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Abstract

This paper introduces a novel media-based index of climate policy uncertainty – the
CPU-Concern index – that captures both the prevalence of climate policy uncertainty
and the intensity of public concern. Using data from the Netherlands, a setting charac-
terized by ambitious climate targets and persistent credibility challenges, we document
how policy announcements shape perceived uncertainty through signaling effects. The
CPU-Concern index rises during contested policy debates and declines following for-
mal ratification, with heterogeneous responses depending on the policy’s ambition and
credibility. We show that climate policy uncertainty primarily transmits through shifts
in business and consumer sentiment, affecting stock market prices, investments and real
activity. Furthermore, negative CPU shocks generate more persistent economic drag
than positive ones, while the opposite holds true for nominal variables, thus highlighting
asymmetries in how uncertainty shapes behavior and potential policy reactions. Our
findings underscore the importance of credible and transparent policy communication
in reducing uncertainty and supporting the low-carbon transition.
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1 Introduction

Climate policy uncertainty is increasingly recognized as a crucial factor influencing economic

decision-making and investment in green technologies. As governments worldwide set am-

bitious targets for emissions reductions and the transition to a low-carbon economy, the

credibility and consistency of these commitments play a vital role in shaping agents’ expec-

tations and behavior. Defined by Campiglio et al. (2024) as arising from “misalignments

between announced climate targets and actual policy actions”, climate policy uncertainty

affects agents’ expectations about future carbon prices and their broader economic environ-

ment. Often, agents rely on policymakers’ public commitments, like net-zero pledges, as key

signals of future policy direction. However, these announcements influence behavior only

if they are viewed as credible and likely to be followed by concrete actions. A history of

policy reversals and unmet commitments can erode this credibility, leading agents to doubt

government reliability and hesitate in making low-carbon investments.

This skepticism is further fueled by the high perceived transition risks, where socio-

economic costs – including potential unemployment, rising energy prices, and capital strand-

ing – might materialize as economies shift away from carbon-intensive technologies (Campiglio

and van der Ploeg, 2002). Such impacts may trigger political backlash, thus compelling pol-

icymakers to retreat from ambitious climate goals or provoking policy reversals as newly-

elected administrations pursue different directions. Additionally, ambiguities or inconsisten-

cies in climate policies might substantially affect investment choices and shape the overall

pathway of the low-carbon transition. These uncertainties make it difficult for firms to

commit to long-term investments in clean technologies, as they cannot fully predict whether

current policies will remain supportive and stable over time. The climate economics literature

has highlighted that uncertainties surrounding future policy implementation can discourage

investment in sustainable technologies, as firms are faced with the unpredictability of future

costs and market conditions (Helm et al., 2003; Nemet et al., 2017; Fuss et al., 2008; Lemoine,

2017; Fried et al., 2022). These studies underscore that potential policy inconsistency and

its socio-economic consequences are a key driver of firms’ reluctance to invest, as investment

decisions must weigh in immediate risks and possible longer-term shifts in the economic
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landscape (Battiston et al., 2021; Vona et al., 2018).

Although climate policy uncertainty is widely acknowledged as an important factor shap-

ing economic behavior, it remains relatively under-researched, largely due to the challenges

related to its definition and quantification in a consistent manner. Existing approaches of-

ten follow the methodology of Baker et al. (2016), who use newspaper-based text indices to

quantify economic policy uncertainty. Building on this framework, some studies have applied

similar text-based methods to measure climate policy uncertainty.

However, these approaches typically fall short of capturing the more nuanced dimen-

sions of climate policy uncertainty, such as policy credibility, alignment with stated targets,

risk of policy reversals, and the socio-economic costs associated with the low-carbon transi-

tion(Basaglia et al., 2025).

To address this gap, we develop a novel, media-based measure of climate policy uncer-

tainty – the CPU-Concern index. that captures not only the frequency of uncertainty-related

reporting but also the degree of concern, as reflected in the sentiment and tone of media cov-

erage. Drawing on methodologies from the economic policy uncertainty literature (Baker

et al., 2016) and recent work on fiscal policy signaling (Melosi et al., 2024), we link policy

announcements to media-reported uncertainty in a systematic and dynamic way.

