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Abstract 
 

We propose a generalization of the rational expectations framework to allow for multiplicative 

sunspot shocks and temporarily unstable paths. Then, we provide an econometric strategy to 

estimate this generalized model on the data. Our approach yields drifting parameters and stochastic 

volatility. The methodology allows the data to choose between different possible alternatives: 

determinacy, indeterminacy and temporary instability. We apply our methodology to US inflation 

dynamics in the ‘70s through the lens of a simple New Keynesian model. When temporarily unstable 

paths are allowed, the data unambiguously select them to explain the stagflation period in the ‘70s. 
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1 Introduction

The vast majority of modern dynamic macroeconomics has relied on models of rational

expectations (RE henceforth) with a unique stable equilibrium, following the methodology

in Blanchard and Kahn (1980). Such models are somewhat limited in terms of their ability

to analyze unstable behavior in the data, which, especially now after the Great Financial

Crisis, is an important issue in macroeconomics. One option is to make RE models more

flexible to allow temporarily explosive paths. This work provides a novel framework to

carry out this option, by considering a broader class of solutions and taking this to the

data.

The rational expectations assumption generally implies multiple equilibria, that is, an

infinite number of RE trajectories. Depending on the properties of the dynamic system at

hand, these trajectories could be either explosive or stable. After Muth’s (1961) seminal

contribution, the literature faced the problem of how to select an equilibrium out of many

possible ones.1 The stability criterion was accepted as a general consistency requirement

to impose on a infinite horizon RE agents model. In modern dynamic macroeconomics,

the linear RE system often approximates the first-order conditions of underlying dynamic

optimization problems. Explosive paths would generally violate the transversality condi-

tions associated with such problems. Ruling out the possibility of unstable equilibria led

saddle path dynamic systems to become the new standard in macroeconomics. Among

the infinite RE equilibria in saddle path dynamics, only one is stable, thus the stabil-

ity criterion is enough to pin down a unique admissible RE path. Blanchard and Kahn

(1980) formalized this idea and conceptualized the solution algorithm on which dynamic

macroeconomics is based.

The stability criterion, however, is not a sufficient selection device when the RE sys-

tem admits multiple stable equilibria, as investigated by the literature on indeterminacy

1As Blanchard and Watson (1982, footnote 1, p. 27) put it: “This indeterminacy arises [...] in all models
in which expectations of future variables affect current decisions. It is the subject of much discussion
currently in macroeconomics, under the label of ‘non uniqueness’.” Sargent and Wallace (1973), Brock
(1974), Phelps and Taylor (1977), Taylor (1977), Blanchard (1979), Blanchard and Kahn (1980) and
Flood and Garber (1980) are some examples of this compelling debate in the literature that followed
Muth’s contribution. See also the discussion in Burmeister et al. (1983).
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and sunspots. Moreover, given the stability criterion, RE solutions have a hard time

in explaining unstable behaviour in the data, such as hyperinflations or boom and bust

episodes in asset markets. The stability criterion, however, is an asymptotic condition so

that one can not rule out a priori the possibility of explosive, but temporary, trajectories.

In other words, the stability criterion might not be violated by paths that are temporarily

on explosive RE trajectories, but whose time-path coincides with the time-path of the

stationary solution after some date. Therefore, from a theoretical perspective, the possi-

bility of temporarily unstable equilibria might not be excluded, and hence in the empirical

analysis, it is appropriate to consider this possibility. We provide a novel framework to

do so. Our contribution is both theoretical and empirical.

From a theoretical perspective, our framework generalizes RE solutions in two ways.

First, it allows for a time-varying parameter solution, by considering multiplicative sunspots.

Generally, any solution whose expectation error has a zero conditional mean could be con-

sidered a RE solution. The eigenvalues describe the nature of these solutions (i.e., the

number of stable or unstable trajectories). In the case of indeterminacy, the system ad-

mits an infinite number of stable trajectories. The sunspot literature (e.g., Benhabib and

Farmer, 1999; Lubik and Schorfheide, 2004) randomizes over all these infinite stable so-

lutions, because for any given solution, it is always possible to construct another solution

by adding a sunspot shock with zero conditional mean. Our framework parameterizes all

these admissible solutions in a different way, through a free parameter whose value selects

a particular solution among the infinitely many admissible ones.2 This parameter has

an appealing interpretation: it shows how the infinite solutions differ in the way agents

form their expectations, or more precisely, in the way agents weight past data to calculate

their RE. We then assume that this parameter follows a stochastic process, driven by a

non-fundamental (sunspot) shock. In our interpretation, the economy randomly switches

among the infinite RE solutions, because agents change the way they are forming their

(rational) expectations. Our approach could also be seen as a different way to introduce

2This is similar to the original insight in Blanchard (1979), who showed that all these solutions could be
expressed as a linear combination of the forward-looking solution and the backward-looking one, where
the parameter of this linear combination corresponds to our free parameter.
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sunspots randomizing over this parameter. Since this parameter enters non-linearly in the

solution, our sunspots are multiplicative, instead of additive, as so far considered by the

literature. In our approach, sunspot disturbances interact with the fundamental ones, and

can be effective only when a fundamental error hits the economy. Given that our sunspots

are multiplicative, the solution exhibits drifting parameters and stochastic volatility.

Second, once time-variation in the solution is allowed, our approach can also accom-

modate temporarily unstable paths. Under determinacy, there is an infinite number of

unstable solutions and a unique stable RE solution, which satisfies the stability criterion.

In other words, there is a unique admissible value of this free parameter: the one that

pins down the unique (saddle-path) stable RE equilibrium. However, the stability crite-

rion should be satisfied in the long run, so that time variation in the solution could allow

temporary walks on these unstable RE trajectories, provided that the system converges to

the unique stable one in the long run. Appropriate restrictions on the stochastic process

describing the evolution of this parameter generate paths that could temporarily random-

ize over all the possible RE unstable trajectories, provided that this parameter converges

to that unique admissible value in the limit. We thus propose a class of solutions where

RE paths are temporarily unstable, but stable in the long run. Transversality conditions,

however, usually require that at any given time the economy is expected to converge back

to equilibrium in the long run, which is a somewhat more stringent requirement than the

economy is actually converging in the limit. In order not to rule out a priori the possibility

that the system could temporarily be on an unstable path in the estimations, we show

how a minimal relaxation of the RE constraint allows us to consider unstable paths and

also comply with the transversality conditions.

In our theoretical framework, therefore, the case of multiple solutions is the natural

case in RE: (i) the values of the eigenvalues describe the nature of the dynamic system

(i.e., the number of stable or unstable trajectories); (ii) in each period a parameter selects

a particular solution among the infinitely many; (iii) this parameter follows a stochastic

process and a restriction on the time-variation in this parameter imposes that the economy

is expected to eventually converge back to equilibrium at the limit. The main insight is
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that while unstable paths are usually ruled out by imposing the stability criterion to

select equilibria, the time-variation in the solution opens up the possibility of temporarily

unstable paths, which are not necessarily in contrast with RE and stability.

From an empirical perspective, we develop an econometric strategy suited to our

framework. Given that our sunspots are multiplicative and imply stochastic volatility,

the likelihood is not Normal and we cannot use Gaussian methods. We thus proceed by

estimating the model parameters and the latent states using a Bayesian approach based

on sequential Monte Carlo methods. In particular, we build an econometric strategy for

parameter learning that combines the approach of Carvalho et al. (2010), and the particle

filter of Liu and West (2001).3 Finally, we use the sequential Bayes factor presented in

West (1986) to compare the different models. The econometric strategy allows for the

cases of determinacy, indeterminacy or explosiveness, without imposing them a priori.

We then propose a methodology to let the data choose the preferred equilibria among all

the possible ones, and thus to test the empirical validity of temporarily unstable paths.

By the same token, our approach could be seen as checking the validity of the stability

criterion as usually imposed on the RE solutions.

To show the potential of our methodology, we apply our approach to explain the US

inflation dynamics in the post-war sample. The Great Inflation of the ‘70s, and the sub-

sequent Volcker disinflation, is among the most studied episodes of US monetary history.

In an extremely influential article, Clarida et al. (2000) estimate an interest rate equation

for the US and suggest that the change in the response of monetary policy to inflation

could explain the different inflation behaviour between the Great Inflation period of the

‘70s and the so-called Great Moderation period of the late ‘80s and ‘90s. A simple New

Keynesian model would predict that if monetary policy does not sufficiently react to in-

flation (i.e. the Taylor principle is not satisfied), there exists an infinite number of stable

RE equilibrium paths. Such indeterminacy of equilibria could explain the aggregate insta-

3Fernández-Villaverde and Rubio-Ramı́rez (2007) present pioneering work on the estimation of non linear
or non Gaussian DSGE models, based on particle filtering within a Markov chain Monte Carlo (MCMC)
scheme. The use of sequential Monte Carlo methods is less common in the literature. Exceptions are
Creal (2007), Chen et al. (2010) and Herbst and Schorfheide (2014). Our approach differs somewhat from
the latter as explained in Section 3.
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bility of the ‘70s through shifts in self-fulfilling agents’ beliefs due to sunspot shocks. In

a seminal contribution about the econometrics of indeterminate RE equilibria, Lubik and

Schorfheide (2004) (LS henceforth) estimate a standard three-equations New-Keynesian

model under both determinacy and indeterminacy. Their results provide support to the

original Clarida et al.’s (2000) result in a multivariate context. Subsequently, other pa-

pers in the literature confirmed this narrative that identifies loose monetary policy as the

cause of the Great Inflation period (e.g., Boivin and Giannoni, 2006; Benati and Surico,

2009; Mavroeidis, 2010; Castelnuovo et al., 2014; Castelnuovo and Fanelli, 2015; Lubik

and Matthes, 2016).4

The New Keynesian literature, therefore, appeals to indeterminacy, induced by a

dovish monetary policy, to explain the apparently explosive behaviour of inflation dur-

ing the Great Inflation period, and to a hawkish one to explain the great Moderation.

However, this has the rather paradoxical implication of appealing to a stable system to

generate instability, as well as to an unstable system to ensure stability. From a theoret-

ical perspective, a saddle path describes an unstable dynamic system, because there are

infinite unstable trajectories while only one, that thus has measure zero, is stable. On

the contrary, indeterminacy has an infinite number of stable trajectories, so it is a stable

dynamic system. Indeterminacy, however, opens up the possibility of rationalizing an

explosive behaviour by randomizing among all these possible stable trajectories thanks to

a sunspot shock. Nonetheless, a central bank that does not respect the Taylor principle

is sure that the economy is on stable dynamics, though subject to self-fulfilling beliefs,

while on the contrary satisfying the Taylor principle is potentially highly risky, because

the probability of being on the unique stable path (among infinitely many unstable ones)

is practically zero. Macroeconomists generally assume agents are able to select this unique

stable solution.

It seems to us it would be more natural to associate the unstable behaviour of inflation

in the data to an unstable trajectory in the model. We thus apply our framework to ask

4Alternative possible explanations for the Great Inflation period put forward in the literature are stochas-
tic volatility of the shocks (e.g., Justiniano and Primiceri, 2008; Fernández-Villaverde et al., 2010) or
escape dynamics (e.g., Sargent, 1999; Cho et al., 2002; Sargent et al., 2006; Carboni and Ellison, 2009).
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the following question: is there any evidence that inflation is described by temporarily

unstable equilibria in the ‘70s?

The seminal paper of LS is the natural benchmark against which to compare our

results, so we will use both their econometric model and their data. If we impose the sta-

bility criterion on the estimation, that is, allowing just for determinacy or indeterminacy

while ruling out temporary instability, our econometric strategy recovers results that are

practically identical to the one in LS. Our main result, however, is to provide evidence

that the high inflation during the ‘70s is better explained by temporarily unstable dy-

namics: the data seem to favour a temporarily unstable equilibrium path to explain the

Great Inflation period, rather than a randomization over stable trajectories, as suggested

by the indeterminacy literature.

Inflation in the ‘70s increased quite rapidly. Intuitively, to explain the data a standard

indeterminacy model needs to rely on persistent and successive sunspot shocks in the

same direction. The data assign a low likelihood to such a sequence of shocks and favour

a model that presents inherent temporarily explosive dynamics. However, the model also

features stochastic volatility, so that, one might think that allowing for the possibility of

large shocks, rather than for temporarily explosive dynamics, is what makes the model

outperform the indeterminacy model. In section 6, we compare our framework to one with

stochastic volatility but a unique stable trajectories (i.e., determinacy), as in Justiniano

and Primiceri (2008). Again the estimation favours a model with intrinsic temporarily

unstable dynamics, rather than a model that would need a series of consecutive large

shocks in the same direction to capture the unstable behavior of the data during the

Great Inflation period.

The paper proceeds as follows. Section 2 explains our approach by means of a simple

model. Section 3 explains our econometric strategy. Section 4 presents our application,

that is, how we apply our approach to the New Keynesian model in LS. Section 5 shows

and comments on the empirical results. Section 6 presents a comparison with a stochastic

volatility model. Section 7 concludes.
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2 Multiplicative Sunspots and Unstable Paths

We use a simple example to illustrate our approach. We proceed in two steps. First, we

introduce multiplicative sunspots by allowing agents to switch between all the possible

fundamental solutions under stability. Second, we discuss asymptotic stability and we

examine the possibility of temporarily unstable paths. Finally, we generalize our simple

example to a multivariate model.

2.1 A simple example

Consider the following expectational difference equation (as in LS’s Section II):

yt =
1

θ
Etyt+1 + εt, (1)

where εt is a i.i.d shock ∼ N(0, σ2
ε) and θ ∈ Θ = [0, 2]. Etyt+1 = E (yt+1|It) is the expected

value of y at t+ 1 conditional on the information set available at time t.5 It is important

to stress from the outset the logic of a forward-looking equation as (1): the expectations

regarding the value of y in the following period determines the equilibrium value of y

at t (and not viceversa).6 Here lies a fundamental degree of freedom: the way agents

form their expectations about future values of y pins down the equilibrium value today.

Equation (1) naturally has an infinite number of solutions, because one can find an infinite

number of pairs (yt, Etyt+1) that satisfy it (see footnote 1).

Muth’s (1961) RE seminal idea restricts the way agents form their expectation to be

coherent with the economic system, so that the expected forecast error should be zero

(i.e., the error in expectation should not be correlated with anything in the available

information set). Defining the forecast error as ηt = yt − Et−1yt, thus: Et−1(ηt) = 0. The

RE requirement, however, is generally not enough to pin down a unique solution: any

process ηt such that Et−1(ηt) = 0 defines a different solution to (1). The constraint that

the expectation error has zero mean simply implies that the solution is characterized up

5 The set It contains all the relevant information: all the present and past values of the endogenous and
exogenous variables, and the structure of the model with its parameters.
6See the discussion in Section 2.4 in Woodford (2003), especially pages 127-128.
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to an arbitrary martingale process.7 Let ζt be a mean zero non-fundamental disturbance,

uncorrelated with the fundamental one (i.e., what the literature calls a sunspot shock),

then any forecast error of the form:

ηt = (1 +M)εt + ζt (2)

yields a RE solution.8

The early literature on RE (see footnote 1) agreed on considering only stable RE

solutions as a general consistency requirement to impose on a model of infinite horizons

RE agents, because of the set of transversality conditions associated with the agents’

dynamic optimization problems in the underlying model. However, whether or not the

stability criterion is sufficient to select a unique solution depends on the stability properties

of the expectational difference equation (1), and that in turn hinge on the value of the

parameter θ.

