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Abstract Extreme losses are the major concern in risk management. The dependence

between financial assets and the market portfolio changes under extremely adverse market

conditions. We develop a measure of systematic tail risk, the tail regression beta, defined by

an asset’s sensitivity to large negative market shocks, and establish the estimation methodol-

ogy. We compare it to regular systematic risk measures: the market beta and the downside

beta. Furthermore, the tail regression beta is a useful instrument in both portfolio risk

management and systemic risk management. We demonstrate its applications in analyzing

Value-at-Risk (VaR) and Conditional Value-at-Risk (CoVaR).
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1 Introduction

Risk managers and prudential regulators often assess portfolio risk by the portfolio’s

sensitivity to key risk factors. The market beta is commonly given the most prominent

position in this assessment. As a measure of the sensitivity to systematic risk, the market

beta provides the proportional change of the asset return to the change of market factor.

Nevertheless, both practitioners and academics have realized the limitations of this approach

for risk management purposes. One critique is that the market beta assesses the sensitivity

to the market irrespective of market conditions. By contrast, risk managers are concerned

with extreme losses in distress events, the so-called tail events. Building on extreme value

theory, we provide a methodology to estimate the sensitivity to risk factors during extremely

adverse market conditions as the tail regression beta and further address the weakness of the

regular market beta in risk management. The scope of this paper comprises the estimation of

the tail regression beta and its applications in risk management. We apply the methodology

in an empirical exercise on industry portfolios.

The changing dependence structure in adverse market conditions may be a potential rea-

son on why the portfolio’s sensitivity to the market risk, market beta, depends on market

conditions. It is a well-known stylized fact that equity returns demonstrate higher correla-

tions during periods of high stock market volatility, see e.g. King and Wadhwani (1990),

Longin and Solnik (1995), Karolyi and Stulz (1996) and Ramchand and Susmel (1998). In

addition, correlations increase especially during periods of severe market downturns, as re-

ported by Longin and Solnik (2001), Ang and Bekaert (2002), Ang and Chen (2002) and

Patton (2004). The observation of increased correlations in bear markets is a major concern

in risk management, as increased correlations dissolve the benefits of portfolio diversification.

A first attempt to assess the systematic risk under different market conditions is to focus

on market downturns. Based on the equilibrium model of Bawa and Lindenberg (1977),

Price et al. (1982) estimate the downside beta, which is the market beta conditioned on below

average market returns. The downside beta of assets is found to be significantly different
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from their regular market beta. Following this result, several studies apply the concept of

downside beta to explain the cross-section of returns, such as Harlow and Rao (1989), Ang

et al. (2006), Pedersen and Hwang (2007), Estrada (2007) and Galagedera (2007).

Although focusing on downside beta is a first step into the downside direction, the es-

timation is still based on a large number of observations from common trading days. As

aforementioned, for risk management purposes it is necessary to assess the dependence in

severe market conditions. Several studies step in with asymptotic dependence measures

based on Extreme Value Theory (EVT), see Poon et al. (2004), Hartmann et al. (2004) and

de Jonghe (2010) among others. The asymptotic dependence measures play a similar role

in the tail as the correlation coefficient does at a moderate level. Nevertheless, they do not

provide the sensitivity to market risk under extremely adverse market conditions as market

beta does regardless of market conditions.

To distinguish a dependence measure from a sensitivity measure, consider the following

differences between correlation and market beta. First, correlation indicates the potential co-

movements obtained from the joint distribution, while market beta captures the co-movement

at the absolute level, i.e. if the market moves one percent, then the asset is expected to

move ‘beta’ percent. Second, when constructing a portfolio consisting of multiple assets, it

is difficult to aggregate the correlations between the individual assets and the market factor

into a correlation between the portfolio and the market factor. However, with the market

beta, a portfolio beta is simply the weighted average of the asset betas in the portfolio.

Third, correlation is by definition a measure independent from marginal risks, whereas the

market beta is a measure combining correlation with marginal risks. The characteristics

of correlation can be shifted to the asymptotic dependence measures when analyzing tail

events. However, a sensitivity measure on the systematic risk under extremely adverse

market condition is still lacking. We fill the gap by developing a measure that is the tail

equivalent to market beta. We will show that this measure, the tail regression beta, has the

similar interpretation and additivity properties as the market beta and takes into account the
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marginal tail risk of assets. For sake of clarity, we distinguish the market beta irrespective

of market conditions as the regular beta. The differences between correlation and regular

beta can be shifted to differences between asymptotic dependence measures and the tail

regression beta.

In our estimation methodology we exploit the heavy tail feature of financial returns

instead of applying a linear regression based on tail observations. Simulations show that

our estimation methodology yields an estimator that has a lower mean squared error than

performing regressions in the tail. Theoretically, we find that the estimator of the tail

regression beta has a similar structure as the estimator of the regular beta from regression

analysis. The estimator of the regular beta consists of a dependence measure, given by

the correlation, and the marginal risk measures, given by the standard deviations. In the

estimator of the tail regression beta, the dependence measure is replaced by an asymptotic

dependence measure and the marginal risk measures are replaced by the Value-at-Risk (VaR)

that is obtained from tail observations. The empirical results demonstrate that the regular

portfolio sensitivity to the systematic risk is in general different from the sensitivity to

systematic risk in severe market downturns.

The setup of the paper is as follows. Section 2 describes the estimation methodology

and reports several simulation results. Section 3 provides an empirical application of the tail

regression beta on industry portfolios. In this section the tail regression beta is shown to be

considerably different from the regular beta for several industry portfolios. Remarkably, these

differences are not captured by differences between the downside beta and the regular beta.

Section 4 discusses applications of the tail regression beta in risk management. We show

how to use the tail regression beta to estimate the Value-at-Risk (VaR) and the Conditional

Value-at-Risk (CoVaR) of a portfolio. Section 5 concludes.
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2 Methodology

2.1 Estimating the tail regression beta

We consider the regular single factor model on asset returns as

Re
t = βRm

t + εt,

where Re
t denotes the excess return of an asset, Rm

t denotes the excess market return, and εt

is a well-behaved error term. The regular risk analysis assesses the potential (co)variation of

the asset return and the market return regardless of market conditions. By regarding Rm
t as

the market risk and εt as the idiosyncratic risk of the asset, the coefficient β measures the

sensitivity of the asset to the market variation. It is regarded as a systematic risk measure

of the asset regardless of the market condition. With historical data, the regular beta can

be estimated from regression analysis.

When considering the downside risk only, the systematic risk measure can be different

from that of the regular regression analysis. Bawa and Lindenberg (1977) propose the

downside beta defined in the model

Re
t = βDSRm

t + εt, for Rm
t < 0.

Roughly speaking, the single factor model is considered only in case that the market is in a

downturn. The coefficient βDS measures how much the asset is exposed to the downside risk

of the market. It can be regarded as the systematic risk measure of the asset vis-à-vis the

downside risk of the market. A regression which takes only observations with negative excess

market returns into the analysis can produce a proper estimate for the coefficient βDS.

By further lowering the threshold in defining ”downside”, we consider a tail regression

which focuses on the linear relation between the market return and the asset return in their

downside tails. More specifically, the downside linear relation is given as in the following
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model,

Re
t = βT Rm

t + εt, for Rm
t < −u, (2.1)

where u is a high threshold such that the tail probability that the market return falls below

−u is at a low level. Parallelled to the aforementioned two cases, the coefficient in the tail

regression, βT , measures the sensitivity of the asset return to the tail risk of the market

portfolio. It is thus regarded as the systematic risk measure under extremely adverse market

condition.

