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This paper builds on existing literature on federated learning to introduce an 
innovative framework, which we call federated modelling. Federated modelling 
enables collaborative modelling by a group of participants while bypassing the need 
for disclosing participants’ underlying private data, which are restricted due to legal 
or institutional requirements. While the uses of this framework can be numerous, the 
paper presents a proof of concept for a system-wide, granular financial stress test 
that enables effective cooperation among central banks without the need to disclose 
the underlying private data and models of the participating central banks or their 
reporting entities (banks and insurers). Our findings confirm that by leveraging 
machine learning techniques and using readily available computational tools, the 
framework allows participants to contribute to the development of shared models 
whose results are comparable to those using full granular data centralization. This 
has profound implications for regulatory cooperation and financial stability monitoring 
across jurisdictions. 

 

Abstract 
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An interconnected and complex financial system requires cross-
jurisdictional and -sectoral collaboration from the part of central banks, 
supervisory authorities, financial regulators, private sector financial 
institutions, and other institutions of the international financial architecture. 
To cater to an interconnected world and financial system, central banks, supervisory 
authorities, financial regulators, and other institutions of the international financial 
architecture need to develop and use system-wide models to comprehensively and 
accurately represent the financial sector and measure financial risks. Privacy and 
other legal requirements oftentimes inhibit these institutions from sharing not only 
the data that these requirements are meant to protect, but also models embedding 
this data. The result is that collaboration across different institutions is often times 
not possible or inefficient. 

Legal constraints on data sharing pose a challenge to international 
collaboration. Confidentiality is one of the key Fundamental Principles of Official 
Statistics (UNSD, 2014; BIS, 2023). This means that individual data, whether it refers 
to natural or legal persons, is to be strictly confidential. In Europe, the General Data 
Protection Regulation (GDPR) governs the processing of personal data and restricts 
the sharing of any data that could directly or indirectly identify individuals. Regulation 
2018/1725 applies similar rules to EU institutions like the ECB. For central banks, the 
exchange of statistical data with external users is tightly regulated to protect 
confidentiality and reflect institutional mandates. For example, Regulation 2533/98 
stipulates that confidential statistical data can only be shared within the European 
System of Central Banks (ESCB). This poses a restriction to the data that can be 
shared outside of the ESCB. In many cases, specific data exchange agreements or 
memorandums of understanding – such as the Letter of Agreement between the 
European Central Bank (ECB) and European Insurance and Occupational Pensions 
Authority (EIOPA) or between European Supervisory Agencies (ESAs) and the 
European Systemic Risk Board (ESRB) – define the scope and strict conditions under 
which statistical data can be shared among these entities (EIOPA, 2024; BIS, 2023). 
When it comes to making data publicly available, authorities need to ensure that the 
information is sufficiently aggregated so as to not be traceable to individual reporting 
entities. 

One of the areas affected by the safeguards around data sharing is that of 
financial stability assessments and in particular system-wide stress testing. 
The restrictions imposed when sharing data with external users mean that stress tests 
that rely on granular data can be either sector-specific – for the sector for which the 
respective regulator or supervisor is responsible (such as the EBA EU-wide stress 
tests on banks) or country-specific – for different financial sectors in the country 
where a particular supervisor is based (such as a stress test conducted by de 
Nederlandsche Bank on Dutch banks and insurers). Given the limitations on data 
sharing, a truly system-wide stress test – such as a stress test that would rely on 
granular data from bank and non-bank sectors in the EU or more internationally – 
has until now not been feasible. Yet, such a stress test is necessary to capture the 
complexity of today’s interconnected financial landscape. Initiatives such as the 
European Central Bank’s Financial Stability Committee Working Group on Stress 
Testing aim to develop unified frameworks capable of modelling contagion and stress 
propagation between banks and non-banks at the institutional level (Budnik et al. 
2023). This initiative enabled the extension of the ECB’s system-wide stress testing 
framework to include the insurance sector so as to more thoroughly assess risks to 
financial stability, but it had to rely on country-level aggregated data for insurers 
(Sydow et al., 2024).  

