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Abstract

If climate change continues unabated, extreme weather events are ex-

pected to occur more frequently. Rising flood incidence will especially

affect low-lying countries, both through property damage and macro-

financial adversity. Using a stress test framework and geocoded data

on real-estate exposures for Dutch banks, we study when floods would

start impairing financial stability. We find that the banking sector is

capitalised sufficiently to withstand floods in unprotected areas, where

there is relatively little real estate. However, capital depletions would

increase quickly in case more severe floods hit the densely-populated

western part of the Netherlands. These findings have possible implica-

tions for various policy areas, including macroprudential policy.
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1 INTRODUCTION

This paper studies conditions under which floods become a financial stability

concern. Climate change implies slow shifts in the weather distribution

(Auffhammer, 2018). Such shifts would mean that extreme weather events

occur more frequently. The historical record already indicates that floods

can cause economic damage.1 Examples include the 2005 floods in New

Orleans after hurricane Katrina, the U.K. winter floods of 2013-14, and the

2021 floods in several European countries. Should climate change continue

unabated, at some point the macrofinancial impact of frequent floods may

become so material, that financial stability will be impaired. It is important

— for policymakers and practitioners alike — to understand how and when

floods could become a systemic-risk concern.

The notion that climate change can imply a financial stability risk is

no longer new. In a well-known speech, Mark Carney (2015) was one of

the first to argue this point. Likewise, the European Systemic Risk Board

(ESRB, 2016) has argued that a delay in the energy transition could af-

fect systemic risk via three main channels, one of which is a rise in the

incidence of natural catastrophes. The Network for Greening the Financial

System (NGFS, 2019) has emphasized that climate change could have much

larger impacts than other sources of structural change affecting the financial

system, necessitating the integration of climate-related risks in financial sta-

bility monitoring. Bolton et al. (2020) have suggested that climate change

could lead to so-called ‘green-swan’ risks and, therefore, even be the cause of

the next systemic financial crisis. These examples are, by no means, exhaus-

tive, with other contributions in this policy debate including ECB (2019),

Lane (2019), and Georgieva (2021).

To incorporate climate-change-related concerns in financial stability mon-

itoring, an important step is risk quantification. Quantification is crucial for

1See also Dell et al. (2014) for an overview of how weather impacts the economy.
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financial firms to manage properly climate-related financial risks, while it

also allows supervisors and regulators to assess whether financial firms are

in control. To some extent, quantifying how climate change feeds into finan-

cial risks is still a challenging task. As summarized by Bolton et al. (2020),

climate-financial risks are characterized by deep uncertainty, potential non-

linearities, and most likely fat-tailed distributions.

Still, progress on risk quantification is being made, for instance in the

form of climate stress tests. Stress testing is an approach that is often

employed to identify tail-risk vulnerabilities. To identify tail risks, stress

testing uses macrofinancial assumptions that are severe, but still plausible

(Basel Committee on Banking Supervision, 2018). A well-known example of

a climate stress test is that by Battiston et al. (2017), who use data on over

EUR 1 trillion of equity holdings of the largest 50 European banks. They

find that, while direct equity exposures to fossil fuels are small, the overall

exposures to climate-policy relevant sectors are both large and heteroge-

neous. In a stress test for climate transition risks, Vermeulen et al. (2021)

find that the CET1-ratio of Dutch banks could decline by several percentage

points in case much more stringent carbon pricing would be implemented. A

third example is the climate stress test by the French supervisor ACPR for

banks and insurers. This stress test found an overall moderate exposure for

French financial institutions so far, but also highlighted how the speed and

impact of climate change could well increase severity in the next decades

(ACPR, 2021).

To quantify flood-related financial stability risks, we start from a stan-

dard approach to financial stress testing, which we then modify to incorpo-

rate flood-risk considerations. In building on a standard approach, we follow

Vermeulen et al. (2021). Our flood stress framework has three distinctive

features.

A first feature of our analysis is its focus on real estate. As the global
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financial crisis of 2007-08 has underlined, shocks to real-estate exposures can

have severe implications for the stability of the financial system. It is not

unthinkable that a future real estate shock could be due to climate change.

In particular, the property damages related to climate physical risks may be

an important tail-risk event impacting the soundness of the financial system.

A second distinctive feature is that we provide a perspective for the

banking system as a whole. Although individual banks can focus on their

individual exposures — and some are doing so — the macroprudential per-

spective requires a broader approach. Our analysis offers such an approach

using data for ten Dutch banks. To begin with, we use granular data on real-

estate exposures to determine sensitivity to flood risk. We combine several

data sets to gain insights into the location of individual real-estate objects

as well as the loan contracts for which these objects serve as collateral. Cou-

pled with official flood risk maps, we then assess the climate-financial-risk

implications of floods at the level of 4-digit postal-code areas. In the overall

stress test, we use all available exposures from supervisory data sources in

order to also assess the sensitivity to broader macrofinancial adversity. By

focusing on the overall exposures of these ten banks, we capture more than

95% of the assets of the Dutch banking sector.

A third distinctive feature is that we run, in essence, a reverse stress

test. This approach is in line with our aim to understand when floods imply

systemic risk. Such an aim implies a willingness to consider truly extreme

scenarios or calibrations, even if these would, at present, be characterised

by very low levels of probability. We assume, in some scenarios, very strong

macrofinancial impacts or extreme levels of flood inundation. To be clear, we

are not implying that climate physical risks will already be much more likely

or severe in the immediate future. Rather, our use of a reverse test follows

from the realization that climate change is surrounded by deep uncertainty.

Whether we will indeed more often see extreme weather events is going to
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depend on the nature of the energy transition. In turn, the progress of

the energy transition depends on climate policies, energy technology, and

consumer preferences. Though it is possible to model these processes, any

projection is surrounded by large degrees of uncertainty, in particular as

soon as the projection horizon extends beyond the next few decades.2

Turning to results, a first conclusion is that the Dutch banking sector has

sufficient capital to withstand scenarios with floods in unprotected areas.

In those scenarios, the additional capital depletion lies between 110 and

132 basis points. Such magnitudes are still much smaller than commonly

reported for bank stress tests. The intuition is that in those parts of the

country, there is relatively little real estate and economic activity. However,

capital depletions increase quickly once we start assuming flood stress in

protected parts of the country. In particular, a flood with an extreme level

of inundation in the populated areas of the western half of the Netherlands

would put severe stress on the soundness of the banking system. In that

most extreme case, the flood event would mean a decline of the CET1-ratio

within one year of well over 700 basis points.

This paper proceeds as follows. Section 2 discusses three strands of

related literature, while section 3 outlines our stress test framework. Section

4 describes the data, and section 5 presents results for the stress test. Section

6 places the effects on banks’ capital positions in context, while section 7

offers concluding comments.

2 RELATED LITERATURE

The literature often classifies the economic damage of a flood, or natural

disasters more generally, as either direct or indirect. The direct impact

includes everything related to the physical destruction from the disaster

2Examples discussing uncertainty in the context of climate change include Barnett,

Brock, and Hansen (2020), ESRB (2016), Lane (2019), and Pindyck (2013).
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itself. Property damage is one example; other examples include loss of

life and damages to infrastructure. Indirect impacts include all follow-up

consequences of the initial destruction, for instance additional disruptions

to business processes (Kousky, 2014). As Section 3 will discuss, our stress

test considers impacts at two levels: property damages and macrofinancial

adversity. Of these, the former are direct effects, while the latter combines

direct and indirect effects. In Section 3 we will also discuss how we connect

our damage estimates to macrofinancial effects using the macroeconometric

model NiGEM.

