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Abstract

Traditional unobserved component models assume that the trend, cycle and seasonal
components of an individual time series evolve separately over time. Although this
assumption has been relaxed in recent papers that focus on trend-cycle interactions,
it remains at the core of all seasonal adjustment methods applied by official statist-
ical agencies around the world. The present paper develops an unobserved compon-
ents model that permits non-zero correlations between seasonal and non-seasonal
shocks, hence allowing testing of the uncorrelated assumption that is traditionally
imposed. Identification conditions for estimation of the parameters are discussed,
while applications to observed time series illustrate the model and its implications
for seasonal adjustment.
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1 Introduction

Nowadays, economic time series are typically analysed in seasonally adjusted form. That

is, (estimated) seasonality is removed prior to undertaking substantive analysis of eco-

nomic questions. Seasonal adjustment is usually based on the unobserved component

approach, of which the key assumption is that trend, cycle and seasonal components are

uncorrelated. This assumption is almost invariably untested, although a growing recent

literature strongly suggests that trend and cycle can be correlated (Morley, Nelson and

Zivot 2003; Dungey et al. 2013). While this has important implications for economic

analyses that employ detrended data, the use of seasonally adjusted data in economics

is much more pervasive. This paper extends the trend-cycle decomposition literature

to examine the seasonal components and, more specifically, the existence and implica-

tions of correlation between cyclical and seasonal components. Our analysis, therefore,

may deepen our understanding of the propagation of shocks and challenge the basis of

conventional seasonal adjustment.

At its simplest level, the decomposition of an observed time series into trend-cycle

component and a seasonal component can be considered as

observedt = trend-cyclet + seasonalt (1)

with uncorrelated components. The simple idea behind (1) underlies all commonly ap-

plied seasonal adjustment procedure, including the well-known X-12-ARIMA method of

the US Bureau of the Census and TRAMO-SEATS widely used within EuroStat (these

methods recently merged to form X-13ARIMA-SEATS ), and Harvey (1990)’s so called

‘structural’ econometric analysis of time series. The zero correlation assumption is funda-

mental to seasonal adjustment because it ensures a unique decomposition, given sufficient

other assumptions. The thought-provoking discussion of Bell and Hillmer (1984) refers

to the assumptions embodied in (1) and independence of the trend-cycle and seasonal

components as the two basic assumptions of seasonal adjustment that ‘define the prob-

lem’. There are two important implications. Firstly, the identification of seasonal and

1



nonseasonal components is model-dependent and, secondly, this decomposition is a mech-

anical one. Apparently successful seasonal adjustment is not evidence that the observed

data are generated by separate seasonal and nonseasonal forces, as in (1).

Viewing seasonal adjustment as a signal extraction problem, a number of studies

have considered the nature of the unobserved components model implied by conventional

adjustment methods; Cleveland and Tiao (1976) and Burridge and Wallis (1984) discuss

the X-11 filter, which is also embedded in X-12 and X-13, while Planas and Depoutot

(2002) examine TRAMO-SEATS in the context of the so-called ‘airline model’. However,

these decompositions are purely statistical in nature and imply a trend-cycle component

with a specific form that differs from the characteristics typically employed in empirical

analyses of seasonally adjusted macroeconomic data; see section 2.

Following the tradition that dates back to at least Grether and Nerlove (1970) and

Engle (1978), which also underlines the structural time series approach used by Harvey

(1990) and Commandeur and Koopman (2007), our approach is to specify individual time

series components that are both economically meaningful and often employed in empirical

analyses. However, rather than maintaining the uncorrelated components assumption, as

in previous studies, this paper asks whether the zero correlation assumption is justified

and investigates implications if it is not. In order to do so, we postulate processes for

the components in an unobserved component set-up, investigate whether the underlying

parameters are identified when the zero correlation assumption is relaxed, and consider

the nature of seasonal adjustment in this context.

Stylized facts on economic interactions point in the direction of correlation (Burns and

Mitchell 1946). Cecchetti and Kashyap (1996), for example, observe that seasonal cycles

in production are less marked in business cycle booms. Since holidays in summer imply the

existence of spare capacity, this summer slack can be used during a boom for additional

production. This line of arguments implies negative correlation between business cycle and

seasonal component in production. As noted by Proietti (2006) negative correlations lead

to higher weights on future observations in the Kalman smoother, resulting in relatively

large revisions to filtered estimates, see Dungey et al. (2013).
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Although there is not a large existing literature, nevertheless a number of previous

studies have indicated links between business cycles and seasonality. Barsky and Miron

(1989) and Beaulieu, MacKie-Mason and Miron (1992) observe that seasonal and business

cycles have common characteristics. Other studies noted that seasonal patterns change

with the stage of the business cycle (Canova and Ghysels 1994; Cecchetti and Kashyap

1996; Krane and Wascher 1999; Matas-Mir and Osborn 2004). Recently, Koopman and

Lee (2009) model interactions between trend-cycle and seasonal components within a

non-linear framework; see Section 2 below.