The concept of federated learning (FL) offers a solution to the tension 
between the need to collaborate across jurisdictions and institutions and the 
need to preserve the privacy of confidential data and models. FL works by 
training a “global machine-learning model” across multiple participating institutions, 
with each participant training the same common model on their own private data and 
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only sharing model parameter updates with a central server that averages these 
updates to improve the “global model” (Oualid et al., 2023). This concept has been 
applied in different disciplines, such as healthcare and finance, but as of yet not to 
stress testing (Fernandez et al., 2024). We draw inspiration from advances in FL to 
propose a new framework, which we call federated modelling (FM). The difference 
between FL and FM is that while the former centralizes the parameters of the same 
model trained differently by the different data of each participant, the latter 
centralizes a sample of local – participant specific - model outputs securely 
aggregated to create learning points for the “global model”. In this way, the FM 
framework preserves the privacy of the local data and models while building on their 
ability to model participant-specific behaviors. The result is the ability to co-develop 
publicly available “global models” while bypassing the need for sharing private data 
and models and therefore preserving compliance with legislative and organizational 
requirements. 

The FM framework solves many of the challenges traditionally posed to 
system-wide stress testing, given that it i. uses decentralized calibration 
data that does not need to be shared, ii. uses private models that do not need 
to be shared, and iii. only needs sub-sets of outputs to be shared that are 
effectively untraceable back to the participants or their reporting entities. 
The FM framework relies on participants’ decentralised data and private models, 
allowing cross-sector and cross-country granular data to be used while preserving 
privacy and avoiding the high costs usually associated with bottom-up stress testing 
(ECB, 2017; BoE, 2024). In addition, the FM framework is by design able to reflect  a 
multitude of cross-sectors and borders transmission channels that are missing in 
more traditional stress tests that focus on specific sectors and/or jurisdictions (Sydow 
et al. 2024). Lastly, the iterative simulations foreseen by the FM framework 
endogenize variables that are traditionally only introduced as exogenous shocks, 
meaning that it captures feedback loops that are often excluded in more traditional 
approaches (EBA, 2025 EU-wide stress test). 

By bridging cutting-edge machine learning techniques with institutional 
constraints, this paper aims to establish federated modeling as a practical, 
scalable solution for modern financial stability assessments. Our intended 
audience includes central banks, supervisory authorities, financial regulators, and 
other international institutions like the IMF and BIS. 

The paper first presents the theory behind this framework (section 2), the application 
to a system-wide liquidity stress test (section 3), the results of the stress test 
application (section 4), and lastly a discussion of the relevance of FM for the central 
banking community in terms of financial stability monitoring and policy setting 
(section 5). 
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FM is a four-step framework that enables collaborative modelling while 
preserving the privacy of participants’ data and models (Figure 1). Below we 
present these components theoretically. For a deep-dive into a use-case for central 
banks, please refer to the system-wide stress test application in section 3. 

A prerequisite for FM is model decomposition, i.e. the existence of two types 
of models: the private models of the participants and a public system-level 
model. We call the private models of the participants “participant-level models”. 
These models are private and local in that they are developed by, visible, and used 
only by the specific participants that built them. These models are behavioral models 
that are different for each participant; they describe a participant’s responses to 
system-wide input variables that are the same for each participant. Such input 
variables can be prices, interest rate changes, etc. The only requirement imposed on 
the participant-level models is therefore that all these models use the same input 
(system-wide variables) and produce the same output types (such as quantities or 
flows). In this way, the outputs can be aggregated or averaged across all participants. 
In contrast to participant-level models, a system-level model is one publicly available 
global model that describes the market. The system-level model uses the aggregation 
of outputs from participant-level models and estimates the market response. 

The FM framework consists of four steps (Figure 1). 