Below, we first discuss the empirical evidence on the economic impacts

of floods. Section 2.1 discusses direct impacts on property values and section

2.2 then turns to broader macrofinancial impacts. The purpose of the discus-

sion is to get a sense what ‘severe, but plausible’ could mean in the context

of a flood-risk stress test. In section 2.3, we discuss recent work (academic

as well as policy-oriented) that uses stress testing to study climate-change

financial stability risks.

2.1 Estimates of property damages

For our stress test, we are interested in estimates of property damage in the

wake of actual floods. As highlighted by Beltrán et al. (2019), this question

differs from asking to what extent properties located in a floodplain already

trade at different prices. In the former case, the actual risk has materialised,

which is the relevant perspective for our stress test. In the latter case, which

is the approach most papers seem to take, the point is inferring to what

extent flood risk is already priced in. One example of such a study in the

Dutch context is Bosker et al. (2019), who find that house prices are on

average 1% lower in places at risk of flooding. Based on a meta-analysis for

studies focusing on the U.S., Beltrán et al. (2018) suggest a price discount
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for a location within the 100-year floodplain of 4.6%.3

Turning to the empirical literature on actual damages, estimates for

value effects range from small (around 4%) to substantial (50% or more).

For floods along the Meuse river in the Netherlands in the mid-1990s, Daniel

et al. (2009) estimate a price decrease of up to 9%. Atreya and Ferreira

(2015) combine a hedonic pricing model with geospatial information to study

the 1994 flood in Albany, Georgia. Their estimates for price declines range

up to 48%, which is the difference between inundated floodplains properties

and non-inundated properties outside the floodplain. Pistrika and Jonkman

(2010) assess a database of 95,000 damage estimates for buildings in New

Orleans due to flooding after hurricane Katrina. They report an average

damage rating of 43.3%. Damage rates of more than 50% are reported

for 27.6% of the assessed properties. Two further studies focus on floods

in the U.K. Beltrán et al. (2019) use a repeat-sales model to analyse the

price path of properties affected by floods between 1995 and 2014. Their

estimates for price declines in flooded areas range between 21% (in case of

coastal flooding) and 25% (in case of inland flooding). Importantly, these

price declines are estimated to be short-lived, as differences are no longer

significant after a period of 5 years. Garbarino and Guin (2021) focus on one

severe flood event flood in England in 2013-14. They find relatively small

price effects related to this flood. Compared to unaffected properties in the

same district, properties in affected areas shows decreases in sales prices of,

at most, 4.2%.

3An actual flood event also increases the salience of the associated risk, which can lead

to a higher price discount for non-flooded properties that are located in the floodplain.

See, for example, Zhang and Leonard (2019).
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2.2 Broader macrofinancial adversity

For the purposes of our stress test, the literature on natural disasters sug-

gests two main points with respect to macrofinancial impacts.4

First, the negative effects of natural disasters on economic growth are

short-lived. Based on a panel VAR, Raddatz (2007) estimates that in devel-

oping countries, a climatic natural disaster leads to a decline in real GDP

of 2%. This effect on output has disappeared after five years. Cavallo et

al. (2011) analyze a sample of 196 countries between 1970 and 2008. Based

on synthetic control methods, they find that only extremely large disasters

continue to have a negative effect on output in the long run. Even then, this

long-run effect is due to radical political revolutions following the disasters.

A second finding is that effects of most natural disasters are mild, espe-

cially in developed countries. Based on growth regressions, Noy (2009) finds

a negative relationship between property damage and economic growth. In

developing countries, this relationship is much stronger. There, a one stan-

dard deviation increase in damages leads to an output decline of 9%. In

developed countries, this marginal effect is less than 1%. Focusing on the

growth impact of hurricanes in the U.S., Strobl (2011) finds evidence of a

growth decline at the county level (of 0.45 percentage points) but no effect

on national growth rates.

From the perspective of plausibility, the empirical evidence would suggest

to focus the stress test on short-term effects, while also not assuming large

growth declines. However, especially with respect to the latter point, it

is important to keep in mind that the historical record only offers limited

guidance in the context of climate change. Even if the impact of climate

physical risk has not been large yet, it may well become much more poignant

at some point (Bolton et al., 2019). Also, in line with our notion of doing

a reverse stress test, we are open to exploring calibrations that may seem

4This section draws on Kousky (2014) and Batten (2018), and references therein.
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large in light of the impacts of natural disasters so far.

2.3 Work on climate stress testing

Climate stress testing still is a relatively new field, yet attention is grow-

ing fast. The best-known example to date is by Battiston et al. (2017).

Using data on over EUR 1 trillion of equity holdings of the largest 50 Euro-

pean banks, they find that while direct equity exposures to fossil fuels are

small, the overall exposures to climate-policy relevant sectors are large as

well as heterogeneous. Another early contribution was a study by the Uni-

versity of Cambridge Institute for Sustainability Leadership (2015), which

combined macroeconomic simulations of energy transition scenarios with

industry-specific risk factors to gauge the potential losses for investment

portfolios. Studying the Netherlands, Vermeulen et al. (2021) construct

four tail-event transition scenarios, which incorporate shocks to climate pol-

icy and energy technology. Analysing granular data on EUR 2.3 trillion in

assets of more than 80 Dutch financial institutions, Vermeulen et al. (2021)

find that financial losses due to credit and market risk could be sizeable,

suggesting that climate-transition risks warrant close attention from a fi-

nancial stability perspective. Using a micro-founded stress test, Faiella et

al. (2021) conclude that climate risks in Italy are still limited overall and

specific to individual households and firms. Lastly, Jung et al. (2021) pro-

pose a new measure (CRISK) which is the expected capital shortfall of a

financial institution in a climate stress scenario. This measure indicates a

strong rise in climate vulnerabilities for banks in the U.S., U.K., Japan and

France in recent years.

Important steps are also being taken in the policy domain. The French

ACPR (2021) has conducted a pilot exercise for 9 banking groups and 15

insurance groups under its supervision. The exercise focused on both tran-

sition and physical risks. For the moment, the exercise revealed an overall
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moderate exposure and vulnerability to climate risks. The European Cen-

tral Bank (ECB) has published an economy-wide stress test, which assesses

the resilience of both companies and banks in the euro area to a range of

climate scenarios. As discussed by De Guindos (2021), it finds that climate

change represents a major source of systemic risk, in particular for banks

with exposures concentrated in certain economic sectors or regions. Third,

the Bank of England’s 2021 Climate Biennial Exploratory Scenario (CBES)

will explore the resilience of the U.K. financial system to physical and tran-

sition risks. For banks, the CBES will focus on credit risk for the banking

book, with a particular focus on risks to large counterparties. For insurers,

the CBES focuses on invested assets as well as insurance liabilities.

3 METHODOLOGY

3.1 Framework

Figure 1 shows the structure of our flood stress test. As in the transition

stress test of Vermeulen et al. (2021), we build on the standard multi-step

approach to financial stress testing, which we then modify to incorporate

flood-related considerations. We start with a set of six adverse scenarios,

each of which has different calibrations with respect to flood events. In the

second step, we map these narratives to economic conditions, in this case

damages to property as well as macrofinancial adversity in a broader sense.

Based on these economic conditions, we turn to stress test models, which we

will use to map out implications for the resilience of banks. We now turn to

a detailed description of the scenarios, calibration, and stress test modules.

Section 4 will give more details on the data sets.