An extreme form of correlated components is the Single Source of Error (SSE) model,

where a common shock drives all components (Ord, Koehler and Snyder 1997; De Livera,

Hyndman and Snyder 2011). It is clear that the SSE model raises questions for seasonal

adjustment, and the same holds if any imperfect correlation exists between components.

The remainder of this paper is structured as follows. Section 2 discusses unobserved

component models without correlation and with (imperfect or perfect) correlation, iden-

tification and implications for seasonal adjustment. Section 3 presents some empirical

results. Section 4 offers some concluding remarks.

2 Methodology

Unobserved components models

The basic model of this paper consists of a measurement equation in which an observed

series is decomposed into a trend τt, a cycle ct and a seasonal st component through

yt = τt + ct + st, (2)
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and state equations describing the dynamics of these unobserved components in terms of

the state vector α 
τt

ct

st

 = T


τt−1

ct−1

st−1

+ R ηt. (3)

Here, the matrix T captures the dynamics of the unobserved components and can take

various forms, but perhaps most common consists of a unit root process as trend, station-

ary AR(2) or a stochastic cycle for ct, and a nonstationary seasonal cycle. The shocks ηt

are assumed i.i.d. with zero means and unit variances, ηt ∼ i.i.d.(0, I3). Finally, and cru-

cially for our investigation, R embodies correlation assumptions between the innovations

of the state equations.

The state-space representation form of this system of equations is

yt =Ztαt

αt =Tαt−1 + R ηt

The standard assumption in the unobserved components approach is uncorrelated innov-

ations, namely

R ηt =


στ 0 0

0 σc 0

0 0 σs



ητ,t

ηc,t

ηs,t


However, if correlation exists it can be modelled in different ways.

One option is to adapt the measurement equation (2)

yt = τt + ct + st + b exp(ctst),

as in Koopman and Lee (2009), while Krane and Wascher (1999) adopt a similar specific-

ation. This specification implies that the underlying seasonal and cyclical components are

determined by separate uncorrelated forces, but then interact in a nonlinear way. Such
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a model may be interpreted as the cyclical forces altering the impact that the seasonal

would otherwise have on the observed data. An alternative is to allow the cyclical and

seasonal innovations themselves to be correlated, as discussed next.1

Correlated cycle-seasonal innovations can be modelled in the following way:

vt =


vτ,t

vc,t

vs,t

 ≡ R ηt =


στ 0 0

0 rcc rcs

0 rsc rss



ητ,t

ηc,t

ηs,t

 ,

with

Q ≡= E[vtv
′
t] =


σ2
τ 0 0

0 r2cc + r2cs rccrsc + rcsrss

0 rccrsc + rcsrss r2sc + r2ss



=


σ2
τ 0 0

0 σ2
c σcs

0 σcs σ2
s

 .

A distinct advantage of this second approach is that nonlinear estimation is avoided.

The Single Source of Error2 (SSE) model gives the extreme case of perfectly correlated

errors:

R ηt =


kτ

kc

ks

ut, (4)

1A third possibility is to allow for correlation between elements of the state vector and innovations.
This requires the use of non-linear Kalman filters, a complication considered beyond the scope of the
present paper.

2The usual formulation of the SSE model also adds an idiosyncratic error to the measurement equation
(2) and assumes this is also driven by ut; see Ord, Koehler and Snyder (1997). However, our applications
do not find a role for this idiosyncratic error and hence we use the modified form given by (4) in conjunction
with (2).
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with ut ∼ i.i.d.(0, 1) and

Σ = E[vtv
′
t] =


k2τ kτkc kτks

kτkc k2c kcks

kτks kcks k2s

 =


σ2
τ στc στs

στc σ2
c σcs

στs σcs σ2
s

 .

The assumption of a single source of error driving trend, cycle and seasonal might be

overly restrictive. Two sources of error, e.g. one driving the trend, another driving the

cycle and the seasonal or one driving the trend and the cycle, another the seasonal , could

be more realistic and in line with the Barsky-Miron view that the cycle and seasonal have

common characteristics. This is, however, an empirical issue.