1. Participants feed the system-wide input variables (e.g. interest rate changes) 
into participant-level models, which use a participant’s private data (e.g. 
detailed balance sheet information) to generate outputs that are participant-
specific (e.g. loss in asset value of its securities). This results in a participant-
level datapoint cloud of outputs1. 

2. Participants submit the output datapoint clouds to the host using a security 
protocol that ensures individual privacy. This protocol ensures that only the 
processed data – the sum or average – that is not directly traceable to a 
participant is visible to the host and will serve as training data for the system-
level model. The host here could be either one of the participants or an 
external counterparty organizing the exercise (e.g. one of the participating 
central banks, international institutions, financial institutions, etc). 

3. Using machine learning, the host creates an approximate function from the 
combined system-wide input scenarios used in step 1 and the processed 
output datapoint clouds received in step 2. This function describes how 
system-wide inputs affect the behaviour of the market participants, i.e. the 
behaviour of all participants together. We call this the participant-level 
machine learning (ML) model, which can be thought of as an approximation 
of all participant-level models used in step 1. As an example, the approximate 
function could show the impact of an interest rate shock on participants’ bond 
holdings and more specifically how much of their holdings participants would 
try to sell off. 

4. The ML model is then used together with the system-level model. The 
system-level model models the reaction of the system, e.g. the whole 
financial market, to the behaviour of the participants. As an example, it would 
estimate the impact that the collective sell-off behaviour of the participants 
in step 3 would have on government bond prices. Equilibrium is found 
through iteration2, meaning that second and higher round effects are a 
design feature of the framework. In this way, the behavior of participants 
impacts the market, and then the new market equilibrium feeds again as a 

 
1 The system-wide input variables can be in a public datapoint cloud. 
2 Convergence to an equilibrium depends on the model’s properties and not on the federated 
modelling process itself. 

2. The Federated Modelling 
framework: the theory 
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system-wide input scenario that in turn affects the participants’ behavior and 
so on until an equilibrium is reached. The combination of the participant-level 
ML model and the system-level model makes up the Global model. 

 

Note: The numbering in this figure corresponds to the steps of the FM framework as 
outlined above. 

Figure 1: The federated modeling framework 
 
 
One of the steps of the FM framework consists in i. each participant sharing 
its own output with another participant and then ii. aggregating their 
outputs so that they are not traceable to the participants and their reporting 
entities (step 2 in section 2). The aggregated output data is by definition not 
confidential and traceable and does not therefore need extra security protection. The 
participant-specific output data shared between participants is also deemed to not be 
traceable to the participants and their reporting entities. However, as it cannot be 
proven that this is always the case, we propose a data-protection technique that 
consists in sharing only parts (i.e. slices) of output, meaning that only processed, i.e. 
shuffled, output data that cannot be traced back to reporting entities is shared 
between participants. In this section, we analyze the types of security threats that 
could face this data sharing and explain our proposed data protection technique. 

We identify four types of security threats posed to the sharing of each 
participant’s output with another participant, as envisaged in step 2 of 
section 2. Drawing on literature, we identify the below four types of security threats 
(Liu et al., 2022).  

• Direct raw data theft: This category consists of data theft via e-mails or on 
private disks. 

• Reverse engineering: This category considers honest-but-curious 
participants, which follow the protocol correctly but due to curiosity want to 
learn more than they should from the data they have access to. To that end, 
they may try to use the participant-specific output data exchanged during 
the process to reconstruct the participant-specific private calibration data of 
one or all other participants. This participant is still aiming to develop the 
most accurate model possible and is not actively trying to disrupt the 
framework (Lu et al., 2022). 

• Poisoning attacks: These attacks consist of a participant injecting fake data 
or altering the model in order to compromise the framework, i.e. to get wrong 
outputs for all participants (Tolpegin et al., 2020). 

• Byzantine attacks: This is a variation of poisoning attacks, whereby a 
malicious participant injects false data in order to get protected information. 
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This is different from reverse engineering in that the participant is attempting 
to extract protected information even if it results in an unusable global model. 