[INSERT FIGURE 1 AROUND HERE]
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3.2 Mapping out flood risk

In terms of narrative, the stress test starts with flood maps provided by the

Dutch government. These maps constitute the national implementation of

the 2007 E.U. Floods Directive. Among other things, this Directive requires

Member States to assess flood risk, map the flood extent, and provide in-

formation to the public on the results.5 In the Dutch case, the research

institute Deltares makes these flood risk calculations based on various sim-

ulation models (Slager, 2019). For the general public, information on flood

risk is available via a dedicated website.6 After entering the postal code

of their current residence, people will get an indication of flood risk, for

instance the maximum height the water could reach in the vicinity of their

residence in case of a flood. In addition, there is also information on pos-

sible implications of a flood, such as the unavailability of gas or electricity.

For professionals, a wide range of detailed information (including flood risk

maps) is available via the National Informationsystem Water and Floods.7

In addition, there is specific guidance on running a climate stress test at the

local level. For instance, provinces or municipalities can use this guidance

to assess physical vulnerabilities to factors such as flood, heat, or drought.8

Based on the flood maps, we zoom in on geographical areas within the

Netherlands that are designated as having a potentially significant flood risk

(in Dutch: ‘Gebieden met een Potentieel Significant OverstromingsRisico’

or GPSOR.) The fact that the risk is ‘potentially significant’ chimes well

5For details, see https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:

32007L0060. URL last accessed on 17 June 2021.
6www.overstroomik.nl. URL last accessed on 17 June 2021.
7In Dutch: Landelijk Informatiesysteem Water en Overstromingen (LIWO).

See also https://www.helpdeskwater.nl/onderwerpen/applicaties-modellen/

applicaties-per/watermanagement/watermanagement/liwo/. URL last accessed

on 17 June 2021.
8For information, see https://klimaatadaptatienederland.nl/stresstest/

bijsluiter/. URL last accessed on 24 July 2021.

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32007L0060
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32007L0060
www.overstroomik.nl
https://www.helpdeskwater.nl/onderwerpen/applicaties-modellen/applicaties-per/watermanagement/watermanagement/liwo/
https://www.helpdeskwater.nl/onderwerpen/applicaties-modellen/applicaties-per/watermanagement/watermanagement/liwo/
https://klimaatadaptatienederland.nl/stresstest/bijsluiter/
https://klimaatadaptatienederland.nl/stresstest/bijsluiter/
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with the standard aim of a financial stress test to consider situations that

are ‘severe, but plausible’. Importantly, the designation of GPSOR already

indicates a potential loss of life or economic damages of more than 40 million

euros.

Table 1 shows two relevant dimension of Dutch flood zones. As de-

scribed in Slager (2019), the Dutch GPSOR areas are distributed across

four catchment areas, i.e. the overall area for which all water drains off into

a common outlet. These four catchment areas are those of the following

rivers: the Rhine, the Meuse, the Scheldt and the Ems.9 For each of these

four catchment areas, a further distinction is made based on two dimen-

sions: whether or not there is formal protection against water, and whether

the water system is primary or regional. All four combinations of these two

dimensions are designated by the letters A - D.

[INSERT TABLE 1 AROUND HERE]

Next, we use geodata for the GPSOR classes from a dedicated govern-

ment website. This dataset indicates, at the level of (x,y)-coordinates, the

geographical boundaries of the GPSOR areas.10 Figure 2 indicates the at-

risk parts of the Netherlands that we focus on in this paper. The areas

shaded in red indicate those areas that are at risk from flood type A, while

the gray areas are at risk from flood type B. As can be seen, most of the

areas susceptible to those flood types are in the western part of the Nether-

lands.

[INSERT FIGURE 2 AROUND HERE]

An important consideration for focusing on flood types A and B is insur-

9In Dutch, respectively, de Rijn, Maas, Schelde, and Eems.
10See Appendix A for links to the geodata.
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ability. In the Dutch context, insurance policies cover some, but not neces-

sarily all types of flood risk. Since 2018, effects of local floods are covered by

insurance policies under the so-called ‘precipitation clause’ (in Dutch: neer-

slagclausule). These local floods correspond to types C and D. Our current

stress test does not focus on these two flood types, as financial consequences

would be covered by insurers and not banks.11 However, coverage against

flood risk is mostly excluded for properties located outside of areas protected

by dikes (i.e. at risk from flood type A). Insurance policies almost always

also do not cover damages in case of failure of a primary defense against the

water (i.e. flood type B). In case of a major flood the government could,

in principle, offer support under the terms of the Calamities Compensation

Act (in Dutch: Wet tegemoetkoming schade bij rampen). However, there is

no formal obligation to cover part (let alone all) of the property damage. In

that case, the property owners would need to bear the costs. To the extent

that financial buffers of households would not be sufficient, it becomes in-

creasingly likely that there would be financial implications for banks. There

is already some evidence that Dutch floodplain inhabitants underestimate

the maximum expected water level of a flood (Mol et al. 2020). In addition,

survey evidence suggests that home-owners in flood-prone areas do not have

higher financial buffers (Caloia et al, 2021).

To connect the flood maps with the data on banks’ real-estate exposures,

we map the flood areas to the level of postal codes at the 4-digit level. Table

2 shows the distribution of postal codes across the 8 GPSORs of type A and

B. As the table shows, most of the postal codes at risk lie in the catchment

area of the Rhine and are of the type B. With this information in hand, we

can connect flood risk to our data on the location of real-estate exposures.

11In that case, the insurers most likely would turn to reinsurers. This paper does not

cover that particular channel. See also section 3.2 of DNB (2017) for further discussion

on insurability of flood risk in the Dutch context.
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[INSERT TABLE 2 AROUND HERE]

3.3 Scenario calibrations: floods and damages

For flood types A and B, we consider three levels of water stress. Thus,

our stress test has six different calibrations. We start from a low level of

water stress, then consider an intermediate level, while also considering an

extreme level of stress. In choosing these three levels, we broadly follow

available guidance on flood incidence and associated inundation depths pro-

vided by a Dutch government expert group (Stuurgroep Water, 2018). The

top panel of Table 3 has information on the flood characteristics associated

with these stress levels. The inundation depth ranges from 1 meter (in sce-

narios with low severity) to 5 meters (in the extreme scenarios). Broadly

speaking, such events could be expected to occur once in 50 years (low), once

in 500 years (intermediate) or less than once every 2000 years (extreme).

[INSERT TABLE 3 AROUND HERE]

It is important to note that our paper looks at scenarios where all areas at

risk from either flood type A or B are assumed to be affected simultaneously.

We realize this is a strong assumption. But, we would argue it is in line with

our aim of doing a reverse stress test. By considering such extremes, our

stress test shows what could ultimately be at stake. Naturally, in future

work, it will also be informative to consider more isolated floods that could

affect individual parts of the Netherlands that are at risk from a particular

flood type.