In order to make statistical inference on the coefficient βT , it is necessary to model

the downside tail of the distributions of both the market risk and idiosyncratic risk. We

use heavy-tailed distributions for that purpose. The heavy-tailedness of tail distributions

of financial returns is well-documented in literature, see e.g. Jansen and De Vries (1991),

Embrechts et al. (1997), etc. In correspondence with the heavy-tailed feature, we assume

that as u → ∞

Pr(Rm < −u) ∼ Amu−αm and Pr(ε < −u) ∼ Aεu
−αε . (2.2)

Here, the parameters αm and αε are the tail indices, while the parameters Am and Aε are

the scales. As ε represents the idiosyncratic risk, it is independent from the market risk Rm.

Suppose the model (2.1) holds for a larger area, min(Rm, ε) < −u, from the Feller theorem

(see Feller (1971)), we have that as u → ∞

Pr(Re < −u) ∼ Pr(βT Rm < −u) + Pr(ε < −u)

Together with the heavy-tail feature in (2.2), we have that in the two distinguished cases

αm < αε and αm > αε, the two terms on the right hand side dominate the downside tail of

Re respectively, while in the case αm = αε, both of them contribute to the tail distribution.

To summarize, we obtain the heavy-tailedness of the downside tail distribution of the excess
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asset return as follows. As u → ∞,

Pr(Re < −u) ∼ Au−α, (2.3)

where α = min(αm, αε), and

A =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(βT )αmAm, if αm < αε,

Aε, if αm > αε,

(βT )αmAm + Aε, if αm = αε = α.

(2.4)

The heavy-tail feature of the downside return is convenient for marginal tail risk analysis

because the tail index and the scale parameter can be estimated from historical observations.

Thus, we can estimate the parameters αm, Am, α and A. However, estimating marginal

information is not sufficient to estimate the coefficient βT in the tail regression. To see this,

consider the two possible cases: αm ≤ αε and αm > αε. On the one hand, if αm ≤ αε,

empirical analysis would not reject the null that α = αm. From estimating α and αm, we

can not distinguish whether it is the first or the third scenario in (2.4). Hence, the coefficient

βT is unidentified. On the other hand, if αm > αε, empirical analysis would tend to reject the

null of α = αm and subsequently identify that it is in the second scenario in (2.4). However,

the estimation of marginal scales only provides information on the scale of the idiosyncratic

risk which does not help estimate βT either. To summarize, in order to estimate βT , it is

necessary to have more information than the marginal tail distributions.

Asymptotic dependence measures can provide the additional information that is needed

to make statistical inference on βT . This is similar to the role of estimating the correlation

coefficient in regular regression analysis. More specifically, the linear model in (2.1) imposes

dependence structure on the asset return and the market return in the tail: if the market

suffers a severe loss, then it is likely to observe a severe loss in the individual asset. Such

an phenomenon is described as tail dependence. We consider an asymptotic dependence
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measure which stems from the multivariate EVT, as follows

τ := lim
p→0

τ(p) := lim
p→0

1

p
Pr(Re < −V aRe(p) and Rm < −V aRm(p)),

where V aRe(p) and V aRm(p) are the VaRs of the asset return and the market return at

probability level p. For any given low tail probability p, the VaR is defined by Pr(Re <

−V aRe(p)) = p. In other words, having a large loss that is higher than V aR(p) is a tail event

with probability p. The τ measure has a clear economic interpretation towards contagion

risk: by rewriting it as

τ = lim
p→0

Pr(Re < −V aRe(p)|Rm < −V aRm(p)),

the τ measure indicates the probability of having a large loss on the asset conditional on

an extremely adverse market situation. Since τ is the limit of a conditional probability, we

have that 0 ≤ τ ≤ 1. The case τ = 0 is regarded as tail independence, while the case τ = 1

corresponds to completely tail dependence.1 Moreover, we remark that τ is a measure of tail

dependence regardless of the individual tail risk. Thus, it contains no information on the

marginal distributions of Re and Rm. The aforementioned features of the τ measure indicate

that it plays a similar role as the correlation coefficient at a moderate level. The difference is

that τ only measures the dependence in the tails. Multivariate EVT provides estimates on

the τ measure when τ > 0, see e.g. de Haan and Ferreira (2006). The τ measure is applied

to different financial datasets in order to measure tail dependence, see e.g. Straetmans et al.

(2008) and de Jonghe (2010).2

1The τ measure is closely related to the measure E(κ|κ ≥ 1) introduced by Embrechts et al. (2000) and
applied in Hartmann et al. (2004). Here κ is the number of tail events which is defined as having a large loss
that corresponds to tail probability p. Thus, the measure E(κ|κ ≥ 1) is the expected number of tail events
given that there is at least one which is also an alternative measure on tail dependence. It is not difficult to
verify that, considering (Rm, Re), the two measures are connected by E(κ|κ ≥ 1) = 2

2−τ . We prefer the τ
measure since the measure E(κ|κ ≥ 1) treats the two dimensions symmetrically, while the τ measure can be
interpreted as a conditional probability.

2In these two studies, the τ measure was named ”tail beta”. However, as we demonstrate, it is an
analogous measure of the correlation coefficient rather than the regular beta in the regression analysis. On
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Under the linear model in (2.1), it is easy to obtain that if αm ≤ αε, Rm and Re are tail

dependent, i.e. τ > 0. The following proposition shows how to calculate the τ measure in

this case. The proof is in Appendix A.

Proposition 2.1 Under the single factor model in (2.1) and the heavy-tail setup of the

downside distributions (2.2), when αε ≥ αm and βT ≥ 0, we have that α = αm and

τ = lim
p→0

(
βT V aRm(p)

V aRe(p)

)αm

. (2.5)

With further assuming the heavy-tailed setup on the excess asset return in (2.3)3, we have

that

τ =
(βT )αmAm

A
.

To estimate βT , we first discuss the estimation of the two parameters αm and τ . For the tail

index, a widely-applied estimator is the so-called Hill estimator proposed in Hill (1975) as

follows. With independent and identical distributed observations X
(m)
1 = −Rm

1 , · · · , X
(m)
n =

−Rm
n , by ranking them as X

(m)
n,1 ≤ X

(m)
n,2 ≤ · · · ≤ X

(m)
n,n , the Hill estimator is defined as

1

α̂m

:=
1

k

k∑
i=1

log X
(m)
n,n−i+1 − log X

(m)
n,n−k, (2.6)

where k := k(n) is an intermediate sequence such that as n → ∞, k → ∞ and k/n → 0.

For the τ parameter, multivariate EVT provides a nonparametric estimate by a counting

measure, which is defined as

τ̂ :=
1

k

n∑
i=1

1{
Xi>Xn,n−k and X

(m)
i >X

(m)
n,n−k

}, (2.7)

the contrary, the tail regression coefficient βT proposed in this paper plays an analogous role to the regular
beta but focuses only on the tail exposure. Thus, we compare the tail regression coefficient to the regular
beta instead of considering the τ measure.

3Assumption (2.3) is necessary to obtain further calculation with respect to the scales. However, to prove
(2.5), the tail regression model (2.1) is sufficient, see Appendix A.
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where Xn,n−k is the k + 1−th highest order statistic of the observations X1 := −Re
1, X2 :=

−Re
2, · · · , Xn := −Re

n.