To see it, simply introduce conditional expectations by defining ξt = Et(yt+1), so that

(1) can be written as:

ξt = θξt−1 − θεt + θηt, (3)

which corresponds to the way Sims (2002) writes and solves linear rational expectations

models. If θ > 1, deviations of ξt from 0 explode with time, thus stability requires

ξt = 0, ∀t. Hence, the stability criterion imposes a restriction on the forecast error (2):

ηt = εt and M = ζt = 0,∀t. If θ > 1, thus, this restriction pins down the only one

solution to (3), among the infinitely many RE ones, that does not violate the stability

criterion. Blanchard and Kahn (1980) generalized this idea to a multivariate RE linear

system with backward and forward looking variables, and conceptualized the well-known

solution algorithm that is a cornerstone of dynamic macroeconomics.

If θ ≤ 1, however, the model is indeterminate, because all the infinite RE solutions of

7IfMt is a martingale, then ∆Mt =Mt−Mt−1 is a martingale difference process, and Et−1 (∆Mt) =
Et−1 (Mt −Mt−1) = 0. So one could interpret the error of expectations ηt as a martingale difference
process, and the requirement of a zero expected error simply implies that the solution is characterized
up to an arbitrary martingale (see Pesaran, 1987).
8 Plugging (2) into (1) yields: yt = θyt−1 − θεt−1 + (1 + M)εt + ζt, which is a way of writing all the

possible fundamental solutions to (1) parameterized by M plus the sunspot shock.
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(3) are stable. In other words, any deviation of ξt from 0 will not lead ξt to explode over

time. Hence, the stability criterion imposes no restriction on the forecast error (2), and

thus it does not solve the problem of selecting a unique equilibrium. The indeterminacy

literature then assumes that the economy will choose randomly among these infinite stable

solutions.9 This randomization is usually done (e.g., LS) by adding an exogenous sunspot

(i.e. non fundamental) shock, ζt, in (2) for a given value for M (on which the system

dynamics put no restrictions).

2.2 Indeterminacy and Multiplicative Sunspots: A generalized

time-varying solution

Consider the case of indeterminacy, θ ≤ 1. (2) suggests another possible source of mul-

tiplicity: M . M derives from the intrinsic multiplicity of the RE solutions, because it

parameterizes all the possible fundamental solutions, where the expectation error is just

a function of the structural shock (i.e., no additive sunspots), so that: ηt = (1 + M)εt.

Thinking along the lines of the Benhabib and Farmer’s (1999) quotation in footnote 9

suggests a different way to introduce sunspot shocks by randomizing over the fundamen-

tal solutions, i.e., randomizing over M , rather than adding ζt. This approach introduces

a multiplicative sunspot shock, rather than an additive one.

To illustrate our approach, we first show that M parameterizes all the fundamental

RE solutions, and we provide an economic interpretation for M . Second, we introduce

time-variation in M . We then show that the RE condition restricts the type of admissible

time variation processes, and we analyze the nature of these solutions.

Parameterization. Consider only fundamental solutions where ζt = 0,∀t in (2).

Substituting in (3) and iterating backward yields:

ξt = Mθ
t−1∑
i=0

θiεt−i = M
t∑
i=1

θiεt+1−i, (4)

9“Sunspot equilibria can often be constructed by randomizing over multiple equilibria of a general equilib-
rium model, and models with indeterminacy are excellent candidates for the existence of sunspot equilibria
since there are many equilibria over which to randomize” Benhabib and Farmer (1999, p.390).
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assuming that exists a period zero where everything starts (i.e., that the economy in a

whatever distant past was in a steady state): ε−i = ξ−i = 0,∀i ≥ 0. All the possible

fundamental solutions are thus parameterized by M ∈ (−∞,+∞) , because a particular

value of M defines a particular solution.10 Among the infinitely many, two important

solutions are often considered in the literature: (i) the pure forward looking solution cor-

responding to M = 0 : ηt = εt, ξ
F
t = 0, yFt = εt; (ii) the pure backward looking solution,

corresponding to M = −1 : ηt = 0, ξBt = −θ
∑t−1

i=0 θ
iεt−i, y

B
t = ξBt−1 = −

∑t−1
i=1 θ

iεt−i.
11

M has a very natural interpretation: it defines the way agents form their expectations.

More precisely, it defines if and how agents are going to use past observations in forming

their expectations. One of the purposes of Muth’s (1961) original paper is to write the

expectation at time t as an exponentially weighted average of past observations, because a

previous paper, i.e., Muth (1960), demonstrated that this is the optimal estimator under

some assumptions. In the simple case of equation (1), the expectation (when M 6= −1)

is given by:

ξt ≡ Etyt+1 = M
t∑
i=0

(
θ

1 +M

)i
yt+1−i, (5)

Etyt+1 is the product of two terms. First, M measures how much the past is important

in forming expectations in absolute terms: if M = 0, then past data do not matter. This

is the forward-looking solution. Second, the weights
(

θ
1+M

)i
tell us how much agents

relatively weight the past data. The higher is M, the less past terms are important in

setting expectations. Then, M determines how the agents combine past observations in

making their forecasts both in absolute terms (M versus 0), and in relative terms.

Time variation. Following Muth’s RE original formulation, we just argued that M

can be interpret as pinning down the infinite number of ways agents could combine past

data to form their expectations. Our proposed class of solutions simply generalize the

10From (4), it is again evident that, if θ > 1 (i.e., determinacy), ξt does not explode only if M = 0 ⇒
ηt = εt,∀t, while, if θ < 1 (i.e., indeterminacy), stability imposes no restrictions on M .
11It is easy to rewrite (4) as a linear combination of the forward and backward looking solutions as:

ξt = θMεt + Mθ
∑t−1
i=1 θ

iεt−i = θM(yFt − yBt ). It follows that one can write also the solution for y as a
weighted average of the backward and the forward looking solution (see Blanchard, 1979).
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standard one, (4), by letting M be a random variable that can change over time, so that:

ξt = Mtθ

t−1∑
i=0

θiεt−i ≡ −Mtξ
B
t . (6)

RE implies Et−1(ηt) = 0. Plugging the proposed solution (6) into the original equation

(3) and solving for ηt yields:

ηt = (1 +Mt)εt + (Mt −Mt−1)

(
t−1∑
i=1

θiεt−i

)
, (7)

which gives the forecast error implied by our proposed solution. For it to be a RE

solution it must be: Et−1(ηt) = 0. Thus, Mt must satisfy the following two conditions: 1)

Et−1(Mt) = Mt−1,∀t, that is, Mt must be a martingale process:; 2) Et−1 [(1 +Mt)εt] = 0,

that is, Mt must be uncorrelated with εt.

Implications and discussion. Our approach has a number of implications. First,

from the point of view of the economic interpretation, our approach simply allows for

agents to change over time the weights they assign to past shocks or past data in forming

their expectations. The solution has the same form as (5) but with M being time-varying.

Under indeterminacy, a givenMt selects one of the infinite stable RE path, and then agents

randomly shift from one to another. In some periods agents form their expectations with

great trust in the past, while in some other periods they expect ξt to be more or less

around its steady state (i.e., Mt = 0, the forward looking solution in this simple case).

Second, by introducing a multiplicative sunspot shock, rather than an additive one,

our solution features time-varying parameters and stochastic volatility. From (3), (6) and

(7), we can write our solution as:

 yt = αtyt−1 − αtεt−1 + (1 +Mt)εt iff Mt−1 6= 0

yt−1 = εt−1 if Mt−1 = 0
(8)

with αt = θ
Mt

Mt−1

.12 The random variation of Mt causes both a different structural

12 Given the two conditions above (i.e., Et−1(Mt) = Mt−1 and Et−1[(1 +Mt)εt] = 0), it follows that (8)
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dependence of ξt (or yt) from its lagged value and a different reaction of the system to

the current shock. Drifting parameters naturally arise because agents change how they

form their expectation formation process each period, so changing the intrinsic dynamics

of the model (i.e., αt). Stochastic volatility arises because the way the system reacts

to the current fundamental shock depends on the current realization of Mt. Hence, the

stochastic process for Mt interacts with the structural shock through the term (1 +Mt)εt,

possibly amplifying the effects of εt on the economy. Our approach has the potential for an

economic explanation of drifting parameters and stochastic volatility, without departing

from the RE hypothesis. The empirical research (Cogley and Sargent, 2005; Primiceri,

2005; Justiniano and Primiceri, 2008, and related literature) considers these as important

features in explaining the dynamics of macroeconomic variables.

This important property of our solution is evident in the expression for the forecast

error (7) which is the sum of two terms. The first term is the interaction term between

the innovation in Mt and the structural shock. The second term is due to the fact that

the change in Mt leads agents to respond differently to past shocks, putting the system

on a different RE path. We can re-write the forecasts error as:13

ηt = (1 +Mt)εt + (αt − θ) (yt−1 − εt−1) = (1 +Mt)εt +
(Mt − Et−1Mt)

Et−1Mt

Et−1yt, (9)

where the second term highlights how Mt determines the structural dynamics of the

solution. This term derives from the time-varying coefficient α in (8), because it depends

on αt − Et−1(αt) = αt − θ, and captures the fact that an innovation in Mt changes

the equilibrium trajectory of the system and its structural dynamics. The endogenous

emergence of stochastic volatility and drifting parameters within the RE framework is the

direct consequence of assuming a multiplicative sunspot that makes the likelihood non

Gaussian.

Last but not least, our approach allows to recover the minimum state variable solution

satisfies the original equation (1). Moreover, it can also be written as a dynamic formulation of Blanchard
(1979): yt = −Mty

B
t + (1 +Mt)y

F
t .

13Since from (1) Et−1yt = θ (yt−1 − εt−1) , then using (8): ηt = yt − Et−1yt = (αt − θ) (yt−1 − εt−1) +

(1 +Mt)εt and given that αt = θMt/Mt−1, it follows: ηt = yt−Et−1yt =

(
Mt −Mt−1

Mt−1

)
θ (yt−1 − εt−1) .
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extremely easily, simply by putting Mt = 0. This remains true in a more general model

(see Section 2.4) and hence in the empirical implementation, where the data could choose

the usual minimum state variable solution by supporting the estimate of Mt = 0.

2.3 Modelling Temporarily Unstable Paths

When θ > 1, the solution (6) is unstable. If explosiveness is allowed in the model, as it

could be the case of a model with only nominal variables or of asset pricing, then the only

restriction comes form the RE requirement that constraints Mt to be: 1) a martingale; 2)

uncorrelated with the fundamental shock εt.

In the more general case where the model needs to satisfy the stability criterion, the

only stable solution when M is a constant is the forward-looking solution. The stability

criterion, however, relates to the asymptotic behaviour of the solution. Hence, it does

not rule out “bubbly”, but temporary, trajectories, featuring unstable dynamics that are

temporarily explosive, but stable in the long run following the bursting of the bubble. Such

stationary paths would actually exhibit the same asymptotic behavior as the one selected

by the stability criterion. In this Section, we show that our approach could consider

this broader class of solutions (where equilibrium paths are temporarily unstable, but

asymptotically stable).

To appreciate how our approach could allow temporarily unstable paths, note that in

each period t, the solution (6) depends only on the current realization of Mt and not on its

past values. We impose this restriction on our class of solution. Hence, we are not consid-

ering all possible solutions under time-variation.14 The stability condition requires that

Mt converges to zero faster than
∑t−1

i=0 θ
i goes to infinity. Hence, for example, any process

such that Mt = 0, with probability 1 in finite time would satisfy the stability criterion.

More generally, Gourieroux et al. (1982) shows that, given a stationary solution y0
t to (1),

it is always possible to find non-stationary processes whose time path eventually coincides

with the time path of the stationary solution after some random date, that depends on the

14For example, we do not assume: ηt = (1 + Mt)εt, which would yield a different solution with respect
to ours: ξt = θ

∑∞
i=0 θ

iMt−iεt−i. In this case a change in Mt affects only the weight period t, while in
our framework it affects all the weights in (6).
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time path. They call these solutions asymptotically equal to a stationary process.15 They

are equilibrium path that are temporarily unstable, but asymptotically stable, since they

will eventually coincide with the unique stationary solution in finite time. As an example,

Gourieroux et al. (1982) shows that the process Mt =

 Mt−1/p with probability p

0 with probability 1− p
leads to an AES solution for (1).16 While our solution is explosive if θ > 1 and Mt 6= 0,

time-variation in Mt makes possible to consider a martingale processes for Mt that will

randomly converge to the unique stationary solution, such that Mt = 0,∀t > T. This

would satisfy a stability criterion that requires the economy to eventually converge so

that: limi−>∞ = ξt+i = limi−>∞Et+i(yt+1+i) = 0.

The stability criterion usually induced by transversality conditions in optimization

problems, however, imposes a different restriction that relates to the current expectation

of the asymptotic behaviour of the solution, requiring that limi−>∞Et(yt+i) = 0. The

RE requirement, however, restricts the admissible time-varying processes for Mt to be a

martingale and uncorrelated with εt. The martingale requirement implies that if θ > 1

and Mt 6= 0 the economy is expected to remain forever on the unstable path selected

by Mt, so that the transversality condition would be violated, even if the instability is

only temporary.17 To allow for temporarily unstable paths in this case, we need to relax

the martingale assumption, and thus the RE assumption. This deviation, however, could

be minimal without practical implications when the model is taken to the data. In our

empirical analysis in Section 5 we will assume that M1,t follows:

M1,t = Nt={‖yBt−1‖<Ū} (10)

15According to Gourieroux et al. (1982), a solution yt is said to be asymptotically equal to a stationary
solution (AES) y0t , if, for any time-path w, there exists T (w) such that y1t (w) = y0t (w),∀t > T (w). It is
important to note that the date T (w) depends on the time-path w and, therefore, we cannot generally
find two solutions such that they are identical at a date t < T . If it is, then it must be that they are the
same solution.
16This process has been indeed used in the somewhat related rational bubble literature (see Blanchard
and Watson, 1982; West, 1987).
17This is easy to see by looking at (6), and assuming the AES process above for Mt suggested by
Gourieroux et al. (1982). Note that the economy will eventually converge, because limi−>∞ ξt+i =
limi−>∞Et+i(yt+1+i) = 0.
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where Nt is a martingale and ={·} is the indicator function. In order to satisfy the

the transversality condition, the martingale process Nt multiplies the indicator function

={‖yBt−1‖<Ū}. The latter is equal to one if the norm of the backward looking solution at

time t−1 is less than a certain scalar Ū <∞, and is equal to zero otherwise. Since θ > 1,

there exists a random date T̄ in which
∥∥∥yBT̄−1

∥∥∥ becomes greater than Ū and the indicator

function will be equal to zero for all t > T̄ . After this date, the stochastic process M1,t will

also be equal to to zero, and the dynamics will coincide with the unique stable solution

(i.e., the forward-looking solution). The indicator function in (10) is a random variable

which realization is known at time t, since it depends on the past value of the backward

looking solution. Then, in general (i.e., except in period T̄ ) EtM1,t+1 = M1,t, which implies

the expected value of the forecast error is equal to zero. However, lims→∞EtM1,t+s = 0,

so that also the transversality condition holds. The presence of the indicator function is

a simple expedient. In other words, the probability that RE requirement may be violated

in any near future is zero. However, it will be violated in a finite future, whatever

far, depending on how large is Ū . In order to allow for temporarily unstable paths,

we implicitly assume that this possibility in the very distant future is disregarded by the

agents.18 In the practical implementation of the econometric procedure, one can choose Ū

so large that both conditions are satisfied by any estimate or simulated impulse response

paths, such that the indicator function is equal to one for all the draws and the time

periods considered in our sample. For example, in Section 5 we specify the following

process for Nt:

Nt =

 Nt−1/γ + ζt with probability γ

0 with probability 1− γ
(11)

where ζt ∼ N(0, σ2
ζ ). Without the shock ζt the process for Nt would have zero as absorbing

state so that the stable solution would be forever active once selected. The presence of the

shock makes it possible for an economy that is on the stable path, to jump on an explosive

trajectory. This “walk on unstable paths” will only be temporary, either because with

18As Blanchard and Watson (1982, , p. 8) put it, the argument that rules out this possibility: “may be
pushing rationality too far. [...] the probability [...] may be so small, and the future time so far as to be
considered nearly rationally irrelevant for market participants.”
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probability (1− γ) the solution will become stable again or because of the indicator.