In the application below, we estimate all three forms and test the in-between case of

correlated innovations against the polar cases of uncorrelated innovations and perfectly

correlated innovations (SSE model).

Identification

The workhorse of unobserved component modelling over the last two decades has been

the Basic Structural Model (BSM) of Harvey (1989), where

yt = τt + γt + εt (5)

with ‘local linear trend’

τt+1 = τt + βt + ηt (6)

βt+1 = βt + ζt (7)

and ‘dummy variable’ seasonality

S(L)γt+1 = ωt. (8)
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The usual assumption is that the innovations εt, ηt, ζt and ωt are uncorrelated, with one

or more of these often set to zero in practice. Although the model contains no explicit

cyclical component, the evolution of the slope parameter βt through (7) gives rise to long

run behaviour which can appear cyclical. Hence, to allow for correlation across cyclical

and seasonal innovations, we generalise the model with

E[ζtωt] = σζω 6= 0 (9)

while maintaining the uncorrelated assumption for other innovation pairs. The first ques-

tion is what conditions are required in order that the parameters of the expanded model

of (5) to (9) are identified.

Assuming (for expositional simplicity) that the data under analysis are observed at

the quarterly frequency, the reduced form of this model is

∆∆4yt = S(L)ζt−2 + ∆4ηt−1 + ∆2ωt−1 + ∆∆4εt (10)

where L is the usual lag operator, ∆r = 1 − Lr and S(L) = 1 + L + L2 + L3. Standard

techniques reveal that the autocovariances Γi (i = 0, 1, ...) for ∆∆4yt are given by

Γ0 = 4σ2
ζ + 2σ2

η + 6σ2
ω + 4σ2

ε − σζω

Γ1 = 3σ2
ζ − 4σ2

ω − σ2
ε + σζω

Γ2 = 2σ2
ζ + σ2

ω

Γ3 = σ2
ζ + σ2

ω − σζω

Γ4 = −σ2
η − 2σ2

ε − σζω

Γ5 = σ2
ε

Γk = 0, k > 5

This reduced form has five parameters, namely the innovation variances σ2
ε , σ

2
η, σ

2
ζ and σ2

ω,

together with the covariance σζω. Since there are six Γk 6= 0 (k = 0, . . . , 5), in principle,
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σζω is therefore identified. The reduced forms of some alternative models are analysed in

the appendix.

To investigate identification further, we simulated the BSM with an added cycle com-

ponent, using a model of the form implemented below for the 300 quarterly observations of

the US non-farm payroll unemployment and with parameter values similar to those estim-

ated. To be specific, the data generating process has σζ = 0.010, σκ = 0.050, σω = 0.006,

ρ = 0.950, period = 4.5 years, and corr(ω, κ) = −0.750, with 5000 replications used.

Figure 1 provides the distributions of the resulting estimates. For reference purposes, a

normal distribution is fitted to each empirical distribution using its mean and standard

deviation and this is also shown in the figure. Also note that corr(ω, κ) is not estimated

directly, but rather the covariance is estimated and the correlation is deduced from this

and the corresponding standard deviations.

It is evident that the model parameters are quite well estimated in the simulation

study, with each empirical distribution being centered close to its respective true value

and the normal distribution being a reasonable approximation. Nevertheless, the empirical

distribution of the cyclical/seasonal correlation is truncated in the left-hand tail, which

arises because the covariance and variance estimates can imply an estimated correlation

outside the admissable range −1 ≤ corr(ω, κ) ≤ 1. This occurred in approximately 40%

of the replications; the results shown for all parameters exclude these cases.

Seasonal adjustment

Correlated innovations can raise questions about the nature of seasonal adjustment. In

the measurement equation (2), seasonally adjusted values can be computed as

ysat = τt + ct = yt − st. (11)

However, when the innovations driving ct and st are no longer uncorrelated, then ysat

and st in (11) are correlated. Analogous issues arise in Beveridge-Nelson vs unobserved
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Figure 1: BSM and cycle plus correlated innovations: simulation results
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component detrending (Morley, Nelson and Zivot, 2003), where relaxation of the zero

correlation assumption results in the trend and detrended components being correlated.