To apply formula (2.5), we take the k + 1−th highest order statistics as the estimator of

the V aR at a tail probability level k/n → 0 as n → ∞. By inverting equation (2.5), βT is

then estimated as

β̂T := τ̂ 1/α̂m
Xn,n−k

X
(m)
n,n−k

. (2.8)

For the estimates on the marginal tail index, the parameter τ and the marginal V aRs, the

usual statistical properties such as consistency and asymptotic normality hold, see de Haan

and Ferreira (2006). Thus a direct consequence is that the estimator of βT in (2.8) is

consistent and asymptotic normal distributed.

Following the linear model in (2.1), if αm > αε, we have that the tail risk of the asset

is dominated by the idiosyncratic risk. This implies that τ = 0. The case τ = 0 is usually

referred to as tail independence. With τ = 0, the probability of a joint tail event is of a

higher order than that of an individual tail event which is characterized by the probability

p. However, it can still be modeled as in a series of papers by Ledford and Tawn (1996,

1997, 1998, 2003). Within the current notation, the Ledford and Tawn model leads to the

assumption that for some 0 < η < 1,

lim
p→0

p−1/η Pr(Re < −V aRe(p), Rm < −V aRm(p)) exists and is positive.4

Compared to the definition of τ(p), such an assumption implies that as p → 0, p1−1/ητ(p)

has a positive finite limit. Since the τ > 0 case corresponds to η = 1, the Ledford and Tawn

model with 0 < η < 1 is a natural extension to the case τ = 0. It is easy to obtain that

η = 1/2, if Re and Rm are completely independent. Moreover, in the case 1/2 < η < 1 there

4The Ledford and Tawn model was extensively studied as a natural model of dependence under tail
independent case. It has been discussed under the name ”hidden regularly variation” in Resnick (2002);
Maulik and Resnick (2004); Heffernan and Resnick (2005). A full characterization of such a model is given in
de Haan and Zhou (2010). Draisma et al. (2004) studied the estimation of the η parameter. For application,
Poon et al. (2004) applied both tail dependence and the Ledford and Tawn model in modeling financial
returns from major stock indices.
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is still potential ”positive” co-movements of the tail events which can not be neglected when

modeling dependence in extreme losses.5 Hence, now focus on the case 1/2 < η < 1.

The following proposition shows the relation between τ(p) and the marginals under the

model in (2.1) in the case αε < αm < 2αε and establishes the link to the Ledford and Tawn

model with 1/2 < η < 1. The proof is again in Appendix.

Proposition 2.2 Under the single factor model (2.1) and the heavy-tail setup of the down-

side distributions (2.2), when αε < αm < 2αε and βT ≥ 0, we have that as p → 0,

τ(p) ∼
(

βT V aRm(p)

V aRe(p)

)αm

. (2.9)

With further assuming the heavy-tailed setup on the excess asset return in (2.3), we have

that

lim
p→0

p1−αm/αετ(p) = lim
p→0

p1−αm/αε

(
βT V aRm(p)

V aRe(p)

)αm

=
(βT )αmAm

Aαm/αε
.

In other words, it corresponds to the Ledford and Tawn model with η = αε/αm.

Proposition 2.2 indicates that although τ(p) converges to zero as p → 0 in the case

αε < αm < 2αε, we can still follow (2.9) and use the estimator in (2.8). Combining the case

αm ≤ αε and the case αε < αm < 2αε, the estimator in (2.8) is valid regardless the tail

dependency between the asset return and the market return. We state the property of the

estimator in the following theorem. The proof is in Appendix A.

Theorem 2.3 Suppose the single factor model in (2.1) and the heavy-tail setup of the down-

side distributions (2.2) hold with αm < 2αε.
6 For a suitable intermediate sequence k = k(n),

define the estimator of βT as in (2.8) in which we use the estimator τ̂ as in (2.7) and the

Hill estimator α̂m as in (2.6). Then it is a consistent estimator of βT specified in the model.

We remark that the structure of the estimator β̂T in (2.8) is comparable with the estimator

5It can be verified that if 1/2 < η < 1, then τ(p)/p → ∞ as p → 0.
6We remark again that assuming the heavy-tail feature of the excess asset return, (2.3), is not necessary

for this theorem.
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of beta in the regular regression analysis. When estimating the regular beta by regression

analysis, the ordinary least square (OLS) estimator is given as

β̂ = ρ̂
σ̂e

σ̂m

,

where ρ̂ is the estimated correlation coefficient between Re and Rm, σ̂e and σ̂m are the

estimated standard deviations of Re and Rm respectively. The estimator β̂ consists of three

components, the dependence measure, and two measures on the individual risks of the asset

return and market return. Similarly, the estimator β̂T consists of the tail dependence measure

τ̂ , and two tail risk measures – the VaRs at probability level k/n – of the asset return and

market return. The only additional element in the estimator β̂T is the tail index α̂m. By

comparing the structure of the estimators, we observe that the estimator of the tail regression

beta combines the dependence measure with marginal risk measures in a similar way as the

market beta does. However, the tail regression beta focuses on the sensitivity to market risk

in extremely adverse market conditions.

2.2 Simulations

We run simulations to examine the performance of the estimation procedure on the tail

regression coefficient βT . An alternative approach to tackle the same problem as the tail

regression is to consider OLS regression analysis based on the observations corresponding

to a large market loss only. More specifically, it is regarded as a threshold regression based

only on those observations where the loss on the market return does exceed the threshold

V aRm(p). The threshold regression provides the threshold beta which has been referred to

as the second-order co-lower partial moment (CLPM) for a low probability threshold, see

e.g. Post and Versijp (2007). We test how the tail regression approach performs vis-à-vis

the threshold regression approach.

The setup of the simulations is as follows. In each sample, we generate 2,000 observations

12



for the series Rm and ε from a student-t distribution with degrees of freedom α. The

student-t distribution is known to have heavy tails with the tail index equal to the degrees

of freedom. The asset returns are constructed from different linear models. Firstly, we

consider the regular linear model with β = 0.5, 0.75, 1. The βT coefficient is thus equal

to the regular beta. We take α = 3, 4, 5. Thus, there are nine models in this category.

Secondly, we consider a segmented linear model as follows. If the loss on the market does

not exceed a threshold with tail probability 2.5%, the asset return is generated from a

regular linear model with β = 0.6; otherwise, it is generated from the linear model in the

tail as in (2.1) with βT = 0.5, 0.75, 1 respectively. Within a 2,000 observation sample,

about 2, 000 ∗ 2.5% = 50 asset returns are generated from the linear relation in the tail.

We take α = 4. There are three models in this category. For the twelve models in total,

we generate 10,000 samples, and estimate βT from the tail regression and the threshold

regression respectively in each sample. Then, by comparing the estimates to the real βT

value, we calculate the mean squared error (MSE) for the two approaches.

- INSERT TABLE 1 -

- INSERT FIGURE 1 -

Figure 1 reports the MSEs with respect to different numbers of high order statistics

used in the estimation, k. In addition, Table 1 reports the ratio between the MSEs of from

the threshold regression and the tail regression. Values above (below) one demonstrate a

better (worse) performance of the tail regression. From Figure 1 and Table 1, we observe a

better performance of the tail regression relative to the threshold regression, as one chooses

less observations corresponding to more severe losses in estimation (for example, using 1 or

2 percent of the total number of observations). For the nine models, the threshold regression

yields a better estimator if many observations are included in the estimation. This is due

to the fact that the linear relation in the moderate level does not change in the tail region.
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Nevertheless, our tail regression approach does not impose a large error even if we include

more observations from the moderate level. In the simulations with the segmented model,

the linear relation in the moderate level is violated by the observations in the tail. The MSE

of the threshold regression can increase strongly when including observations outside the

tail region, whereas that of the tail regression is less sensitive to the choice of the number

of observations used in estimation, k. Because it is hard to justify where the tail region

starts in real data, the tail regression approach would be favored compared to the threshold

regression.