Implications and discussion. There are three main differences between our ap-

proach and the standard sunspot literature. First, in the standard additive sunspot ap-

proach M is constant and thus it can be different from zero only if θ ≤ 1. Hence, sunspots

are allowed only if θ ≤ 1, i.e., under indeterminacy. Our approach, instead, allows tem-

porarily unstable paths, even if θ > 1, because Mt varies with time, and stability can be

imposed asymptotically on the process for Mt. Our proposed solution makes it possible

to consider infinitely many possible asymptotically stable solutions: the stability criterion

is not anymore enough to select a unique possible equilibrium even if θ > 1. Hence, the

model is not “determinate” anymore even if θ > 1: indeterminacy, in the sense of an

infinite number of admissible paths, is the natural case.

Second, as already stressed, multiplicative sunspot implies stochastic volatility and

drifting parameters within a RE framework. As clear by comparing the forecast errors

(2) and (9), our approach implies that the structural dynamics of the solution changes

over time with Mt, in terms of the response to both the current realization of the shock,

leading to stochastic volatility, and past data, leading to drifting parameters.

Last but not least, we provide a way to take our framework to the data. If M is

time-varying, theoretically it is harder to rule out equilibria that are only temporarily

unstable. We simply acknowledge that in the empirical analysis, it should be appropriate

to consider this possibility. We want to allow temporary “walks along unstable paths”

by estimating the latent process for Mt and then ask to the data which kind of equilibria

they prefer. At the very least, our approach could be seen as a test of RE, or of the

transversality conditions, as normally applied. Hence, we are not taking a stand a priori

on the possible equilibria in our estimation strategy, by allowing for all the possible cases:

indeterminacy, determinacy and (temporary) instability. We then propose a methodology

to let the data choose the preferred equilibria, and thus to test the empirical validity of

these temporarily unstable paths. This is what we turn to next, explaining our proposed

methodology in a more general context.
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2.4 Implementation: The general solution

To implement our proposed solution in the simple case, given an exogenous process for

Mt, recursively define the solution for the expectation error in (7) using the backward-

looking solution ξBt = −θ
∑t−1

i=0 θ
iεt−i so that: ηt = (1 +Mt−1) εt−(Mt−Mt−1)ξBt /θ where

ξBt = −θεt + θξBt−1. Once solved for the expectation error, the solution for ξt is simply

given by (3). More compactly using (6), we can write our solution as:

ξt = Mtξ
B
t (12)

ξBt = −θεt + θξBt−1. (13)

plus a stochastic process for Mt.

The multivariate case is a relative straightforward extension of the simple case. Ap-

pendix A.1 describes it in details, following similar steps as above, involving: (i) param-

eterizing the system using M (now a matrix); (ii) introducing time variation in M ; (iii)

imposing stability. As in LS, we follow the approach of Sims (2002) and we write a general

linear RE system as:

yt = Γ∗1yt−1 + Ψ∗εt + Π∗ηt. (14)

where yt is the vector of the n endogenous variables (including the expectations as in

(3)), εt is the vector of the j exogenous fundamental shocks, and ηt is the vector of

the k ≤ n RE forecast errors. As usual, we need to partition the system. Use Jordan

decomposition to diagonalize Γ∗1 = JΛJ−1 and define the vector of transformed variables

ỹt = J−1yt. We depart from Sims (2002) and LS by partitioning the system according to

the number of forward-looking variables/expectation errors, rather than the number of

explosive eigenvalues. Then:

ỹt =



Λ1 0

((n− k)× (n− k)) ((n− k)× k)

0 Λ2

(k × (n− k)) (k × k)


ỹt−1+



Jµ1

((n− k)× n

Jµ2

(k × n)


[Ψ∗εt + Π∗ηt] . (15)
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Let m be the number of explosive eigenvalues (i.e., such that λi ≥ 1). As usual, we assume

that the number of explosive eigenvalues is smaller or equal to the number of forecast

errors. This case m ≤ k, is the usual one in the literature where one can have either

determinacy (m = k) or indeterminacy (m < k).19 That means that in our partition,

the first (n− k) rows contain only stable eigenvalues, while the last k rows contain both

(k−m) stable and m unstable eigenvalues. Hence, we do not need to impose any stability

condition on the first block of the system (15). However, we will do on the second block

of equation in (15):

ỹk,t = Λ2ỹk,t−1 + Jµ2 [Ψ∗εt + Π∗ηt] (16)

where ỹk,t denotes a vector of dimension k.

Define Mt as a (kxk) diagonal matrix whose elements on the principal diagonal are

changing over time. Generalizing (12) and (13), Appendix A.1 shows that the solution to

the system of disconnected difference equations (16) can be written recursively using the

backward-looking variable ỹBk,t as:

ỹBk,t = Λ2ỹ
B
k,t−1 + Jµ2Ψ∗εt (17)

ỹk,t = −Mtỹ
B
k,t = −Mt

(
Λ2ỹ

B
k,t−1 + Jµ2Ψ∗εt

)
(18)

and the expectation error is equal to:

ηt = (Jµ2Π∗)−1 [−(I +Mt−1)Jµ2Ψ∗εt − (Mt −Mt−1) ỹBk,t
]
, (19)

assuming that the (kxk) matrix Jµ2Π∗ is invertible.

Note that if all the elements Mi,t on the principal diagonal of Mt are equal to zero

for all t, then ỹk,t = 0, so that we recover the forward looking solution. As in the simple

model, we impose stability by allowing only particular processes for Mi,t’s. In general, if

we have k non predetermined variables, the cardinality of the set of solutions is infinite

to the power of k. However, the stability requirement imposes a restriction on the Mi,t’s

19We rule out the case m > k, where the number of unstable eignevalues, m, is bigger than the number
of forward-looking variables, k. In this case, a stable solution does not exist.
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that correspond to eigenvalues of the system that are outside the unit circle. As in the

simple example, we will restrict the processes for these Mi,t to randomly converge to the

stationary forward-looking solution in finite time, such that Mi,t = 0,∀t > T̄ , where T̄

is a random variable. The stability condition, instead, does not impose any restrictions

on the stochastic processes governing the (k−m) elements of Mt corresponding to stable

eigenvalues. The stability condition reduces the degrees of freedom in the matrix Mt, and

it downsizes the set of solutions because the degree of indeterminacy is only k −m. The

limiting case is the determinacy case, when the Blanchard-Kahn condition is satisfied and

k = m: the stability condition will force all the elements in the main diagonal of Mt to

converge to 0, that is, to converge to the unique stable forward-looking solution.

Appendix A.1 shows that the solution for the original variables is:

 yt

yBt

 =

 J 0

0 J

G∗t
 J−1 0

0 J−1


 yt−1

yBt−1

+

 J 0

0 J

H∗t εt, (20)

where

G∗t =



Λ1 0 0 −Bt,t−1

0 0 0 −MtΛ2

0 0 Λ1 0

0 0 0 Λ2


, H∗t =



At

−MtJµ2Ψ∗

Jµ1Ψ∗

Jµ2Ψ∗


, (21)

and At is a (n− k)× l matrix and Bt,t−1 is a (n− k)× k matrix equal to, respectively:

At = Jµ1

[
Ψ∗ − Π∗ (Jµ2Π∗)−1 (I +Mt)Jµ2Ψ∗

]
, (22)

Bt,t−1 = Jµ1Π∗ (Jµ2Π∗)−1 (Mt −Mt−1) Λ2. (23)

Note thatMt = 0,∀t impliesAt = Jµ1

[
Ψ∗ − Π∗ (Jµ2Π∗)−1 Jµ2Ψ∗

]
andBt,t−1 = Jµ1Π∗ (Jµ2Π∗)−1

(Mt −Mt−1) Λ2 = 0, so that the system does not depend on yBk,t anymore, and the solution
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coincides with:

yt = J



Λ1 0

((n− k)× (n− k)) ((n− k)× k)

0 0

(k × (n− k)) (k × k)


J−1yt−1+J



Jµ1

[
Ψ∗ − Π∗ (Jµ2Π∗)−1 Jµ2Ψ∗

]
(n− k)× l

0

(k × l)


εt,

(24)

which is the usual Blanchard-Khan solution in case of a determinate system or the mini-

mum state variable solution for an indeterminate system.

3 Econometric Strategy

In this section we take a Bayesian approach to make inference regarding the parameters

and the latent processes of a DSGE model when considering the class of solutions (20).

The presence of stochastic volatility in the reduced form of the model, related to the

time-varying characteristic of the latent state Mt, leads to a non Gaussian, analytically

intractable likelihood function. In such situations, when estimating non linear or non

Gaussian DSGE models, a well-known approach proposed by Fernández-Villaverde and

Rubio-Ramı́rez (2007), is performed in two-steps. In the first step, the integrated likeli-

hood of the parameters is approximated through the implementation of a particle filter.

Then, in the second step, one uses the approximated likelihood within a Markov chain

Monte Carlo (MCMC) scheme that samples from the posterior distribution of the param-

eters.20 We depart from this tradition and suggest the use of an efficient particle filtering

strategy directly to approximate the joint posterior distribution of both the parameters

and the latent state variables such as Mt. In particular we follow Chen et al. (2010)

who introduced a particle strategy for DSGE models that combines the sequential Monte

Carlo (SMC) algorithms of Liu and West (2001) and Carvalho et al. (2010).

In what follows, we first show how to write the solution (20) in a convenient state

space form, and then we illustrate and discuss the main aspects of our particle filtering

20Recent papers in which this approach is implemented are Carvalho et al. (2017) and Gust et al. (2017).
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strategy, refering to Appendix A.2 for an in depth description. Finally, we motivate our

choice by comparing it with possible alternatives.

3.1 The state space form

In the class of solutions (20), we need to keep track of the pure backward looking solution

yBt . This vector contains both endogenous and exogenous variables, and since the latter do

not depend on the agent’s expectations, their evolution will be the same as the analogous

variables in yt. When estimating the model, it is convenient to rewrite the solution (20)

so that the exogenous variables appear only once, that is, using a compact notation:

lt = Gtlt−1 +Htεt (25)

with

lt =

 yt

yB,Et

 ,
where yB,Et is a vector with the endogenous variables in the pure backward looking solu-

tion. The matrices Gt and Ht are appropriate transformations of the matrices in (20).

At each time t we observe a vector of data, which will be simply denoted by Dt. Then,

the solution of model (14) has the following state space representation:

 Dt = c+ Flt + vt vt ∼ N (0,Σv)

lt = Gtlt−1 +Htεt εt ∼ N (0,Σε)
(26)

where c is a vector of constants, F is a matrix with appropriate dimensions and vt is a

vector of measurement errors.

3.2 The particle filter

The parameters in c, F , Gt, Ht, Σv, Σε are collected in the vector θ. As already mentioned,

let Dt be the vector of observed data at time t, and Dm:n denote the set of all observations

from t = m to t = n for m ≤ n. We perform posterior Bayesian inference via Monte Carlo
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methods to approximate the joint posterior distribution of parameters and latent states

of the model by a sufficiently large number of sample draws, or particles. More precisely,

our econometric strategy is based on Bayesian sequential learning via particle filtering: at

time t−1, we start with a particle set {(lt−1,Mt−1, θ)
(i)}Ni=1 and associated particle weights

{w(i)
t−1}Ni=1 that summarize, via Monte Carlo, the full joint posterior of states (lt−1,Mt−1)

and parameters θ, i.e. p(lt−1,Mt−1, θ|D1:(t−1)). The goal is to arrive at the end of time

t with a similar set of particles {(lt,Mt, θ)
(i)}Ni=1 and weights {w(i)

t }Ni=1 representing the

joint posterior distribution

p(lt,Mt, θ|D1:t). (27)

Loosely speaking, a particle filter is a sampling importance resampling (SIR) scheme

implemented iteratively over time: since it is not possible to extract the particles directly

from the posterior distribution, we draw from another distribution, say q(lt,Mt, θ|D1:t),

commonly refereed to as an importance distribution, and we approximate the target

density (27) assigning appropriate weights to each particle. The re-weighting of a particle

from the importance distribution gives that particle the “status” of an actual draw from

the posterior distribution.21 If the support of the target p(·) is included in the support of

proposal q(·), then for each particle i the appropriate weight is given by

w
(i)
t =

p(l
(i)
t ,M

(i)
t , θ(i)|D1:t)

q(l
(i)
t ,M

(i)
t , θ(i)|D1:t)

. (28)

The essence of a particle filter ultimately depends on the design of the importance distri-

bution q(lt,Mt, θ|D1:t). Our choice is tailored on the peculiar aspects related to the set of

solutions we analyze through equation (20).

The most important peculiarity is that, conditionally on Mt, the state space form

(26) is linear and Gaussian, which implies that, given a set of particles for Mt, both

the predictive likelihood and the full conditional distribution of the other latent states

are analytically available through the standard Kalman filter recursion. This practice

increases the efficiency of our particle filter through analytical integration, as it follows

21See, for instance, Cappe et al. (2007) and Lopes and Tsay (2011) (and the references therein) for a
review of particle methods for Bayesian inference.
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from the Rao-Blackwell theorem (see Lopes et al., 2011, for further details).

The posterior distribution of the parameters can be updated sequentially combining

two different methodologies for parameter learning. In particular, it is useful to divide

the parameters in two sets: one with the variances and the covariances of the exogenous

disturbances, and one with all the other structural parameters. For the variances and

covariances we assume the prior distributions are Inverse Gamma or Inverse Wishart.

Then, we are able to characterize the posterior distribution analytically (up to a normal-

izing constant), using sufficient statistics computed as functions of the data and the latent

processes of the model. This is the idea of the Particle Learning approach introduced by

Carvalho et al. (2010). The posterior distribution of the other parameters is, in general,

not available analytically. It can be approximated using mixtures of Gaussian densities,

as in the flexible and general particle filtering with parameter learning algorithm proposed

by Liu and West (2001).22

The use of SMC methods to approximate the posterior distribution of the parameters

of a DSGE model is not very common in the literature: Creal (2007); Chen et al. (2010)

and Herbst and Schorfheide (2014) are exceptions to the usual practice based on MCMC.

Nevertheless, the particle filtering approach is the most suited for our framework, given

the peculiarity of the class of solutions we are considering. First of all, a time-varying Mt

makes the model non Gaussian, and it is well known that in this context MCMC methods

may have serious limitations due to the high time-dependence of the latent variables.

In particular, the convergence of the Markov chain generated through MCMC to the

posterior distribution can be very slow and difficult to achieve.

Moreover, within the class of solutions we analyze, the case corresponding to Mt = 0

implies a completely different reduced form compared to all the other cases: as shown

in the previous section this is the minimum state variable solution, characterized by a

simpler lag structure. The shape of the likelihood function, conditional on Mt = 0, may be

substantially different from the one under Mt 6= 0, making MCMC-based inference more

complicated: the Markov chain explores accurately the parameter space around the mode

22This methodology builds on the resample propagation scheme of the Auxiliary Particle Filter proposed
by Pitt and Shephard (1999).
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of the distribution, but in practice it is less able to approximate the posterior when the

latter is not well shaped, or has multiple modes. This is not a mere technicality, because

Mt = 0 is a very important case: it is the unique stable solution when the Blanchard

Kahn conditions are satisfied, and it characterizes the dynamics implied by the model

under the case that the literature labels determinacy. In order to deal with this issue, LS

first run a test to determine which is the relevant case, and then use MCMC to estimate

the model under the specific assumption of determinacy or indeterminacy, exploring only

the corresponding subset of the parameter space. Our suggestion is to estimate the model

considering all the relevant cases simultaneously using particle filters instead of MCMC.