Conventional seasonal adjustment is based on uncorrelated components. However,

as shown by Burridge and Wallis (1984) for the X-11 filters and Planas and Depoutot

(2002) for the ‘airline’ model analysed through TRAMO-SEATS, the implied nonseasonal

component underlying seasonal adjustment is ARIMA(0, 2, 2). This differs from the

univariate models typically employed for real (seasonally adjusted) macroeconomic time

series both in the presence of two zero frequency unit roots and in the lack of any stationary

AR component; see, for example, the models discussed by Morley, Nelson and Zivot

(2003). This raises the possibility that the seasonal adjustment filters embedded in official

procedures (including the uncorrelated component assumption) may be inappropriate

from an economic perspective. If so, then adjustment will distort the properties of interest

to economists, namely the trend and cyclical characteristics.
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3 Applications

Global Activity

In a widely referenced paper, Kilian (2009) analyses a monthly real global activity measure

of the business cycle. His series is detrended, but not seasonally adjusted. Our sample

uses monthly data over 1968:01–2013:03.3

Since the data are detrended, we estimate the local level plus seasonal model version

of the BSM, with

yt = µt + γt + εt, εt ∼ NID(0, σ2
ε)

µt+1 = µt + ηt, ηt ∼ NID(0, σ2
η)

S(L)γt+1 = ωt, ωt ∼ NID(0, σ2
ω)

with and without imposing E[ηtωt] = 0. Note that, with monthly data, S(L) = 1 + L +

...+ L11. In addition we estimate a perfectly correlated SSE specification with

εt = kεut, ηt = kηut, ωt = kωut, ut ∼ NID(0, 1).

Table 1: Global Activity: estimation results

Zero correlation With correlation SSE specification
Estimate Std. Err. Estimate Std. Err. Estimate Std. Err.

σε 0.0003 0.4778 0.0003 0.4878 4.0744×10−6 0.5062
ση 7.2107 0.2242 7.2490 0.2267 7.2785 0.2234
σω 0.1353 0.0601 0.2319 0.0823 0.2163 0.0765

Correlation (η,ω) -0.8778 0.2035 −1∗ restricted
Log Lik. -1830.67 -1828.47 -1828.69

Note: ∗ indicates that correlation in SSE specification is set (or restricted), and is not estimated.

3Lutz Kilian makes an updated series available on his website, at http://www-
personal.umich.edu/˜lkilian. The series is available as percent deviations from trend. Our sample
period is that available from Kilian when the analysis was undertaken.
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Table 1 presents our estimation results. To facilitate interpretation, Table 1 presents

the estimated correlation between ηt and ωt, rather than the covariance. It is seen that

this estimated cyclical/seasona correlation is negative, as anticipated, implying that pos-

itive (negative) business cycle innovations are associated with negative (positive) seasonal

innovations. This correlation is not only highly significant, but it is also not significantly

different from -1. Consequently, the SSE parameter estimates are very close to those

delivered by the model with unrestricted correlation and the log likelihood values are also

very close.

On the other hand, the zero correlation model yields a significantly lower log likelihood

value, according to a likelihood ratio test at a conventional 5% significance level. Notice

that while the estimate of the standard deviation of the cycical innovation (ση) is relatively

constant across specifications, the estimate corresponding to the seasonal innovation (σω)

is substantially larger when correlation is permitted.

Figure 2: Monthly index of global real activity (1968:1–2013:3): filtered outcomes without and
with correlation between trend-cycle and seasonal innovations, and single source of error
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These features are seen in Figure 2, which presents the smoothed estimates of the

trend-cyle and the seasonal components over time for each of the three specifications.

The graphs of the estimated components in the left-hand panels are visually very similar

across models and, indeed, very close to the observed data, implying that the (estimated)

extent of seasonality is relatively small. However, whereas the seasonal component of the

uncorrelated model (uppermost in the figure) evidences no cyclical movement, this is not

the case in the other two models (with the uncorrelated case shown in the middle panel

and SSE in the bottom panel).

US Non-Farm Payroll Unemployment

The monthly series of US non-farm payroll unemployment has been previously studied

in the cycle-seasonal context by Koopman and Lee (2009) and Koopman, Ooms and

Hindrayanto (2009). In this paper we use the same data, but quarterly instead of monthly

by taking 3-months averages of the monthly series. Sample period is 1948.M1 up to

2012.M12, in logarithms. To take account of the properties of the data, the model we

estimate for this series adds a stochastic cycle to the BSM of (5). To be specific, our

model consists of a measurement equation

yt = µt + ψt + γt + εt, εt ∼ NID(0, σ2
ε),

a smooth trend

µt+1 = µt + βt, βt+1 = βt + ςt, ςt ∼ NID(0, σ2
ς ),

a stochastic cycle

 ψt+1

ψ∗t+1

 = ρ

 cosλ sinλ

− sinλ cosλ


 ψt

ψ∗t

+

 κt

κ∗t

 with κt, κ
∗
t ∼ NID(0, σ2

κ)
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and the seasonal process

S(L)γt+1 = ωt, ωt ∼ NID(0, σ2
ω).