Of the four categories of security threats identified above, we focus on how 
to tackle the threat of reverse engineering by an honest-but-curious 
participant. While the direct raw data theft is the most obvious risk, it is out of scope 
of this analysis given that it is traditionally fully managed by IT and operational risk 
management given that the treatment would be similar to an external threat. The 
poisoning attacks and byzantine attacks are unlikely to happen in a central banking 
context, given that participation in this exercise would be voluntary and that 
participants would be duly identified and would represent the credibility of the 
participating NCA itself. Therefore, the reverse engineering by an honest-but-curious 
participant represents the worst-case scenario considered in this paper. 
 
The Secure Multi-Party Computation (SMPC) data-protection technique can 
address the risk of reverse engineering by an honest-but-curious 
participant. To counter the risk of reverse engineering by an honest-but-curious 
participant, multiple techniques can be used. Differential Privacy protects individual 
data by adding carefully calibrated noise, while still preserving the overall statistical 
properties of the dataset (Dinur & Nissim, 2003). Homomorphic encryption allows 
computations on encrypted data without decryption, revealing the correct result only 
after final decryption (Paillier, 2005) . The Secure Multi-Party Computation (Merino & 
Cabrero-Holgueras, 2023) technique is a protocol that allows multiple parties – in our 
case participants - to jointly aggregate data – in our case the output datapoint cloud 
-  while keeping individual data private. SMPC is the technique we propose to protect 
the data aggregation foreseen in step 2 of the FM framework given that it offers 
strong protection, is simple to implement, and it does not add noise to data. While 
we consider the security resulting from SMPC sufficient for a real central banking 
exercise in an honest-but-curious setting, it always remains an option to combine 
different protection methods to enhance security when deemed necessary. 

The concept of the SMPC is first illustrated through an intuitive example in  
Box 1 and then applied to a system-wide stress test in section 3.2. While the 
data aggregation undertaken in the illustrative example is a simple sum of the 
participants’ output data, it is possible to compute other functions like averages, 
weighted averages, products or weighted products. Given that SMPC protects private 
participant-level information without allowing the data to be traced back to 
participants for data quality checks, adding automatic plausibility checks to SMPC 
would enhance data quality for sensitive uses like stress testing. Ready-to-use open-
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source code is freely available online and can be directly applied in a pilot exercise 
without additional development (i.e. package PySyft in Python).3 

Box 1:Illustration of the SMPC technique4 
 

 

The below section applies the FM framework, including SMPC, to a system-wide fire-
sale stress test. 

 

 
3 Four production-ready SMPC open-source packages are MP-SPDZ, FRESCO, PySyft, and TF 
Encrypted. Each of these packages offers secure computation capabilities tailored to use cases ranging 
from cryptographic protocols to privacy-preserving machine learning. 
4 For this example and more generally, to prevent potential inference of the contribution of individual 
participants, thought should be given to the number and size of participants. 

Let say that three employees (E.1 , E.2 and E.3) – participants – want to 
calculate their average salary without revealing their own salaries. The SMPC 
protocol would then be: 

Each employee splits their salary into three random parts. Then, it 
randomly sends two of those three parts to one other participant, 
keeping one part for themselves. 
   

Every participant sums the received parts along with their own 
remaining portion and forwards the total to a host (which could be a 
participant). 

  

The host adds up the contributions received by all participants and 
calculates the average salary by dividing the total contributions by the 
number of participants. The added randomness cancels out in the sum, 
leaving the final result accurate and keeping the individual salaries 
hidden. The total sum is public, free of noise, and does not reveal any 
single participant’s input. 
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In this section we apply the Federated Modelling framework to one of the 
main challenges facing central banks today: building truly system-wide 
stress tests. A system-wide stress test using federated modelling could assess how 
the financial system - including different types of financial institutions and their 
interlinkages - would perform under severe scenarios, without requiring cross-border 
or cross- jurisdictional confidential data sharing from the part of (inter)national 
authorities or extra reporting from supervised institutions. 

