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Practical information

In 2019 De Nederlandsche Bank (DNB) published the discussion paper “General 
Principles for the use of Artificial Intelligence in the Financial Sector”. One of the 
central principles of this discussion paper underscores the importance of 
explainability of AI-driven decisions and model outcomes. 
 
In this publication, we further explore the issue of explainability, and its relevance 
with regard to the responsible use of AI in the financial sector, based on a number of 
semi-structured interviews. This exploratory study is the result of a collaboration 
between DNB, Authority of Financial Markets (AFM), University of Applied Sciences 
Utrecht (HU), The Dutch Banking Association (NVB), and representatives from three 
major banks in The Netherlands. A collaboration that was made possible by DNB’s 
iForum. 
 
DNB's iForum aims to create more room for technological innovation within the 
financial system and does so by developing joint experiments in the areas where 
technology and supervision meet. With this study, we have therefore outlined the 
perspectives from the banks as well as the two involved supervisory authorities, 
on where explainable AI meets supervision. 
 

This exploratory study does not propose or formulate new supervisory policies. 
Instead, it presents a stock-take of current perspectives, observations regarding 
potential challenges in the implementation of explainable AI, as well as possible 
areas for future exploration.
 
We believe that this study poses several findings that are suitable for further 
discussion, which will be taken up by the iForum in 2021. Questions regarding this 
publication can be sent to iForum@dnb.nl. 

© De Nederlandsche Bank

mailto:iForum%40dnb.nl?subject=
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Management summary

Explainable AI is defined as ‘’A set of capabilities that produces an explanation, in the 
form of details, reasons, or underlying causes, to make the functioning and/or results 
of an AI solution sufficiently clear so that it is understandable and addresses 
stakeholders’ concerns”. 

Explainable AI (xAI) is becoming of utmost importance to ensure a responsible use of 
artificial intelligence (AI) solutions, which are increasingly applied in financial services 
and products. Although many reports on the responsible use of AI have stressed the 
need for xAI, a lack of publications that provide practical guidance or frameworks, to 
facilitate financial organizations in applying xAI, was found. Therefore, this exploratory 
study aims to bring together the perspectives from the participating banks as well as 
two financial supervisory authorities (AFM and DNB) on xAI for AI applications in the 
field of consumer credit, anti-money laundering (AML), and credit- risk management. 

The objective of this publication is threefold: (i) to gain insight and understanding in 
the most relevant aspects of xAI in finance, (ii) to build common ground, as well as a 
shared vocabulary, to facilitate future studies and discussions on explainability, and (iii) 
to identify potential issues that merit further exploration. This is done with the use of a 
practical framework on xAI, applied to several use cases in the fields mentioned above. 

Based on semi- structured interviews with representatives of the participating banks 
and two supervisory authorities regarding the application of the xAI framework on 
different use cases (in the field of consumer credit, anti-money laundering, and 
credit-risk management) the main findings from this exploratory study are as follows:

 ▪ There appears to be a disparity between views of the supervisory authorities and 
the participating banks, regarding the desired scope of explainability required for 
AI solutions in banking.

 ▪ There is a need for enhanced cooperation between supervisory authorities, and 
alignment of supervisory authorities on a national and EU level on the topic of AI 
and explainability of AI models. 

 ▪ It would be beneficial to create a space of common trust in order to discuss and 
share (ideas for) AI-driven innovations. 

 ▪ Relevant aspects of explainability were found to be highly contextual and to vary 
per AI use case. The framework as used in this study was regarded in the 
interviews to be a potentially valuable starting point, but not as a comprehensive 
approach, to consider suitable xAI elements for the considered use cases. 

Suggestions for further exploration of these findings can be found in chapter 4 
(“Conclusions and way forward”) of this publication. 
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1 Introduction

1 In this paper we do not propose a strict definition of artificial intelligence, but in the context of this paper generally use this term to refer to systems that use typical artificial 
intelligence methods (such as deep learning, random forests, and kNN) for machine-learning enabled tasks such as regression, classification, clustering and density estimation.

2 Article 13 of the proposed regulation states that ““High-risk AI systems shall be designed and developed in such a way to ensure that their operation is sufficiently transparent to 
enable users to interpret the system’s output and use it appropriately”.