Our approach builds on recent advances such as Basaglia et al. (2025), who construct a

U.S. based CPU index using newspaper frequency analysis and demonstrate its significant

effects on firm behavior and innovation. While their index captures directional uncertainty

and sector-level exposure, we extend this literature by integrating sentiment weighting and

legislative timing to capture perceived credibility and concern in the Dutch context

Using this index, we make four main contributions. First, we construct the CPU-Concern

index for the Netherlands, providing the first high-frequency, sentiment-weighted measure

of climate policy uncertainty grounded in financial media. Second, we show that climate

policy uncertainty follows the legislative cycle, rising during political debate and declining

after formal ratification, highlighting how institutional processes shape public expectations.

Third, we provide new evidence on the signaling effects of climate policy announcements,

demonstrating that perceived uncertainty responds not only to policy content but also to its

timing, ambition, and credibility. Fourth, we quantify the macroeconomic effects of CPU
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shocks, showing that they reduce business sentiment, investment, industrial production, and

stock valuations.

Importantly, we offer the first direct test of the expectations channel in this context, us-

ing counterfactual simulations to isolate the role of forward-looking sentiment. Our results

complement recent work showing that uncertainty affects the economy primarily through co-

ordinated expectations (Gambetti et al., 2023). We also document novel asymmetric effects,

with negative CPU shocks – defined by the sentiment –weighted tone of media coverage,

generating significantly stronger and more persistent macroeconomic impacts than positive

ones. This finding is consistent with recent evidence that downside uncertainty, rather than

uncertainty per se, drives contractionary responses (Forni et al., 2025), and complements

the directional asymmetries documented by Basaglia et al. (2025), who distinguish between

uncertainty about policy tightening and weakening.

Together, these findings underscore the economic relevance of climate policy credibility

and communication. By integrating media sentiment, legislative timing, and expectation

formation, our approach offers a new framework for understanding the costs of credibility

gaps, and for designing more effective and predictable policy to support the low-carbon

transition.

This paper proceeds as follows. Section 2 reviews the background literature on climate

policy uncertainty, with a focus on measurement approaches and economic implications.

Section 3 develops the conceptual framework underlying our analysis, highlighting the role of

policy credibility, signaling, and expectation formation in shaping climate policy uncertainty.

It also illustrates how these dynamics unfold in the Netherlands, a relevant case study due

to its ambitious climate targets and persistent implementation gaps. Section 4 presents the

construction of the CPU-Concern index and discusses its key properties. Section 5 documents

the signaling effects of climate policy announcements on perceived uncertainty. Section 6

quantifies the macroeconomic effects of shocks in climate policy uncertainty as captured

by changes in the CPU-Concern index, illustrating counterfactuals and asymmetric effects.

Section 7 discusses the policy implications of our results. Section 8 concludes.
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2 Literature Review

Government commitments shape expectations, with consequences for investment, consump-

tion, and macroeconomic stability. CPU often arises from misalignment between long-term

climate goals and actual policy implementation, generating ambiguity for firms and house-

holds navigating the low-carbon transition. In this context, accurately measuring CPU and

understanding its macroeconomic transmission channels are essential for designing credible

and predictable climate policy.

A leading approach to quantifying CPU builds on the Economic Policy Uncertainty (EPU)

index by Baker et al. (2016), which tracks the frequency of keywords related to uncertainty in

news media. Applied to climate policy, this method has been used by Gavriilidis (2021) and

Berestycki et al. (2022) to construct CPU indices that detect spikes in uncertainty following

major policy announcements. While informative, these indices typically lack direct links to

specific policy events and do not capture the tone or perceived credibility of policy commu-

nication. Our study addresses this gap by combining text-based methods with a detailed

mapping of actual climate policy announcements and a sentiment-weighted index. This en-

ables a more nuanced measure of CPU that reflects not just the presence of uncertainty, but

also the level of concern it generates in public discourse.

The fiscal policy literature offers further insights into the sources of policy uncertainty.

In particular, Melosi et al. (2024) emphasize that markets respond not just to the substance

of fiscal announcements, but to their credibility and timing. Their framework distinguishes

between different phases of policy signaling, intention, implementation, and revision, and

shows that uncertainty often emerges from weak or inconsistent communication across these

stages. By adapting this approach to climate policy, we can better understand how perceived

gaps between announced targets and follow-through generate CPU. Our measurement strat-

egy draws directly on this insight, tracking media responses to climate policy developments

to capture how credibility gaps materialize in public sentiment.

While signaling explains the formation of CPU, the question remains how such uncer-

tainty propagates through the economy. Here, recent macroeconomic research highlights the

central role of expectations. Gambetti et al. (2023) show that only “agreed uncertainty”,
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where agents share beliefs about future risks, affects macroeconomic outcomes, emphasizing

that uncertainty must shift coordinated expectations to have real effects. This provides a

theoretical rationale for using sentiment and tone in media coverage as a proxy for economy-

wide belief formation. Our analysis builds on this insight by directly testing the expectation

channel through counterfactual simulations, showing that CPU shocks reduce investment and

output primarily by depressing forward-looking sentiment.