To capture seasonal-cyclical interactions, we estimate a specification allowing nonzero

correations between the respective shocks, namely κt/κ
∗
t and ωt, in addition to the usual

uncorrelated model. For the purposes of comparison, the SSE specification is also imple-

mented, with this assuming

εt = kεut, ςt = kςut, ωt = kωut, ut ∼ NID(0, 1).

Results are shown in Table 2 and Figure 3.

Table 2: US non-farm payroll unemployment: estimation results

Zero correlation With correlation SSE specification
Estimate Std. Err. Estimate Std. Err. Estimate Std. Err.

σε 1.75×10−6 0.0045 1.13×10−6 0.0049 0.0135 0.0039
σς 0.0112 0.0039 0.0101 0.0034 0.0043 0.0020
σκ 0.0475 0.0036 0.0491 0.0035 0.0556 0.0052
σω 0.0049 0.0009 0.0058 0.0011 0.0063 0.0009
ρ 0.9400 0.0180 0.9407 0.0174 0.9027 0.0252

Period (years) 4.2564 0.4559 4.4690 0.4650 4.2454 0.6043
Correlation (κ/κ∗,ω) -0.7326 0.2438 −1∗ restricted

Log Lik. 305.66 308.16 306.64

Note: ∗ correlation in SSE specification is set (or restricted), and is not estimated.

Once again, the estimated correlation between the cyclical and seasonal innovations is

negative and highly significant in Table 2. Comparing the remaining parameter estimates

for these two models again indicates that these are relatively unaffected by permitting

correlation between the seasonal and cyclical innovations, except for an increase in the

seasonal variance.

The imposition of perfect correlation has more impact on estimates obtained from the

SSE specification (especialy the estimates of σε and σς), although it is important to note

that the model implies perfect correlation across all innovations and not just the cyclical

and seasonal ones. Interestingly, viewing the zero and perfect correlation models as two
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extremes, the value of the log likelihood points to the perfect correlation one fitting the

data better than the conventional uncorrelated component model.

Figure 3: Quarterly US non-farm payroll unemployment, 1948:Q1-2012:Q4

data trend 

1950 2000

8

9

data trend season 

1950 2000

-0.1

0.0

0.1
season cycle 

1950 2000

-0.25

0.00

0.25

0.50
cycle 

data trend_corr 

1950 2000

8

9

data trend_corr season_corr 

1950 2000

-0.1

0.0

0.1

0.2
season_corr cycle_corr 

1950 2000

-0.25

0.00

0.25

0.50
cycle_corr 

data trend_SSE 

1950 2000

8

9

data trend_SSE season_SSE 

1950 2000

-0.1

0.0

0.1

0.2
season_SSE cycle_SSE 

1950 2000

-0.25

0.00

0.25

0.50
cycle_SSE 

The first two horizontal panels of Figure 3 once again imply that allowing correlation

between the seasonal and cyclical innovations has only a relatively small impact on the

estimation of the individual components. To be specific, the estimated trend and cyclical

components are particularly close in these models, with some subtle differences to be seen

in the seasonal component. The final horizontal panel, on the other hand, implies that

the SSE specification effectively transfers some of the apparent cyclicality otherwise seen

in the estimated ‘trend’ component (far left graphs) to the estimated cycle (bottom right-

hand graph). Consequently, the trend is substantially less variable for the SSE model

than in the other specifications; this can aso be seen in the estimated standard deviations

of Table 2.
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4 Conclusion

This paper argues that the assumption of zero correlation between seasonal and cyclical

components may be unrealistic for economic data. We show analytically and through

Monte Carlo simulations that the parameters of an unobserved component model with

innovations that exhibit non-zero cycle-seasonal correlation can be identified from ob-

served autocorrelations, if such a model is the true data generating process.

The cycle-seasonal correlation is statistically significant in applications to observed

data. However, the effects are not quantitatively strong in the examples considered.

Nevertheless, the impact can be huge especially around business cycle turning points.

In 2013Q3 the recession in the Netherlands ended for example with a mere 0.1% GDP

growth rate.