Our specific case study is a fire-sale stress test based on a model proposed 
by the Federal Reserve (Cetorelli et al., 2023). This model was used by the IMF 
during the Financial Sector Assessment Program (FSAP) for the Netherlands in 2024 
(IMF, 2024). 

3.1 The original stress test model 

The model proposed by Cetorelli et al. (2023) estimates how financial 
institutions adjust their portfolios by buying or selling assets in response to 
price shifts. The model consists of two key components. The first component is a 
participant-level model, which in this case is a Sell-off Model. It determines i. which 
asset categories are sold and ii. how much of these categories is sold by each financial 
entity in order to maintain the entities’ initial leverage ratio following an initial system-
wide price drop. The second component is a system-level model, which in this case 
is a Market Model. It adjusts market prices based on overall volumes sold by the 
participants and market depths for each asset category. 

By iterating the results of both components of this model – the participant 
model component and the system model component – the model assesses 
shock amplification within the financial system. As the system model does not 
use sensitive data, but rather only price elasticities of the market – i.e. the relation 
between the price shock and selloff volumes for different categories of assets – , we 
categorize it as public and freely shared by all participants. The rest of this section 
focusses on the participant-level model. 

To simplify the participant-level model for the purposes of this proof of 
concept case while preserving its core logic, three main assumptions are 
made. The assumptions can always be adjusted and refined later on as needed, 
without changing the core framework. The three assumptions are: i. a drop in asset 
prices leads to losses that directly reduce balance sheet equity, while debt remains 
constant; ii. the leverage ratio is restored to its initial level in each iteration by selling 
assets as needed; and iii. assets are sold in order to keep the initial portfolio 
allocation.  

The model requires assets to be grouped into pre-defined categories5. Once 
chosen, the asset categories are the same for all participants. For this proof of 
concept, we used Monthly Security Reporting (MSR). MSR is a national dataset that 
provides detailed denomination on securities held by banks, insurers, and pension 
funds6. We define 15 asset categories, which we consider as a good balance between 
reflecting participants’ portfolios while keeping the computation easily manageable7. 

 
5 While more categories enhance realism, they also increase computational load. Therefore, a balance 
must be found. 
6 MSR provides ESA2010 denomination. 
7 Based on ESA 2010 categorization, the list of asset categories is: Cash; F_31_O_EUR_S_13; F_33_K_EUR_S_12; 
F_33_K_EUR_S_unknown; F_33_K_USD_S_12; F_33_O_EUR_S_13; F_33_O_USD_S_13; F_511_C_USD_S_11; 
F_511_J_USD_S_11; F_511_K_USD_S_12; F_521_K_EUR_S_12; F_522_K_EUR_S_12; F_522_unknown_EUR_S_12; 
F_522_unknown_USD_S_12; others 

3. The Federated Modelling 
framework: application to a 
system-wide stress-test 
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Data on leverage ratios comes from COREP for banks and Solvency II reporting for 
insurers. 

3.2 Applying the federated modeling framework to the original 
stress test model 

In this section we conduct the fire-sale stress test proposed by Cetorelli et 
al. 2023 using the FM framework. For this stress test, we consider three 
participants, namely a supervisor of banks, a supervisor of insurers, and an external 
host. The FM framework is most useful for collaboration across participants that are 
established in different jurisdictions – e.g. EU central banks – and/or across 
participants that are responsible for different financial sectors – e.g. the ECB and 
EIOPA. In order to test the framework, however, we need data that is already 
available to DNB. To that end, we have used data that DNB has in its capacity as a 
supervisor of both banks and insurers. The steps of the framework would remain 
unchanged for different types of participants. 
 
Below are the four steps of the FM framework outlined in Section 2, applied 
to the system-wide fire-sale stress test. Steps 1 to 3 are visualized in Figure 2, while 
step 4 is visualized in Figure 3. 
 