3 Empirical Results

We estimate the tail regression beta for 46 equal weighted industry portfolios including

NYSE, AMEX and NASDAQ firms. The dataset is available over a long period from the

website of Kenneth French.7 We collect daily returns for the industry portfolios, the market

portfolio and the risk free rate. We give an example of the estimation procedure based on

2,000 daily observations (from 19 July 1999 until 29 June 2007) and then extend the analysis

to a moving window setup in order to explore the developments in the time dimension.

- INSERT TABLE 2 -

Table 2 reports descriptive statistics for the individual industry portfolios. Coal is

perceived as the portfolio with the highest standard deviation in daily returns, while

Banking has the lowest standard deviation. We observe positive excess kurtosis for all

7Web address: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html. There are
48 industry portfolios in the dataset. We exclude Healthcare, because it is not available over the entire period.
We also exclude Gold. Gold is known to act as a safe heaven and thus may violate the assumption that
βT ≥ 0. This conjecture is confirmed by observing a large number of observations in the second quadrant of
a scatterplot between the returns of the Gold portfolio (y-axis) and the market returns (x-axis). Moreover,
empirical analysis shows that Gold exhibits a negative β̂DS and a τ̂ that is not significantly different from
0. Nevertheless, our main conclusions do not depend on either including or excluding Gold.
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portfolios. This observation confirms a general result from empirical literature that financial

return distributions exhibit fatter tails than the normal distribution.

The last two columns in Table 2 report the estimated tail index and scale for the down-

side tail of the return distribution. The number of tail observations used in estimations, k,

equals 60.8 As the tail index of the market αm is estimated at 4.4, the tail index of the

individual portfolios α is either below or close to the market tail index. In correspondence

with the linear model in the tail, the portfolio α is never significantly higher than αm

from the market portfolio. Although scale plays an important role in analyzing tail risks,

comparing scales is only meaningful in case of equal tail indices. For example, Guns is

riskier than Automobiles, as both portfolios have equal tail indices while the higher scale of

Guns indicates a higher level of tail risk.

- INSERT TABLE 3 -

- INSERT FIGURE 2 -

As the measure of systematic downside risk, downside beta might shed more light on

the systematic tail risk than the regular beta. We estimate all three betas, reported in

Table 3, and compare them by making scatterplots as in Figure 2. Panel (a) in Figure

2 shows that the downside beta of the industry portfolios is only marginally different

from the regular beta. The Pearson and Spearman rank correlation between downside

beta and regular beta are both above 0.95. Panel (b) in Figure 2 shows that the tail

regression deviates strongly from the regular beta for some portfolios. The dispersion

between the regular beta and the tail regression beta is shown by a relatively low Pearson

correlation coefficient of 0.76. The low Spearman rank correlation of 0.61 further confirms

that regular beta provides a poor ranking of portfolios’ systematic tail risk. Moreover,

8In extreme value analysis it is always crucial step to choose the number of high order statistics in the
estimation procedure, k. We plot β̂T against different k and choose k = 60 which balances the variance and
bias. Compared to the sample size (2,000), this includes the 3% worst days.
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the Pearson and Spearman rank correlation between the tail regression beta and the

downside beta is comparable to that between the tail regression beta and the regular

beta. The values are respectively 0.75 and 0.58. To summarize, there can be considerable

dispersion between the tail regression beta and the regular beta. Moreover, we find no

evidence that downside beta is a better indicator for systematic tail risk than the regu-

lar beta. Hence, for risk management purposes, assessing the tail regression beta is necessary.

- INSERT FIGURE 3 -

To assess the relation between the three betas over time, we estimate the betas starting

from 19 July 1971 until 31 December 2009 using a backward looking window consisting of

2,000 days. Figure 3 reports the regular beta and the tail regression beta for Automobiles

and Ships.9 Panel (a) in Figure 3 suggests that the regular beta for Automobiles has been

a reasonable good indicator for the tail regression beta. In contrast, Panel (b) in Figure 3

shows that the regular beta for Ships has been structurally different from its tail regression

beta. Remarkably, the gap between the regular beta and the tail regression beta increased

for both portfolios during the stock market boom at the end of the 20th century. This last

observation can be generalized to most of the industry portfolios.

- INSERT FIGURE 4 -

Figure 4 reports the cross-sectional correlations from the moving windows analysis

between the regular beta and respectively the tail regression beta and the downside beta.10

The figure illustrates two findings. First, downside beta is highly correlated to regular beta

9The two chosen figures help to illustrate different possibilities in the time variation of tail regression
beta. The figures for the other portfolios are in general similar to one of the reported figures, and are
available upon request.

10For the sake of clarity we left out the correlation between the tail regression beta and the downside
beta, as it is very close to that between regular beta and the tail regression beta over the entire sample
period.
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over the entire period, whereas the tail regression beta is not. Hence, the finding that the

downside beta does not provide a better ranking than regular beta with respect to the

industry portfolios’ systematic tail risk is robust over time. Second, the dispersion between

the regular and the tail regression beta is especially high for moving windows ends from

1992 until 2008, as the Spearman rank correlation is below 0.7. Hence, whether a regular

beta can be regarded as an indicator for the systematic tail risk seems to depend on the

time window.

Our estimation methodology requires stationarity of the return data. Daily returns are

known to be subject to time-wise weak dependence, such as volatility clustering, whereas

data with lower frequency suffer less and appear more consistent with the stationarity

assumption. To test the robustness of the tail regression beta, we employ data with

lower frequency such as weekly observations and compare the results with that from daily

observations. To ensure a sufficient number of weekly observations we use return data

starting from 1 July 1963 until 31 December 2009. This results in a data sample with 11,707

daily observations or 2,427 weekly observations.

- INSERT TABLE 4 -

Table 4 reports the results from the robustness test for changes in data frequency.

The first two rows report the cross-sectional average and standard deviation of all three beta

measures as estimated from weekly data. We compare these numbers with the numbers in

the third and fourth rows, which contain estimates from daily data. The mean level of the

tail regression betas has the smallest change compared to that of the other two betas (from

0.88 for daily data to 0.96 for weekly data), while the change in dispersion is negligible.

Hence, the change in the mean level of the tail regression beta and its dispersion is relatively

small under the change of data frequency.

To verify whether the tail regression betas estimated from different frequencies present
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similar cross-sectional differences, we report the Pearson and Spearman rank correlation

between daily and weekly estimates in the fifth and sixth row of Table 4. The correlation

coefficients between the tail regression betas are close to 0.9 and have a similar magnitude

as that between the downside betas.

In our analysis we intended to explore the development in time. Hence, it is necessary

to have a relatively short time with a sufficient number of observations which leaves daily

frequency as a reasonable choice. The results in Table 4 raise confidence that the tail

regression beta is not sensitive to the choice of data frequency, given that the number of

observations is sufficient.

4 Application of tail regression beta

4.1 Portfolio risk management

The analysis on the tail regression beta decomposes the tail risk of assets into a systematic

and an idiosyncratic component. Risk managers face the problem of assessing the tail risk of

portfolios consisting of multiple assets. Under the linear model in the tail, this assessment

is straightforward. Moreover, investors face an alternative problem that is to construct

portfolios with a high expected return and limited tail risk. The tail regression beta is again

a useful tool in this portfolio optimization problem. In this subsection we demonstrate the

application of the tail regression beta for portfolio risk management.