To compute the property damage associated with these six scenarios, we

use damage functions provided in the so-called National standard method

2017 (Slager and Wagenaar, 2017). These damage functions take inundation

depth as input and generate property damage (in euros) as output. There
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are separate functions for damage to the property itself and damage to

household goods and personal effects. We focus on the damage function

for the property itself, as it is the property to which the bank would have

recourse in case of default. For our stress test, it is important that the

standard method also distinguishes between types of real estate. In this

paper, we exploit the granularity of our data sources at the level of 4-digit

postal-code areas. Further details on how we use the standard method are

in Appendix C. Section 3.5 will discuss how we use the damage estimates

to calibrate the relevant parameters in the credit-risk modules.12

3.4 Scenario calibrations: macrofinancial

As discussed in Section 2.2, the literature so far has found relatively mild

effects of natural disasters. In line with this, recent estimates by a Dutch

government expert group also suggest that, in most cases, flood damages

would be limited. For instance, in a low-stress flood event of type A, the

overall economic damages are estimated to be around EUR 1 billion. How-

ever, for flood type B, individual floods could have impacts of up to EUR 25

billion. In the worst-case outcome, up to 250.000 people could be affected

by a flood of type B. The sum total of economic damages for flood type

B in the most extreme scenario could well be EUR 500 billion or more.13

The intuition is clear: flood type B affects most of the western half of the

Netherlands, where the country’s industry, commerce, and people are con-

centrated.

In the stress test, we will use calibrations for economic growth that start

at a one-year decline of 0.5 percentage point (in the low-stress scenario for

12DNB (2017) also relied on the National standard method in an exploratory estimation

of credit losses. That analysis focused on two specific regions in the Netherlands, namely

the Rivierenland region and the Kromme Rijn region.
13The numbers in this paragraph are taken from Table 4.2 and Figures 4.7 and 4.8 in

Stuurgroep Water (2018).
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unprotected areas) and that range up to declines of ten percentage points

in the extreme scenario for flood type B. For the low-stress scenarios, these

calibrations may be somewhat severe, but that would be in line with our

aim of doing a reverse stress test. A growth effect of ten percentage points

is larger than usually used in stress tests. Such a strong decline would be

in line with the concentration of economic activity in those areas vulnerable

to floods of type B.

Following Vermeulen et al. (2021) and recent work by the NGFS, we use

the macroeconometric model NiGEM to ensure internal consistency between

the GDP shocks and other macrofinancial variables.14 Vermeulen et al.

(2021) used NiGEM to create four consistent scenarios with macrofinancial

stress for their energy-transition stress test. The NGFS has used NIGEM to

generate calibrations for chronic physical climate risks.15 For acute physical

impacts such as floods, standard calibrations at the country level are not yet

readily available. However, the climate version of the NiGEM model offers

two routes to calibrating macrofinancial shocks. Appendix C outlines the

details on this approach. The additional macrofinancial variables that we

use as inputs for the stress test modules are unemployment, funding costs,

and stock market returns.16

14For details on this model, see also https://nimodel.niesr.ac.uk.
15For further information on the NGFS scenarios, see https://www.ngfs.net/

ngfs-scenarios-portal/
16Our calibration does not incorporate shocks to government credit spreads. As noted

in Section 3.2, the government is not formally obliged to provide financial assistance in

the aftermath of a flood. Following the approach of a reverse stress test, we do not assume

government assistance explicitly. If the government were to step in, this would alleviate the

impact on banks via the credit risk channel. However, to the extent that the government

credit spread would increase, it could still have an impact via losses on government bonds

in banks’ portfolios.

https://nimodel.niesr.ac.uk
https://www.ngfs.net/ngfs-scenarios-portal/
https://www.ngfs.net/ngfs-scenarios-portal/
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3.5 Stress test framework

To analyse the financial implications of the various flood scenarios for banks,

we use a top-down stress test framework that is used by de Nederlandsche

Bank to support its macro- and microprudential responsibilities.17 As de-

scribed in Daniëls et al. (2017), the modules in this framework represent

different parts of a bank balance sheet and its profit and loss accounts. In

previous work on climate stress, Vermeulen et al (2021) also relied on this

model to compute implications of energy-transition scenarios.

As indicated in Figure 3, our flood stress test uses modules for credit risk,

market risk, and profitability. We use the basic version of these modules,

with one important exception concerning the credit risk module.18 For the

credit risk parameters, we use calibrations that are specific to scenarios and

banks. The former, naturally, accounts for the differences in flood severity.

The latter takes into account that banks may differ in terms of exposure

to flood types, as well as in terms of starting point credit risk. To give an

example, if a bank has no collateral that is exposed to floods, the increase

in the loss-given-default (LGD) parameter only reflects the evolution of the

macrofinancial scenario. Instead, banks with a high share of exposures at

risk from floods will observe a high increase in the resulting LGD parameter,

too, as a result of the property damage. Banks that are more exposed in the

case of floods will likely see a higher increase in the probability of default

(PD) too, as some debtors (especially non-financials) will no longer be able

to meet their obligation.

In our framework, the increase in credit risk as a consequence of the flood

is captured by the PD and LGD parameters, which are estimated by means

17In a top-down approach, the central bank or supervisor makes an assessment of the

stress impact using its own set of models and data. The alternative is a bottom-up

approach, where financial institutions themselves are responsible for making the impact

calculations. The EBA banking stress test is one example of a bottom-up approach.
18See Appendix D for further details on the modules.
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of two satellite modules. The PD module returns default projections based

on a combination of three sources of shocks: interest rate risk, business risk

and collateral repricing risk. Interest rate risk captures the risk associated

to changes in the financing conditions of the debtor. An increase in inter-

est rates translates into an increase in the debt service amount of variable

interest rate loans and loans subject to interest rate reset. This leads to an

increase in the probability of not being able to meet the outstanding obliga-

tion. Business risk captures the risk associated to changes in the economic

environment, which leads to a change to the earnings and profitability of

households and non-financial corporations, and ultimately to their repay-

ment capacity. Eventually, collateral repricing risk captures the strategic

default choice associated to a loss in the value of the real estate securing the

loan. In the event of a flood, a substantial damage to the property can make

debtors also financially go underwater, as the outstanding loan amount may

become much higher than the current value of the property. This can ulti-

mately affect their decision to continue to service their loans, especially in

the case of limited-liability firms that use the commercial real estate for own

business use. The LGD module returns the percentage loss that the bank

would incur, after that a debtor defaults on a mortgage and the real estate

object used as collateral is been liquidated. In this module, the increase

in LGD entirely reflects the damage hitting bank real estate collaterals. It

does not depend on the macroeconomic context.

4 DATA DESCRIPTION

To assess implications of flood risk, we make use of several proprietary data

sources: supervisory data, loan-level data, and administrative microdata.

The analysis covers a sample of ten Dutch banks. Together, these ten banks

represent more than 95% of total assets of the Dutch banking sector. We

now describe the three data sources in more detail.
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Starting with the supervisory data, we rely on the Common (COREP)

and Financial (FINREP) Reporting frameworks. The COREP and FIN-

REP formats cover the import important aspects of banks business, such as

the balance sheet composition, profitability, capital adequacy, asset quality

and funding conditions. The information in these templates is reported at

quarterly frequency and at the highest level of consolidation. For the stress

test, the starting points for exposures are those for the fourth quarter of

2020.

Second, we use loan-level data that is being collected by de Nederland-

sche Bank. This loan-level data covers all residential real estate (RRE) and

commercial real estate (CRE) properties that serves as collateral for loans

provided by Dutch credit institutions. These two datasets contain detailed

information on each counterparty (creditor, debtor, servicer), contract, in-

strument and protection associated to each residential and commercial real

estate loan. The information is available at quarterly frequency and covers

both the stock and the flow of new loans granted in each reporting period.

Third, we rely on administrative microdata at the level of the residential

and commercial real estate objects from Statistics Netherlands. This admin-

istrative data covers all objects registered in the basic registry.19 This basic

registry contains several types of information collected for administrative

purposes. To begin with, the registry has information on the tax value of

each property. In addition, the data set contains a range of property charac-

teristics, such as floor surface (in m2), location (down to the neighborhood

level) and the type of real estate. We use location to determine the level of

flood risk, while we use the other characteristics in the computations for the

property damage.