Protocol to run the Federated Modeling-System Wide Stress Test  
Initialisation 
 The host shares with the participants the code for the participant-level “sell off” 

model. It must be plugged to local data and can be modified partially or fully by the 
participants. 

 The host shares with the participants the code for the system-level “market” model. 
This makes the framework transparent, as it allows the participants to re-run both 
models and reproduce the final results at the end of the protocol. 

 The host provides participants with common input datapoint clouds (system-wide 
inputs) of variations in prices, covering the space of plausible price variations. 

1 – Local calculation 
 Participants generate output datapoint clouds -sell-off volumes- based on the sell-off 

model, calibrated on each participant’s private data. 
2 - Aggregation 
 Participants randomly split each output data point cloud into two shares and send one 

to the other participant. Each participant adds the kept to the received output datapoint 
cloud. Each participant sends its resulting output datapoint cloud to the host. The host 
aggregates them and creates the global input-output datapoint clouds, i.e. a table 
mapping the system-level price variations to the aggregated participant sell-off 
behaviour. 

3 – ML approximation 
 The host creates a proxy-model by using machine learning trained on part of the 

global input-output datapoint cloud and tested on the remaining part of the global 
input-output datapoint cloud. 

4 – Global modelling 
 The host shares the ML model with the participants. Each participant, including the 

host, can run both the ML model (proxy of the participant-level sell-off model) and 
the Market model (the system-wide model) simultaneously to proxy the endogenous 
amplification of initial exogenous price shocks by all the participants collectively 
(Figure 3). 
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Figure 2: Fire-sale model proxied by the FM framework 
 

 
 

Note: The numbering in this figure corresponds to the steps of the FM framework as 
outlined above. 

 

Figure 3: Endogenous amplification of initial price shocks through 
multiple iterations of both models 

 

 

 
The next section addresses the question of the quality and feasibility of 
training the ML model. The main challenge of the FM framework is to determine to 
what extent and at what level of complexity it is possible to train a generic ML model 
that can not only replicate known input-output points but also accurately interpolate 
new, unseen inputs with a low error compared to the output produced by the sum of 
all private individual models. This capability will be tested and demonstrated through 
the concrete example in the next section. 
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This section focuses on the quality and feasibility of training a machine 
learning model to replicate the combined output of all participant-level 
models, i.e. step 3 defined in Section 3.2. For the stress test model defined in 
section 3, the inputs are vectors of price changes for the 14 asset categories. We 
generate 5,000 randomly distributed vectors within a range of -1% to -90% to ensure 
coverage and materiality. Each participant runs its private sell-off model based on 
these inputs and calibrated on private data, producing 5,000 outputs. The output 
vectors — showing sell-off amounts across 14 asset categories — are aggregated, 
completing the SMPC step. A machine learning model is then trained on one part of 
the aggregated data and is tested for accuracy on the other part of the aggregated 
data. 

We first assess how well the ML model replicates the private selloff models (section 
4.1) and then how, once used in combination with the market model to proxy the 
original  fire-sale model, it proxies the price evolution produced by the original fire-
sale model (section 4.2). 

4.1 Quality of the ML model  

While dozens of ML model types are available, for this proof of concept we 
use the XGBoost model. There are dozens of Machine Learning (ML) models 
available, ranging from simple regression models to advanced models like neural 
networks and deep learning. The choice of machine learning model is important. It 
must be well suited to the use case—complex enough to capture nonlinear behavior 
in multidimensional spaces, but with as few degrees of freedom8 as possible to avoid 
requiring an excessive number of training points. For this proof of concept, we choose 
the XGBoost model given that it is well-suited for high-dimensional data - here 14 
asset categories for input and output - and balances strong performance with 
moderate training and computational requirements9. 