With the heavy-tail feature of the asset return given in (2.3), it is not difficult to obtain

that

V aRe(p) ∼
(

A

p

)1/α

, as p → 0. (4.1)

Hence, with the estimates of the tail index and the scale, the calculation of VaR is straight-

forward.

Consider d assets with tail regression beta, βT
1 , · · · , βT

d , and scale of the idiosyncratic

18



risk Aε,1, · · · , Aε,d. To simplify the discussion, we consider the case that αm = αε. Such

an assumption is partially confirmed in our empirical analysis.11 Then α = αm = αε.

Consider a portfolio consisting of the assets with non-negative weights (w1, · · · , wd) such

that
∑d

i=1 wi ≤ 1. Then the portfolio excess return is given by

Re
P =

(
d∑

i=1

wiβ
T
i

)
Rm +

d∑
i=1

wiεi.

It is clear that also Re
P has a heavy tail distribution with tail index α. Moreover, the tail

regression beta of Re
P is given by βT

P =
∑d

i=1 wiβ
T
i . From the Feller theorem, the scale of the

idiosyncratic risk component is
∑d

i=1 wα
i Aε,i. Therefore, following (2.4), we get the scale of

the portfolio as

AP =

(
d∑

i=1

wiβ
T
i

)α

Am +
d∑

i=1

wα
i Aε,i. (4.2)

Together with formula (4.1), it is straightforward to calculate the VaR of a portfolio at

any low probability level p. Regarding the diversification effect, since the sensitivity of

the portfolio to the systematic risk is a weighted average of the tail regression betas of the

individual assets, it can not be diversified away. In contrast, since the individual idiosyncratic

risks are independent, diversification may be beneficial in terms of lowering the tail risk. For

a detailed discussion on the diversification effect with a single factor model in the tail, see

Zhou (2010).

Next, we consider the optimal portfolio construction. Constructing a portfolio under

safety-first criterion requires controlling for the tail risk measured by V aRP (p). Following

(4.1), this is equivalent to controlling the scale AP in (4.2) for a fixed probability level p

and a given α. It is not difficult to verify that for α > 1, the right hand side in (4.2) is

a strict convex function with respect to (w1, w2, · · · , wd). Taking the scale as the objective

function, there exists a unique optimal solution according to convex optimization theory. An

11If αm > αε, we have τ = 0; if αm < αε, we have τ = 1. Since our empirical estimates of τ lie in between
0 and 1. This is regarded as an evidence for the equivalence of the two tail indices.
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alternative objective is to maximize the expected return while keeping the tail risk below

a given level. This alternative objective is equivalent to a constrained convex optimization

problem, which again has a unique optimal solution due to the strict convexity of the scale

calculation. To summarize, modeling and estimating the tail regression beta is an important

step to simplify the calculation of the aggregated portfolio tail risk, and helps to construct

a optimal portfolio with requirements on tail risk.

4.2 Systemic risk management

Under the linear model in the tail, asset returns suffer from extreme market shocks,

however, in proportion to their tail regression betas. Hence, the VaR of an asset depends

on the market condition. Such a behavior is investigated in a general framework under the

name Conditional Value-at-Risk (CoVaR) as in Adrian and Brunnermeier (2010).

The CoVaR of an asset is the VaR of the asset conditional on the fact that the market

loss equals to the VaR of the market return. Specifically, for a low probability p, the CoVaR

of an excess asset return at probability level p, CoV aRe(p), is defined by

Pr(Re < −CoV aRe(p)|Rm = −V aRm(p)) = p. (4.3)

To examine the systemic risk of an asset by CoVaR, two potential comparisons are considered

in Adrian and Brunnermeier (2010) and its earlier versions: either comparing the CoVaR

measure to the unconditional VaR or comparing the CoVaR measure with a low probability

p to the CoVaR measure conditional on the market median. We follow the former method

since the calculation of the unconditional VaR is straightforward under our model.12 The

higher the increment from VaR to CoVaR, the more systemic impact one asset suffers from

market shocks.

With the linear model in (2.1), the CoVaR calculation is straightforward. Notice that

12The comparison to the CoVaR measure conditional on the market median is beyond the reach of the
linear model framework, because the model focuses in the tail region only.
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given Rm = −V aRm(p), the only random component in the excess asset return Re is the

idiosyncratic risk ε. Hence,

CoV aRe(p) = βT V aRm(p) + V aRe(p). (4.4)

Under the heavy tailed setup in (2.2), the calculation can be more explicit: as p → 0,

CoV aRe(p) ∼ βT

(
Am

p

)1/αm

+

(
Aε

p

)1/αε

. (4.5)

This formula can be used to estimate the CoVaR measure empirically. Next, we turn to

the theoretical comparison between the CoVaR measure and the unconditional VaR. The

following theorem shows the comparison result. The proof is in Appendix A.

Theorem 4.1 Suppose the single factor model in (2.1) and the heavy-tail setup of the down-

side distributions (2.2) and (2.3) hold. With the τ measure defined in (2.5), we have that

lim
p→0

CoV aRe(p)

V aRe(p)
= τ 1/αm + (1 − τ)1/αm .

From Theorem 4.1, we get that given a low tail probability p, the CoVaR measure is ap-

proximated by multiplying the unconditional V aR measure with a correction factor. The

correction factor is a function of the τ measure, which measures the tail dependence between

the market return and the asset return. This method can be regarded as an approximate

but faster algorithm to estimate CoVaR.

Since the τ measure lies in between 0 and 1, the magnitude of the correction factor is

bounded by

1 ≤ τ 1/αm + (1 − τ)1/αm ≤ 21−1/αm .

The first equality holds if and only if τ = 0 or τ = 1. The second equality holds if and

only if τ = 1/2. We conclude that the CoVaR measure is always higher than or equal to

the unconditional VaR measure under the linear model in the tail. This is due to the fact
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that the linear model in the tail imposes tail dependence. With our estimate, α̂m = 4.4, the

upper bound 21−1/αm equals to 1.71. Hence the CoVaR measure is at most 70% higher than

the VaR measure for the industrial portfolios in our dataset.

We remark that the correction factor is not an monotone function with respect to τ : it

increases on [0, 1/2], while decreases on [1/2, 1]. On the contrary, τ is an increasing function

with respect to βT . Hence, a high systemic risk indicated by the ratio between CoVaR and

VaR does not necessarily imply a high systematic risk as indicated by βT . For example, in

both cases τ = 0 and τ = 1, the correction factor equals 1, which indicates that the CoVaR

measure is equal to the VaR measure. However, these are the two most opposite cases with

respect to tail dependence. We interpret it as follows. If the tail risk of the asset return is

independent from that of the market, then a shock in the market return does not change the

VaR measure of the asset return. Thus the CoVaR measure is equal to the VaR measure.

If the tail risk of the asset return is completely dependent on that of the market, then a

shock in the market return is exactly reflected in the asset return movement with proportion

βT . Because the asset return is fully determined by that shock and reaches its VaR level,

there should be no extra random component. Hence, the CoVaR measure is also equal to

the VaR measure in the completely dependent case. By comparing the increment from VaR

to CoVaR, it is not possible to distinguish between the two cases. In all, the comparison

shows the difference between analyzing the systemic risk and the systematic risk. Hence, in

order to have a complete view, it is necessary to investigate tail regression beta alongside

the CoVaR analysis.

