Recession Scars and the Growth Potential of Newborn Firms in General Equilibrium

Petr Sedláček* and Vincent Sterk[†]

*Bonn University † University College London

Dutch National Bank October 18, 2013 Weak firm entry during Great Recession

- job creation of entrants in 2006: 3.5 million jobs
- job creation of entrants in 2010: 2.3 million jobs

Weak firm entry during Great Recession

- job creation of entrants in 2006: 3.5 million jobs
- job creation of entrants in 2010: 2.3 million jobs

Does this have (persistent) macroeconomic effects?

This paper: 1. Empirical Analysis

US Business Dynamics Statistics (BDS) data, 1979-2010

- follow job creation by cohorts of entrants as they age
 - extensive margin (number of firms)
 - intensive margin (average firm size)
- document cyclical patterns
- quick & dirty counterfactuals for potential macro impact

This paper: 2. General Equilibrium Model

build heterogeneous firm model with aggregate shocks

- heterogeneity in technology types
- endogenous entry
- aggregate shocks
- general equilibrium
- fit model to data
- redo counterfactuals, now accounting for GE effects

Empirical evidence

3

・ロト ・聞ト ・ヨト ・ヨト

Data and methodology

• BDS data, 1979-2010

- ▶ 98% of all US private employment
- annual information: number of firms, net job creation
- broken down according to age, size, sectors

Data and methodology

• BDS data, 1979-2010

- ▶ 98% of all US private employment
- annual information: number of firms, net job creation
- broken down according to age, size, sectors
- employment and average firm size of entrants
- ullet age breakdown ightarrow track them until 5 years old
- inspect patterns within and across cohorts

Three stylized facts

- 1. cohort-level employment is largely determined in year of birth
- 2. variation in cohort-level employment is mainly driven by intensive margin
- 3. cohorts of small firms are born in times of low economic activity

Stylized facts - 1. cohort employment highly persistent

Cohort employment at t and t + 5

Sedláček, Sterk (Bonn, UCL)

DNB, October 2013 8 / 56

Stylized facts - 1. cohort employment highly persistent

Sedláček, Sterk (Bonn, UCL)

Recession Scars

Stylized facts - 1. cohort employment highly persistent

Correlation of employment at t and t + a

Sedláček, Sterk (Bonn, UCL)

Recession Scars

DNB, October 2013 10 / 56

Three stylized facts

- 1. cohort-level employment is largely determined in year of birth
- 2. variation in cohort-level employment is mainly driven by intensive margin
- 3. cohorts of small firms are born in times of low economic activity

Stylized facts - 2. intensive margin dominates

- decompose variation in cohort-level employment:
 - ▶ intensive (firm size) vs. extensive (number of firms) margin
 - according to age

Stylized facts - 2. intensive margin dominates

decompose variation in cohort-level employment:

- intensive (firm size) vs. extensive (number of firms) margin
- according to age

$$\ln E_{a,t} = \ln S_{0,t-a} + \ln N_{0,t-a} + \sum_{j=1}^{a} \ln \gamma_{j,t-a+j} + \sum_{j=1}^{a} \delta_{j,t-a+j}$$

•
$$\gamma_{a,t} = \frac{S_{a,t}}{S_{a-1,t-1}}$$

• $\delta_{a,t} = \frac{N_{a,t}}{N_{a-1,t-1}}$

4 2 5 4 2 5

Stylized facts - 2. intensive margin dominates

Variance decomposition of $E_{5,t}$

Sedláček, Sterk (Bonn, UCL)

Recession Scars

DNB, October 2013 13 / 56

Three stylized facts

- 1. cohort-level employment is largely determined in year of birth
- 2. variation in cohort-level employment is mainly driven by intensive margin
- 3. cohorts of small firms are born in times of low economic activity

Cohort employment at t and t + 5

Sedláček, Sterk (Bonn, UCL)

DNB, October 2013 15 / 56

Cohort-level average size; weak and strong cohorts

Cohort-level and aggregate average size; weak and strong cohorts

Table: Correlations of average size with BC indicators in year \boldsymbol{t}

age	Levels	linear trend		CF filter(6,12)			
	E/L	E/L	GDP	E/L	GDP		
cohort-level							
a = 0	0.50	0.36	0.33	0.74	0.61		
a = 5	0.44	0.28	0.10	0.74	0.74		