3 e.g. SHAP, Lundberg & Lee (2017)
4 Miller (2019)
5 Two notable exceptions are the report from the UK Information Commissioner’s Office / Alan Turing Institute (“Explaining Decisions made with AI”; May 2020) and the France ACPR 

discussion paper (“Governance of Artificial Intelligence in Finance”; June 2020)

In recent years increasingly powerful – but often also increasingly complex – 
artificial intelligence (AI) models have become available.1 The use of these models in 
a growing number of practical applications has sparked a discussion on the need for 
explainability. On 21 April this year, the European Commission published their 
proposal for a European AI regulation, which also features requirements regarding 
explainability in certain high-risk applications such as consumer credit scoring.2

This discussion is driven by the notion that many such AI applications have, or 
potentially have, a material impact on the wellbeing of individuals, groups, and on 
society at large. Consequently, there is a need to understand how certain  
AI applications actually work, and how they arrive at outcomes and decisions based 
on these outcomes. There are numerous examples of situations in the financial 
sector where comprehensive understanding seems to be warranted, such as in the 
case of a failed loan application, the assessment of a new internal ratings-based 
model, or an unusual transaction alert. At the same time, expectations regarding  
the performance of AI applications are likewise high, and striking the right balance 
between performance and explainability can present a difficult dilemma.

Explainable AI (or ‘xAI’) aims to ensure AI can be better understood, by making 
algorithms and their applications more transparent and less of a “black box”.  

An improved understanding of the working of these algorithms, helps us to verify 
them, improve them, and learn from them. Most developments in xAI focus on 
technical tools for model developers3 or broader approaches to explainability.4  
Given the paramount importance of explainability, it is no surprise that many  
reports on the responsible use of AI have stressed the need for xAI. Unfortunately, 
there seems to be a lack of publications that provide practical guidance or 
frameworks to facilitate organizations in applying xAI in practice.5 
Furthermore, there does not yet seem to exist a shared vocabulary –in the literature 
or in the sector– regarding the definitions of and relations between the related (but 
different) concepts of explainability, interpretability, transparency and traceability. 

Finally, a clear taxonomy of the various types of explanations, and how these relate 
to different potential stakeholders, is not yet readily available. This lack of a solid 
and practical framework for the financial sector poses a challenge for financial 
institutions to understand their obligations (regulatory and otherwise) regarding xAI, 
and how to operationalize them. At the same time, the lack of such a framework 
also makes it difficult for supervisory authorities to interpret the implications of 
current regulations regarding transparency and the provision of information, and to 
communicate their expectations regarding xAI to regulated entities.
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1.1 Objective
Based on the gaps identified in definitions, concepts and taxonomies for explainability, 
this exploratory study set out to find common ground (in vocabulary, values, and the 
practicability of xAI) between supervisory authorities and regulated entities in the 
financial sector. The point of departure for the study was to exchange ideas and 
further develop a shared conceptual framework on xAI by applying it to three practical 
use cases. The findings and observations drawn from the discourses between the 
participants yielded insight into possible areas for further research and collaboration, 
and provide guidance for both supervisors and financial institutions in terms of 
applying xAI in practice. Moreover, the aim was to facilitate the discussion between 
supervisory authorities (in this case DNB and the Dutch Authority for the Financial 
Markets) and financial institutions (in this case three banking institutions) regarding 
the application of AI models, mutual expectations, and the types and degrees of 
desired explainability for a responsible use of AI in the financial sector. 

1.2 What is xAI?
Explainable AI (xAI), also referred to as interpretable or understandable AI, aims to solve 
the "black box" problem in AI. A typical AI solution utilizes data (e.g. information on a 
person’s financial situation) and produces an outcome (e.g. a risk of default indication). 
However, in such a process it is not always evident from the output how or why a 
certain outcome is reached based on the data. Especially when using more complex 
AI models (e.g. deep neural networks) the process from input to output is practically 
impossible to interpret in terms understandable by humans, even with knowledge of 
the inner workings, weightings, and biases of the system. The term xAI encompasses 
a wide range of solutions that explain why or how an AI model arrives at outcomes 
or decisions, in general and/or in specific cases.

6 Van den Berg & Kuiper (2020)

During this study the following definition of xAI is used: “Given a stakeholder, xAI is  
a set of capabilities that produces an explanation (in the form of details, reasons,  
or underlying causes) to make the functioning and/or results of an AI solution 
sufficiently clear so that it is understandable to that stakeholder and addresses  
the stakeholder’s concerns.”

This definition and the conceptual framework used in this preliminary study 
originate from the paper by van den Berg and Kuiper (2020), which relates the 
various stakeholders to the types of explanation they require for specific use cases. 

1.3 Scope
The shared conceptual framework6 was applied to three use cases in finance: 
1. Consumer credit
2. Anti-money laundering (AML)
3. Credit-risk management

These three use cases each have different domains and stakeholders, and can 
potentially lead to different interpretations regarding the need for xAI. 