In general, Sequential Monte Carlo methods are more appropriate when the posterior

distribution displays irregular patterns. We show the ability of our econometric strategy

to deal with this specific problem in the empirical application described in the next section.

Another advantage of particle filters is computational: the use of multi-core processors

makes it possible to increase the speed and the accuracy of the estimation through parallel

computing. The gains one can achieve are substantial for SMC, while they are limited

for MCMC even if parallelization is implemented in an efficient way, as in the prefetching

approach described by Strid (2010).23

There are two approaches in the SMC literature to estimate the“static” parameters

of a model. One uses all the data available in the sample in each iteration of the SMC

to approximate a sequence of distributions, starting from a very simple case (i.e. the

prior distribution), and ending with the posterior distribution of interest. We follow a

second alternative: we construct particle approximations to the posterior distribution

augmenting, at each iteration, the sample data we use. In this case each step of the SMC

corresponds to an additional observation, as if new data become available sequentially. We

prefer this second technique because it gives us the possibility to study how the inference

on the unknowns evolves over time. We show, in the empirical application below, how

this “learning” perspective unveils additional information on the role of sunspots and

temporarily unstable paths in describing the data. Moreover this approach makes it

23For a discussion see also Herbst and Schorfheide (2014).
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simpler for us to deal with the filtering problem related to the estimation of Mt.

4 Multiplicative Sunspots and Unstable Paths at Work:

the Great Inflation and the New Keynesian Model

We apply our new methodology to inflation dynamics through the lens of the following

prototypical New Keynesian model:

xt = Et(xt+1)− τ(Rt − Et(πt+1)) + gt, (29)

πt = βEt(πt+1) + κ(xt − zt), (30)

Rt = ρRRt−1 + (1− ρR)(ψ1πt + ψ2(xt − zt)) + εR,t, (31)

where x is output, π is inflation and R the nominal interest rate. π and R are expressed in

deviation from the steady state, and x in deviation from the steady state trend path. The

model admits 3 shocks: (i) a demand shock, g, that can be interpreted as a time-varying

government spending shock or a preference shock; (ii) a shock to the marginal costs of

production, z; (iii) a monetary policy shock, εR. The model and the notation are exactly

the same as the one in the seminal paper by LS, that is the natural paper to compare the

results of our methodology. The first equation is the New Keynesian IS curve (NKIS),

that relates the dynamics of the output xt to the real interest rate, given by the nominal

interest rate, Rt, minus expected inflation, Et(πt+1). The dynamics of the inflation rate

πt are described by the second equation, the New Keynesian Phillips curve (NKPC).

The NKIS and the NKPC come from the maximization problem of the households and

the firms, and they are found loglinearizing, around the steady state, the respective first

order conditions. A standard Taylor rule with inertia closes the model. It describes how

the central bank conducts the monetary policy, moving the nominal interest rate Rt, in

response to the deviations of inflation and output gap from their targets.

As in LS, we also suppose that the shocks in the NKIS and in the NKPC are autocor-
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related, that is:

gt = ρggt−1 + εg,t; zt = ρzzt−1 + εz,t (32)

and we allow for non-zero correlation, ρgz, between the two innovations εg,t and εz,t. The

standard deviations of the zero-mean innovations εg,t, εz,t and εR,t are denoted σg, σz and

σR, respectively.

The parameters of the model are also standard: β ∈ (0, 1) is the households’ subjective

discount factor, τ is the elasticity of intertemporal substitution in consumption, κ is the

slope of the NKPC, that ultimately depends on the degree of nominal price stickiness

and the labour supply elasticity, ρR is the inertial parameter in the Taylor rule while ψ1

and ψ2 measure the response of the nominal interest rate to the inflation and the output

targets, respectively.

The model has five variables: three predetermined (Rt, gt and zt) and two non prede-

termined (xt, πt). Then, the matrix Mt has dimension two. We also know that among the

five eigenvalues of the dynamic system, three of them are inside the unit circle (because

ρg, ρz, and ρR are less than one in absolute value), and one is always outside the unit

circle (for sensible values of the parameters, see Bullard and Mitra, 2002). The remaining

eigenvalue can be inside or outside the unit circle, depending on the following condition

(i.e. the Taylor principle):

ψ1 > 1− 1− β
κ

ψ2. (33)

The literature usually imposes the stability criterion to select valid equilibria and thus

it distinguishes two possible cases. If (33) holds, the model has two eigenvalues greater

than one in absolute value. This is the determinacy case: there is a unique stable RE

equilibrium, i.e. the forward looking one, because the number of eigenvalues outside the

unit circle is equal to the number of non predetermined variables. Otherwise, if (33) does

not hold, there will be an infinite number of stable RE equilibria and this case is normally

labelled indeterminacy.

Note, however, that in both cases, due to the presence of at least one unstable eigen-

value, there is an infinite number of unstable RE equilibria that the literature usually
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does not consider because of the way the stability criterion is imposed. Our framework,

instead, imposes stability in the long run, but it admits temporary walks on these unsta-

ble paths by allowing for time variation in the way agents are setting their expectations.

We can test the validity of our framework in a particular sample comparing the relative

performance of the New Keynesian model, under different hypotheses on the set of ad-

missible solutions: standard RE and our time-varying RE framework. Hence, we compare

two assumptions: one in which the stability criterion is imposed as normally in the liter-

ature, so that the economy needs to be on a stable trajectory in any point in time, and

one in which we also consider solutions normally excluded by the same criterion, allowing

temporary instability. The aim is to let the data speak about their preferred assumption.

We distinguish two cases.

Model MS: stable solutions. When the stability criterion is imposed and no time

variation is allowed, we exclude unstable solutions. We label this case as model MS, and

the matrix Mt is:

Mt =

 M1,t 0

0 0


M1,t =

 0 if ψ1 > 1− 1−β
κ
ψ2

M1,t−1 + ζt ζt ∼ N(0, σ2
ζ ) otherwise.

The south east element in Mt is imposed to be 0 because there is always one explosive

eigenvalue. For the first element, M1,t, instead, we distinguish the two cases described

above. When the Taylor principle is satisfied, the corresponding eigenvalue is outside

the unit circle and we need to select the forward looking solution for all t, because the

economy needs to be on the unique stable path in each period t. Hence, M1,t = 0,∀t.

When the Taylor principle is not satisfied, the eigenvalue is then inside the unit circle and

thus there is an infinite number of stable solutions and the stability condition poses no

restrictions on M1,t. M1,t needs to be a martingale, so we will assume that M1,t follows a

random walk driven by a sunspot shock.

Model MU : temporarily unstable solutions. In this case, we allow for time
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variation in Mt even if the eigenvalues are outside the unit circle, and the stability criterion

is imposed only in the long run. We define the matrix Mt as:

Mt = M1,tI

where I is the identity matrix of size two. Since we assume that the elements in the main

diagonal of Mt are the same, the two models, MS and MU , explore two different sets of

solutions that intersect only in one point: M1,t = 0. This is the unique stable solution

under model MU : if M1,t 6= 0 the dynamics are unstable independently of the Taylor

principle given that at least one eigenvalue lies always outside the unit circle.

The process M1,t is defined as in (10) and (11), where we assume that the martingale

process Nt multiplies the indicator function ={‖yBt−1‖<Ū} in order for the transversality

condition to hold. Recall that the backward looking solution is always unstable because

of the presence of one eigenvalue greater than one in absolute value. Then, there exists

a random date T̄ in which
∥∥yBt ∥∥ bacomes greater than Ū and the indicator function will

be equal to zero for all t > T̄ . After this date, the stochastic process M1,t will also be

equal to to zero, and the dynamics will coincide with the unique stable solution allowed

under MU . As discussed before, under this hypotesis RE may be violated in the future

time period T . However, if Ū is very big, the probability that this can happen in the

near future is approximately zero, and in order to allow for temporarily unstable paths

we need to assume that it is disregarded by the agents. When we estimate the model

under MU we choose Ū = 10300, and this ensures that the indicator function is equal to

one for all the draws and the times considered in our sample.

5 Empirical Results

5.1 Data and subsamples

To compare our results with the seminal work by LS, we estimate the New Keynesian

model (29) - (31) on the same quarterly postwar data for inflation, output and nominal
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interest rate used by LS, as available from the AER website. Inflation and interest rates

are annualized, and the HP filter is used to get a measure of the output gap.24

Figure 1 plots the inflation series. As it is clear, from the mid Sixties until the end of

the ‘70s, the US experienced a period of price instability, also known as Great Inflation.

Then, the Volcker disinflation took place and prices came back under control: inflation

became low, as did the volatility of prices and of other macroeconomic variables. By

contrast to the previous period, these times are known as the Great Moderation. One

popular explanation of this change through the lens of the New Keynesian model (e.g.,

Clarida et al., 2000) ascribes it to the shift in the monetary policy: from a passive (i.e.,

(33) not satisfied) to an active (i.e., (33) satisfied) monetary policy. As we previously

underlined, this interpretation excludes a priori unstable paths, even though inflation

reached 15%. Here we want to answer the following question: would the data prefer an

explanation of the Great Inflation based on a stable system with sunspot shocks, as in

LS, or one based on unstable dynamics? Again we closely follow LS in considering two

subsamples: the pre-Volcker period, from 1960:I to 1979:II, and a post-82 period from

1982:IV to 1997:IV.25

5.2 Priors

Table 1 collects the prior distributions for the parameters. We chose them in accordance

with LS, in the same spirit that we chose the model specification and the data.

Differently from LS, we specify the prior for the variance covariance matrix of the

shock εg,t and εz,t as an Inverse Wishart with scale matrix and degrees of freedom as in

Table 1. The Inverse Wishart prior allows us to update the posterior of the parameters

using sufficient statistics, as in the Particle Learning approach described above. This

is a big advantage in terms of the efficiency of our particle filter. On the other hand,

our choice is very similar to the one of LS in terms of mean and variances of the three

24As from footnote 9 at p. 202 in LS: (i) output is log real per capita GDP HP detrended over the period
1955:I to 1998:IV; (ii) inflation is annualized percentage change of CPI-U; (iii) Nominal interest rate is
the average Federal Funds Rate in percent.
25As in LS, we exclude the Volcker disinflation period where monetary policy is characterized by
nonborrowed-reserve targeting rather than by an interest rate rule.
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parameters involved (σg, σz and ρgz).

The standard deviation of our sunspot shock is distributed as an Inverse Gamma with

mean equal to 0.1 and standard deviation to 0.05. This value is lower than the one in LS

because our sunspot shock enters in a multiplicative way.

Under model MU we estimate the probability that the economy is on a temporarily

unstable path, that is the parameter γ, for which the prior density is a Beta distribution

with mean 0.8 and standard deviation 0.15. A mean of 0.8 implies that when an unstable

trajectory is selected, this temporary situation is expected to last for five quarters. Since

this is a new parameter we try different values both for the mean and for the standard

deviation: results are robust, and some are discussed below.

Finally, the process M1,t at t = 0 is supposed to be Normally distributed, with mean

0, and standard deviation 0.1, in accordance to the prior of the standard deviation of the

sunspot shock.

Table 1: Prior Distributions

Parameter Density Mean Standard Deviation
ψ1 Gamma 1.1 0.5
ψ2 Gamma 0.25 0.15
ρR Beta 0.5 0.2
π∗ Gamma 4 2
r∗ Gamma 2 1
κ Gamma 0.5 0.2
τ−1 Gamma 2 0.5
ρg Beta 0.7 0.1
ρz Beta 0.7 0.1
γ Beta 0.8 0.15
σR Inverse Gamma 0.31 0.16
σζ Inverse Gamma 0.1 0.05

Variance Covariance Density Scale Degrees of freedom

Σgz Inverse Wishart 5

[
0.382 0

0 1

]
8

5.3 Estimation results

Table 2 reports the estimates of the parameters in the two subsamples. For each sub-

sample, Table 2 shows the estimates for both the stable (MS) and the unstable (MU)
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model and, for comparison, the correspondent estimates in the paper by LS (see Table 3,

p. 206 therein).

5.3.1 Great Inflation subsample

The model under stability: MS. Let us first analyze the results for the model

under stability (model MS) where we impose the stability criterion. Contrary to LS, our

methodology allows us not to impose a determinate or an indeterminate equilibrium prior

to the estimation, but lets the data choose which one to select during the estimation.

Despite this, Table 2 shows that under stability (model MS) our methodology recovers

results very similar to LS. This is particularly true for the crucial policy rule parameters.

Figure 2 displays our prior and posterior distributions and the 90% intervals in LS for

these parameters. It shows that our estimation method yields posterior distributions,

which are very close and statistically indistinguishable from the ones in LS.26 This is

reassuring as we interpret this finding as corroborating our estimation methodology.

Hence, in accordance with the literature, our method also points to indeterminacy as

the most plausible explanation of the Great Inflation period once the stability criterion is

imposed on the model. It suggests that the Fed did not respect the Taylor principle, and

thus movements in inflation (and output) were due to shifts in expectations due to sunspot

shocks. The estimated standard deviation of the sunspot shock for MS is lower (one third)

than the one estimated by LS. However, note that our sunspot is a multiplicative sunspot

shock that interacts and amplifies the structural shocks, rather than an additive one as

in LS’s approach. Hence, these standard deviations are not really comparable due to the

different assumption about how the sunspot affects the model.