3

→ 3 → 4 3

< m

Table: Correlations of average size with BC indicators in year \boldsymbol{t}

age	Levels	linear trend		CF filter(6,12)			
	E/L	E/L	GDP	E/L	GDP		
cohort-level							
a = 0	0.50	0.36	0.33	0.74	0.61		
a = 5	0.44	0.28	0.10	0.74	0.74		
aggregate-level							
a = 0		0.75	0.74	0.76	0.72		
a = 5		-0.17	-0.37	-0.73	-0.65		

3

(日) (同) (三) (三)

Table: Correlations of employment with BC indicators in year \boldsymbol{t}

age	Levels	linear trend		CF filter(6,12)		
	E/L	E/L	GDP	E/L	GDP	
cohort-level						
a = 0	0.62	0.41	0.43	0.76	0.72	
a = 5	0.59	0.35	0.23	0.84	0.88	
aggregate-level						
a = 0		0.91	0.88	0.96	0.98	
a = 5		-0.07	-0.26	-0.67	-0.55	

3

(日) (同) (三) (三)

< 一型

3

- 2 counterfactual series for aggregate employment:
 - extensive margin: hold the number of firms aged 0 to 5 fixed at average

- 2 counterfactual series for aggregate employment:
 - extensive margin: hold the number of firms aged 0 to 5 fixed at average
 - both margins: hold the number and average size of firms aged 0 to 5 fixed at average

- 2 counterfactual series for aggregate employment:
 - extensive margin: hold the number of firms aged 0 to 5 fixed at average
 - both margins: hold the number and average size of firms aged 0 to 5 fixed at average
- plot the differential from aggregate employment

Sedláček, Sterk (Bonn, UCL)

DNB, October 2013 21 / 56

3

DNB, October 2013 22 / 56

What next?

- we observe 3 new stylized facts explanations
- ultimately interested in macroeconomic implications
- counterfactuals cannot account for GE effects!
- ullet
 ightarrow build a GE model that can explain the above facts
- investigate scarring effects of recessions in model

General equilibrium model

A B A A B A

Image: A matrix

æ

Related literature

- Hopenhayn (1992), Hopenhayn and Rogerson (1993), Cooley and Quadrini (2001), Melitz (2005)
- Lee and Mukoyama (2012), Clementi and Palazzo (2010), Siemer (2012)
- Kaas and Kircher (2011), Schaal (2012), Sedláček (2012)

4 2 5 4 2 5

Model features

Neoclassical general equilibrium model with heterogeneous firms

- heterogeneity in returns to scale
 - BDS data, many old small firms
 - many startups do not want to grow: Campbell and de Nardi (2009), Hurst and Pugsley (2012)
 - direct evidence: Basu and Fernald (1997), Holmes and Stevens (2012)

4 3 5 4 3 5 5

Model features

Neoclassical general equilibrium model with heterogeneous firms

- heterogeneity in returns to scale
 - BDS data, many old small firms
 - many startups do not want to grow: Campbell and de Nardi (2009), Hurst and Pugsley (2012)
 - direct evidence: Basu and Fernald (1997), Holmes and Stevens (2012)
- costly labor adjustment
 - firms grow gradually as they age

Model features

- endogenous entry
 - number and *composition* of entrants endogenous
- aggregate uncertainty
- estimated on BDS data

3

Heterogeneous firms

3

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・
Existing firms

- endogenous measure, owned by household
- produce a homogeneous good using only labor
- finite number of technology types i = 1, ..., I.
- production function

$$y(n_t, A_t; i) = y_{i,t} = z_i A_t n_t^{\alpha_i}$$

3

E 5 4 E 5

Existing firms

Firms maximize expected discounted profits:

$$V_{i,a}(n_{i,a-1,t-1}, \mathcal{S}_t) = \max_{n_{i,a,t}} \begin{bmatrix} z_i A_t n_{i,a,t}^{\alpha_i} - W_t n_{i,a,t} - Q_t \zeta_a(n_{i,a,t}, n_{i,a-1,t-1}) \\ + (1 - \rho_a) \mathbb{E}_t \Lambda_{t,t+1} V_{i,a+1}(n_{i,a,t}, \mathcal{S}_{t+1}) \end{bmatrix}$$

3

(日) (同) (三) (三)

- free entry
- $\bullet\,$ pay cost χ to choose business opportunity of any type

3

Image: A matrix

- free entry
- $\bullet\,$ pay cost χ to choose business opportunity of any type
- there is a time-invariant mass of opportunities per type: $\Psi = \sum_i \psi_i$

- 一司

3

- free entry
- pay cost χ to choose business opportunity of any type
- there is a time-invariant mass of opportunities per type: $\Psi = \sum_i \psi_i$
- some startup attempts fail due to a coordination friction
 - matching function