Future research will develop the analytical framework further, investigate the implic-

ations of correlated innovations for estimation of unobserved component models, empir-

ically analyse more examples and deal with implications for seasonal adjustment and

forecasting.
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A Identification: Uncorrelated UC

A.1 Making BSM stationary

The basic structural model (BSM) is defined in Harvey (1989) as follows,

yt = µt + γt + εt, εt ∼ NID(0, σ2
ε), (12)

µt+1 = µt + βt + ηt, ηt ∼ NID(0, σ2
η), (13)

βt+1 = βt + ζt, ζt ∼ NID(0, σ2
ζ ), (14)

γt+1 = −
s−2∑
j=0

γt−j + ωt, ωt ∼ nid(0, σ2
ω), (15)

where the disturbances are assumed to be uncorrelated at any lead and lag. Note that s

is the number of seasonal frequency in a year.

The presence of random walk process in the trend (and slope) component shows that

BSM is a stochastic trend model. We can make BSM stationary by working out each

component and add them up together again. Starting with the slope, we have

βt+1 = βt + ζt, βt+1 − βt = ζt, (1− L)βt+1 = ζt, βt+1 =
ζt

1− L
.

Substitute the latest expression of the slope (βt) into the trend (µt) and we have,

µt+1 = µt + βt + ηt,

(1− L)µt+1 =
ζt−1

1− L
+ ηt,

µt+1 =
ζt−1

(1− L)2
+

ηt
1− L

.

We continue with the seasonal component (γt), where

γt+1 = −
s−2∑
j=0

γt−j + ωt, (1 + L+ · · ·+ Ls−1)γt+1 = ωt,

γt+1 =
ωt

(1 + L+ · · ·+ Ls−1)
.
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Back to the BSM, we now have the expression,

yt = µt + γt + εt,

=
ζt−2

(1− L)2
+

ηt−1
1− L

+
ωt−1

(1 + L+ · · ·+ Ls−1)
+ εt,

which boils down to

(1− L)2(1 + L+ · · ·+ Ls−1)yt = (1 + L+ · · ·+ Ls−1)ζt−2

+ (1− L)(1 + L+ · · ·+ Ls−1)ηt−1 + (1− L)2ωt−1

+ (1− L)2(1 + L+ · · ·+ Ls−1)εt,

or after re-writing the above equation,

(1− L)(1− Ls)yt = (1 + L+ · · ·+ Ls−1)ζt−2 + (1− Ls)ηt−1 + (1− L)2ωt−1

+ (1− L)(1− Ls)εt,

which equals to

∆∆syt = S(L)ζt−2 + ∆sηt−1 + ∆2ωt−1 + ∆∆sεt,

where the usual time series operator definition holds, Ljyt = yt−j, S(L) = (1 + L+ · · ·+

Ls−1), ∆k = (1−L)k, and ∆s = (1−Ls). As we can see from the right hand side, ∆∆syt

is a restricted MA(s+1) process. For s = 2 we have a restricted MA(3) process, for s = 4

we have a restricted MA(5) process, and s = 12 we have a restricted MA(13) process.

A.2 ARMA form for the cycle component

The usual form of the cyclical component in unobserved component models is given by

ψt+1

ψ∗t+1

 = ρ

 cosλ sinλ

− sinλ cosλ


ψt
ψ∗t

+

κt
κ∗t

 .
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In the single equation form, we have

ψt+1 = ρ cosλψt + ρ sinλψ∗t + κt,

ψ∗t+1 = −ρ sinλψt + ρ cosλψ∗t + κ∗t .

The second cycle equation can be written out as follows, In the single equation form, we

have

ψ∗t+1 − ρ cosλψ∗t = −ρ sinλψt + κ∗t ,

(1− ρ cosλL)ψ∗t+1 = −ρ sinλψt + κ∗t ,

ψ∗t+1 =
−ρ sinλψt

(1− ρ cosλL)
+

κ∗t
(1− ρ cosλL)

.

Substitute the above expression into the first cycle equation, we get

ψt+1 = ρ cosλψt + ρ sinλ

[
−ρ sinλψt−1

(1−ρ cosλL) +
κ∗t−1

(1−ρ cosλL)

]
+ κt,

ψt+1 − ρ cosλψt = ρ sinλ

[
−ρ sinλψt−1

(1−ρ cosλL) +
κ∗t−1

(1−ρ cosλL)

]
+ κt,

(1− ρ cosλL)ψt+1 = ρ sinλ

[
−ρ sinλψt−1

(1−ρ cosλL) +
κ∗t−1

(1−ρ cosλL)

]
+ κt,

(1− ρ cosλL)2ψt+1 = −ρ2(sinλ)2ψt−1 + ρ sinλκ∗t−1 + (1− ρ cosλL)κt,

(1− 2ρ cosλL+ ρ2(cosλ)2L2)ψt+1 = −ρ2(sinλ)2ψt−1 + ρ sinλκ∗t−1 + (1− ρ cosλL)κt.