1.3.1 Consumer credit
Consumer credit is credit, other than a mortgage loan, which can be used to 
purchase goods and services. Financial institutions that provide consumer credit 
have the right and obligation to ensure that the borrower has the capacity to repay 
the loan. Credit risk assessment processes have evolved from assessments and 
decisions made by loan officers to more automated decision-making requiring 
minimal human intervention because of the use of AI.
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1.3.2 Anti-money laundering (AML)
The use case on anti-money laundering has a focus on AI applications which are 
used to conduct suspicious activity monitoring and transaction monitoring. In this 
study, we considered a use case with a machine learning aspect used for transaction 
monitoring, and an AI-solution developed to detect fraudulent activity in 
corresponding banking transactions.

1.3.3 Credit- risk management
The use case on credit-risk management focusses on internal risk and/or capital 
requirement models, early warning systems and probability of defaults models, 
where AI applications are used to improve or replace the currently-used models.  
The AI-application analyzed is an AIRB (advanced internal rating-based) model for  
a bank's residential mortgage portfolio - a capital model.

1.4 Structure
This exploratory study has been structured in the following manner:

 ▪ First, exploratory discussions were held with the participants on xAI requirements 
and expectations;

 ▪ Second, the supervisory authorities exchanged views with the financial 
institutions to identify relevant use cases, and to prepare a research methodology 
(e.g. interview template); 

 ▪ Third, a series of semi-structured interviews with stakeholders and banks were 
conducted;

 ▪ Fourth, all the participants were provided with written feedback, followed up by a 
plenary discussion to collectively arrive at main findings.

The semi-structured interviews were the main source of information for the use 
cases covered in this document. As a starting point, questions were drafted for a 
range of topics on xAI, but discussion was permitted to develop naturally in the 
direction deemed most suitable by the persons involved. One interview per use case 
and institution was conducted (bank or supervisory authority); in some cases, an 
interview took place to address the issue of xAI in general, in addition to the interview 
on the specific use cases. For the interview, the use case experts from the institution 
were invited. These experts either had a technical expertise (i.e. those directly involved 
with the development) or a more supervising/governing role. 

Based on the framework and corresponding whitepaper, a template was drafted 
which addressed the applicability of the framework to a specific use case. This 
document was used by the interviewees as a starting point to help them reflect  
on the framework for each use case.
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2 Framework

7 Lipton (2018)
8 Rudin (2019)
9 Van den Berg & Kuiper (2020)
10 Arrieta et al. (2019)
11 Gerlings et al. (2020)

2.1 Main concepts relevant for xAI
To better understand xAI and its objectives and aims, a clear picture of various 
associated concepts is essential. A critique on the xAI field expressed by various 
authors is that xAI is often not clearly defined and discussed without proper 
understanding of the surrounding concepts and the parties involved.7 Furthermore, 
as there are types of model that are inherently more transparent (and less “black 
box”) there is a discussion about whether opaque ML models should be avoided 
altogether, which can be seen as a different approach to xAI.8 The most important 
concepts surrounding xAI are covered below; for a more exhaustive list see the 
whitepaper.9

 ▪ Transparency is one of the central concepts of xAI. Importantly, the term is used 
in two distinguishable contexts or manners. 1) Model transparency is the property 
of a model to be understood by a human as it is, in terms of its general working  
or design. The opposite of “black-boxness” is (model) transparency.10 This type of 
transparency is generally what model developers refer to. 2) Transparency of the 
implementation of an AI model or system relates to openness and not concealing 
information for stakeholders. This form of transparency is generally what the 
colloquial meaning of transparency refers to. This has also been called “process 
transparency”.11 

 ▪ Interpretability is closely related to transparency, as in most definitions an 
interpretable model implies model transparency. Occasionally, interpretability  
is defined as the capacity of a system to be made understandable via a proper 
explanation, even if it is not interpretable as it is.

 ▪ Understandability entails being comprehensible and able to be understood  
by a specific receiver of the explanation, i.e. a stakeholder. This concept is less 
ambiguous than e.g. transparency, but underlines the importance of a stakeholder.

 ▪ Stakeholder refers to the individual or party requiring information often in the 
form of an explanation. 

 ▪ Explainability entails that an explanation can be formulated. An explanation is 
contextual, relevant and has the goal of addressing a stakeholder’s concern or 
interest. 

 ▪ xAI as the definition is used for this project: Given a stakeholder, xAI is a set  
of capabilities that produces an explanation (in the form of details, reasons,  
or underlying causes) to make the functioning and/or results of an AI solution 
sufficiently clear so that it is understandable to that stakeholder and addresses 
the stakeholder’s concerns. 