3

4 2 5 4 2 5

mass of entrants in technology type i

$$m_{i,0,t} = x_{i,t}^{\phi} \psi_i^{1-\phi}$$
, for $i = 1, 2, .., I$,

3

イロト イヨト イヨト イヨト

mass of entrants in technology type \boldsymbol{i}

$$m_{i,0,t} = x_{i,t}^{\phi} \psi_i^{1-\phi}$$
, for $i = 1, 2, ..., I$,

probability of starting up a technology type i given payment of entry cost

$$P_{i,t} = m_{i,0,t} / x_{i,t}$$

3

A B F A B F

Image: Image:

mass of entrants in technology type \boldsymbol{i}

$$m_{i,0,t} = x_{i,t}^{\phi} \psi_i^{1-\phi}$$
, for $i = 1, 2, ..., I$,

probability of starting up a technology type i given payment of entry cost

$$P_{i,t} = m_{i,0,t} / x_{i,t}$$

free entry condition

$$\chi = P_{i,t}V_{i,0,t}(0, \mathcal{S}_t), \text{ for } i = 1, 2, ..., I,$$

3

A B M A B M

< A

Firm entry decisions

- technology type is a *choice*
- more attractive technologies are tougher to startup
- entry happens in all technology types

Representative household, market clearing and shocks

3

Households

representative household with continuum of members. Choose consumption and labor:

$$\max_{\substack{\{C_t, N_t\}_{t=0}^{\infty}}} \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \left(\frac{C_t^{1-\sigma}}{1-\sigma} + \frac{Z_t N_t^{1+\kappa}}{1+\kappa} \right)$$

s.t.
$$C_t = W_t N_t + \Pi_t$$

3

(日) (同) (三) (三)

Market clearing

We impose maximum age K ($\rho_K = 1$). Aggregate resource constraint:

$$\sum_{i=1}^{I} \sum_{a=0}^{K} m_{i,j,t} \left(y_{i,a,t} - Q_t \zeta_{i,a,t} \right) - \sum_{i=1}^{I} x_{i,t} \chi = C_t$$

Labor market clearing:

$$\sum_{i=1}^{I} \sum_{a=0}^{K} m_{i,a,t} n_{i,a,t} = N_t$$

Aggregate state:

$$\mathcal{S}_{t} = \{m_{i,a,t}, n_{i,a,t-1}, A_{t}, Q_{t}, Z_{t}\}_{i=1,\dots,I}^{a=0,\dots,K}$$

 \Rightarrow large but finite-dimensional object

Aggregate shocks

$$y_{i,t} = z_i A_t n_t^{\alpha_i}$$

$$W_t C_t^{-\sigma} = Z_t N_t^{\kappa}$$

$$W_t = \alpha_i z_i A_t n_{i,a,t}^{\alpha_i - 1} \left(1 - Q_t \zeta_{i,a,t}' \right) + (1 - \rho_a) \beta \mathbb{E}_t \Lambda_{t,t+1} Q_{t+1} \zeta_{i,a,t+1}' \right)$$

- stationary processes with continuous support
- estimated and used for counterfactuals

3

Quantitative implementation

(日) (同) (三) (三)

æ

Parametrization

Parameter values obtained using hybrid of:

- matching long-run targets
 - average size age 0
 - average size age 1
 - size distribution of firms aged 16-20 (use BDS size brackets)
- matching key moments
 - volatility number of entrants
 - volatility avg. size age 5 / volatility avg. size age 0
- maximum likelihood estimation (aggregate shock processes)
 - ▶ time series used: output, employment rate, average entrant size
 - obtain estimated shocks as by-product

Parametrization

Adjustment cost assumed to be quadratic:

$$\zeta_a(n_{i,a,t}, n_{i,a-1,t-1}) = \frac{\zeta_a}{2}(n_{i,a,t} - n_{i,a-1,t-1})^2$$

•
$$\zeta_0 \geq \zeta_1 = \zeta_2 = \dots = \zeta_K.$$

- ζ_1 calibrated to match growth rate of average size young cohorts
- ζ_0 calibrated to match relative volatility of avg. size at age 5
- initial level $n_{i,-1}$ calibrated

Parametrization

Adjustment cost assumed to be quadratic:

$$\zeta_a(n_{i,a,t}, n_{i,a-1,t-1}) = \frac{\zeta_a}{2}(n_{i,a,t} - n_{i,a-1,t-1})^2$$