To assess the quality of the ML model, we compare its performance to that 
of the private sell-off models of the participants. As per standard practice when 
using data to train and then assess a model, the set of input-output learning points 
is first randomly split into two sets. Most of it is used as training data (80% of total 
datapoints, consisting of 4000 training points), and the rest is used to evaluate the 
performance of the model (20% of total datapoints, consisting of 1000 test points). 
 
The performance of the model is evaluated by comparing the outputs, i.e. 
the sell-off amounts, that the trained ML model produces to the outputs 
produced by the original private sell-off models of each participant. Any 
deviation between the two outputs is considered an error. Errors are visualized in 
Figure 4 as deviations from the diagonal. In case the ML model perfectly replicates 
the private selloff models, all the testing points as represented by dots in Figure 4 
should be on the diagonal, reflecting the fact that sell-off amounts produced by the 
private models (x-axis) are equal to the sell-off amounts produced by the ML model 
(y-axis). 
 

 

Figure 4: The quality of the ML model in replicating the private sell-off 
models of the participants 

 
8 A degree of freedom refers to a free parameter that can be adjusted during calibration to improve 
the model’s fit to data. The more degrees of freedom a model has, the more flexible it becomes. This 
comes at the cost of more complex and time-consuming calibration. 
9 From the computational point of view, we used ‘Scikit-Learn’ python package for XGBoost as ML 
model. Hyperparameters of the model were optimized with ‘Optuna’. Several other open source 
configurations exist that have not been tested. 

4. Results of the stress test 
application 



 

15 
 

 

The performance of the ML model is good, suggesting that it could be a good 
substitute to the private sell-off models. The ML model shows good accuracy in 
predicting 14 selloff amounts based on 14 price variations, with most test points 
resulting in relatively small errors. The average error weighed across asset categories 
is -0.021%. The standard deviation of the error weighed across asset categories is 
0.89%, meaning that in 68.27% of cases the error will be smaller than 1%. While 
this performance was achieved using only 4,000 training points, we found that 
increasing the number of points to 8,000 did not significantly improve replication 
quality. This suggests that adding more data is not the most effective approach. To 
enhance accuracy and flexibility, alternative machine learning models should be 
considered. More adaptable methods - such as neural networks - could offer better 
performance, albeit at the price of much larger datasets and greater computational 
resources. 

The next section shows how the ML model performs when run jointly with 
the market model to produce a system-wide fire-sale stress test. 

4.2 Quality of the FM framework- jointly run ML model and 
market model 

To understand how accurate the use of the ML model is in combination with 
the market model to mimic the original fire-sale model, we compare the 
outputs of these two approaches after several iterations. In the first round, we 
apply a random vector of price shocks to both approaches, i.e. to the original fire-
sale model using centralized data from banks and insurers (as defined in section 3.1) 
and to the trained ML model (XGBoost, as explained in section 4.1). The output vector 
of asset selloffs produced by both approaches is separately fed into the same market 
model. The market model then updates asset prices, and the process repeats over 
multiple rounds10. The evolution of the asset prices produced by both approaches is 
shown in Figure 5. 

 

 
10 This is the same process as that explained in section 3.2. 
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a) Original fire-sale model   b) FM fire-sale model using ML 

     

Figure 5: Assets price evolution following an initial random shock 
 
The convergence of the error to zero for the largest asset categories 
validates the proof of concept and demonstrates that federated modeling is 
a viable and scalable approach for multi-sector, cross-border stress testing. 
To assess the model’s error, we first simulate thousands of scenarios with random 
price shocks and analyze the resulting error distribution—defined as the relative 
difference in price evolution over several iterations between the original centralized 
fire-sale model and the FM global fire-sale model using the ML approximation. Figure 
6 shows that the XGBoost model introduces biased errors in particular for smaller 
asset categories. In contrast, larger asset categories - such as the "unknown" type - 
are replicated more accurately, with errors below 10% of the modelled price change11. 
The smallest asset categories are represented by lighter colors, while the largest asset 
categories are represented by darker colors in Figures 6 a and b. Importantly, over 
successive iterations the error term converges to zero for the largest asset categories. 
 