After some re-arrangements and using the fact that sin2 λ+ cos2 λ = 1, we get

ψt+1 = 2ρ cosλψt − ρ2ψt−1 + κt + ρ sinλκ∗t−1 − ρ cosλκt−1, (16)
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which is a restricted ARMA(2,1) process. To get the explicit expression of the cycle

component, we may also write

(1− 2ρ cosλL+ ρ2L2)ψt+1 = κt + ρ sinλκ∗t−1 − ρ cosλκt−1,

ψt+1 =
κt + ρ sinλκ∗t−1 − ρ cosλκt−1

(1− 2ρ cosλL+ ρ2L2)
.

A.3 Reduced form of BSM plus cycle

The BSM plus cycle is defined as

yt = µt + γt + ψt + εt. (17)

Using the reduced form of the individual components, we get

yt =
ζt−2

(1− L)2
+

ηt−1
1− L

+
ωt−1

(1 + L+ · · ·+ Ls−1)
+
κt−1 + ρ sinλκ∗t−2 − ρ cosλκt−2

(1− 2ρ cosλL+ ρ2L2)
+ εt,

which has become pretty complicated due to the presence of the cyclical component. Since

the cycle is a restricted ARMA(2,1) process, we could simplify the above expression as

follows,

yt =
ζt−2

(1− L)2
+

ηt−1
1− L

+
ωt−1

(1 + L+ · · ·+ Ls−1)
+

(1 + θL)κt−1
(1− φ1L− φ2L2)

+ εt.

Let us define S(L) = 1 + L + · · · + Ls−1 and Φ(L) = 1− φ1L− φ2L
2. Then the reduced

form of the BSM plus cycle becomes

(1− L)2S(L)Φ(L)yt = S(L)Φ(L)ζt−2 + (1− L)S(L)Φ(L)ηt−1

+ (1− L)2Φ(L)ωt−1 + (1− L)2S(L)(1 + θL)κt−1

+ (1− L)2S(L)Φ(L)εt.
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Since (1− L)S(L) = 1− Ls, we get

(1− L)(1− Ls)Φ(L)yt = S(L)Φ(L)ζt−2 + (1− Ls)Φ(L)ηt−1

+ (1− L)2Φ(L)ωt−1 + (1− L)(1− Ls)(1 + θL)κt−1

+ (1− L)(1− Ls)Φ(L)εt,

which is a restricted MA(s + 3) process. For s = 2 we have a restricted MA(5) process,

for s = 4 we have a restricted MA(7) process and for s = 12 a restricted MA(15) process.

A.4 Deriving the ACVFs of BSM

Recall the reduced form of BSM, which was given by

∆∆syt = S(L)ζt−2 + ∆sηt−1 + ∆2ωt−1 + ∆∆sεt.

Let us define xt = ∆∆syt and for the time being, let s = 2. Then the reduced form in

this case becomes,

xt = (1− L)(1− L2)yt = (1 + L)ζt−2 + (1− L2)ηt−1 + (1− L)2ωt−1 + (1− L)(1− L2)εt.

Writing out the above equation, we get

xt = ζt−2 + ζt−3 + ηt−1 − ηt−3 + ωt−1 − 2ωt−2 + ωt−3 + εt − εt−1 − εt−2 + εt−3,

which is a restricted MA(3) process since the highest lag variable is 3. And as we know,

the usual MA(3) process has 4 non-zero autocovariance functions, say Γ0,Γ1,Γ2 and Γ3.

Assuming all disturbances are i.i.d, we can derive the following autocovariance functions
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for reduced form BSM,

Γ0 = E[x2t ] = 2σ2
ζ + 2σ2

η + 4σ2
ω + 4σ2

ε ,

Γ1 = E[xtxt−1] = σ2
ζ − 4σ2

ω − σ2
ε ,

Γ2 = E[xtxt−2] = −σ2
η + σ2

ω − 2σ2
ε ,

Γ3 = E[xtxt−3] = σ2
ε ,

Γk = E[xtxt−k] = 0, for k > 3.