19In Dutch: ‘Basisregistratie Addressen en Gebouwen’.
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5 RESULTS

Figure 3 illustrates our key findings. The figure reports the system-wide ef-

fect on banks’ capital positions in the six stress scenarios. The vertical axis

shows the effect on the CET1-ratio (in basis points). We measure this effect

as the difference between the level of the capital ratio in the stress scenario

and a baseline projection.20 The horizontal axis denotes two dimensions:

flood types and severity. The first three bars indicate effects in case a flood

affects unprotected areas. The second set of three bars shows results when

a flood affects areas that are, in principle, protected. For both flood types,

we show results for the three levels of waters stress, ranging from 1 meter

to up to 5 meters.

[INSERT FIGURE 3 AROUND HERE]

Starting with results for unprotected areas, the effects on bank capital

remain limited at all three levels of severity. If we assume a water level of

1 meter, the additional decline in the system-wide CET1-ratio is 110 basis

points (Figure 3, most-left bar). Such a decline is certainly not negligible,

but it appears small compared to recent outcomes of bank stress tests. When

we increase the severity of water stress to an inundation depth of 5 meters,

the effect on capital comes in at 132 basis points (third bar from the left).

The key intuition here is, of course, that only a fraction of Dutch real estate

properties are located in the unprotected areas. Naturally then, the prop-

erty damages will be small. In addition, there is very little macrofinancial

adversity associated with floods of unprotected areas.

However, capital depletions would increase quickly when we turn to sce-

narios that focus on the densely-populated western part of the Netherlands.

20For the baseline, we use the macroeconomic outlook in DNB (2020). This baseline

projected a gradual recovery from the covid pandemic in the course of 2021.
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A flood resulting in one meter inundation depth implies a capital decline of

307 basis points (Figure 3, fourth bar). An additional two meters of water

stress results in a system-wide effect on the CET1-ratio of close to 400 basis

points. The extreme level of water stress, i.e. five meters inundation, would

lead banks’ capital to decline by 712 basis points.

As the flood severity increases, the capital depletion is due increasingly

to credit losses and increases in risk exposure amounts. To illustrate this,

Figure 4 shows contributions of six factors to changes in the CET1-ratio.

The top panel has results for a low-impact flood in unprotected areas; the

bottom panel has results for an extreme impact flood in protected areas.

In the former case, the banks’ operational profits are still sizeable. There

is some depletion due to credit losses and increased risk exposure amounts.

On the whole, the banks are still able to distribute dividends. In contrast,

in the extreme flood case (bottom panel), the operational profits are much

lower, and they are already taken up by the credit losses. There is also

a strong increase in the risk-exposure amounts, which is due to the much

higher level of LGD parameters. On the whole, banks no longer distribute

dividends in this stress scenario.

[INSERT FIGURE 4 AROUND HERE]

We close by showing how different components of the scenario calibra-

tions contribute to the capital depletion. Figure 5 shows the contribution of

three main scenario components: damages to residential real estate (in red),

damages to commercial real estate (in blue), and macrofinancial adversity

(in green). The y-axis shows the percentage contribution, while the labels

in the bars show the contribution in basis points. The left bar focuses on a

low-stress event in unprotected areas; the right bar has results for the most

extreme flood of type B. In the former case, most of the capital depletion is
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due to the macrofinancial shocks, which are associated with a capital effect

of 59 basis points. In the latter case, most of the effect is due to the dam-

ages to residential real estate, which is associated with a capital effect of 402

basis points. The intuition here is that the property damage has a strong

LGD-impact, which leads to a marked increase in risk-weighted assets.

[INSERT FIGURE 5 AROUND HERE]

6 DISCUSSION

We now provide further context to the size of the CET1 impact, in particular

focusing on how the more extreme flood scenarios link to systemic risk.

A first point is that, at the very least, declines in the CET1-ratio of more

than 700 basis points are not common in stress tests for Dutch banks. In

the 2021 EU-wide stress test of the European Banking Authority (EBA),

the system-wide CET1 depletion for Dutch banks was 520 basis points,

while in 2018 the depletion was 530 basis points. Second, the depletion in

the EBA exercise is also due to operational risks, which our flood stress

test does not consider separately. The reason we do not consider them is

that, at least at the moment, the operational challenges of major floods

seem difficult to quantify. Nevertheless, in a qualitative sense, it is not

difficult to imagine a major impact of severe floods on business operations

of financial institutions. For instance, the headquarters of some of the banks

are actually located in areas that are at risk from floods. In addition, the

impact on infrastructure would most likely inhibit employees commuting to

the office. In contrast to the situation during the covid pandemic, working

from home may also be far from trivial, if employees themselves also live in

flood-prone areas. Third, in interpreting the numbers for the flood scenarios,

it is important to remember that they materialize over a relatively short

horizon. In the common set-up of the EBA stress test, banks are assumed
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to be confronted with macroeconomic adversity over a three-year horizon.

In the flood scenarios, all of the impact is already concentrated in the first

twelve months after the flood event.

An even broader point is that the assets of insurers and pension funds

are also vulnerable to flood events. Increasingly, Dutch insurers and pension

funds take up a role in mortgage lending. Similar to banks, this means that

these institutions would face increased credit risks in the aftermath of severe

floods. Second, the non-banks hold relatively large asset positions in real

estate. Through these positions, the damage of major floods would lead to

severe mark-to-market losses. By combining different data sources, Caloia

et al. (2021) give a first indication of the total exposures at risk for Dutch

insurers and pension funds. They estimate that around two-thirds of these

institutions’ real-estate-related exposures are at risk from flood type B. In

total, these at-risk exposures for non-banks are close to EUR 90 billion.

7 CONCLUSIONS

This paper finds that, if climate change were to continue unabated, at some

point flood events could have implications for systemic risk. The evidence

we present uses a stress test framework that incorporates property damage

as well as broader macrofinancial adversity. To quantify the effects, we ap-

ply the stress test to geocoded real-estate exposures of Dutch banks. In

particular if the densely-populated western regions of the Netherlands were

hit by an extremely severe flood, the capital impact for Dutch banks would

be sizeable. Our calculations suggest capital impacts of more than 700 basis

points over a one-year horizon. Such a major financial impact of floods, to-

gether with additional adversity for non-banks, suggest that climate-change

physical risks have a potential to affect financial stability in a material way.

Taken at face value, our results are important for various policy areas.

First, they obviously underline the importance that the Netherlands has
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traditionally attached to robust flood defenses. Second, the flood scenarios

consider tail-risks, which can be mitigated if the transition to a carbon-

neutral economy were to take place in a timely and orderly fashion. The

potentially detrimental effects of flood events seem relevant to incorporate

in thinking about costs and benefits of various transition paths. Third, the

notion that several areas of the Netherlands are particularly at risk, com-

bined with our finding that this risk could affect the banking sector, could

have implications for discussions on spatial planning. Lastly, there are po-

tential implications for macroprudential policies. Our stress test points out

which locations in the Netherlands are possible pockets of risk from the per-

spective of financial stability. Admittedly, the scenarios we consider are still

very much in the tail of the distribution. However, given the complexities

that surround both our modeling efforts as well as the broader discussion on

climate change, it seems advisable, at the very least, to start a structured

discussion on possible policy reactions sooner rather than later.

One aim of this paper is offering a framework to quantify financial impli-

cations of climate-change physical risk in a structured manner. We provide

first quantifications using the Netherlands as a case study. In closing, we

re-emphasize that our estimates are surrounded by a degree of uncertainty.