5 Concluding Remarks

To measure an asset’s sensitivity to large negative market shocks, we developed a measure

of systematic tail risk, the tail regression beta. Building on EVT, we provided a methodology

to estimate the tail regression beta. When applying this methodology to industry portfolios,
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considerable dispersion between the regular market beta and the tail regression beta is ob-

served. Therefore, in order to assess the sensitivity to systematic tail risk, it is recommended

to evaluate the tail regression beta rather than directly considering the regular market beta.

Furthermore, we demonstrate applications of the tail regression beta in both portfolio risk

management and systemic risk management: analyzing VaR and CoVaR.

As an alternative to tail regression in systemic risk management, Adrian and Brunner-

meier (2010) have applied quantile regression for CoVaR estimation. Quantile regression is

based on modelling the relation between the conditional quantile of the dependent variable

and its covariates, see Koenker and Hallock (2001)13. Thus quantile regression addresses

the sensitivity of quantiles to co-variates. The two approaches to CoVaR differ in model as-

sumption. The tail regression approach models the linear relation between the asset returns

and market returns in the tail. The quantile regression approach models the linear relation

between the conditional quantile of the asset return and the market return over the entire

range of market returns.

Assessing CoVaRs at different probability levels by quantile regression requires repeating

the estimation procedure. This is due to the fact that the linear relations modelled by quan-

tile regression are sensitive to the probability levels that define the quantiles. Hence, from

estimated linear relations at fixed probability levels, extrapolations towards other probability

levels are not possible. Instead, the tail regression model assumes that the tail regression

beta remains at the same level given the occurrence of extremely adverse market conditions.

This assumption facilitates the possibility to perform CoVaR analysis at levels where ob-

servations are rather scarce. To summarize, the quantile regression approach is designed to

analyze CoVaR at fixed moderate probability levels, whereas it is possible with tail regression

to analyze CoVaR at an extremely low probability level.

Estimating the tail regression beta can be the departing point for research in several

other fields. From a corporate finance point of view it may be interesting to find firm

13To a certain extent, quantile regression is comparable with the aforementioned threshold regression.
This has been discussed in Koenker and Hallock (2001), page 147.
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characteristics that explain the cross section of the individual firm’s sensitivity to systematic

tail risk. Another interesting research direction is to examine whether the spread of the tail

regression beta over the regular market beta is priced in the market. Remarkably, we find

a significant negative correlation of -0.51 between this spread and the market beta, which

raises the conjecture that low beta stocks are more sensitive to systematic tail risk than

indicated by the regular betas. These topics are left for future research.
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Appendix: Proofs

Proof of Proposition 2.1

In the case βT = 0, we have that Rm and Re are tail independent, thus τ = 0. The equation

(2.5) holds automatically.

In the rest of the proof, we consider βT > 0 in the tail regression model. The proof

departures from comparing the marginal VaRs of the excess return and the market return

in the following lemma.

Lemma A.1 Under the single factor model in (2.1) and the heavy-tail setup of the downside

distributions (2.2), we have that, for sufficiently low probability p,

βT V aRm(p) ≤ V aRe(p). (A.1)

Proof of Lemma A.1

As p → 0, the VaR of the market return V aRm(p) converges to infinity. Thus, when the

tail probability p is sufficiently low such that V aRm(p) exceeds the threshold in the tail

regression model, the linear relation (2.1) is valid for Rm < −V aRm(p). Hence, we have that

for any δ > 0,

Pr(Re < −βT V aRm(p)) ≥ Pr(Re < −βT V aRm(p) and Rm < −V aRm(p))

= Pr(βT Rm + ε < −βT V aRm(p) and Rm < −V aRm(p))

≥ Pr(βT Rm < −βT V aRm(p)(1 + δ) and ε < δβT V aRm(p))

= Pr(Rm < −V aRm(p)(1 + δ)) Pr(ε < δβT V aRm(p)).

The last equality is due to the independency between Rm and ε. From the heavy-tail setup,

we obtain that

lim
p→0

Pr(Rm < −V aRm(p)(1 + δ))

Pr(Rm < −V aRm(p))
= (1 + δ)−αm .
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Moreover, it is obvious that limp→0 Pr(ε < δβT V aRm(p)) = 1. Thus, we have that

lim inf
p→0

Pr(Re < −βT V aRm(p))

p
≥ (1 + δ)−αm .

Notice that the above inequality holds for all δ > 0. By taking δ → 0, we get that

lim inf
p→0

Pr(Re < −βT V aRm(p))

p
≥ 1.

From the definition of VaR, Pr(Re < −V aRe(p)) = p. Hence, for sufficiently low probability

p, inequality (A.1) holds. �

Based on the tail regression model (2.1), we calculate the tail dependence measure τ .

When the tail probability p is sufficiently low such that V aRm(p) exceeds the threshold in

the tail regression model, a joint tail event can be written as

C := {Re < −V aRe(p) and Rm < −V aRm(p)}

=
{
βT Rm + ε < −V aRe(p) and Rm < −V aRm(p)

}
.

The τ measure is given as the limit limp→0
Pr(C)

p
.

Define C0 =
{
βT Rm < −V aRe(p)

}
. We shall show that Pr(C) ∼ Pr(C0) as p → 0. For

any 0 < δ < 1, consider two sets C1 and C2 defined as

C1 :=
{
βT Rm < −V aRe(p)(1 + δ) and ε < δV aRe(p)

}
,

C2 := C21

⋃
C22

:=
{
βT Rm < −V aRe(p)(1 − δ)

} ⋃
{ε < −δV aRe(p) and Rm < −V aRm(p)} .

It is obvious that C ⊂ C2. Moreover, from Lemma A.1, we get that V aRe(p)(1 + δ) >

V aRe(p) ≥ βT V aRm(p), which implies that C1 ⊂ C. Hence Pr(C) is bounded by Pr(C1)
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and Pr(C2). We calculate the two probabilities as follows.

Since Rm and ε are independent, we get that as p → 0,

Pr(C1) = Pr(βT Rm < −V aRe(p)(1 + δ)) Pr(ε < δV aRe(p)) ∼ Pr(C0)(1 + δ)−αm .

Here we use the fact that as p → 0, Pr(ε < δV aRe(p)) → 1 and the heavy-tail property of

the downside distribution of Rm. It implies that

lim inf
p→0

Pr(C)

Pr(C0)
≥ (1 + δ)−αm . (A.2)

Similarly, we get that

lim
p→0

Pr(C21)

Pr(C0)
= (1 − δ)−αm .

For the set C22, we have that

lim sup
p→0

Pr(C22)

Pr(C0)
= lim sup

p→0

Pr(Rm < −V aRm(p)) Pr(ε < −δV aRe(p))

Pr(C0)

= lim sup
p→0

p · Aε (δV aRe(p))−αε

Am(V aRe(p)/βT )−αm

= lim sup
p→0

Aε

Amδαεβαm
p(V aRe(p))αm−αε

= 0.

The last step comes from the fact that αm ≤ αε. Therefore,

lim sup
p→0

Pr(C)

Pr(C0)
≤ lim sup

p→0

Pr(C21)

Pr(C0)
+

Pr(C22)

Pr(C0)
= (1 − δ)−αm (A.3)

Since inequalities (A.2) and (A.3) hold for any 0 < δ < 1, by combining the two and taking

δ → 0, we get that limp→0
Pr(C)
Pr(C0)

= 1. Thus,

τ = lim
p→0

Pr(C)

p
= lim

p→0

Pr(C0)

Pr(Rm < −V aRm(p))
= lim

p→0

(
βT V aRm(p)

V aRe(p)

)αm

.
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The rest of the proposition follows from straightforward calculation. �

Proof of Proposition 2.2

The proof of the equation (2.9) follows exactly the same lines as in the proof of the

equation (2.5). The only difference is on the calculation of Pr(C22). To ensure that

lim supp→0 Pr(C22)/ Pr(C0) = 0 is still valid in the case αm > αε, it is necessary to have a

more detailed calculation on the term limp→0 p(V aRe(p))αm−αε . Notice that, when αm > αε,

V aRe(p) ∼ V aRε(p) = O
(
p−1/αε

)
. Hence,

p(V aRe(p))αm−αε = pO
(
p−1/αε

)αm−αε
= O

(
p2−αm/αε

)
.