Framework
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2.2 Stakeholders in xAI
The following list of stakeholders for AI in the financial sector is proposed:12

 ▪ End user (external e.g. a customer, or internal) 
 ▪ Explainer to the end user (e.g. financial advisor or loan officer in the case  
of a customer)

 ▪ AI developer
 ▪ Domain expert
 ▪ Executive management
 ▪ Management responsible for the AI solution (1st line)
 ▪ Operational control (2nd line)
 ▪ Internal audit (3rd line)
 ▪ Regulatory stakeholders and others (e.g. supervisory authorities and auditors)

Stakeholders have various interests, and as such, an explanation can have various 
goals. For instance, an explanation can have the goal of societal acceptance, 
regulatory compliance, system development, or aiding in model development. 
Examples of intermediate goals are model accuracy, interpretability, fidelity, fairness, 
privacy, usability, reliability/robustness, or scalability.13 Regardless of the goal,  
a stakeholder has a selection of specific concerns that can be met by various types  
of explanation, i.e. that require specific information. 

12 Depending on the context or use case, the amount and nature of stakeholders may differ
13 See e.g. Arietta et al. (2019)

2.3 xAI Framework
In the framework below, relevant stakeholders for a generic AI use case in finance 
are cross-referenced with the types of explanation potentially required by that 
stakeholder; i.e. the content of explanation that might address the main concerns of 
that stakeholder.
 
The types of explanation cover both local and global explanations in terms of model 
output and performance, but also extend to processes surrounding the AI such as 
data selection, design, and governance. As such, it covers concepts such as 
transparency and explainability in the wider sense generally found in the literature, 
rather than the more narrow sense only pertaining to the AI model and its direct 
developers. 

Framework
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Figure 3.1 Conceptual xAI framework taken from Van der Berg & Kuiper 2020. The cells with a “■” indicate that this type of content of 
explanation might be relevant for a specific type of stakeholder

Type of stakeholder

Type of explanation External Service provider Other stakeholder (context)

 
 

End user

End user’s 
external 
advisor

End user’s 
external 
advisor

 
AI  

developer

 
Domain 

expert

 
Executive 

mgmnt

Operational 
mgmt.  

(1st line)

Operational 
control  

(2nd line)

 
Audit  

(3rd line)

 
Regulator  

A

 
Regulator 

B

 
Regulator 

C

The reasons, details or underlying  
causes of a particular outcome

■ ■ ■

The data and features used as input  
to determine a particular outcome

■ ■ ■ ■

The data used to train and test the  
AI system

■ ■ ■ ■ ■ ■

The performance and accuracy of 
the AI solution

■ ■ ■

The principles, rules, and guidelines 
used to design and develop the  
AI solution

■ ■ ■ ■ ■

The process that was used to design, 
develop, and test the AI solution

■ ■ ■ ■

The process of how feedback is  
processed

■ ■ ■ ■

The process of how explainers are 
trained

■ ■

The persons involved in design,  
development and implementation  
of AI solution

■ ■ ■ ■ ■

The persons accountable for 
development and use of the 
AI solution

■ ■ ■ ■
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3 Use cases

This chapter discusses the three use cases from the perspective of the 
supervisory authorities and the banks: 

 ▪ Consumer credit
 ▪ Credit-risk management 
 ▪ Anti-money laundering

3.1 Consumer credit
Interviews were conducted with two banks as well as with the AFM for the 
consumer credit use case. 

The first bank provided a case for mortgage lending. The purpose of this AI 
application is to flag mortgages with traffic-light colors to support middle office 
employees. The AI application runs in parallel to other, more traditional applications 
in the mortgage approval and monitoring process. The AI application is rather 
traditional, based on logistic regression, and uses 10 variables. It differs from a 
business rules application in that it uses historical data. The bank considered 
whether the users of the AI application, mid office employees, should be provided 
with detailed insight into the workings of the AI application. In this particular case, 
after weighing the degree of information to be provided to these employees, it was 
decided not to give full insight in order to prevent potential gaming of the system.

The second bank recently introduced an add-on to the traditional loan approval  
for consumer credit process, with transactional data at the basis. This new AI 
application runs alongside the traditional application, leading to an ensemble model. 
The traditional application uses basic data, such as the data a client provides through 
the application process or data from credit bureaus. The new application is trained 

and continuously fed with transactional data. The combination of both models 
resulted in fewer defaults on loans. 