We now have 4 autocovariance equations with 4 unknown paramaters, or in matrix form,



Γ0

Γ1

Γ2

Γ3


=



2 2 4 4

1 0 −4 −1

0 −1 1 −2

0 0 0 1





σ2
ζ

σ2
η

σ2
ω

σ2
ε


,

such that rank(A) = 4, where A is the matrix on the right hand side of the above

expression. This means all parameters are exactly identified.

For s = 3, we have

xt = (1−L)(1−L3)yt = (1+L+L2)ζt−2 +(1−L3)ηt−1 +(1−L)2ωt−1 +(1−L)(1−L3)εt.

Writing out the above equation, we get

xt = ζt−2 + ζt−3 + ζt−4 + ηt−1 − ηt−4 + ωt−1 − 2ωt−2 + ωt−3 + εt − εt−1 − εt−3 + εt−4,

which is a restricted MA(4) process since the highest lag variable is 4. The autocovariance
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functions are derived as follows,

Γ0 = E[x2t ] = 3σ2
ζ + 2σ2

η + 4σ2
ω + 4σ2

ε ,

Γ1 = E[xtxt−1] = 2σ2
ζ − 4σ2

ω − 2σ2
ε ,

Γ2 = E[xtxt−2] = σ2
ζ + σ2

ω + σ2
ε ,

Γ3 = E[xtxt−3] = −σ2
η − 2σ2

ε ,

Γ4 = E[xtxt−4] = σ2
ε ,

Γk = E[xtxt−k] = 0, for k > 4.

So now we have 5 autocovariance equations with 4 unknown paramaters, or in matrix

form,



Γ0

Γ1

Γ2

Γ3

Γ4


=



3 2 4 4

2 0 −4 −2

1 0 1 1

0 −1 0 −2

0 0 0 1





σ2
ζ

σ2
η

σ2
ω

σ2
ε


,

such that rank(A) = 4, where A is the matrix on the right hand side of the above

expression. This means that we have over-identification.

In the same way, we can also derive ACVF for s = 4 and s = 12 from a restricted

MA(5) and a restricted MA(13) process respectively. The problem is that we still only

have 4 unknown parameters, but we have more ACVF equations to solve. This leads to

over-identification of the parameters. But whether this is actually a problem, remains to

be seen.

22



A.5 Deriving the ACVFs of BSM plus cycle

Now we come to the most tedious part of all. Recall the reduced form of BSM plus cycle,

which was given by

(1− L)(1− Ls)Φ(L)yt = S(L)Φ(L)ζt−2 + (1− Ls)Φ(L)ηt−1

+ (1− L)2Φ(L)ωt−1 + (1− L)(1− Ls)(1 + θL)κt−1

+ (1− L)(1− Ls)Φ(L)εt,

where Φ(L) = 1− φ1L− φ2L
2.

We start with s = 2 and proceed from there. Define xt = (1− L)(1− L2)(1− φ1L−

φ2L
2)yt. Then,

xt = (1 + L)(1− φ1L− φ2L
2)ζt−2 + (1− L2)(1− φ1L− φ2L

2)ηt−1

+ (1− L)2(1− φ1L− φ2L
2)ωt−1 + (1− L)(1− L2)(1 + θL)κt−1

+ (1− L)(1− L2)(1− φ1L− φ2L
2)εt,

where we can count that there are 8 unknown parameters (φ1, φ2, θ, σ
2
η, σ

2
ζ , σ

2
ω, σ

2
κ, σ

2
ε) with

6 equations (since for s = 2 we have an MA(5) process, which means 6 autocovariance

functions). One way to solve this problem is to give restrictions to a number of parameters.

Writing out the above equation, we get

xt = (1 + (1− φ1)L− (φ1 + φ2)L
2 − φ2L

3)ζt−2

+ (1− φ1L− (1 + φ2)L
2 + φ1L

3 + φ2L
4)ηt−1

+ (1− (2 + φ1)L+ (1 + 2φ1 − φ2)L
2 + (2φ2 − φ1)L

3 − φ2L
4)ωt−1

+ (1 + (θ − 1)L− (θ + 1)L2 − (θ − 1)L3 + θL4)κt−1

+ (1− (1 + φ1)L+ (φ1 − φ2 − 1)L2 + (φ1 + φ2 + 1)L3 − (φ1 + φ2)L
4 − φ2L

5)εt.

Deriving the autocovariance functions of the above equation is nothing but simple due to
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the non-linear expression.

Continuing with s = 4 and s = 12, we get restricted MA(7) and restricted MA(15)

processes, respectively. With 8 unknown parameters that we have, it seems that only

s = 4 case is exactly identified.
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