Since we assume αε < αm < 2αε, the power 2 − αm/αε is positive. Therefore, we still have

that lim supp→0 Pr(C22)/ Pr(C0) = 0. The rest of the proof is similar. �

Proof of Theorem 2.3

In the case αm ≤ αε and βT > 0, τ is a finite positive number. By inverting (2.5), we get

that

βT = τ 1/αm lim
p→0

V aRe(p)

V aRm(p)
.

For a intermediate sequence k := k(n) such that k → ∞ and k/n → 0 as n → ∞, we have

that

lim
p→0

V aRe(p)

V aRm(p)
= lim

n→∞
V aRe(k/n)

V aRm(k/n)
.

Since an order statistic is a non-parametric estimate of the VaR, we have that

Xn,n−k/V aRe(k/n)
P→ 1 and X

(m)
n,n−k/V aRm(k/n)

P→ 1 as n → ∞. Hence

lim
n→∞

Xn,n−k/X
(m)
n,n−k

V aRe(k/n)/V aRm(k/n)
= 1, in probability.

From the multivariate extreme value statistics, τ̂ is a consistent estimator of τ ; see e.g.

Theorem 7.2.1 in de Haan and Ferreira (2006). Together with the consistency of the Hill

estimator α̂m, the consistency of β̂T is obvious.
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In the case that both αm ≤ αε and βT = 0, we have τ = 0, thus τ̂
P→ 0. Moreover, as

p → 0, V aRe(p)
V aRm(p)

= O(1), which implies that
Xn,n−k

X
(m)
n,n−k

= Op(1). Hence, the consistency of β̂T is

still valid.

In the case αε < αm < 2αε, τ(p) → 0 as p → 0. In other words, τ = 0. The consistency

of the τ estimator has to be interpreted in a different way as τ̂
τ(k/n)

P→ 1 as n → ∞. This

consistency relation is ensured by the proof of Theorem 7.6.1 in de Haan and Ferreira (2006)

(page 267, line 7). The rest of the proof is identical to that in the case αm ≤ αε. �

Proof of Theorem 4.1

We prove the theorem under three cases: αm = αε, αm < αε and αm > αε.

If αm = αε, from (4.5), we get that, as p → 0,

CoV aRe(p) ∼ βT A
1/αm
m + A

1/αm
ε

p1/αm
,

and

V aRe(p) =
A1/αm

p1/αm
.

Hence,

lim
p→0

CoV aRe(p)

V aRe(p)
=

βT A
1/αm
m + A

1/αm
ε

A1/αm
=

(
(βT )αmAm

A

)1/αm

+

(
Aε

A

)1/αm

= τ 1/αm+(1−τ)1/αm .

The theorem is proved.

If αm < αε, the τ measure has to be either one or zero depending on whether βT > 0 or

βT = 0. In both cases, τ 1/αm +(1− τ)1/αm = 1. On the other hand, from (4.5), we have that

CoV aRe(p) ∼ βT

(
Am

p

)1/αm

∼ V aRe(p).

Hence the theorem holds for the case αm < αε.

In the case αm > αε, we must have τ = 0, the proof is similar to the case αm < αε with

the only difference that the term
(

Aε

p

)1/αε

dominates both the VaR and the CoVaR. �
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Tables and Figures

Table 1: Simulations: comparison between tail regression and threshold regression

Tail region βT = 0.50 βT = 0.75 βT = 1.00
1% 1.7 2.9 3.9

α = 3 2% 1.0 1.4 1.7
3% 0.6 0.8 1.3
1% 2.1 3.9 5.8

α = 4 2% 1.1 1.7 2.5
3% 0.7 1.0 1.6
1% 2.3 5.0 7.7

α = 5 2% 1.3 2.0 3.2
3% 0.7 1.2 2.0
1% 1.8 4.4 6.7

Non-linear 2% 1.2 1.8 3.7
3% 0.6 1.4 7.3

Note: The reported numbers are the ratios between the mean squared error of the threshold
regression beta and that of the tail regression beta from the estimator in (2.8). The simula-
tions are based on 10,000 samples with 2,000 observations each. Observations are randomly
drawn from Student-t distributions with respectively 3, 4 and 5 degrees of freedom. The
asset returns in the simulations in the first three rows are based on a linear relation that does
not depend on the market conditions (i.e. βT = β). The asset return in the non-linear model
is based on a segmented linear model, where β is set to 0.6 if the loss on the market does
not exceed V aRm(0.025) (i.e. approximately 50 observations in each sample are affected by
the linear model in the tail with βT ).

34



Table 2: Descriptive Statistics of the excess returns from 46 industry portfolios

Industry Mean St.dev Skewness Excess Kurtosis Tail Index Scale
Banks 0.06 0.5 -0.1 1.7 3.9 0.02
Food 0.07 0.7 -0.1 1.8 4.3 0.08
Meals 0.08 0.8 -0.2 5.7 3.2 0.10
RlEst 0.08 0.9 0.5 4.4 3.7 0.16
Beer 0.09 1.0 2.1 29.5 3.9 0.17
Insur 0.06 0.8 -0.1 2.4 3.2 0.10
BldMt 0.07 0.9 0.0 1.7 4.4 0.32
Soda 0.06 1.2 0.2 4.8 3.5 0.43
Hshld 0.05 0.9 0.1 2.4 3.8 0.21
Util 0.04 0.9 -0.5 5.4 3.3 0.17
PerSv 0.07 1.0 0.2 3.4 3.7 0.24
Clths 0.07 0.9 -0.2 2.2 4.5 0.38
Ships 0.08 1.3 0.2 1.9 3.6 0.52
Paper 0.03 0.9 -0.1 2.2 4.1 0.29
Fin 0.08 1.0 0.2 2.6 4.4 0.38
Whlsl 0.08 0.9 -0.2 2.2 4.6 0.42
Books 0.03 1.0 0.5 4.0 4.3 0.40
MedEq 0.11 1.0 -0.3 3.4 3.6 0.27
Chems 0.06 1.1 0.0 1.5 4.6 0.60
Rubbr 0.09 1.3 9.1 238.9 4.7 0.72
Trans 0.06 1.1 -0.7 10.3 3.8 0.38
Agric 0.08 1.4 1.3 12.2 2.7 0.23
ElcEq 0.07 1.1 0.0 1.7 4.1 0.55
Rtail 0.06 1.1 -0.1 3.1 3.8 0.37
Mines 0.09 1.5 0.1 1.5 3.3 0.76
BusSv 0.08 1.0 -0.2 3.3 3.8 0.34
Mach 0.08 1.1 0.1 1.6 4.1 0.52
Other 0.09 1.1 -0.1 3.8 3.0 0.23
Toys 0.06 1.1 0.0 2.1 3.8 0.48
Autos 0.03 1.2 0.0 2.9 3.4 0.42
Fun 0.08 1.2 -0.1 3.6 3.3 0.34
Aero 0.10 1.3 0.1 7.7 3.7 0.67
FabPr 0.04 1.5 0.3 2.5 3.6 1.06
Oil 0.12 1.4 -0.2 0.7 4.7 3.29
Cnstr 0.08 1.3 0.0 0.9 4.0 0.95
Txtls 0.03 1.4 0.3 3.5 3.4 0.65
Steel 0.07 1.4 -0.1 1.2 4.1 1.30
Guns 0.14 1.8 2.9 28.7 3.4 0.97
Smoke 0.10 1.8 1.8 30.0 3.4 1.10
LabEq 0.10 1.3 0.0 2.5 4.5 2.03
Boxes 0.04 1.5 0.4 3.0 3.6 1.17
Drugs 0.10 1.5 0.0 5.2 3.2 0.84
Hardw 0.08 1.7 0.2 4.5 3.9 2.41
Coal 0.12 2.0 0.3 3.6 3.7 3.38
Telcm 0.01 1.6 0.4 4.6 4.1 3.27
Chips 0.09 1.9 0.2 3.1 4.0 3.90