For this use-case, model developers are considered the most important stakeholders 
with regard to explainability. It was observed that it would be possible from a 
technological point of view to explain the model to customers, although this requires 
a thorough understanding of which type of narratives would be comprehensible by 
different consumer groups. This might require an interactive process, which can 
present a challenging IT problem. 

From the perspective of the AFM, the so-called lending standards are the basis for 
loan approval (or rejection). The AFM assesses lenders for compliance with lending 
standards. Lenders must comply with the lending standards in 100% of the cases. 
Therefore, when applying AI, the AI application must at all times be 100% accurate. 
When a bank uses AI in the context of consumer lending, from a model supervision 
perspective the AFM is interested in all types of explanations as is shown in figure 4.1, 
either to be able to assess compliance with the lending standards, or to assess and 
monitor the whole lending process. 

It is observed that there are differences in interpretation regarding the exact scope 
of explainable AI. From the adopted definition of explainable AI, it is not sufficiently 
clear whether specific informational needs from the supervisor should be regarded 
as proper explainability concerns or as instances of regular supervisory information 
requirements that are not specific for AI.

Use cases 
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Use cases 

Figure 4.1 Types of explanation relevant for the supervisor  
according to the supervisor and the participating banks

Type of explanation Relevant for supervisor (AFM)

According  
to AFM

According to  
participating banks

The reasons, details or underlying causes of a particular 
outcome

■ ■ / -

The data and features used as input to determine  
a particular outcome

■ ■

The data used to train and test the AI system ■ ■

The performance and accuracy of the AI solution ■ ■ / -

The principles, rules, and guidelines used to design and 
develop the AI solution

■ ■

The process that was used to design, develop, and test 
the AI solution

■ ■

The process of how feedback is processed ■ ■ / -

The process of how explainers are trained ■ ■ / -

The persons involved in design, development and 
implementation of AI solution

■ ■ / -

The persons accountable for development and use of 
the AI solution

■ ■

In summary, for consumer credit, explainability towards consumers (loan applicants) 
is technologically possible for the evaluated use-cases, but potentially challenging. 
Furthermore, in most cases there is a human-in-the-loop (the advisor) who provides 
the customer with information. The lending standards are the basis (and thereby the 
explanation) for rejection of most loans. However, for cases where an AI application 
is used to reject cases exceeding the restrictions of lending standards, explanations 
to consumers might become an issue in the future.

3.2 Credit risk
One bank as well as DNB were interviewed with regard to credit risk. The AI-application 
of the bank is an AIRB (advanced internal rating-based) model for the bank's 
residential mortgage portfolio - a capital model. It predicts a probability of default 
for each mortgage customer and a prediction of loss-given-default for each 
customer. In essence, the model is simple. It contains only 10-15 variables and is 
based on logistic regression. There is no interaction with the consumer based on the 
model. The model is used to calculate capital. The main stakeholders for explanations 
are the internal first line and the supervisory authority (JST in this case). More 
advanced AI could probably lead to better performance, but the bank is reluctant to 
start using these advancements, due to the expected long and time-consuming 
process to get approval, both internally and externally (JST).

From the interview with DNB, it became apparent that regulations heavily determine 
the boundaries for what kind of AI-applications can be used. Until now, only logistic 
regression models are used across all financial institutions participating in the study. 
Models that are more complex may not meet requirements like traceability and 
replicability. Another requirement for credit risk models is to demonstrate "experience" 
in applying a model. In practice, this means that the model must be used as a shadow 
model for at least three years before approval can be given. 

Banks are conducting plentiful research and pilots into AI in credit risk, but the 
regulations are a limiting factor for further implementation: AI in credit risk currently 
does not appear to lead to sufficient benefit compared to the challenge of getting  
its use approved within the current regulatory framework to make it worthwhile. 
The bank that is the first to implement new AI methods must assume that it takes at 
least 1.5 years before approval is granted. Figure 4.2 shows the types of explanations 
relevant for the supervisor, through the eyes of DNB and the participating banks.
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Use cases 

Figure 4.2 Types of explanation relevant for the supervisor  
according to the supervisor and the participating banks

Type of explanation Relevant for supervisor (JST)

According  
to DNB

According to 
participating banks

The reasons, details or underlying causes of a particular 
outcome

■

The data and features used as input to determine 
a particular outcome

■ ■

The data used to train and test the AI system ■ ■

The performance and accuracy of the AI solution ■

The principles, rules, and guidelines used to design and 
develop the AI solution

■ ■

The process that was used to design, develop, and test  
the AI solution

■ ■

The process of how feedback is processed ■

The process of how explainers are trained ■ ■

The persons involved in design, development and  
implementation of AI solution

■

The persons accountable for development and use of  
the AI solution

■ ■

Other: data lineage ■

To sum up, in credit risk management, explainability is heavily embedded in regulations 
like CRR. Credit risk management forces ‘transparent by design’ models, therefore, 
explainability is less of an issue. Regulations/supervisory authorities are slow to change 
on credit risk, possibly to the more international nature and societal importance of 
regulation in this use case. Changing these regulations to allow for AI-models that are 
more complex will be an incremental process that takes time and trust in the safety of 
such models.