Figure 6: Price evolution – Original Fire-Sale Model vs. ML Proxy 

    

 
11 For the “unknown” asset category, we used the weighted average of all other asset categories.   
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In this proof of concept, access to centralized data allowed for direct 
comparison of the FM global fire-sale model to the original centralized global 
fire-sale model. In a real-world setting, however, the original global model built 
from private data would not exist. Instead, only the training data would be known. 
By splitting the data into training and testing – as explained in section 4.1 - the test 
data can serve as “new” input to assess the quality of the ML proxy model as shown 
in Figure 4. However, reconstructing model error across multiple iterations, as done 
in Figure 6, would not be possible. 

The comparison between the two models' dynamics reveals the potential of 
the FM framework and highlights several takeaways. First, accuracy declines 
over successive iterations due to the natural accumulation of approximation errors 
and then improves and stabilizes as both models’ prices converge after several 
iterations. In addition, despite its simplicity and training time of only a few minutes, 
the ML model already offers a reasonably accurate approximation. This makes it 
suitable for many analytical and stress-testing exercises, especially in areas in which 
no model currently exists and even indicative estimates are valuable. Lastly, 
replication accuracy is flexible and can be improved depending on model design 
choices and available computational resources. 
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This paper introduces Federated Modelling (FM) as a secure, scalable, and 
transparent solution to the conflict between data privacy and the need for 
cross-jurisdictional and cross-sectoral collaboration. FM bridges the gap 
between data privacy and the collective need for system-wide analysis, connecting 
bottom-up private models that rely on confidential data with a top-down holistic 
approach. In this way, data is used locally, models are defined locally, and outputs 
are analyzed globally in order to develop global insights. 

The proof of concept of a system-wide fire-sale stress test model establishes 
FM as a new, viable, privacy-preserving and cost-efficient approach to 
system-wide stress testing. The proof of concept shows how collaboration across 
multiple participants – central banks or supervisory authorities – could happen 
without needing to share granular confidential data. This is a practical alternative to 
centralized data collections that are resource-intensive and often hindered by legal, 
operational, and institutional barriers.  

The proof of concept shows promise, achieving reasonably good results with 
minimal computational and manpower resources. The results confirm that all 
necessary computations can be executed in just a few minutes on regular hardware 
using open-source Python tools. For more complex use cases involving higher-
dimensional or less regular models, more adaptable machine learning techniques — 
such as neural networks —combined with more efficient function approximation 
methods can yield a broad spectrum of versatile and effective solutions. 

The security features of the model call for high data quality standards and 
automated checks from the part of the participants. The decentralized nature 
of the data and models foreseen in the FM framework, together with the security 
protocol applied in this framework, mean that errors made by each participant are 
not traceable to them. Therefore, there is an inherent risk that either the system-
wide outputs could be perceived as reliable when they are not and/or that when the 
outputs are considered unreliable it is not possible to identify the root cause of the 
problem. As a result, it is crucial that participants are required to implement internal 
automated data validation checks. A more thorough process could also be established 
to further ensure the reliability of the data points that each participant sends to the 
host, potentially including requirements related to local models and evidence that 
those requirements are met. 

The benefits of the FM framework extend beyond the central banking 
community. The framework can serve any organization aiming to build shared, 
publicly-usable models from private granular data. Creating a shared library of trusted 
and accessible proxy models between regulators, academia, and the private sector 
could speed up interdisciplinary work — such as on climate or geoeconomic risks — 
and facilitate international cooperation. 

A real-world pilot would pave the way for FM to shape the next generation 
of system-wide stress tests. With the technology already available and the 
computational cost proven manageable, a system-wide stress test pilot could be 
feasible in the short term. The pilot would establish FM as the framework to be used 
for the next generation of stress testing and broader financial stability assessments. 

 

5. Conclusion 
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