Figure 3 displays the transmission mechanism of the structural shocks, by showing

the generalized impulse response functions (GIRFs) and the 90% intervals of R, x and π

to the structural shocks: to the monetary policy shock in the first row, to the demand

shock in the second row and to the supply shock in the third row.27 These GIRFs are

26The 90 percent intervals do not overlap only for the slope of the Phillips Curve, κ, and of the elasticity
of intertemporal substitution, τ−1.
27The GIRFs show the impulse responses to one standard deviation of each shock, and are computed
conditioning on the distribution of M1,t at the end of the first subsample, that is the second quarter
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Table 2: Posterior Estimates

Pre- Volcker
1960:I - 1979:II

Post-82
1982:IV - 1997:IV

Sample:
1960:I - 1997:IV

Parameter MS MU LS MS MU LS Stochastic Volatility

ψ1 0.80
[0.66 0.92]

0.76
[0.61 0.91]

0.77
[0.64 0.91]

2.18
[1.53 3.07]

2.32
[1.44 3.58]

2.19
[1.38 2.99]

1.25
[1.12 1.39]

ψ2 0.16
[0.11 0.20]

0.20
[0.16 0.34]

0.17
[0.04 0.30]

0.17
[0.06 0.38]

0.23
[0.07 0.66]

0.30
[0.07 0.51]

0.21
[0.11 0.41]

ρR 0.68
[0.65 0.71]

0.60
[0.53 0.68]

0.60
[0.42 0.78]

0.86
[0.81 0.90]

0.85
[0.80 0.9]

0.84
[0.79 0.89]

0.75
[0.70 0.80]

π∗ 1.90
[1.62 2.25]

1.73
[1.31 2.47]

4.28
[2.21 6.21]

3.28
[2.73 3.82]

3.25
[2.82 3.73]

3.43
[2.84 3.99]

2.88
[2.41 3.41]

r∗ 1.41
[1.29 1.58]

1.23
[0.93 1.74]

1.13
[0.63 1.62]

2.81
[2.17 3.59]

3.00
[2.40 3.69]

3.01
[2.21 3.80]

2.11
[1.69 2.59]

κ 0.14
[0.10 0.18]

0.10
[0.07 0.14]

0.77
[0.39 1.12]

0.3
[0.22 0.39]

0.48
[0.30 0.81]

0.58
[0.27 0.89]

0.36
[0.26 0.51]

τ−1 3.41
[2.65 4.51]

3.02
[2.46 3.74]

1.45
[0.85 2.05]

2.56
[1.97 3.37]

1.69
[1.20 2.45]

1.86
[1.04 2.64]

2.07
[1.55 3.41]

ρg 0.64
[0.59 0.69]

0.68
[0.63 0.74]

0.68
[0.54 0.81]

0.76
[0.69 0.81]

0.78
[0.71 0.84]

0.83
[0.77 0.89]

0.80
[0.77 0.83]

ρz 0.76
[0.72 0.80]

0.75
[0.67 0.81]

0.82
[0.72 0.92]

0.72
[0.59 0.83]

0.73
[0.61 0.82]

0.85
[0.77 0.93]

0.81
[0.75 0.85]

ρgz 0.26
[0.19 0.37]

0.16
[0.06 0.25]

0.14
[−0.4 0.71]

0.03
[0.00 0.07]

0.04
[0.01 0.08]

0.36
[0.06 0.67]

0.14
[0.08 0.19]

γ − 0.96
[0.85 0.99]

− − 0.04
[0.01 0.12]

− −

σR 0.22
[0.2 0.26]

0.19
[0.16 0.22]

0.23
[0.19 0.27]

0.16
[0.13 0.19]

0.16
[0.13 0.2]

0.18
[0.14 0.21]

δR = 0.11
[0.09 0.13]

σg 0.35
[0.3 0.4]

0.31
[0.24 0.37]

0.27
[0.17 0.36]

0.20
[0.16 0.25]

0.21
[0.17 0.26]

0.18
[0.14 0.23]

δg = 0.12
[0.010 0.014]

σz 1.11
[0.97 1.29]

1.00
[0.85 1.31]

1.13
[0.95 1.30]

0.67
[0.55 0.87]

0.63
[0.53 0.76]

0.64
[0.52 0.76]

δz = 0.02
[0.016 0.026]

σς 0.08
[0.07 0.1]

0.06
[0.05 0.08]

0.20
[0.12 0.27]

− − − −

Note: 90% credibility interval in brackets

32



very similar in shape to the ones of a determinate equilibrium, and to the IRFs in LS

under their prior 2. Note that the technology shock is the only one that moves output

and inflation in opposite directions, as required to explain the stagflation episode during

the last part of the Great Inflation period. This explains why the standard deviation of

the technology shocks is much bigger than the other shocks for both MS and LS.

Recall that the non-linear multiplicative sunspot shock affects the model only in the

presence of a structural shock. Hence, to understand how the sunspot shock affects the

transmission mechanism of our model, we plot in Figure 4 the GIRFs for two different

values of M : the solid line corresponds to the pure forward looking solution (M1,t = 0),

and it shows the impulse response functions estimated under the stable model before the

fourth quarter of 1974; the dashed line refers to M1,t = 0.49, that is the value estimated in

1974Q4. The difference between the two lines shows how the impulse response functions

change precisely when sunspot shocks start playing a role. The sunspot shock amplifies

the effects of the structural shock, hence: (i) it does not qualitatively change the response

of the variables; (ii) it acts as a stochastic volatility shifter. We interpret this shock as a

shift in the way people form expectations after a structural shock hits the economy.

We think that one of the most interesting aspects of our methodology is the estimated

path for M1,t that measures of how much expectations deviate from the standard forward

looking RE solution. Recall that when M1,t = 0 then expectations are selecting the

forward looking solution, otherwise they are selecting a combination of the backward and

forward looking ones. Figure 5 shows the estimated path for M1,t in the case of MS, and

the corresponding sequential estimate of the policy parameter ψ1. Figure 5 clearly depicts

the challenge faced by the New Keynesian model in this subsample: to simultaneously

explain the stable output and inflation paths in the first part of the subsample and

the stagflation in the second part of the subsample, where output and inflation move

in opposite directions, and inflation accelerates. Up the first oil shock, the estimate of

M1,t points toward expectations aligned on the “standard” forward looking solution and,

correspondingly, ψ1 is estimated to satisfy the Taylor principle. Until to that point the

of 1979. The uncertainty of the GIRFs, summarized by the 90% probability interval, reflects also the
posterior distribution of the parameters.
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data would favour a determinate stable model. However, such a model has hard times in

explaining the data in the second part of the subsample. Then, the data switch to favour

the only alternative model available under stability: a model with sunspot shocks. The

extra degree of freedom provided by the sunspot makes the data choose the indeterminate

model both in LS’s and in our estimation. M1,t drifts away from 1, when inflation starts

to grow in the data.

Of course, another plausible possibility explored in the literature to make a stable

determinate model able to match such behaviour in the data would be to have a stochastic

volatility model, where the standard deviation of technology shocks increases in the second

part of the subsample (e.g., Justiniano and Primiceri, 2008). We will consider such a model

in Section 6. Our multiplicative sunspot shock yields a similar effect, as explained above,

but the sunspot shock occurs only if the model is indeterminate under MS.

The model under instability: MU . The model MU makes the data consider also

temporarily unstable paths. The point estimate in Table 2 are very similar between the

two cases MS and MU . However, it should by now be clear to the reader that this does

not imply indeterminacy as usually intended in the literature, that is, an infinite number

of stable RE trajectories. It does imply another sort of indeterminacy, in the sense that

we let the data choose among an infinite number of unstable, but temporary trajectories,

irrespective of whether the Taylor principle is satisfied or not. (33) is a condition for one

eigenvalue to be inside or outside the unit circle, but whatever the value of ψ1, there is

always an unstable eigenvalue. However, we do not force the model to the forward looking

solution with respect to this unstable eigenvalue in the MU, case, as explained in Section

4. It follows that, despite the parameter estimates being very similar between the MS

and MU cases, MU gives a completely different interpretation about the instability of that

period. Independently from the Fed policy, the dynamics of MU are structurally unstable.

Figure 6 shows the GIRFs in this case. Again a supply shock generates stagflation.

Most importantly, however, stagflation could also now be generated by a monetary policy

shock. In particular, a contractionary monetary policy shock can be inflationary: inflation

drops on impact but then starts rising and it is above steady state from the fourth quar-
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ter onward. Interestingly, a somewhat similar behaviour is highlighted in LS under their

preferred prior 1: “an increase in the nominal interest rate can have a slightly inflationary

effect” (p. 207, see Figure 3, p. 208 and the discussion at p. 207-208 therein). They

conclude that “before 1979 indeterminacy substantially altered the propagation of shocks”

(LS, abstract).28 Similarly, instability in our framework substantially alters the trans-

mission mechanism. However, in our case, output remains below steady state, so that a

monetary policy shock could generate an opposite response of output and inflation. In

LS case, instead, inflation and output move in the same direction after a monetary policy

shock: after dropping on impact, they both become slightly positive. The same consid-

eration applies also to the demand shock: both output and inflation increase on impact,

but inflation turns negative in the fourth quarter. Our framework therefore seems to be

able to provide a transmission mechanism more prone to accommodate stagflation under

instability.

The transmission mechanism of the sunspot shock is also quite different in our case.

In LS, the impulse response function to a sunspot shock under indeterminacy does imply

(again) that output and inflation move in the same direction (see Figure 2, p. 207 in

LS), not in an opposite one, as in a stagflation episode. Intuitively, if a sunspot shock

leads to a self-fulfilling increase in inflation, then the real interest rate decreases, due

to the passive monetary policy, and thus output increases, rather than decreases. Thus

the structural dynamics implied by an indeterminate stable model do not seem to be

well suited to explain stagflation episodes after an additive sunspot shock. In our setup,

instead, the non-linear multiplicative sunspot shock amplifies the responses of the model

to a structural shock. Similarly to Figure 4, Figure 7 shows the GIRFs for two different

values of M in the MU case: the solid line corresponds to the pure forward looking solution

(M1,t = 0), and it shows the impulse response functions estimated under the stable model

before the fourth quarter of 1974; the dashed line refers to M1,t = 0.52, that is the value

estimated in 1974Q4. As in the MS case, the sunspot shock amplifies the GIRfs, but the

implied dynamics is very different in the MU case. The amplification is similar on impact

28“This finding suggests that the fit of the model can be improved by deviating from the baseline solution
and altering the propagation of the structural shocks.” (LS, p. 205)
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between the two cases, but then the unstable root induce an explosive dynamics such that

initially the distance between the two lines increases over time. The economy is travelling

on an explosive trajectory and it diverges away from the stable forward-looking solution.

However, the walk on the unstable trajectory is temporary and the GIRFs exhibits a

boom-bust type of behaviour: given the assumed process for M1,t, at a certain stochastic

date the economy converges back to the unique stable forward-looking solution.

As before, it is instructive to look at the estimated path for M1,t that measures how

much expectations deviate from the standard forward looking RE solution. Recall that

we let the data choose: the data could still choose a stable forward looking solution where

M1,t is estimated to equal zero. Figure 8 shows the estimated path for the latent process

M1,t under model MU . Similarly as before, it initially fluctuates around zero and then

it drifts from zero (the 90 percent interval exhibits a mass above zero), exactly when

inflation starts increasing and drifting away from its steady state value from 3% to 15%.

If we allow for temporarily unstable paths, the estimation then unambiguously selects

those to explain the data in this period.

It is possible to compare the relative fit of the stable (MS) and unstable (MU) models

by computing the Sequential Bayes factor as in West (1986). The Bayes factor is the

model likelihood ratio:

Ht =
p(yt|y0:t−1,MS)

p(yt|y0:t−1,MU)
(34)

and measures the relative success of MS and MU in predicting the data: values lower than

one of Ht indicate worse predictive performance of MS than the alternative MU . West

(1986) suggests to compute the Bayes factor sequentially as Wt(k) = HtHt−1...Ht−k+1.

Wt(k) is called the cumulative Bayes factor and it assesses the relative fit of the two

models by considering the most recent k observations. Figure 9 shows twice the natural

logarithm of the cumulative Bayes factor Wt(k) (as suggested by Kass and Raftery, 1995)

together with the path of inflation in the sample for a 10 year window (i.e., k is equal

to 40). Therefore, a value of zero of the logarithm of the cumulative Bayes factor means

that the two models have the same performance in terms of predictive likelihood; while

a positive value means that MS is preferred (and vice versa for negative values). The
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advantage of the cumulative Bayes factor, with respect to the conventional measures in

Bayesian Econometrics, is that we can compare two models over time, and verify the sub-

periods in which a model performs better than another in terms of predictive likelihood.

In our specific case, as expected, the unstable model is much preferred from the ‘70s

onwards, when inflation starts drifting away reaching high values. According to the Kass

and Raftery (1995, p.777) classification, there is “very strong” evidence in favour of MU

from the beginning of the ‘70s. In particular, the cumulative Bayes factor reaches a very

low level from the first quarter of 1974 onwards.

To conclude, our methodology allows the data to choose between different possible

alternatives: determinacy, indeterminacy and temporary instability. When the data are

allowed this possibility, they unambiguously select the unstable model to explain the

stagflation period in the ‘70s.

5.3.2 Post-82 Subsample

In the second subsample, our estimates under stability again reproduce the same results as

in LS (see Table 2). There is no statistically significant difference between our parameter

estimates and the ones in LS, again signalling the reliability of our estimation methodology

(see Figure 10). The Taylor principle is satisfied and hence the data choose the unique

determinate forward looking solution under MS: there is no sunspot shock and the process

for M1,t degenerates to the value of zero.

Also in the case of model MU , the estimation yields results similar to LS. However, re-

call that in our framework, despite the Taylor principle being satisfied, the data could still

choose a temporarily unstable path, as well as the unique standard stable manifold under

determinacy (or MSV solution), when M1,t is equal to zero. The upper panel in Figure

11 shows that M1,t is indeed estimated to be equal zero for the whole period, meaning

that the estimation chooses the standard MSV solution under determinacy. Coherently,

the estimation returns a negligible probability of the economy travelling on a temporarily

unstable path, as evident from the sequential estimate of the parameter γ in the lower

panel in Figure 11. From (11), γ represents the probability of M1,t being different from
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zero, that is, the probability that the economy is on an unstable trajectory. In the Great

Moderation sample, the final point estimate of γ is extremely low (0.05 in Table 2), de-

spite the prior was set to 0.8, as in the Great Inflation sample (where the posterior point

estimate is 0.96). The data, thus, are in this case extremely informative, and strongly

points towards the stable MSV solution, which is the same as the one imposed by the

standard RE methods.

Comparing the two models as in the previous case using the cumulative Bayes factor

presents mild evidence in favour of the (less parameterized) stable model (see Figure 12).

The evidence is not strong though, but “weak” till 1992 and then “positive”, because the

two models delivers very similar estimates.

5.3.3 Prior on γ

In terms of point estimates, our results are very robust to changing the priors of our

parameters . A prior of 0.9 for γ would deliver very similar results, but the cumulative

Bayes factor would speak in favour of our benchmark choice. A tighter prior on γ (i.e.,

standard error prior equals to 0.05 rather than 0.15) improves the fit of the model in the

Great Inflation sample, because the sequential estimate of γ is very stable around 0.8.

For the same reason, however, the estimation performs worse in the Great Moderation

period. In particular, it is not able to recover the standard rational expectation MSV

solution for that sub-sample, because the tighter prior does not allow the particles to

sufficiently explore that region of the parameter space, and the sequential estimate of

γ fluctuates quite tightly around 0.8. Hence, it is very important in our approach to

allow for a sufficiently wide prior over the parameter γ to give the estimation a chance to

explore adequately all the different regions of the parameter space corresponding to the

there cases of determinacy, indeterminacy and temporarily explosive paths.
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6 A Comparison with a Stochastic Volatility Model

A large empirical literature shows how stochastic volatility is an important feature of US

macroeconomic variables in the sample we analyze. Cogley and Sargent (2005); Primiceri

(2005); Justiniano and Primiceri (2008) find evidence in favor of high volatility in the

Seventies and a subsequent decrease during the Great Moderation. The methodology we

present rationalizes this evidence through the hypothesis of time variation in the agents

expectations formation process. In particular, the estimates of M1,t are such that the

effects of structural shocks during the last part of the first subsample are amplified (see

Figure 4 and 7).

On the other hand our framework imposes a strong link between the “walks on unstable

trajectories” and stochastic volatility: under the unstable model MU , stochastic volatility

always occurs in the presence of temporarily unstable paths, and it is absent only when the

unique stable solution is selected. This restriction may be too tight, and it might be the

case that our MU model is favourite by the data because of the implied stochastic volatility

rather than for the temporary intrinsic unstable dynamics. In other words, a model with

stochastic volatility without unstable dynamics might be sufficient to adequately interpret

the data.

To investigate this issue we compare the fit of the unstable model MU with a stochastic

volatility model under determinacy during the Great Inflation. Thus, we estimate a model

with time-varying variances of each error under determinacy. The results show that while

modelling the heteroskedasticity of shocks in a flexible way leads to some improvements,

temporarily unstable paths remain a key feature to interpret the behavior of inflation,

GDP and interest rate during the ‘70s. We therefore conclude that stochastic volatility

alone, without explosive dynamics, is not able to fully capture the unstable behavior of

the data during the Great Inflation period.

In specifying the assumptions on the model with determinacy and stochastic volatility

we follow closely Justiniano and Primiceri (2008). In particular we suppose that the
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logarithm of the standard error of each shock is described by a random walk process:

log σi,t = log σi,t−1 + νi,t (35)

where νi,t ∼ N(0, δ2
i ) and i = g, z, R. The model is estimated under determinacy, then

M1,t = 0,∀t and we only explore the region of the parameters that satisfy the Taylor

principle. Moreover we estimate the model considering the entire sample from 1960:I to

1997:IV.