In future research, it will be interesting to incorporate the uncertainties sur-

rounding our stress test approach in a more structured manner. Also, we

note again that this paper takes possible consequences of floods to the very

extreme. An interesting route for future work would be exploring the finan-

cial impacts of flood at higher levels of granularity (i.e. by moving beyond

the 4-digit postal codes) or focusing on individual areas particularly at risk

from different flood types.
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Fig. 1. Studying floods in a top-down stress test framework.

This figure shows the multi-step framework which this paper uses to assess

the financial stability implications of floods. We start with a set of 6 flood

scenarios that differ in terms of flood types and severity. In the second step,

property damages and broader macrofinancial implications are calibrated.

The property damages are also input for the calibration of the macrofinancial

shocks in NiGEM. In the third step, we use stress test modules to compute

implications for credit risk, market risk, and profitability. The overall im-

plications are computed for a sample of ten Dutch banks using a top-down

stress test model.
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Fig. 2. Flood risk zones in the Netherlands considered in the stress test.

This figure shows the areas of the Netherlands which are vulnerable to two

main types of flood. The first type would impact unprotected areas (in red),

the second flood type would impact protected areas (in light gray) that are

mainly located in the western half of the Netherlands.
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Fig. 3. Capital depletion in six flood scenarios over one-year horizon.

The vertical axis shows the depletion of banks’ CET1 capital in basis points.

This depletion is defined as the difference between the system-wide capital

ratio of banks in the respective stress scenario and the CET1 ratio in a base-

line scenario. The stress test horizon is 1 year. The x-axis indicates the level

of severity (which ranges from low to extreme) and differentiates between

two flood types. The first flood type affects unprotected (yet vulnerable)

areas of the Netherlands, the second type affect protected areas. See Table

1 for a taxonomy of flood types. See Table 3 for the shock calibration in

these scenarios.
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Panel A: Low-impact flood in unprotected areas
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Panel B: Extreme impact flood in protected areas

-5
00

-2
50

0
25

0
ba

si
s 

po
in

ts

Profit Credit losses
Market risk losses Dividend
REA increase Other

Fig. 4. Contributions to change in capital position in two flood scenarios.

The figure shows how six drivers contribute to the change in the CET1-ratio

of Dutch banks in two flood stress scenarios. The top panel shows results

for a low-impact flood in unprotected areas; the bottom panel has results

for an extreme impact flood in protected areas. The six components are

bank profits (before credit and market risk losses), credit losses, market risk

losses, dividends, the increase in risk exposure amounts, and other factors

(including taxes).
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Fig. 5. Decomposition in terms of scenario assumptions.

The figure shows the contributions to the CET1 effect for three components

of the flood scenarios. These three elements are damages to residential real

estate (in red), damages to commercial real estate (in blue), and macro-

financial adversity (in green). The left bar shows a decomposition for a

low-impact flood in unprotected areas; the right bar has a decomposition

for a high-stress impact in protected areas. The y-axis has the percentage

contribution; the labels in the bars indicate the CET1 effect in basis points.
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Table 1: Taxonomy of GPSOR classes

This table describes the basic taxonomy for areas with a potentially significant flood risk

(in Dutch: GPSOR). The columns indicate whether or not there is protection against

water; the rows indicate whether the water system is main or regional. The resulting four

classes are indicated by the letters A - D. For details, see Slager (2019).

Protection against water

yes no

Water system

Main B A

Regional C D
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Table 2: Postal codes and flood types

This table lists the number of postal codes that lie in areas with a ’potentially significant

flood risk’. The rows indicate the catchment area (i.e. the main river) and the columns

indicate the type of flood (as described in Table 1). The postal codes are at the PC4 level.

At this level, the postal codes range from 1000 (Amsterdam region) to 9999 (in the north

of the province Groningen). As detailed in Section 3.2, we focus here on floods of type A

and B.

Flood zone type

A B

Catchment area

Rhine 60 2154

Meuse 18 224

Scheldt 3 132

Ems 1 126

Total 82 2636
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Table 3: Shock calibrations in stress scenarios

This table reports the calibration for shocks to key variables. These variables cover both

flood characteristics (top panel) and the macrofinancial context (bottom panel). We con-

sider three levels of flood severity (low, intermediate, extreme) and differentiate between

two flood types (labelled A and B). These two flood types A and B are described in Table

1. Inundation depth is in meters. Incidence is the return frequency in years, i.e. a flood

occurs each every x years. All entries for the macrofinancial context are for the Dutch

economy. These entries represent deviations from baseline values in percentage points

for the year of the flood itself. The range for the GDP shock is based on a literature

review. To ensure internal consistency with the other macrofinancial shocks, we use the

macroeconometric model NiGEM, as described in Appendix C.

Flood type

A B

Water stress: Low Intermediate Extreme Low Intermediate Extreme

Flood

Inundation depth 1 3 5 1 3 5

Incidence (1:x) 50 500 >2000 50 500 >2000

Macrofinancial

GDP growth -0.5 -1 -2 -1 -3 -10

Unemployment level 0.2 0.3 0.5 0.25 1 2.5

Funding costs 0.2 0.4 0.5 0.5 1 2

Stock market return -0.1 -1.25 -2 -1.5 -3.5 -8
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Appendix A

URLs for geodata

The underlying geocoded data is available via the following links

(URLs last accessed on 17 June 2021)

Flood types A/B:

https://geo.rijkswaterstaat.nl/services/ogc/gdr/ror_overstromingsrisico/ows?service=

WFS&version=1.1.0&request=GetFeature&typeName=ror_overstromingsrisico_eu2018_

v_ab&outputFormat=json.

Flood types C:

https://geo.rijkswaterstaat.nl/services/ogc/gdr/ror_overstromingsrisico/ows?service=

WFS&version=1.1.0&request=GetFeature&typeName=ror_overstromingsrisico_eu2018_

v_c&outputFormat=json.

Flood types D:

https://geo.rijkswaterstaat.nl/services/ogc/gdr/ror_overstromingsrisico/ows?service=

WFS&version=1.1.0&request=GetFeature&typeName=ror_overstromingsrisico_eu2018_

l_d&outputFormat=json.

Postcal codes:

https://public.opendatasoft.com/explore/dataset/openpostcodevlakkenpc4/export/

https://geo.rijkswaterstaat.nl/services/ogc/gdr/ror_overstromingsrisico/ows?service=WFS&version=1.1.0&request=GetFeature&typeName=ror_overstromingsrisico_eu2018_v_ab&outputFormat=json
https://geo.rijkswaterstaat.nl/services/ogc/gdr/ror_overstromingsrisico/ows?service=WFS&version=1.1.0&request=GetFeature&typeName=ror_overstromingsrisico_eu2018_v_ab&outputFormat=json
https://geo.rijkswaterstaat.nl/services/ogc/gdr/ror_overstromingsrisico/ows?service=WFS&version=1.1.0&request=GetFeature&typeName=ror_overstromingsrisico_eu2018_v_ab&outputFormat=json
https://geo.rijkswaterstaat.nl/services/ogc/gdr/ror_overstromingsrisico/ows?service=WFS&version=1.1.0&request=GetFeature&typeName=ror_overstromingsrisico_eu2018_v_c&outputFormat=json
https://geo.rijkswaterstaat.nl/services/ogc/gdr/ror_overstromingsrisico/ows?service=WFS&version=1.1.0&request=GetFeature&typeName=ror_overstromingsrisico_eu2018_v_c&outputFormat=json
https://geo.rijkswaterstaat.nl/services/ogc/gdr/ror_overstromingsrisico/ows?service=WFS&version=1.1.0&request=GetFeature&typeName=ror_overstromingsrisico_eu2018_v_c&outputFormat=json
https://geo.rijkswaterstaat.nl/services/ogc/gdr/ror_overstromingsrisico/ows?service=WFS&version=1.1.0&request=GetFeature&typeName=ror_overstromingsrisico_eu2018_l_d&outputFormat=json
https://geo.rijkswaterstaat.nl/services/ogc/gdr/ror_overstromingsrisico/ows?service=WFS&version=1.1.0&request=GetFeature&typeName=ror_overstromingsrisico_eu2018_l_d&outputFormat=json
https://geo.rijkswaterstaat.nl/services/ogc/gdr/ror_overstromingsrisico/ows?service=WFS&version=1.1.0&request=GetFeature&typeName=ror_overstromingsrisico_eu2018_l_d&outputFormat=json
https://public.opendatasoft.com/explore/dataset/openpostcodevlakkenpc4/export/ 
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Appendix B