3.3 Anti-money laundering
Two banks as well as DNB were interviewed with regard to AML. The use case  
of one bank involves an AI-solution developed to detect fraudulent activity in 
corresponding banking transactions. The AI-solution consists of two algorithms 
(models): a deduplication algorithm and a classification algorithm, which are used to 
detect possible fraudulent transactions. AML investigators check these transactions. 
Therefore, there is a human-in-the-loop. The AML investigator receives explanations 
(e.g. the most important features) as part of the outcome (whether a transaction is 
flagged as suspicious) of the AML model. In addition to the outcome of the AI model, 
various information sources are used by the AML investigator to further investigate 
and determine fraudulent activity. Explanation, in a broader sense, to other 
stakeholders is via (technical) documentation and various internal processes. 

The use case of the other bank concerns machine learning used for transaction 
monitoring. In the past, transaction monitoring was only rule-based. Currently,  
a number of machine learning (ML) models are used in conjunction with a  
rule-based methodology. For instance, there is a supervised ML model that is used  
as noise reduction on the output of the (business) rule-based system. Furthermore, 
there is also a supervised model that gives customers scores based on suspicion of 
money laundering practices. In addition, there is an unsupervised anomaly detection 
ML model. The output of the models is intended for transaction monitoring analysts 
(in total about 350 analysts). These have expertise in recognizing integrity risks, 
but these analysts are generally not concerned with assessing the quality of model 
output, which is done by a quality assurance analysts. 

The ML model output includes extensive information (which can be considered 
explanation) about suspicious situations, e.g. indicate the most relevant features,  
as opposed to rule-based systems. This explainability aspect of these (modern ML) 
models is thus an important part of the subsequent analysis done by the analyst.  
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This analyst uses a multitude of other data (sources) outside the detection models 
for further verification. The role of the analysis entails that also in this use case, there 
is a human-in-the-loop, who is the most important stakeholder in need of 
explanations. 

The application of AI in the AML process is bearing fruit, as results are improving 
compared to traditional models: fewer false positives and fewer false negatives  
(so more suspicious transactions are reported). Both internally for banks, but also  
for supervisory authorities a change of mindset is often still required to transition 
from the traditional way of thinking in thresholds (encoded in business rules), to 
more probabilistic thinking about the features of an AML case (locked up in modern 
machine learning methods). With the latter, explanations can be more complex,  
but not of less quality.

DNB ensures that banks comply with the Anti-Money Laundering and Anti-Terrorist 
Financing Act. Currently, DNB does not impose any requirements on which AI model 
is used for AML, as long as it can be explained, both to the supervisory authority and 
internally. Exactly what sufficient explanation is for which type of model in various 
contexts is not defined by DNB, neither in specific requirements (which perhaps is 
not desirable due to the highly varying contexts in which AI is used), nor general 
guidelines. For the time being, there is also no framework in which explainability is 
defined, which is directly applicable to this use case. In the context of controlled 
business operations, a bank must be able to explain how its systems work. If a bank 
cannot explain an AI application, both to the supervisory authority and internally, 
there may be uncontrolled business operations with regard to this specific part and 
that the bank does not sufficiently manage its risks. Figure 4.3 shows the types of 
explanations relevant for the supervisor (JST) according to DNB and the banks.

Figure 4.3 Types of explanation relevant for the supervisor  
according to the supervisor and the particpating banks

Type of explanation Relevant for supervisor (JST)

According  
to DNB

According to 
particpating banks

The reasons, details or underlying causes of a particular 
outcome

■ ■ / -

The data and features used as input to determine  
a particular outcome

■ ■ / -

The data used to train and test the AI system ■ ■ / -

The performance and accuracy of the AI solution ■ ■

The principles, rules, and guidelines used to design and 
develop the AI solution

■ ■

The process that was used to design, develop, and test 
the AI solution

■ ■

The process of how feedback is processed ■ ■

The process of how explainers are trained ■ ■ / -

The persons involved in design, development and  
implementation of AI solution

■ ■ / -

The persons accountable for development and use of 
the AI solution

■ ■ / -

In summary, AML is one of the use cases that can benefit most from AI in terms of 
improving results. So far, the issue of explainability did not hinder the use of more 
complex AI/ML models. The internal AML analyst/investigator (human-in-the-loop) 
is viewed as the most important stakeholder with regard to explanations, and 
additionally, this investigator is trained to work with and understand model output. 
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4 Conclusions and way forward

This chapter discusses the mutual expectations of supervisory authorities and 
banks on the topic of xAI, draws conclusions on the usability of the conceptual 
framework, and presents recommendations on how to proceed.