Inference on the parameters and on the time-varying volatilities is performed using the

same econometric strategy we presented above. Note that conditional on the values of the

volatilities, the model is linear and Gaussian. Then, we simply proceed in analogy with

the estimation of models MS and MU , and we treat the time variation in the variances in

the same way we did with the time variation in M1,t (see Appendix A.3.5 for details).

The prior distributions on the parameters are the same as in Table 1, with the excep-

tion that now we only allow for determinacy. In practice, this is simply done by setting

the particle weight equal to zero whenever the parameters are such that the Taylor prin-

ciple is not satisfied. For the variances of the shocks to the volatilities, we assume an

Inverse Gamma distribution with mean equal to 0.02 and 3 degrees of freedom.29 Finally,

we assume that the standard deviations at time zero have the same prior distribution as

in the time invariant case, reported in Table 1.

The last column of Table 2 displays the posterior distribution of the parameters, and

Figure 13 shows the estimated pattern of the time-varying standard deviations of the

different shocks. With respect to Justiniano and Primiceri (2008) we work with a smaller

model and a shorter sample period. Nevertheless, we find very similar results: first, the

model accounts for the reduction in the volatility of the US macroeconomic variables

during the Great Moderation with a substantial decrease in the volatility of exogenous

disturbances. Second, the degree of stochastic volatility is not the same for all the shocks,

29Justiniano and Primiceri (2008) set the prior mean equal to 0.01, a half of what we assume. In our
model we find that this specification restricts too much the time variation in the standard deviations,
penalizing the model with determinacy and stochastic volatility. Under our prior, instead, we find results
that are very similar to Justiniano and Primiceri (2008), as described below.
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and in particular the disturbance with the biggest variation in the standard deviation is

the one to monetary policy. Moreover, the latter is the unique shock directly comparable,

and the pattern of stochastic volatility is remarkably similar to the one in Justiniano and

Primiceri (2008). Finally, for the other two shocks we find a decline of roughly one third

in the last part of the sample, again in line with the results in Justiniano and Primiceri

(2008).

In Table 3 we compare the overall fit of this model during the Great Inflation period,

with both the stable model MS and the unstable model MU . The model with determinacy

and stochastic volatility is favored by the Bayes factor when compared with the stable

modelMS. InMS the variations in the variances are all related to one common component,

that is M1,t, while the standard deviation of the monetary policy shock behaves differently

with respect to the other two, when more flexibility is allowed. This finding does not

necessarily imply that the restrictions imposed by our method are in general too tight.

The size of the model we consider is small, allowing for only one element in the matrix

Mt to be time-varying (i.e., only indeterminacy of order one), when stability is imposed.

Table 3: Model Comparison with Determinacy and Stochastic Volatility

Sample: 1960:I-1979:II

Alternative Model 2 log(Bayes Factor)
MS −7.2611
MU 16.2346

A positive value means evidence in favor of the alternative model

In estimating the model under instability we chose to limit ourselves to the case of

only one degree of freedom, setting the elements in the main diagonal of the matrix Mt to

the same stochastic process. Then, also the unstable model MU penalizes the variability

of the variances in the same way as model MS. Despite this limit, Table 3 shows that the

Bayes factor clearly favours the unstable model: the evidence for model MU is labelled as

“very strong” in Kass and Raftery’s (1995) classification.

This result suggests that temporarily unstable paths are a key feature to describe the

unstable pattern of the US macroeconomic variables during the Great Inflation period. In
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our setting the heteroskedasticity of shocks emerges as a consequence of our assumption

about the expectations formation process. However, the unstable nature of the dynamics

remains crucial to interpret the data during the ‘70s.

7 Conclusions

We propose a novel framework to consider a broader class of solutions to stochastic linear

RE models.

Theoretically, we provide two main generalizations: our framework generates time-

varying parameter solutions and stochastic volatility, as well as it allows for the possibil-

ity of the economy walking on temporarily unstable paths. First, we show how all the

possible RE solutions could be parameterized by one single parameter that has a natural

interpretation as the way agents weight past data to form their RE. Then, we introduce

multiplicative sunspots by assuming that this parameter follows a stochastic process, so

that agents randomly select one of the possible RE fundamental solutions. Under inde-

terminacy, there is an infinite number of admissible stable solutions. Under determinacy,

instead, only one value of this parameter is coherent with the economy converging to the

equilibrium in the long run. Appropriate restrictions on the stochastic process driving

this parameter allows temporary walks on unstable trajectories and stability on the long

run.

Empirically, we propose an econometric methodology that allows the data to choose

among the different RE alternatives: determinacy, indeterminacy and temporary insta-

bility, without imposing them a priori in the estimation. This methodology can be used

to test the empirical relevance of temporarily unstable dynamics.

Finally, we apply this approach to the data to explain US inflation dynamics in the

Great Inflation and Great Moderation period. The empirical evidence suggests that the

Great Inflation in the US can be explained by temporarily unstable paths, while the

usual practice of excluding a priori unstable solutions seems not to be supported by

the data. When allowed, the data unambiguously select the unstable model to explain
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the stagflation period in the ‘70s. Our framework provides a different interpretation of

the Great Inflation from a policy perspective. Despite our estimates point to a passive

monetary policy behaviour in the ‘70s, our framework implies that this is not the cause

in itself of unstable inflation dynamics, that was instead due to drifting expectations,

independently from the stance of monetary policy.

Our analysis therefore suggests that unstable paths can be empirically relevant. This

result may call for a rethinking of the stability criterion as the selection mechanism among

all the possible RE paths, and for theoretically considering the possibility that RE could

push the economy to walk along unstable paths, at least temporarily.

This line of research is still in its infancy and can be expanded in many directions.

A first important direction would be to endogenize the process for the multiplicative

sunspot. The process for the drifting expectations is taken as exogenous in this paper

(as in the sunspot literature) and then estimated on the data. We would like to be able

to say something about why agents RE start to drift, by endogenizing this expectation

formation process and then estimating it on the data, in a spirit similar to the escape

dynamics literature. Moreover, the estimation indicates a link between unstable paths

and the monetary policy parameter, that is, between the wandering of M away from the

value of the stable solution and the feature of policy. This is reminiscent of the debate

about monetary policy and the anchoring of inflation expectations, because M determines

the way agents combine past data to form their expectations.

Extending the framework to non-linear models and non-linear solution methods is a

second direction for future research. The linear approximation of a model could become

unreliable if the system drifts too far away from the steady state by following a temporarily

unstable path. The extension should be feasible because we have available methods to

solve non-linear models and the econometric strategy does not depend on the model being

linear . An important application, then, would be to use a model with the zero lower

bound (see e.g., Gust et al., 2017), to investigate how the zero lower bound affects the

process of expectation formation and hence the stability of the economy, in this case in

the direction of deflation, rather than inflation as in the ‘70s.
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Third, one could modify the framework to allow a subset of variables to explode.

Following the insights in Cochrane (2011), for example, nominal variables do not need

to satisfy a transversality condition. More generally, the framework could be generalized

characterizing the relationship between different possible stochastic processes for M and

the implied deviation from RE.

Finally, there are many potential application of our framework, notably, but not ex-

clusively, finance, where boom and bust episodes of asset prices (stock, houses, etc..) is a

pervasive phenomenon.
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A Appendix

A.1 Implementation: The general solution

As in LS, we follow the approach of Sims (2002) and we write a general linear RE system
as:

Γ0yt = Γ1yt−1 + Ψεt + Πηt, (A1)

where yt is the vector of the n endogenous variables (including the expectations as in (3)),
εt is the vector of the h exogenous fundamental shocks, and ηt is the vector of the k ≤ n
RE forecast errors. For simplicity, we assume that Γ0 is invertible,30 so to write as in (14)
:

yt = Γ∗1yt−1 + Ψ∗εt + Π∗ηt. (A2)

The multivariate case is a relative straightforward extension of the simple case, so the
description follows similar steps as above, involving: (i) parameterizing the system using
M (now a matrix); (ii) introducing time variation in M, (iii) imposing stability. As usual,
however, first we need to decouple the system through a variable transformation.

Partitioning. As in the main text, use Jordan decomposition to partition the system,
and define the vector of transformed variables ỹt = J−1yt. Let the ith element of ỹt be
ỹit, the ith element on the principal diagonal of Λ be λi and denote the ith row of J−1Π∗

and J−1Ψ∗ by [J−1Π∗]i and [J−1Ψ∗]i , respectively. The model can then be written as
a collection of AR(1) processes as in the univariate case: ỹit = λiỹit−1 + [J−1Ψ∗]i εt +
[J−1Π∗]i ηt. Order the eigenvalues (and the corresponding eigenvectors) in descending
order, and partition the system in two blocks, of dimensions (n− k) and k, respectively.
As explained in the main text, we depart from Sims (2002) and LS because we partition
the system as in (15), according to the number of forward-looking variables/expectation
errors, rather than the number of explosive eigenvalues. Let m be the number of explosive
eigenvalues (i.e., such that λi ≥ 1). As usual, we assume that the number of explosive
eigenvalues is smaller or equal to the number of forecast errors, to rule out instability.
Hence, the first (n−k) rows contain only stable eigenvalues, while the last k rows contain
both (k −m) stable and m unstable eigenvalues. Hence, we do not need to impose any
stability condition on the first block of the system (15), but we do need on the second
block of equation, i.e., (16).

Parameterization. Note that the system is decoupled, so it is just a collection of
independent AR(1) processes. Each row in (16) corresponds to our simple example above
(3). As for the case of the simple model, it is possible to parameterize the fundamental
solutions, i.e., where the expectation error is just a function of the structural shock,
by modifying the stability condition under determinacy. In matrix notation, the usual
stability condition under determinacy would be Jµ2 [Ψ∗εt + Π∗ηt] = 0, and, as in the
simple case, we modify it to (I +M)Jµ2Ψ∗εt = −Jµ2Π∗ηt, when we restrict the matrix M
to be diagonal, with Mi being the ith element on the principal diagonal of M . Hence:

ỹk,t = Λ2ỹk,t−1 + Jµ2Ψ∗εt − (I +M)Jµ2Ψ∗εt = Λ2ỹk,t−1 −MJµ2Ψ∗εt. (A3)

30This is the case in the LS’s model, that we will use in our empirical analysis below. If Γ0 is singular,
it is trivial to generalize the method to use the Schur decomposition (QZ).

50



Iterate (A3) backward to find:

ỹk,t = −M
t−1∑
i=0

Λi
2 (Jµ2Ψ∗) εt−i. (A4)

This expression corresponds to (4), and as (4), it exists assuming that we start from
steady state (it exists a time 0, such that ỹ−k,i = ε−i = η−i = 0,∀i ≥ 0). Moreover, some
of the solutions for ỹi,k,t in (A4) will be stable and some will be unstable, depending on
the values of the Mi’s and on the stability properties of the system, i.e., depending on the
values of the λ2,i’s, where λ2,i is the ith element on the principal diagonal of Λ2.

Time variation. Assume now that the Mi elements on the principal diagonal of
the matrix M are changing over time following indipendently distibuted and uncorrelated
stochastic processes. Our proposed solution then is:

ỹk,t = −Mt

t−1∑
i=0

Λi
2 (Jµ2Ψ∗) εt−i, (A5)

which corresponds to (6). Note that in each period t, the solution just depends on the cur-
rent realization of Mt. A solution pins down the expectations errors, actually Jµ2Π∗ηt. As
in Sims (2002), a solution pins down the expectations errors, actually Jµ2Π∗ηt. Plugging
(A5) in (16) yields:

Jµ2Π∗ηt = −(I +Mt)Jµ2Ψ∗εt − (Mt −Mt−1)
t−1∑
i=1

Λi
2 (Jµ2Ψ∗) εt−i. (A6)

The RE condition implies Et−1 (Jµ2Π∗ηt) = 0, so that each Mi,t must be: 1) a martingale;
2) uncorrelated with εt. Again, it is easy to recognise two particular solutions: 1) the
forward-looking solution, given by Mt = 0 => ỹFk,t = 0 => ηt = − (Jµ2Π∗)−1 Jµ2Ψ∗εt,∀t;
2) the backward-looking solution, given by Mt = −I => ỹBk,t =

∑t−1
i=0 Λi

2 (Jµ2Ψ∗) εt−i
and ηt = 0,∀t. The forward-looking solution always exists and it is always (under our
assumption) a stable solution: it is the only stable one under determinacy (m = k),
while it is one out of many possible stable ones under indeterminacy (m < k). However,
in this latter case, the forward-looking solution is a special one given how we partition
the system: it coincides with the minimum state variable solution, because it delivers a
solution which is just a linear function of the state variables.

Then the solution to the system of disconnected difference equations (A3) can be
written recursively almost as in Blanchard (1979), but actually using only the backward-
looking variable ỹBk,t as:

ỹk,t = −Mt

t−1∑
i=0

Λi
2 (Jµ2Ψ∗) εt−i = −Mtỹ

B
k,t (A7)

so that:
ỹBk,t = Λ2ỹ

B
k,t−1 + Jµ2Ψ∗εt (A8)

ỹk,t = −Mtỹ
B
k,t = −Mt

(
Λ2ỹ

B
k,t−1 + Jµ2Ψ∗εt

)
(A9)

which are (17) and (18) in the main text.
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Note that since: ỹBk,t =
∑t−1

i=0 Λi
2 (Jµ2Ψ∗) εt−i = J−1Ψ∗εt +

∑t−1
i=1 Λi

2 (Jµ2Ψ∗) εt−i, the
expectation error could be written as:

Jµ2Π∗ηt = −(I +Mt)Jµ2Ψ∗εt − (Mt −Mt−1)
t−1∑
i=1

Λi
2 (Jµ2Ψ∗) εt−i

= −(I +Mt)Jµ2Ψ∗εt − (Mt −Mt−1)
(
ỹBk,t − Jµ2Ψ∗εt

)
= −(I +Mt−1)Jµ2Ψ∗εt − (Mt −Mt−1) ỹBk,t

which yields (19), assuming that the (kxk) matrix Jµ2Π∗ is invertible.
We discuss stability in the main text. Again as in the simple model, and we impose

stability by allowing only particular processes for Mi,t’s.
Recompose the system and solve for original variables. Having solved for

the forward-looking variables, we now need to recompose the system from the original
partition. First, we need to substitute for Jµ1 [Ψ∗εt + Π∗ηt] into (15), given the ηt implied
by our proposed solution from (19). Substitute (A9) in the system (15) adding the
auxiliary variable ỹBk,t:

ỹ(n−k),t

((n− k)× 1)
ỹk,t

(k × 1)
ỹBk,t

(k × 1)

 =


Λ1 0 0

((n− k)× (n− k)) ((n− k)× k) ((n− k)× k)
0 0 −MtΛ2

(k × (n− k)) (k × k) (k × k)
0 0 Λ2

(k × (n− k)) (k × k) (k × k)




ỹ(n−k),t−1

((n− k)× 1)
ỹk,t−1

(k × 1)
ỹBk,t−1

(k × 1)

+

+


Jµ1 [Ψ∗εt + Π∗ηt]

((n− k)× 1)
−MtJµ2Ψ∗εt

(k × 1)
Jµ2Ψ∗εt
(k × 1)


Then the problem is pin down Jµ1Π∗ηt, but we know ηt, given our proposed solution from
(19), so:

Jµ1 [Ψ∗εt + Π∗ηt]

= Jµ1

[
Ψ∗εt + Π∗ (Jµ2Π∗)−1 [−(I +Mt−1)Jµ2Ψ∗εt − (Mt −Mt−1) ỹBk,t

]]
= Jµ1

[
Ψ∗ − Π∗ (Jµ2Π∗)−1 (I +Mt−1)Jµ2Ψ∗

]
εt − Jµ1Π∗ (Jµ2Π∗)−1 (Mt −Mt−1) ỹBk,t

Then given (A8), we can write:

Jµ1 [Ψ∗εt + Π∗ηt]

= Jµ1

[
Ψ∗ − Π∗ (Jµ2Π∗)−1 (I +Mt−1)Jµ2Ψ∗

]
εt +

− Jµ1Π∗ (Jµ2Π∗)−1 (Mt −Mt−1)
(
Λ2ỹ

B
k,t−1 + Jµ2Ψ∗εt

)
= Jµ1

[
Ψ∗ − Π∗ (Jµ2Π∗)−1 (I −Mt)Jµ2Ψ∗

]
εt − Jµ1Π∗ (Jµ2Π∗)−1 (Mt −Mt−1) Λ2ỹ

B
k,t−1

So we can write:
Jµ1 [Ψ∗εt + Π∗ηt] = Atεt −Bt,t−1ỹ

B
k,t−1, (A10)

52



where At is the (n− k)× l matrix and Bt,t−1 is a (n− k)× k matrix, respectively given
by (22) and (23) in the main text, that is:

At = Jµ1

[
Ψ∗ − Π∗ (Jµ2Π∗)−1 (I +Mt)Jµ2Ψ∗

]
; (A11)

Bt,t−1 = Jµ1Π∗ (Jµ2Π∗)−1 (Mt −Mt−1) Λ2 (A12)

The final system therefore is:

ỹ(n−k),t = Λ1ỹ(n−k),t−1 −Bt,t−1ỹ
B
k,t−1 + Atεt

ỹk,t = −MtΛ2ỹ
B
k,t−1 −MtJµ2Ψ∗εt

ỹB(n−k),t = Λ1ỹ
B
(n−k),t−1 + Jµ1Ψ∗εt

ỹBk,t = Λ2ỹ
B
k,t−1 + Jµ2Ψ∗εt,

which in matrix notation is:
ỹ(n−k),t

ỹk,t
ỹB(n−k),t

ỹBk,t

 =


Λ1 0 0 −Bt,t−1

0 0 0 −MtΛ2

0 0 Λ1 0
0 0 0 Λ2


︸ ︷︷ ︸

G∗


ỹ(n−k),t−1

ỹk,t−1

ỹB(n−k),t−1

ỹBk,t−1

+


At

−MtJµ2Ψ∗

Jµ1Ψ∗

Jµ2Ψ∗


︸ ︷︷ ︸

H∗

εt. (A13)

Finally, to recover the original variables use = ỹt = J−1yt to obtain (20) in the main text.

A.2 The econometric strategy

Inference regarding the structural parameters of the model, collected in the vector θ, as
well as the latent states is fully Bayesian. The time-varying characteristic of the latent
stateMt leads to a non linear and analytically intractable non Gaussian likelihood function
for the unknowns. This motivates the use of the sequential Monte Carlo strategy described
below.

A.2.1 Preliminaries

The class of solution we propose in equation (20), parametrized by the matrix Mt, has
state space representation (26) that we repeat below for convenience:{

Dt = c+ Flt + vt vt ∼ N (0,Σv)
lt = Gtlt−1 +Htεt εt ∼ N (0,Σε)

(A14)

Dt is the vector with data at time t, and Dm:n the set of observations from m to n for
m ≤ n. The parameters of the model are collected in the vector θ = (θ1, θ2), where we
group in θ1 all the parameters other than the variances and the covariances of the shocks,
wich are in turn collected in the vector θ2. Finally, we assume that the dynamics of Mt

are described by a transition law:

Mt = f (Mt−1, ζt) (A15)

where ζt is a multiplicative sunspot shock. The properties of the stochastic process for
Mt are discussed in the paper.
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Our econometric strategy is based on sequential learning: suppose the posterior distri-
bution of the unknowns is approximated at time t−1 by a set of particles {(lt−1,Mt−1, θ1, θ2)(i)}Ni=1

and associated weights {w(i)
t−1}Ni=1. Given the new observed data Dt, we want to generate

an updated set of particles {(lt,Mt, θ1, θ2)(i)}Ni=1 and weights {w(i)
t }Ni=1 that approximate

the posterior distribution:
p (lt,Mt, θ1, θ2|D1:t) . (A16)

The way we group the latent processes (distinguishing Mt from all the other states
lt) and the parameters (dividing them in θ1 and θ2) has a specific reason: as a general
principle of our econometric strategy, we implement analytical computation whenever is
possible. To this aim, note that given a value for Mt, the state space (A14) is linear
and Gaussian: we can compute the posterior distribution of the latent processes in lt
analytically, using the Kalman filter. Moreover, an analytical expression for the posterior
distribution can also be derived for some of the parameters, that we collect in θ2. For
DSGE models this is typically the case of the variances and covariances of the shocks,
when the prior distributions are Inverse Gamma or Inverse Wishart. Then, following
Carvalho et al. (2010), we keep track of a set of sufficient statistics collected in st that we
will use to update the posterior distribution of θ2.

To approximate the posterior distribution of the parameters in θ1 we use the Liu and
West (2001) filter. Since the method uses mixtures of Normal distributions we make sure
that all the parameters have the right support, that is from −∞ to +∞. Then, we define
a new vector φ where each element of θ1 is appropriately transformed when needed. In
the description of the algorithm we will add a time t subscript to this parameter, writing
φt. This notation is introduced simply to reinforce the notion that sequential inference
regarding φ is performed at time t, and does not mean that the parameters are time-
varying.

A.2.2 The particle filter

The algorithm we use is based on two main steps: an updating step, in which an appropri-
ate number of particles N is drawn from an importance distribution q (ϑt,Mt, θ1, θ2|D1:t),
and a re-weighting step in which the weights are computed as:

w
(i)
t =

p
(
l
(i)
t ,M

(i)
t , θ

(i)
1 , θ

(i)
2 |D1:t

)
q
(
l
(i)
t ,M

(i)
t , θ

(i)
1 , θ

(i)
2 |D1:t

) . (A17)

Step 1: Drawing from the importance distribution
Drawing from the importance distribution involves two sub-steps, following the schema in
Pitt and Shephard (1999): a resampling step in which we select “the most fit particles”,
and the actual propagation step in which these particles are updated.

Resampling. Once new data are arrived we start selecting the particles with higher
predictive ability. We perform a resampling step using weights w̃

(i)
t proportional to:

w̃
(i)
t ∝ w

(i)
t−1p

(
Dt|l(i)t−1, gM(M

(i)
t−1),m

(i)
t−1, θ

(i)
2

)
(A18)

Following Pitt and Shephard (1999) and Liu and West (2001), the predictive likelihood

in equation (A18) is conditional on gM(M
(i)
t−1), that is a best guess of M i

t at time t− 1 like
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E
(
Mt|M (i)

t−1

)
, and on mi

t−1 defined as:31

m
(i)
t−1 = aφ

(i)
t−1 + (1− a)φ̄t−1 (A19)

where φ̄t−1 is the weighted sample mean of φ
(i)
t−1. Define also Vt−1 as the sample weighted

covariance matrix of φ
(i)
t−1, that we will use later. Then, given the state space (A14), the

predictive likelihood is a Normal distribution with mean f̂
(i)
t and variance Q̂

(i)
t where:

f̂
(i)
t = ĉ(i) + F̂ Ĝ

(i)
t−1l

(i)
t−1 (A20)

Q̂
(i)
t = F̂

(
Ĝ

(i)
t−1C

(i)
t−1Ĝ

(i)′

t−1 + Ĥ
(i)
t−1Σ(i)

ε Ĥ
(i)′

t−1

)
F̂ ′ (A21)

and C
(i)
t−1 is the variance of the latent process l

(i)
t−1. Note that the matrices F̂ , Ĝ

(i)
t−1 and

Ĥ
(i)
t−1 and the vector ĉ(i) are function of gM(M

(i)
t−1) and of the parameters in m

(i)
t−1.

At this point we have a set of resampled particles that, for convenience, we accentuate
with a tilde: {(l̃t−1, M̃t−1, m̃t−1, θ̃2, s̃t−1, C̃t−1, f̃t, Q̃t)

(i)}Ni=1.
Propagation. The resampled particles are then propagated starting from the set of

parameters φ
(i)
t . Following the schema of Liu and West (2001) we update this vector

drawing its new values from the normal distribution:

φ
(i)
t ∼ N

(
m̃

(i)
t−1, (1− a2)Vt−1

)
. (A22)

Then, we proceed with the propagation of M
(i)
1,t from the distribution implied by it’s

low of motion (A15):

M
(i)
t ∼ p

(
Mt|M̃ (i)

t−1, φ
(i)
t , θ̃

(i)
2

)
(A23)

Given M
(i)
t the state space (A14) becomes linear and Gaussian. We can draw l

(i)
t from

its posterior distribution:

l
(i)
t ∼ p

(
lt|l̃(i)t−1,M

(i)
t , φ

(i)
t , θ̃

(i)
2 , Dt

)
(A24)

that is a Normal distribution with mean µ
(i)
t and variante C

(i)
t computed through the

Kalman filter recursion:

f
(i)
t = c(i) + FG

(i)
t l̃

(i)
t−1 (A25)

Q
(i)
t = F

(
G

(i)
t C̃

(i)
t−1G

(i)′

t +H
(i)
t Σ̃(i)

ε H
(i)′

t

)
F ′ (A26)

µ
(i)
t = G

(i)
t l̃

(i)
t−1 +

(
G

(i)
t C̃

(i)
t−1G

(i)′

t +H
(i)
t Σ̃(i)

ε H
(i)′

t

)
F ′
(
Q

(i)
t

)−1 (
Dt − f (i)

t

)
(A27)

C
(i)
t =

(
G

(i)
t C̃

(i)
t−1G

(i)′

t +H
(i)
t Σ̃(i)

ε H
(i)′

t

)
+

−
(
G

(i)
t C̃

(i)
t−1G

(i)′

t +H
(i)
t Σ̃(i)

ε H
(i)′

t

)
F ′
(
Q

(i)
t

)−1

F
(
G

(i)
t C̃

(i)
t−1G

(i)′

t +H
(i)
t Σ̃(i)

ε H
(i)′

t

) (A28)

31The parameter a in equation (A19), that accounts for the amount of shrinkage, is suggested to be set
between 0.974 and 0.995 (see Liu and West, 2001, for details)
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Note that the matrices F , G
(i)
t and H

(i)
t , and the vector c(i) are function of M

(i)
t and of

the updated parameters φ
(i)
t . Then, the mean and the covariance matrix of the predictive

distribution, respectively f
(i)
t and Q

(i)
t , are different from those defined in (A20) and (A21).

Finally, we propagate the vector θ
(i)
2 following the Particle Learning approach of Car-

valho et al. (2010). The latent processes l
(i)
t and M

(i)
t and the parameters φ

(i)
t are used

to update the set of sufficient statistics s
(i)
t .32 Hence, we can draw θ

(i)
2 from its posterior

distribution:
θ

(i)
2 ∼ p

(
θ2|s(i)

t

)
(A29)

We have drawn a new set of particles from the importance distribution obtained com-
bining equations (A18), (A22), (A23), (A24) and (A29).

Step 2: Re-weighting the particles
In order to approximate the target density we need to compute the appropriate weight
for each particle, according to equation (A17).

Start from the joint posterior distribution (A16) which is proportional to:

p (lt,Mt, θ|D1:t) ∝ p (Dt|lt,Mt, θ) p
(
lt,Mt, θ|D1:(t−1)

)
, (A30)

where the second term on the right hand side is written as

p
(
lt,Mt, θ|D1:(t−1)

)
=

=

∫
p
(
lt,Mt, θ|l1:(t−1),M1:(t−1)

)
p
(
l1:(t−1),M1:(t−1)|D1:(t−1)

)
dl1:(t−1)dM1:(t−1)

≈
N∑
i=1

w
(i)
t−1p

(
lt,Mt, θ|l(i)1:(t−1),M

(i)
1:(t−1)

)
. (A31)

Consequently, the posterior is approximated by

p (lt,Mt, θ|D1:t) ∝
N∑
i=1

w
(i)
t−1p (Dt|lt,Mt, θ) p

(
lt,Mt, θ|l(i)1:(t−1),M

(i)
1:(t−1)

)
. (A32)

Assuming that the latent processes are Markov chains, we can write the numerator in
equation (A17) as:

p
(
l
(i)
t ,M

(i)
t , θ(i)|D1:t

)
= w

(i)
t−1p

(
Dt|l(i)t ,M

(i)
t , θ(i)

)
p
(
l
(i)
t ,M

(i)
t , θ(i)|l(i)t−1,M

(i)
t−1

)
. (A33)

Following Carvalho et al. (2010) we compute the weights before propagating the pa-
rameters in θ2. Taking this into account and combining equations (A18), (A22), (A23),
(A24), (A29) and (A33) in equation (A17) we get:33

w
(i)
t ∝

p
(
Dt|l(i)t ,M

(i)
t , θ

(i)
1 , θ̃

(i)
2

)
p
(
l
(i)
t |l̃

(i)
t−1,M

(i)
t , θ

(i)
1 , θ̃

(i)
2

)
p
(
Dt|l̃(i)t−1, gM(M̃

(i)
t−1), m̃

(i)
t−1, θ̃

(i)
2

)
p
(
l
(i)
t |l̃

(i)
t−1,M

(i)
t , θ

(i)
1 , θ̃

(i)
2 , Dt

) (A34)

32For example, if the variance of a shock is a priori distributed as an Inverse Gamma, to compute the
conjugate posterior we need the sum of the squared errors.
33The weights are expressed as ”proportional to” instead of ”equal to” because they need to be normalized
such that their sum is equal to one.
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Note that the density p
(
l
(i)
t |l̃

(i)
t−1,M

(i)
t , θ

(i)
1 , θ̃

(i)
2 , Dt

)
in the denominator can be rewritten

as

p
(
l
(i)
t |l̃

(i)
t−1,M

(i)
t , θ

(i)
1 , θ̃

(i)
2 , Dt

)
=
p
(
Dt|l(i)t ,M

(i)
t , θ

(i)
1 , θ̃

(i)
2

)
p
(
l
(i)
t |l̃

(i)
t−1,M

(i)
t , θ

(i)
1 , θ̃

(i)
2

)
p
(
Dt|l̃(i)t−1,M

(i)
t , θ

(i)
1 , θ̃

(i)
2

)
(A35)

Substituting this equation in (A34) we find that the weights to approximate the joint
posterior distribution at time t are:

w
(i)
t ∝

p
(
Dt|l̃(i)t−1,M

(i)
t , θ

(i)
1 , θ̃

(i)
2

)
p
(
Dt|l̃(i)t−1, gM(M̃

(i)
t−1), m̃

(i)
t−1, θ̃

(i)
2

) . (A36)

At the numerator we have the Normal distribution with mean f
(i)
t and covariance ma-

trix Q
(i)
t defined in equations (A25) and (A26). The distribution at the denominator is

the Normal with mean f̃
(i)
t and covariance matrix Q̃

(i)
t defined in (A20) and (A21), and

resampled according to weights w̃
(i)
t computed in (A18). Both densities are evaluated in

Dt.
Equation (A36) is very intuitive: the weight of each particle is computed comparing

two predictive likelihoods. The particle i has higher weight if, after propagation of M
(i)
t

and θ
(i)
1 , leads to higher improvement in predicting Dt.

Step 3 (optional): Resampling
The approximation of the posterior distribution obtained in the two steps described above
is good if the the particle weights in (A36) are distributed Uniformly. It is well known in
the literature that the variance of the distribution of the weights tends to increase over
time since a subset of particles will have higher predictive power. Then, an additional
resampling step using the weights computed in (A36) can be added to mitigate this
problem. After a resampling step is performed, all the weights are set equal to 1/N .