•
$$\zeta_0 \geq \zeta_1 = \zeta_2 = \dots = \zeta_K.$$

- ζ_1 calibrated to match growth rate of average size young cohorts
- ζ_0 calibrated to match relative volatility of avg. size at age 5
- initial level $n_{i,-1}$ calibrated

Exit rates

- age-dependent $\rho_a = \xi_0 + \xi_1/a$, $\xi_0, \xi_1 > 0$
- parameters ξ_0 and ξ_1 fitted to exit rates observed in BDS

- 4 @ > 4 @ > 4 @ >

Parameter values

	parameter		value	target/estimate
β	discount factor		0.96	annual interest rate 4%
σ	relative risk aversion coefficient		1	log-utility
κ	utility of leisure parameter		1	unit Frisch elastiicty
ζ	adjustment cost, age 1-50		0.007	size of 1 year old firms
ζ_0	adjustment cost, entrants		0.041	size of entrants
ξ_0	exit rate coefficient		0.050	exit rates by age, BDS data
ξ_1	exit rate coefficient		0.170	exit rates by age, BDS data
χ	entry cost		0.930	entry costs = 0.073 GDP
Ψ	measure of business opportunities		0.090	M = 1, normalization
ϕ	elasticity in entry function		0.500	std(entry)/std(y)
ρ_A	TFP wedge, persistence		0.815	
σ_A	TFP wedge, standard deviation		0.011	
ρ_Q	adjustment cost wedge, per	sistence	0.533	
σ_Q	adjustment cost wedge, star	ndard deviation	1.088	
ρ_Z	labor wedge, persistence		0.595	
σ_Z	labor wedge, standard deviation		0.022	
α_i	returns to scale average size in BE			verage size in BDS size classes
	0.916 0.948 0.959	0.967 0.97	2 0.976	0.979 0.982 0.999
$P_i = \left(\frac{\psi_i}{x_i}\right)^{1-\phi}$	probability of starting up a	type i firm	i	firm shares in BDS size classes
. /	0.799 0.451 0.272	0.153 0.08	0.051	0.030 0.018 0.001

Table 4: Calibrated parameters

3

<ロ> (日) (日) (日) (日) (日)

Results

Ξ.

▲口> ▲圖> ▲国> ▲国>

Steady state: Firm size by type and age

Recession Scars

Steady state: Fraction of cohort-level employment by type and age

Shock estimation: Historical decomposition

TFP + Labor wedge +Adjustment cost wedge (= data)

- model matches observed aggregate output and employment by construction
- take estimated shocks
- run them through a model in which we fix the type-composition of entrants
- general equilibrium effects are preserved

DNB, October 2013 47 / 56

- redo the same exercise
- now also fix adjustment cost shock to 1 for young firms
 - fix composition of startups at steady state, but let the number of entrants adjust
 - free young firms from adjustment cost fluctuations, but let growth rates respond to aggregate productivity and labor-leisure shocks
 - ▶ i.e. a less restrictive version of empirical counterfactuals

Figure: Output and employment differentials

Sedláček, Sterk (Bonn, UCL)

DNB, October 2013 49 / 56

Persistence - "recession scar"

Sedláček, Sterk (Bonn, UCL)

3

<ロ> (日) (日) (日) (日) (日)

Persistence - "recession scar"

Sedláček, Sterk (Bonn, UCL)

Recession Scars

э

Conclusions

- fluctuations in composition of firm entrant cohorts important for aggregate outcomes
- smaller firms born in recessions, effects on output very persistent
- future work:
 - analyze micro data underlying BDS
 - endogenize wedges; more detailed explanation of drivers behind observed cyclical patterns

4 1 1 4 1 1 1

Thanks

3

▲口> ▲圖> ▲屋> ▲屋>

Possible explanations: sectoral composition?

• sectoral composition of entrants?

Possible explanations: sectoral composition?

- sectoral composition of entrants?
- manufacturing firms are on average larger
- ullet ightarrow if also more sensitive to the BC
- \bullet \rightarrow relatively less manufacturing firms in recessions

Possible explanations: sectoral composition?

< 回 ト < 三 ト < 三 ト

Possible explanations: necessity entrepreneurs?

• "necessity entrepreneurs": no ambitions to create jobs

Possible explanations: necessity entrepreneurs?

- "necessity entrepreneurs": no ambitions to create jobs
- if entry of necessity entrepreneurs is counter-cyclical
- ullet ightarrow relatively more small firms in recessions

Possible explanations: necessity entrepreneurs?

3