Estimation of property damage

This appendix describes how we use the National standard method 2017

(Slager and Wagenaar, 2017) to estimate property damage based on the

granular data sets for exposures of banks. Table B.1 and B.2 gives an

overview of the parameters of the standard method. The first table focuses

on residential real estate; the second on commercial real estate.

As the tables indicate, the standard method first specifies the scaling

factor that is applied to the damage calculation as a function of inundation

depth. Importantly, the damage functions are non-linear: the damage in-

creases non-linearly with the depth of the assumed inundation. Second, the

standard method specifies the maximum damage amounts per square me-

ter, for different types of property. For residential real estate, the damage

consist of direct damages to the property itself as well as damages to house-

hold goods and personal effects. We only focus on the former as, despite

the existence of a full recourse system, only the property formally serves as

collateral for the mortgage21. Once the scaling factors and the maximum

damage amounts have been defined, the property damage for the property

i of type t in the event of a flooding of depth d is defined as:

property damagei,d,t =
θd,t ∗maximum damaget ∗m2

i

property valuei

Where θd,t is the scaling factor associated to a property of type t subject to

an inundation of depth d. The property damage is expressed as a percentage

21Two further remarks are important. For apartments, damage factors also differ be-

tween floor levels. As we cannot distinguish this in our data set, we use the damage factors

for the ground floor, which admittedly results in relatively high damage estimates. Also,

the damage factors for flood types A are defined for two cases, namely floods occurring

every 10 years and floods occurring every 100 years. We use the latter functions in all

scenarios.
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of the current value of the property.

Table B.1: Details of National standard method 2017 for RRE

This table describes the National standard method 2017 to estimate property damages.

This table focuses on residential real estate. The standard method distinguishes between

damages to the property itself as well as those of household goods and personal effects. We

only focus on the former, as it is the property which serves as collateral for the mortgage.

The euro amounts are the maximum damages, either per square meter or property. These

amounts are VAT exclusive.

Flood zone

A B

Inundation depth 1 3 5 1 3 5

Single-family home

Property damages

- damage factor 0.05 0.40 1.00 0.05 0.30 1.00

- maximum EUR 1K per square meter

Personal effects

- damage factor 0.50 0.65 1.00 0.50 0.7 1.00

- maximum EUR 70K per property

Apartment

Property damages

- damage factor 0.50 0.95 1.00 0.50 0.95 1.00

- maximum EUR 1K per square meter

Personal effects

- damage factor 0.00 0.80 1.00 0.50 0.95 1.00

- maximum EUR 70K per property
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Table B.2: Details of National standard method 2017 for CRE

This table describes the National standard method 2017 to estimate property damages.

This table focuses on different types of commercial real estate: meetings, health care,

industry, offices, education, sports, and shopping. The maximum amounts are in euro per

square meter. These amounts are VAT exclusive.

Flood zone
A B

Inundation depth 1 3 5 1 3 5
Meeting

- damage factor 0.60 1.00 1.00 0.60 1.00 1.00
- maximum EUR 168

Health care
- damage factor 0.30 0.55 0.85 0.30 0.55 0.90
- maximum EUR 1.974

Industry
- damage factor 0.40 0.75 1.00 0.40 0.70 1.00
- maximum EUR 1.497

Offices
- damage factor 0.30 0.55 0.85 0.30 0.55 0.90
- maximum EUR 1.283

Education
- damage factor 0.30 0.55 0.85 0.30 0.55 0.90
- maximum EUR 993

Sports
- damage factor 0.40 0.75 1.00 0.40 0.70 1.00
- maximum EUR 102

Shopping
- damage factor 0.60 1.00 1.00 0.60 1.00 1.00
- maximum EUR 1.508
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Appendix C:

Calibration of macrofinancial context with NiGEM

This appendix discusses how we use NiGEM to calibrate a consistent set

of macrofinancial shocks. Vermeulen et al. (2021) already used NiGEM to

create four consistent scenarios with macrofinancial stress for their energy-

transition stress test. The NGFS has also used NIGEM, in their case to

generate calibrations for chronic physical climate risks. For acute physical

impacts such as floods, standard calibrations at the country level are not yet

readily available. However, the climate version of the NiGEM model offers

two routes to calibrating macrofinancial shocks. First, there is an option to

shock investment premia. Second, there is an option to assume a broader

set of shocks to demand and supply components.

Table C.1 indicates how we calibrate our six flood-stress scenarios. In

each case, we take the GDP effects in Table 3 as the starting point, and then

calibrate shocks to various input variables to match those GDP effects. In

case of the shock to housing wealth, we use additional information from the

damage estimates in step 2 of our stress test framework. In terms of eco-

nomic mechanisms, we build on the discussion in Batten (2018), especially

the part related to Table 1 in that paper.

We shock the following variables in NiGEM:

1. Housing wealth (NLHW): The property damage due to the flood decreases

household wealth, which will reduce private consumption. We calibrate this

shock based on the damage estimates from the Standard method for resi-

dential real estate. We compute damage amounts euros per scenario and

scale them by total included RRE exposures.

2. Investment premium (NLIPREM): The flood disrupts business decision-

making and generates higher levels of uncertainty.

3. Size of export market (NLS): This applies particularly to flood zone B.
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The Netherlands is highly dependent on exports; the physical destruction of

a flood would severely affect its distribution network and, therefore, shrink

its export potential.

4. Imports (NLMVOL): The flood would temporarily increase the depen-

dence of the Netherlands for imports of food and energy.

5. Equity premium (NLIPREM): Investors would require additional com-

pensation to invest in the Netherlands.

Table C.1: Calibrations in NiGEM

This table reports the calibrations in NiGEM that are consistent with GDP shocks in

the six flood-stress scenarios. The shocks to housing wealth follow from the damage

calculations that use the microdata. The shocks to the other variables are adjusted to

match the overall growth effect. The simulations use NiGEM v2.21.

Flood zone

A B

Water stress: Low Intermediate Extreme Low Intermediate Extreme

Housing wealth -1 -3 -3.5 -27 -51 -53

Investment premium 0.1 0.15 0.25 0.1 0.4 1.5

Export market -0.25 -0.5 -0.75 -0.3 -1 -5

Import volume 0.25 0.4 0.75 0.25 0.75 3

Equity risk premium 0.1 0.2 0.25 0.2 0.5 1
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Appendix D:

Background on stress-test modules

This appendix contains background information on the stress test frame-

work. As shown in Figure 1, the flood event impacts banks capital adequacy

directly (via credit risk) and indirectly (via a change in the macrofinancial

context). The direct impact via credit risk reflects the reduction in the val-

uation of the immovable property used as collateral in RRE and CRE loans.