4.1 Mutual expectations
One of the main findings of this study is that the explainable AI is high on the agenda 
of banks and supervisory authorities. Within banks, it is or will become part of an 
ethical framework. Such a framework generally builds on existing principles or 
procedures, but there is a trend towards more unification of principles and a more 
explicit focus on AI. From the perspective of supervisory authorities, explainability is 
not exclusively an ethical concern, as it is also relevant from a prudential and legal 
perspective (e.g. a prudential or legal framework such as CRR, lending standards, 
Wwft, and GDPR, and contain requirements that include explainability). This broad 
scope involves a broad range of actors, including data protection supervisory 
authorities.

The use of complex AI-models by banks is increasing although still limited. 
Reasons for the slow adoption are:
1. Time needed to become familiar with and implement complex models and especially 

xAI-methods. Banks have accumulated considerable experience in terms of 
Machine Learning (ML), and aim to continuously develop their knowledge on ML. 
However, the xAI field is still developing rapidly. Deciding what xAI framework  
to choose (SHAP, etc.) and how to implement it, is often a difficult process as  
in a short period new methods might make a current xAI-method obsolete. 

2. Uncertainty as to whether financial regulations (like lending standards, WFT, 
Wwft, CRR etc.) or the supervisory authorities would allow it.

3. For many use cases, traditional models are sometimes adequate.

4. Internal hesitation to implement complex AI models in customer facing applications.
5. AI models that are more complex are difficult to maintain and monitor over time 

(apart from development).

What do banks expect from supervisory authorities?
1. Supervisory authorities current approach is not an obstacle for banks to develop 

and implement AI solutions. The regulatory framework in many use cases is 
sufficiently clear as not to obstruct financial entities implementing AI into their 
operations. For the near future, setting shared ‘rules of the game’, i.e. joint 
guidance, is considered desirable. The underlying assumption here is that xAI will 
become a topic of increasing regulatory and legislative interest. So rather than 
top-down regulation, a shared vision (regulatory clarity) on what proper (x)AI is 
would be beneficial; principles are welcomed, as opposed to strict rules. Clear 
guiding principles would have the added benefit of leading to a level playing field. 
Banks and supervisory authorities can attain common ground as they uphold the 
same principles. 

2. Banks expect supervisory authorities to increase their knowledge on (x)AI. 
E.g., supervisory authorities should understand the limitations of xAI. xAI-methods 
can be helpful in providing explanations, but generally only demonstrate 
correlations. Supervisory authorities also must be aware that xAI-methods cannot 
and do not make all AI-models fully explainable and that full explainability/
transparency might lead to gaming in some use cases. 

3. Banks call for more cooperation (common vision/opinion) between supervisory 
authorities and alignment of supervisory authorities on a national and EU level. 
In addition, the regulatory divergence, which occurs due to different interests 
(e.g. financial versus privacy interests of different supervisory authorities), 
should be addressed. 
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4. Various ways to increase bank-supervisory authorities contact were mentioned 
including a) a point of contact where banks can safely discuss potential AI 
innovations, b) a sandbox-like environment where technical developments can 
safely be shared, and c) a platform to safely discuss the ethical dilemmas that 
banks might face.

5. Banks are of the opinion that the degree of explainability highly depends on 
whether there is a human-in-the-loop. Therefore, the question is to what extent 
a human-in-the-loop can alleviate the strictness/requirements for explainability, 
as opposed to a (fully) automated process based on AI/ML.

6. According to the banks, the supervisory authorities perspective is less pronounced. 
Perhaps this is the case because they are less aware of the cutting edge of AI 
development. However, more detail on their stance on xAI would be very helpful 
for banks.

What do supervisory authorities expect from banks? 
1. The interviewed supervisory authorities will most likely not restrict the use of 

specific AI-models by banks beforehand. However, according to the interviewees 
from DNB and AFM, AI models should be explainable, either intrinsically or with 
a post-hoc method. The required level of explainability depends on the risks the 
AI model poses for the consumer, the transparency and stability of the financial 
market and applicable legal frameworks. In other words, the required level of 
explainability highly depends on the use case and the stakeholders.