Moreover, we show that the effects of CPU are asymmetric: negative CPU shocks, which

reflect heightened concern about policy backtracking or inaction, have significantly more

persistent and damaging macroeconomic effects than positive ones. This result parallels

findings from Forni et al. (2025), who show that downside uncertainty, rather than general

variance, is what drives contractionary responses. Together, these studies suggest that the

costs of climate policy uncertainty depend not only on its frequency, but on the credibility

of its signals and the direction of its perceived risks.

By linking the signaling structure of climate policy to the expectations channel through

which uncertainty affects the macroeconomy, our study contributes a new perspective on how

policy credibility shapes economic behavior in the transition to a low-carbon economy.

3 Conceptual Framework and the Political Economy of

Climate Policy

Climate policy uncertainty stems from the gap between policymakers’ announced climate

targets and the credibility of their commitment to implement them. In the transition to a low-

carbon economy, governments use public announcements, such as emissions reduction goals,

legislative proposals, and regulatory plans, to shape expectations and incentivize private

sector action. However, when such announcements are perceived as lacking credibility or

feasibility, they generate uncertainty that affects firms’ investment decisions and economic

behavior more broadly.

CPU is not static but evolves over time, reflecting the dynamic process through which

agents form and revise beliefs about future climate policies. This process is influenced by the

sequence of policy announcements, legislative debates, stakeholder consultations, and imple-
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mentation delays. Uncertainty spikes when new information reveals potential misalignments

between targets and actual policies, and gradually declines when credible implementation

signals emerge. This framework builds on insights from the fiscal and monetary policy liter-

ature, where the credibility and consistency of policy announcements play a central role in

shaping expectations (Bernanke et al., 2004; Faust and Svensson, 2001).

The Netherlands provides an ideal setting to analyze the political economy of climate

policy uncertainty. Three features make it a particularly instructive case. First, the Dutch

government has adopted ambitious climate targets, codified in the Dutch Climate Act, which

mandate a 55% reduction in greenhouse gas emissions by 2030 relative to 1990 levels and cli-

mate neutrality by 2050. These commitments are reinforced by the National Climate Agree-

ment, a collaborative framework involving businesses, civil society, and government stake-

holders. Second, Dutch climate policy operates within a consensus-based political economy,

characterized by broad societal engagement but also by structural trade-offs and frictions.

Sectors with high emissions, such as agriculture and heavy industry, have successfully lobbied

for exemptions or implementation delays, complicating the policy process and contributing to

climate policy uncertainty (Van Der Straten et al., 2024). Third, public awareness of climate

risks is unusually high, driven by the Netherlands’ geographic vulnerability to sea-level rise

and other environmental hazards. Climate policy debates receive extensive media attention

and are closely followed by the public, amplifying the visibility of policy uncertainty.

Taken together, these factors contribute to create persistent gaps between climate pol-

icy announcements and implementation. For example, the government’s delay in enforcing

emissions-free zones for commercial vehicles extended exemptions for older diesel models,

thus disadvantaging firms that had invested early in electric alternatives. Similarly, delays

in offshore wind projects and inconsistent renewable energy subsidies have eroded investor

confidence. The Netherlands Environmental Assessment Agency (PBL) has highlighted these

credibility gaps, projecting only a 5% probability of achieving the 2030 emissions reduction

target under current policies (PBL Netherlands Environmental Assessment Agency, 2024).

As shown in Figure 1, policy shortfalls reflect a combination of policy cancellations, execution

delays, and economic changes, all of which heighten CPU.

This pattern has concrete economic consequences. A consistent history of delayed action
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Figure 1: PBL estimates of emission reduction gaps over the years

and policy reversals erodes trust in government commitments, increasing the perceived risks

and costs of long-term investments in green technologies. As van der Ploeg (2021) emphasizes,

stable and predictable policy environments are essential to incentivize private sector action

and facilitate a smooth low-carbon transition.

The institutional structure of Dutch climate policymaking contributes to the dynamic

nature of CPU. The legislative process is structured but multifaceted, consisting of several

stages that introduce uncertainty. Typically, climate policies are drafted by ministries in

response to international obligations or scientific recommendations. Public consultations

follow, providing stakeholders – including industry and civil society – an opportunity to

influence policy design. Parliamentary review further refines the proposal, with the Tweede

Kamer (Parliament) debating substantive elements and the Eerste Kamer (Senate) focusing

on legal and procedural consistency. After approval by both chambers, the policy is ratified

and published, thus signaling formal government commitment.