Lower collateral valuations are then associated to increasing defaults and

increasing bank losses on defaulted exposures. Since only the direct impact

explicitly depends on the damages due to the flooding event, we rely on the

existing DNB’s top-down stress test model to quantify the indirect impact

via market risk, profitability and changes in risk weights. Appendix D1 pro-

vides background information on that model. In addition, we develop new

PD and LGD modules to quantify the impact on credit risk on exposures

secured by residential and commercial immovable properties. Appendix D2

discusses the modules for PD and LGD paths.

D1. Top-down stress-test model

This section contains an broad overview of the stress-test model used in this

paper. Daniëls et al. (2017) provides further details. In general, a top-down

framework consists of a suite of models focusing on specific parts of balance

sheets and profit and loss statements. Each element eventually feeds into

the CET1-ratio, where CET stands for Common Equity Tier 1. The CET1-

ratio is the ratio between high-quality regulatory capital and risk-weighted

assets. It is the main metric used to assess the capital adequacy of banks.

The modules in the stress test framework capture changes in the numerator

as well as the denominator of the CET1-ratio. In a stress scenario, changes

in the numerator can be due to credit losses, losses on financial-asset po-
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sitions, a decline in net interest income (NII), or a lower level of net fee

and commission income (NFCI). Changes in the denominator are due to in-

creases in regulatory risk-weights. We now discuss the main three elements

used in the flood-risk computations.

Credit risk

Credit losses and the evolution of risk-weighted assets are projected per

specific loan portfolio, such as loans backed by residential mortgages or the

corporate loan book. The relevant modules follow the IFRS9 accounting

rule for provisions. Given that the flood scenarios cover one year, we main-

tain the common assumption of a static balance sheet, i.e. banks are not

assumed to adjust the size or composition of their positions. Conditional

on the flood scenario, we project the path of stage transition matrices and

life-time loss rates. Using the projections of IFRS9 credit risk parameters

we then project, per flood scenario, transitions of exposures from and to

IFRS9 stages and the stock of provisions that each bank needs to hold.

Credit losses are calculated as the annual change in the stock of provisions

for assets allocated in all three IFRS9 stages.

Concerning risk weights, we model their evolution for two types of port-

folios, namely those for which banks follow Internal Ratings (IRB) and those

for which they use the so-called Standardised Approach (SA). The difference

between IRB and SA is, that for the latter, banks do not model PDs and

LGDs themselves. For starting points of regulatory parameters, we rely on

supervisory reports. For IRB portfolios, an increase in the default rate will

only partially pass-through to the regulatory PD due to the longer length

of the financial cycle.

Market risk

In general, Dutch banks have limited trading book exposures. Market risk
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often has, therefore, a moderate contribution to the overall CET1 impact in

a stress test. Moreover, our current flood stress test only calibrates shocks to

Dutch equity markets (see Table 3), as it seems unlikely that foreign equity

markets would be affected by a flood in the Netherlands. This implies that

we only need to consider mark-to-market losses for bank exposures to Dutch

listed entities. In the stress test then, we apply the scenario-specific shocks

directly to the market value of these Dutch equity positions. The resulting

financial losses are scaled by risk-weighted assets to infer the impact on the

system-wide CET1-ratio. This approach to market risk is similar to that

in Vermeulen et al. (2021). One difference is that Vermeulen et al. (2021)

also take into account heterogeneity across NACE sectors under disruptive

transition paths in computing shocks to equity returns.

Profitability (NII and NFCI)

Net interest income (NII) is the main component of the profitability of Dutch

banks. In addition, for some banks, there is also a sizeable contribution to

profitability from fee and commission income. In the flood scenarios, the

main effect on NII is the funding cost shock, while NFCI is affected by the

equity shock and the decline in economic growth. To assess the implications

for NII and NFCI, we rely on panel models estimated on bank-specific su-

pervisory data. For related approaches, see Claessens et al. (2018), Gross

et al. (2017), or Kok et al. (2019).

D2. Estimation of credit risk benchmarks

This section discusses the evolution of two main credit risk parameters: the

probability of default (PD) and the loss given default (LGD). The first pa-

rameter captures the probability that a counterparty defaults on their out-

standing obligations. The second parameter reflects the loss that the bank

would incur on that exposure, in case that counterparty defaults. The value
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of both parameter benchmarks are obtained conditional on the parametrisa-

tion for flood levels and macrofinancial adversity. Together, they determine

the resulting path of IFRS9 transition rates (TR) and loss rates (LR). The

scope of both satellite modules is banks’ residential and commercial real-

estate exposures. These are loans to households (HH) and non-financial

corporations (NFC) that are secured by such real-estate loans.

LGD module

The LGD module aligns the value of the immovable property used as col-

lateral to the estimated property damage in each flooding scenario. The

resulting values of the loan to value (LTV) and loss given loss (LGL) are

obtained accordingly. These parameters reflect the actual loss that the bank

would incur in case of default, which mostly depends on the outstanding bor-

rower’s obligation and the current and liquidation value of the real estate

collateral. The LTV of mortgage i under flood scenario S is given by:

LTV S
i = LTVi ∗

1

1− property damageSi
(1)

The resulting values of the loss-given-loss (LGL) and loss given default

(LGD) are given by:

LGDS
i = ((1− probability of cure) ∗ LGLS

i ) + costs (2)

Where

LGLS
i = max

[(
LTV S

i − sales ratio
LTV S

i

)
; 0

]
(3)

When available (CRE data) the reported information on liquidation values

(for sales ratios) and administration costs was used. When not available

(RRE data), we assume values in line with those reported in the CRE data.

The final bank-level LGDs (and the associated multipliers) are obtained by

weighting the LGD of each individual exposure by the associated exposure

amount. For the calculation of the parameters, we use the 2020Q4 wave of



47

the RRE and CRE data.

PD module

In contrast to the LGD version, for the PD module we require the use of

historical data. We estimate the following equation:

yi,b,t = cb + β′Zi,b,t + δ′Xi,b,t + ui,b,t (4)

Here, the dependent variable is the default status of the counterparty i of

bank b at time t. The main independent variables Zi,b,t are the mortgage

interest rate, the current loan-to-value, and regional GDP growth. The pa-

rameters β then capture the change in the default probability due to changes

in interest rate, business and collateral risk.The set of control variables in-

cludes the mortgage type (amortizing, deferred-amortization, interest-only),

the interest rate type (variable, fix, fix with reset), the residual maturity,

the LTV at inception, the type of real estate that serves as collateral, and

the presence of a National Mortgage Guarantee (NHG) for RRE loans. The

model is estimated via pooled OLS, using DNB’s loan level data. The time

dimension is annual (where we always use data from the fourth quarter of

each year) and the estimation window either covers the period from 2012 to

2018 (RRE loans) or 2015 to 2020 (CRE loans). We obtain the bank-level

PD multiplier in each scenario path as:

mS
i =

E(yi,b,t|Xi,b,t , ZS
i,b,t , s = S )

E(yi,b,t|Xi,b,t , Zi,b,t)
(5)

Where the numerator represents the predicted value of eq. (4) conditional

on the values of the LTV, GDP growth and interest rates assumed under

each scenario. The final bank-level multiplier is obtained by weighting the

increased credit risk of each mortgage by the associated exposure amount.
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