such

an estimate is exactly equal to the non-parametric estimate of the PCE measure.

Next, we discuss the SII measure in Zhou (2010). The non-parametric estimate of the

SII measure for bank i equals to the sum of the estimates on τj|i which is the τ measure

between bank i and any bank j, j = 1, 2, ..., d. From the indicator regression, τj|i can be

estimated by the OLS regression

Ij,t = τj|iIi,t + εt.
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By aggregating the regressions, we get that performing a single OLS regression

d∑
j=1

Ij,t = SIIi · Ii,t + εt

leads to the non-parametric estimate of the SII measure for bank i. Notice that this is beyond

the aforementioned concept of ”indicator regressions”, because the dependent variable is not

an indicator, but a measure for the status of the system.

5 Concluding remark

Because the tail dependence measure is a regression coefficient in an indicator regression,

it is possible to incorporate other covariates. De Jonghe (2010) investigates the determi-

nants of the τ -measure between bank equity returns and a banking index by regressing the

estimated τ -measure on bank level characteristics. Such a two-step approach may result in

a loss of efficiency. Differently, it is possible to combine the indicator regression with the

cross-sectional model to construct a one-step approach. Similarly, such a one-step approach

can be applied to investigate bank level characteristics of the other systemic importance

measures we discussed. This is left for future research.
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6 Appendix: Proofs

Define Nx =
∑

Ix,t, Nx,z =
∑

Ix,tIz,t, etc, where the sum is over all t. Then the non-

parametric estimate that y is extreme, conditional on x and/or z being extreme, is given

by

τ̂y|x,z̄ =
Ny,x − Ny,x,z

Nx − Nx,z

, τ̂y|x̄,z =
Ny,z − Ny,x,z

Nz − Nx,z

and τ̂y|x,z =
Ny,x,z

Nx,z

.

We prove that OLS estimates from

Iy,t = βxIx,t + βzIz,t + βx,zIx,tIz,t + εt

leads to the non-parametric estimators as τ̂y|x,z̄ = β̂x, τ̂y|x̄,z = β̂z and τ̂y|x,z = β̂x + β̂z + β̂x,z.

Proof. Write Y =

⎛
⎜⎜⎜⎜⎝

Iy,1

...

Iy,n

⎞
⎟⎟⎟⎟⎠ and X =

⎛
⎜⎜⎜⎜⎝

Ix,1 Iz,1 Ix,1Iz,1

...
...

...

Ix,n Iz,n Ix,nIz,n

⎞
⎟⎟⎟⎟⎠ . Then the vector β =

(βx, βz, βx,z)
′ is estimated by β̂ = (X′X)−1X′Y. We start with calculating (X′X)−1:

X′X =

⎛
⎜⎜⎜⎜⎝

Nx Nx,z Nx,z

Nx,z Nz Nx,z

Nx,z Nx,z Nx,z

⎞
⎟⎟⎟⎟⎠ .

The inverted matrix (X′X)−1 is

1

Nx,z(Nx − Nx,z)(Nz − Nx,z)

⎛
⎜⎜⎜⎜⎝

Nx,z(Nz − Nx,z) 0 −Nx,z(Nz − Nx,z)

0 Nx,z(Nx − Nx,z) −Nx,z(Nx − Nx,z)

−Nx,z(Nz − Nx,z) −Nx,z(Nx − Nx,z) NxNz − (Nx,z)
2

⎞
⎟⎟⎟⎟⎠ .

Multiplying (X′X)−1 with

X′Y =

(
Ny,x Ny,z Ny,x,z

)′
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gives the estimates:

β̂ =

⎛
⎜⎜⎜⎜⎝

Ny,x−Ny,x,z

Nx−Nx,z

Ny,z−Ny,x,z

Nz−Nx,z

Ny,x,z

Nx,z
− Ny,x−Ny,x,z

Nx−Nx,z
− Ny,z−Ny,x,z

Nz−Nx,z

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

τ̂y|x,z̄

τ̂y|x̄,z

τ̂y|x,z − τ̂y|x,z̄ − τ̂y|x̄,z

⎞
⎟⎟⎟⎟⎠ .

In the proof we do not assume a common number of tail observations k. This justifies

the remark in footnote 2.
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Table 1: Tail dependence among the U.K. and other major equity markets

Regression Coefficient Tail dependence Probability (s.e)

β̂US 0.105 τ̂UK|US,GE,FR 0.105 (0.041)

β̂GE 0.188 τ̂UK|US,GE,FR 0.188 (0.078)

β̂FR 0.200 τ̂UK|US,GE,FR 0.200 (0.090)

β̂US,GE 0.253 τ̂UK|US,GE,FR 0.545 (0.221)

β̂US,FR -0.055 τ̂UK|US,GE,FR 0.250 (0.196)

β̂GE,FR 0.128 τ̂UK|US,GE,FR 0.515 (0.096)

β̂US,GE,FR 0.182 τ̂UK|US,GE,FR 1.000 (0.110)

Note: The estimates are obtained from an indicator regression based on U.K. stock market
returns and U.S., German and French stock market returns. Each returns series runs from
November 28, 1990 until November 12, 2001, containing 2, 859 daily observations. We choose
k at 87. The first column presents the regression coefficients. The second column presents
the conditional probabilities of observing an extreme loss in the U.K. market conditional on
a scenario in the other three markets. The absence of the bar in the conditioning scenario
in the subscript of τ̂ denotes an extreme loss in that particular market.
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