2. Whether a certain post-hoc explanation is deemed sufficient also depends on  
the use case and stakeholders. 

3. The matrices (see chapter 4) based on the framework indicate that the 
interviewees from DNB and AFM seem to adopt a broader scope of explainability, 
i.e. the types of explanation required by a supervisory authorities, compared to 
banks. This difference in perspective primarily concerns the question whether 
specific informational needs from the supervisor should be regarded as proper 

explainability concerns or as instances of regular supervisory information 
requirements that are not specific for AI.

4.2 Usability of the conceptual xAI framework
The conceptual framework was reported to be useful in mapping mutual 
expectations of stakeholders regarding types of explanations. The framework can 
thus serve as a starting point to discuss which explanations should be provided and 
how to provide these. The framework should not be regarded as a checklist to 
prescribe how explainability should be implemented. However, the framework 
provided a context to move forward jointly in this specific project. 

The matrices in chapter 4 indicate that the interviewees from DNB and AFM require 
all types of explanations. This could be interpreted as micromanagement, according 
to the participating banks. The question is what process or guidance is useful so that 
the supervisory authority can trust that the use of x(AI) is up to standards. 

The conceptual framework is based on the assumption that explanations are 
contextual and depend on the specific use case, their stakeholders, and the 
stakeholders’ interests. This assumption has been confirmed in the project. However, 
it was argued that explainability must be considered together with aspects like 
fairness, bias, privacy, security et cetera. For example, in specific cases explanations 
cannot be disclosed because of security reasons. Occasionally, these conflicting 
aspects create dilemma’s, e.g. in certain cases bias might be unavoidable.
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4.3 Key takeaways and way forward 
One of the objectives of this study was to exchange ideas on and further develop a 
shared conceptual framework on xAI by applying it to three practical use cases. 
Furthermore, the aim was to facilitate the discussion between supervisory authorities 
DNB and AFM and the participating banks regarding the application of AI models, 
mutual expectations, and the types and degrees of desired explainability for a 
responsible use of AI in the financial sector. Beside the findings on the usability of the 
conceptual xAI framework, we also want to highlight the following key takeaways of 
this preliminary study found in the facilitated discussion on xAI:

 ▪ First, based on the interview sample, there appears to be a disparity between the 
interpretation of the scope of explainable AI from the supervisory authorities as 
compared to interpretation of the participating banks, based on the aggregated 
individual viewpoints recorded in this study. DNB and AFM interviewees indicated 
they require all types of explanations covered by the framework, while bank 
interviewees only consider a subset to be relevant instances of explainability 
concerns for each use case. Therefore, looking forward it could be beneficial for 
banks and supervisory authorities to formulate a more nuanced and detailed 
viewpoint on the desired scope of xAI for different types of AI models. Developing 
such nuanced and detailed viewpoints can also provide clarification regarding the 
minimal required level and type of xAI per use case, and facilitate considerations 
regarding the trade-off between performance and explainability.

 ▪ Secondly, there is a need for enhanced cooperation between supervisory 
authorities, and alignment of supervisory authorities on a national and EU level on 
the topic of AI and explainability of AI models. Developments in AI specifically call 
for increased cooperation between supervisory authorities due to AI’s impact on 
both the technical and social domain. Looking ahead, it would be useful to discuss 
and create shared principles regarding explainable AI amongst supervisory 
authorities on both national (for instance, DNB, AFM and AP) and EU level (for 
instance EBA, ECB and SSM). 

 ▪ Thirdly, the need to increase contact between bank and supervisory authorities to 
safely discuss and share AI innovations was brought up and was found to be of 
importance. Looking forward, it would important to discuss how and via which 
communication channels the contact between banks and supervisory authorities 
(both national- and EU level) on the topic of AI can be further facilitated. 

 ▪ Fourthly, explanations were found to be highly contextual and to vary per use 
case. The framework as used in this study was indicated in the interviews to be a 
potentially valuable starting point, but not as a comprehensive approach, to 
consider xAI for use cases. Looking forward, to determine the minimum desired 
level and type of explanation for a use case, a more granular framework of types 
of explanations could be useful. This might be achieved by building on a set of AI 
principles (such as proposed in the first point) and creating a more granular 
framework which considers use cases and model choice within those use cases to 
give a practical summation of xAI aspects to consider. 

The challenges presented by these key takeaways will be taken up by the iForum in 
2021.
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