However, this process introduces uncertainty at each stage. Delays, amendments as well

as political contention can generate ambiguity regarding enforcement mechanisms, funding,

and long-term consistency. For instance, the roll-out of the Carbon Pricing for Industry

law was delayed multiple times, creating ambiguity for firms preparing to adapt to new

cost structures. Similarly, the SDE++ subsidy program, designed to stimulate renewable

energy investment, faced repeated adjustments and budgetary uncertainties, complicating

investment planning.

Section 3 illustrates how CPU evolves over the policy cycle. At t−1, firms operate under
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a stable regulatory environment, forming baseline expectations. At t, the announcement of

new climate policy targets triggers a phase of belief formation and heightened uncertainty.

During this period, firms evaluate the credibility and feasibility of announced policies, partic-

ularly in light of past implementation gaps. Uncertainty peaks during the legislative process,

when policy details are debated and subject to change. At t + 1, the formal adoption of

policies resolves part of this uncertainty, but residual concerns may persist regarding policy

enforcement and political commitment.

t− 1 t t+ 1 T
Initial Policy
Framework

Policy
Announcement

Formation of
Beliefs

Evaluation of
Transition Risks

Investment
Decisions

Final Policy
Determination

Observation and
Belief Adjustment

Update of
Investment Decisions

This framework underscores that CPU is endogenous to the policy process, reflecting

the evolving flow of information and credibility signals. For firms and investors, uncertainty

arises not merely from the announcement of new targets, but from the perceived likelihood

that these targets will be translated into consistent, enforceable policies.

Our conceptual framework builds on a broader literature on policy signaling and cred-

ibility. In monetary policy, central banks anchor expectations and reduce uncertainty by

providing clear and credible signals about future actions (Bernanke et al., 2004; Faust and

Svensson, 2001). However, when commitment is weak or signals are inconsistent, uncertainty

increases, with negative effects on investment and economic behavior. This eventually might

hinder the very transmission of monetary policy. Similar dynamics apply to climate policy.

Governments use policy announcements and legislative frameworks to guide expectations

about the future regulatory environment. When these signals are perceived as non-credible

or subject to political reversal, climate policy uncertainty rises, affecting firms’ expectations

and decisions.

In this study, we operationalize this framework in the Dutch context by constructing a

novel, media-based index of CPU. The CPU-Concern index captures both the prevalence

of uncertainty-related news coverage and the sentiment associated with policy signals. In

doing so, we provide an empirical strategy to measure how the credibility and commitment
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embedded in climate policy announcements influence economic expectations and outcomes.

4 Measuring Climate Policy Uncertainty

Measuring CPU is crucial for understanding how public debate, policy signals, and perceived

risks shape economic behavior during the low-carbon transition. Existing indices of CPU,

such as those following the methodology of Baker et al. (2016), capture the intensity of media

coverage mentioning climate policy and uncertainty-related terms. However, these measures

have two key limitations. First, they only capture the prevalence of uncertainty-related news

coverage without considering whether this coverage signals a positive or negative context.

Second, they are typically normalized relative to total news coverage, which may conflate

shifts in climate policy attention with broader media dynamics.

To address these limitations, we develop the CPU-Concern index, a media-based indicator

that combines the prevalence of CPU reporting with the degree of public concern reflected

in the sentiment and tone of media coverage. Our measure improves on existing approaches

in two ways. First, we normalize the index by the total volume of climate policy articles,

ensuring that it reflects the share of climate policy discourse associated with uncertainty

rather than overall media attention. Second, we integrate a sentiment weighting that cap-

tures whether media coverage of uncertainty is perceived as positive, negative, or neutral.

This refinement allows us to distinguish between uncertainty arising from constructive pol-

icy engagement and uncertainty stemming from policy misalignment, delays, or credibility

concerns.

The index is constructed using a comprehensive database of the the leading financial

newspaper in the Netherlands, the Financieele Dagblad (FD). The database encompasses

all articles published in the newspaper (both in print and online) for the period January 1,

1985, to June 30, 2025. The raw database comprises 1, 167, 101 articles. The data includes

the complete text of each article, the article title, the publication URL, the publication

date, the newspaper section in which the article was published, and one or more one-word

tags describing the article content. We delete articles that are on human interest, personal

profiles and pages in the English language. After the cleaning process, we are left with
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765, 160 articles, which is approximately a 35% reduction compared to the raw database.