Usually the final resampling step is implemented when a certain criterion suggests
that the distribution of weights became too uneven. A common practice is to check the
effective sample size defined as:

N e
t =

(
N∑
i=1

(
w

(i)
t

)2
)−1

. (A37)

N e
t takes values from 1 (very uneven distribution) to N (Uniform distribution), so the

resampling step is performed when N e
t is less then a certain threshold N̄ .

The procedure to implement our particle filter is summarized in the algorithm below.
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THE ALGORITHM
Initialization: t=0

Draw a set of particles {(l0,M0, θ1, θ2, s0, C0)(i)}Ni=1 from a prior

Recursion: for t = 1, 2, ...T repeat steps 1 to 6

1. Approximate p(φ|y1:(t−1))

1a) Consider a transformation of the vector θ1 and call it φt

1b) Compute the weighted sample mean φ̄t−1 and covariance matrix Vt−1

1c) Compute m
(i)
t−1 = aφ

(i)
t−1 + (1− a)φ̄t−1

2. Resample

2a) Compute w̃
(i)
t ∝ w

(i)
t−1p

(
Dt|l(i)t−1, gM(M

(i)
t−1),m

(i)
t−1, θ

(i)
2

)
2b) Resample {(lt−1,Mt−1,mt−1, θ2, st, Ct)

(i)}Ni=1 with weights w̃
(i)
t

Let the new particles be {(l̃t−1, M̃t−1, m̃t−1, θ̃2, s̃t−1, C̃t−1)(i)}Ni=1.

3. Propagate

3a) Sample φ
(i)
t from N

(
m̃

(i)
t−1, (1− a2)Vt−1

)
3b) Sample M

(i)
t from p

(
Mt|M̃ (i)

t−1, φ
(i)
t , θ̃

(i)
2

)
3c) Sample l

(i)
t from N

(
µ

(i)
t , C

(i)
t

)
where µ

(i)
t and C

(i)
t are defined in (A27) and (A28).

4. Compute new weights

w
(i)
t ∝

p(Dt|l̃(i)t−1,M
(i)
t , θ

(i)
1 , θ̃

(i)
2 )

p(Dt|l̃(i)t−1, gM(M̃
(i)
t−1), m̃

(i)
t−1, θ̃

(i)
2 )

.

5. Update sufficient statistics and propagate θ2

5a) Compute s
(i)
t = S

(
l
(i)
t , l̃

(i)
t−1,M

(i)
t , M̃

(i)
t , φ

(i)
t , Dt

)
5b) Sample θ

(i)
2 from p

(
θ2|s(i)

t

)
6. Decide to resample or not

if N̄ <

(∑N
i=1

(
w

(i)
t

)2
)−1

6a) Resample with weights w
(i)
t

6b) Re-set weights w
(i)
t = 1

N

A.3 Estimating the New Keynesian model

We show how to apply our estimation strategy to estimate the model of LS described in
Section 4.
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A.3.1 The model and its state space representation

The model consists of equations (29), (30), (31) and (32).
In order to write the model in the Sims (2002) canonical form (A1) define ηxt =

xt − Et−1(xt), η
π
t = πt − Et−1(πt), ξ

x
t = Et(xt+1) and ξπt = Et(πt+1). Then the NK model

can be expressed as:
ηxt + ξxt−1 = ξxt − τ(Rt − ξπt ) + gt (A38)

ηπt + ξπt−1 = βξπt + κ(ηxt + ξxt−1 − zt) (A39)

Rt = ρRRt−1 + (1− ρR)(ψ1

(
ηπt + ξπt−1

)
+ ψ2(ηxt + ξxt−1 − zt)) + εR,t (A40)

Defining the vector yt = [ xt πt Rt ξxt ξπt gt zt ]′, the system in matrix form is:



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 (1− ρR)ψ2

0 0 −τ 1 τ 1 0
0 0 0 0 β 0 −κ
0 0 0 0 0 1 0
0 0 0 0 0 0 1





xt
πt
Rt

ξxt
ξπt
gt
zt


=

=



0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 ρR (1− ρR)ψ2 (1− ρR)ψ1 0 0
0 0 0 1 0 0 0
0 0 0 −κ 1 0 0
0 0 0 0 0 ρg 0
0 0 0 0 0 0 ρz





xt−1

πt−1

Rt−1

ξxt−1

ξπt−1

gt−1

zt−1


+

+



0 0 0
0 0 0
1 0 0
0 0 0
0 0 0
0 1 0
0 0 1


 εR,t
εg,t
εz,t

+



1 0
0 1

(1− ρR)ψ2 (1− ρR)ψ1

1 0
−κ 1
0 0
0 0


[
ηxt
ηπt

]

The class of solution we propose, parametrized by the matrix Mt, is written in equation

(20) and it is expressed in terms of the vector l̃t =

[
yt
yBt

]
, where yBt describes the evolution

of the variables in the backward looking solution. Note that in the vector l̃t the exogenous
state variables gt and zt appear twice, since their dynamics are independent of Mt. For
practical purposes it is convenient to rewrite the solution in terms of a vector lt where
each exogenous shock is reported only once. First, define the following vectors:

y1,t = [ xt πt Rt ξxt ξπt ]′; y2,t = [gt zt ]′.
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The solution can be partitioned as
y1,t

y2,t

yB1,t
y2,t

 =


G̃1,t G̃2,t G̃3,t G̃4,t

0 G̃5,t 0 0

0 0 G̃6,t G̃7,t

0 0 0 G̃5,t



y1,t−1

y2,t−1

yB1,t−1

y2,t−1

+


H̃1,t

H̃2,t

H̃3,t

H̃2,t

 εt
where εt = [ εR,t ε′g,t εz,t ]. The endogenous variables in y1,t depend on the entire

vector l̃t−1, while the same variables in the backward looking solution depend only on the
backward looking components of l̃t−1. The exogenous variables, instead, are described by
their own dynamics. It is straightforward, then, to rewrite the solution as: y1,t

y2,t

yB1,t

 =

 G̃1,t

(
G̃2,t + G̃4,t

)
G̃3,t

0 G̃5,t 0

0 G̃7,t G̃6,t


 y1,t−1

y2,t−1

yB1,t−1

+

 H̃1,t

H̃2,t

H̃3,t

 εt
that is, using a compact notation:

lt = Gtlt−1 +Htεt (A41)

that is the state equation of system (A14), where the latent vector is:

lt = [ xt πt Rt ξxt ξπt gt zt xBt πBt RB
t ξxBt ξπBt ]′.

The observation equation is:
Dt = c+ Flt (A42)

where Dt is a column vector with output gap, inflation and interest rate,

c =

 0
π∗

π∗ + r∗

 , and F =

 1 0 0 0 0 0 0 0 0 0 0 0
0 4 0 0 0 0 0 0 0 0 0 0
0 0 4 0 0 0 0 0 0 0 0 0

 .
A.3.2 The parameters updated through the Liu and West filter

The set of parameters has two components: θ = (θ1, θ2), where θ1 contains all the param-
eters of the model except the variances:34

θ1 = [ ρg ρz ρR κ ψ1 ψ2 τ−1 π∗ r∗ γ ]′.

Define the vector φ as a transformation of the vector θ1 such that every element has
support from −∞ to +∞. In particular we use the logit function for the parameters that

34The parameter γ is estimated only under the unstable model, and it is not included in the vector θ1
under the stable model MS .
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can take values in [−1 1], and the logarithm for the parameters with positive support:

φ(i) =



h(ρ
(i)
g )

h(ρ
(i)
z )

h(ρ
(i)
R )

log(κ(i))

log(ψ
(i)
1 )

log(ψ
(i)
2 )

log(τ−1(i))
log(π∗(i))
log(r∗(i))
h(γ(i))


where h is the logit function.

Finally, the parameter a in equation (A19) is set equal to 0.99.

A.3.3 The multiplicative sunspots

The latent process M1,t is updated using it’s low of motion. Under the stable model MS

we distinguish two cases: if condition (33) is not satisfied M
(i)
1,t can vary over time and we

sample its values from the Normal distribution:

N
(
M

(i)
t−1, σ

2(i)
ζ

)
.

By contrary, if the Taylor principle is respected we set it equal to zero, that is the value
corresponding to the unique stable solution.

Under the unstable model MU , we first verify that the indicator function in (10) is

equal to one. Then, with probability γ(i) we draw M
(i)
1,t from the Normal distribution:

N

(
M

(i)
t−1

γ(i)
, σ

2(i)
ζ

)

while we set it equal to zero with probability
(
1− γ(i)

)
.

A.3.4 The parameters updated through Particle Learning

The vector θ2 collects all the error variances and covariances:

θ2 = [ σ2
R σ2

ζ σ2
g σ2

z ρgz ]′. (A43)

We follow the Particle Learning approach by Carvalho et al. (2010). The latent pro-

cesses and the parameters in θ
(i)
1 are used to update a set of sufficient statistics s

(i)
t that

contains T
(i)
R , T

(i)
ζ , T

(i)
gz , n

(i)
ζ,t and, where:

T
(i)
R =

t∑
j=1

(
ε

(i)
R,j

)2

; T
(i)
ζ =

n
(i)
ζ,t∑
j=1

(
ε

(i)
ζ,j

)2

; T (i)
gz =

t∑
j=1

([
ε

(i)
g,j

ε
(i)
z,j

] [
ε

(i)
g,j ε

(i)
z,j

])
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and n
(i)
ζ,t is he number of times M

(i)
t has been drawn from a Normal distribution rather

than being set equal to zero. The sufficient statistics are then used to update the posterior
distributions of the parameters in θ2, which are known analytically (up to a normalizing
constant), given our assumptions on the prior distributions. In particular we assume that
the priors for σ2

R and σ2
ζ have an Inverse Gamma distribution defined, respectively, by

shape parameters aR and aζ , and rate parameters bR and bζ .
35 Their posterior distribu-

tions are also Inverse Gamma:(
σ

2(i)
R |Dt

)
∼ IG

(
aR +

t

2
, bR +

T
(i)
R

2

)
(
σ

2(i)
ζ |Dt

)
∼ IG

(
aζ +

n
(i)
ζ,t

2
, bζ +

T
(i)
ζ

2

)
.

Since the shocks to supply and demand are correlated, we assume that the prior for
σ2
g , σ

2
z and the covariance ρgz is an Inverse Wishart with 8 degrees of freedom and scale

matrix Σ0. Given new data at time t, we can draw these parameters from their posterior
distribution:

(Σgz|Dt) ∼ IW (Σ0 + Tgz, 8 + t) .

A.3.5 The model under determinacy and stochastic volatility

In section 6 we compare the models MS and MU with a case in which we impose determi-
nacy, but at the same time we allow the standard deviations of the structural shocks to
vary over time. In this case we set M1,t = 1 for every t, and we explore only the parameter
space such that condition (33) is satisfied.

To estimate this model we use the same algorithm described above with some modi-
fications. First the parameter vector θ is partitioned as:

θ1 = [ ρg ρz ρR κ ψ1 ψ2 τ−1 π∗ r∗ γ ρgz ]′.

and
θ2 = [ δ2

R δ2
g δ2

z ]′. (A44)

The latent processes are lt, with dynamics described by equation (A41), and

σ̄t = [ log σR,t log σg,t log σz,t ]′ (A45)

with dynamics described by equation (13).
We take advantage of analytical integration, in analogy with the estimation of model

MS and MU : conditional on σ̄t the state space model for lt is linear and Gaussian. Then,
we modify the weights for the first resampling defined in equation (A18) (point 2a in the
algorithm):

w̃
(i)
t ∝ w

(i)
t−1p

(
Dt|l(i)t−1, gσ̄(σ̄

(i)
t−1),m

(i)
t−1, θ

(i)
2

)
(A46)

where
gσ̄(σ̄

(i)
t−1) = E

(
σ̄

(i)
t |σ̄

(i)
t−1

)
= σ̄

(i)
t−1 (A47)

35These hyperparameters are such that the prior means and variances for σ2
R and σ2

ζ are the ones reported
in Table 1.
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Moreover, in the propagation step, we keep Mt = 1 and we propagate σ̄
(i)
t from the

distribution implied by its law of motion (13) (point 3b in the algorithm). The distribution

of the latent process l
(i)
t is again Normal, with mean and covariance matrix computed

through the Kalman recursion (A25) to (A28), appropriately modified.

Finally, the set of sufficient statistics s
(i)
t contains the following variables:

T
(i)
R =

t∑
j=1

(
ν

(i)
R,j

)2

; T (i)
g =

t∑
j=1

(
ν

(i)
g,j

)2

; T (i)
z =

t∑
j=1

(
ν

(i)
z,j

)2

;

These allow us to draw δR, δg and δz from their posterior distributions.

A.3.6 Computational details

We work with 500.000 particles: this number is big enough to guarantee that the filter
explores well the parameter space and the support of the latent processes at any time t.
However, as clear from Figure 5, when the inference on ψ1 switches to the indeterminacy
region we observe a reduction in the variance of the posterior distribution. In order to
make sure that this change in the distribution reflects the likelihood implied by new data,
and not a technical problem related to the filter, we increase the number of particles to
2.000.000 from 1972:IV to 1979:II.

The particles are distributed to 44 cores who run in parallel. We use a computer with
two processors Intel Xeon E5-2699 v4. To estimate the first subsample the algorithm
takes approximately 90 minutes.
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Figure 1: CPI inflation, quarterly data. Sample: 1955Q1 - 2006Q4.
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Figure 2: MS : Comparison between the posterior distributions of the policy parameters
and the probability intervals of LS.
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Figure 3: Generalized Impulse Response Function in the MS model computed under the
posterior distribution of M1,t in 1979:II.
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Figure 4: Generalized Impulse Response Function in the MS model: solid line: M1 = 0,
dashed line: M1 = 0.49
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Figure 5: Estimated path of M1,t for the stable model MS in the Great Inflation subsample
(upper panel); sequential inference on the parameter ψ1 (lower panel).
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Figure 6: Generalized Impulse Response Function in the MU model computed under the
posterior distribution of M1,t in 1979:II.

68



0 10 20
0

0.5

1

In
te

re
s
t 
ra

te

0 10 20
-0.3

-0.2

-0.1

0

O
u
tp

u
t 
g
a
p

Impulse responses to a monetary policy shock

0 10 20
-0.5

0

0.5

1

In
fl
a
ti
o
n

0 10 20
-1

0

1

In
te

re
s
t 
ra

te

0 10 20
0

0.5

1

1.5

O
u
tp

u
t 
g
a
p

Impulse responses to a demand shock

0 10 20
-4

-2

0

2

In
fl
a
ti
o
n

0 10 20
-1.5

-1

-0.5

0

In
te

re
s
t 
ra

te

0 10 20
0

0.5

1

O
u
tp

u
t 
g
a
p

Impulse responses to a supply shock

0 10 20
-3

-2

-1

0

In
fl
a
ti
o
n

Figure 7: Generalized Impulse Response Function in the MU model: solid line: M1 = 0,
dashed line: M1 = 0.52
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Figure 8: Estimated path of M1,t for the stable model MS in the Great Inflation subsample
(upper panel); sequential inference on the parameter ψ1 (lower panel).
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Figure 10: MS : Comparison between the posterior distributions of the policy parameters
and the probability intervals of LS.
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Figure 11: Estimated path of M1,t for the unstable model MU in the Great Moderation
subsample (upper panel); sequential inference on the parameter γ (lower panel).
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Figure 12: Comparing MS - MU , Great Moderation period. The panels show 2 ln(Wt)
(solid line, scale on the left axis) and the inflation rate (dashed line, scale on the right
axis)
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Figure 13: time-varying standard deviation of each shock - Model with determinacy and
stochastic volatility
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