Note: Estimations are based on daily excess return data of 46 industry portfolios from 19
July 1999 until 29 June 2007. The tail index and scale are estimated by the Hill estimator
in (2.6) based on the 3% lowest returns.
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Table 3: Beta Estimates

Industry Tail Beta Regular Beta Downside Beta τ s.d.(τ) Residual Scale
Banks 0.34 0.38 0.31 0.35 0.06 0.02
Food 0.45 0.38 0.36 0.33 0.06 0.05
Meals 0.51 0.47 0.48 0.30 0.05 0.07
RlEst 0.51 0.35 0.34 0.22 0.06 0.13
Beer 0.51 0.29 0.34 0.22 0.05 0.14
Insur 0.56 0.58 0.53 0.48 0.06 0.05
BldMt 0.60 0.60 0.56 0.32 0.06 0.22
Soda 0.60 0.37 0.35 0.12 0.04 0.38
Hshld 0.61 0.59 0.58 0.35 0.06 0.14
Util 0.61 0.47 0.47 0.35 0.06 0.11
PerSv 0.62 0.57 0.64 0.32 0.06 0.16
Clths 0.62 0.57 0.59 0.32 0.05 0.26
Ships 0.65 0.54 0.43 0.13 0.04 0.45
Paper 0.65 0.59 0.57 0.40 0.06 0.17
Fin 0.65 0.70 0.64 0.37 0.06 0.24
Whlsl 0.66 0.62 0.66 0.40 0.06 0.25
Books 0.66 0.59 0.59 0.37 0.06 0.25
MedEq 0.67 0.61 0.64 0.35 0.06 0.18
Chems 0.68 0.69 0.62 0.32 0.06 0.41
Rubbr 0.70 0.50 0.53 0.32 0.06 0.49
Trans 0.70 0.72 0.67 0.35 0.05 0.25
Agric 0.72 0.42 0.51 0.27 0.05 0.17
ElcEq 0.72 0.72 0.74 0.32 0.06 0.38
Rtail 0.72 0.77 0.76 0.40 0.05 0.22
Mines 0.73 0.59 0.49 0.10 0.04 0.68
BusSv 0.73 0.75 0.81 0.47 0.06 0.18
Mach 0.74 0.83 0.78 0.40 0.06 0.31
Other 0.74 0.66 0.74 0.43 0.06 0.13
Toys 0.75 0.56 0.57 0.33 0.06 0.32
Autos 0.78 0.75 0.70 0.35 0.05 0.27
Fun 0.79 0.71 0.74 0.43 0.07 0.19
Aero 0.80 0.61 0.66 0.30 0.05 0.47
FabPr 0.81 0.53 0.48 0.17 0.05 0.89
Oil 0.81 0.54 0.55 0.15 0.05 2.79
Cnstr 0.82 0.76 0.69 0.28 0.06 0.68
Txtls 0.82 0.55 0.48 0.23 0.05 0.50
Steel 0.86 0.84 0.78 0.27 0.05 0.96
Guns 0.87 0.35 0.33 0.18 0.05 0.80
Smoke 0.93 0.49 0.48 0.20 0.05 0.88
LabEq 0.94 0.94 0.97 0.38 0.06 1.25
Boxes 0.98 0.79 0.77 0.33 0.06 0.78
Drugs 1.04 0.99 1.12 0.38 0.05 0.52
Hardw 1.10 1.18 1.23 0.32 0.05 1.65
Coal 1.12 0.68 0.54 0.18 0.05 2.76
Telcm 1.22 1.12 1.19 0.47 0.06 1.75
Chips 1.23 1.34 1.33 0.35 0.06 2.54

Note: Estimations are based on daily excess return data of 46 industry portfolios from 19
July 1999 until 29 June 2007. The τ measure and the tail regression beta are estimated
from the estimators in (2.7) and (2.8) based on the 3% lowest returns. The residual scale is
calculated from equation (2.4) with assuming αm = αε.
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Table 4: Robustness check: comparison between estimates from weekly and daily returns

Tail Beta Regular Beta Downside Beta
Weekly Mean 0.96 0.90 1.02

Standard deviation 0.15 0.15 0.17
Daily Mean 0.88 0.77 0.84

Standard deviation 0.15 0.13 0.14
Correlation Pearson 0.92 0.95 0.90

Spearman 0.87 0.95 0.90

Note: Estimations are based on respectively weekly and daily excess return data of 46
industry portfolios from 1 July 1963 until 31 December 2009. The first four rows report
the cross-sectional mean and standard deviation. The fifth and sixth row report the cross-
sectional correlation between beta estimates from weekly and daily data.
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Figure 1: Simulated mean squared errors for tail regression and threshold regression
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Note: The figures show simulated mean squared errors (MSE) with respect to the number of
observations used in estimation, k. The solid [dashed] lines report the MSEs of the estimates
from the tail regression [threshold regression]. The simulations are based on 10,000 samples
with 2,000 observations each. Observations are randomly drawn from Student-t distributions
with respectively 3, 4 and 5 degrees of freedom. The asset returns in the simulations in the
first three rows are based on a linear relation that does not depend on the market conditions
(i.e. βT = β). The asset return in the non-linear model is based on a segmented linear
model, where β is set to 0.6 if the loss on the market does not exceed V aRm(0.025) (i.e.
approximately 50 observations in each sample are affected by the linear model in the tail
with βT ).
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Figure 2: Downside beta and tail regression beta versus regular beta
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Note: The figures report the estimated regular betas of the industry portfolios versus their
downside betas (panel a) and their tail regression betas (panel b) respectively. Estimations
are based on daily excess return data of 46 industry portfolios from 19 July 1999 until 29
June 2007. The tail regression beta are estimated from the estimators in (2.7) and (2.8)
based on the 3% lowest returns.
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Figure 3: The moving window results of beta estimates: Automobiles and Ships
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Note: The figures report the moving window estimation results for the regular betas and the
tail regression betas of two industry portfolios: Automobiles (panel a) and Ships (panel b).
The solid [dashed] line reports the tail regression beta [regular beta]. The estimations start
from 19 July 1971 until 31 December 2009 using a backward looking window consisting of
2,000 days.
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Figure 4: The moving window results of correlations among beta measures
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Note: The figures report the cross-sectional correlations between the beta estimates from
the moving window results. The solid [dashed] line reports the correlation between the tail
regression beta [downside beta] and the regular market beta. The estimations start from
19 July 1971 until 31 December 2009 using a backward looking window consisting of 2,000
days.
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