To construct the baseline CPU-Concern index, we follow the methodology introduced

by Baker et al. (2016), which identifies relevant news articles based on keyword filtering.

Specifically, we classify an article as discussing CPU if it contains at least one term from each

of three categories: i) climate-related terms (e.g., CO2, climate change, renewable energy),

ii) policy-related terms (e.g., regulation, legislation, tax), and iii) uncertainty-related terms

(e.g., uncertain, risk, unpredictable). A complete list of translated keywords used for each

category is provided in Table A.1 in the Appendix.

On the basis of this filtering, Figure 2 below depicts clouds of the most used words in

the groups of articles related to total (Figure 2a) and climate policy (Figure 2b) uncertainty

between 2000 and 2025.

Figure 2: Word clouds for total and climate policy uncertainty
(a) Total Uncertainty (b) Climate Policy Uncertainty

Note: Words dimension is proportional to the frequency of use in news articles. Green words are related to climate, red words
are related to policy, blue are all other words.

In the case of total uncertainty, the most prominent terms such as bank, market, govern-

ment, and money highlight concerns centered around macroeconomic and financial stability.

This word cloud is also characterized by a dominance of general economic indicators like

inflation, interest, and investment, reflecting broader financial and institutional anxieties. In

contrast, the climate policy uncertainty cloud features environment-specific terms such as
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energy, climate, green, and sustainability, indicating a strong focus on environmental regula-

tion, energy markets, and policy direction. While both clouds underscore the importance of

government and public policy, the climate-focused cloud uniquely blends economic and envi-

ronmental dimensions, showing how regulatory changes related to climate action contribute

to a distinct form of uncertainty.

Against this backdrop, a key refinement that we adopt to construct our CPU-Concern

indicator concerns its normalization. While indeed Baker et al. (2016) consider the total

number of newspaper articles as denominator of their index, we follow the approach of Noailly

et al. (2024) and normalize the measure by the total number of articles that specifically discuss

climate policy. This adjustment ensures that our index reflects the prevalence of uncertainty

within the climate policy debate itself, rather than its share in overall media coverage. This

choice addresses the issue that climate policy reporting has increased substantially over time.

Normalizing by total newspaper articles could introduce bias if fluctuations in CPU were

driven by general media dynamics rather than genuine changes in policy uncertainty. By

anchoring the index to the climate policy coverage, we obtain a more accurate and policy-

relevant measure of uncertainty. In Figure A.1 of the Appendix we document the evolution

over time of the total number of newspaper articles, the number of climate policy articles,

and the number of CPU articles.

A second methodological improvement relates to the temporal aggregation of the index.

Whereas existing CPU indices are typically computed at the monthly level, we construct the

index at a daily frequency and subsequently aggregate it to the monthly level. This approach

allows us to capture short-term fluctuations in CPU that may be overlooked in a framework

directly targeting the monthly frequency. The daily index also enables us to detect sudden

changes in media coverage in response to specific policy announcements or political events.

Meanwhile, aggregating to the monthly level ensures that the index remains consistent with

macroeconomic applications and empirical analysis.

While the methodological refinements discussed above improve the precision of the CPU-

Concern index, they do not address a fundamental limitation of traditional uncertainty in-

dices: the inability to distinguish between uncertainty that signals risk and uncertainty that

signals opportunity. Existing indices, including the baseline CPU-Concern index, measure
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the frequency of uncertainty-related news coverage but do not capture whether this coverage

is perceived positively or negatively. This distinction is particularly relevant in the context of

climate policy, where uncertainty may reflect either regulatory instability or growing policy

engagement. To address this limitation, we incorporate a sentiment-weighted component into

our measure, drawing inspiration from Ardia et al. (2023), who integrate sentiment analysis

into a climate change concern index. However, while this represents an important step for-

ward, their methodology does not account for the volume of coverage. A day with 10 articles

carries the same weight as a day with 200, even if the topics and tone are similar.

Our methodology builds on both Baker et al. (2016) and Ardia et al. (2023) to construct

a sentiment-weighted CPU-Concern index that reflects both the intensity and tone of public

concern. Specifically, we: i) use the Baker-style approach to compute the ratio of CPU

articles to total climate policy articles (rather than total news articles), ii) weight this ratio

by the sentiment of the articles each day, ensuring that uncertainty is adjusted for whether

it is perceived as positive or negative, iii) aggregate the daily values into a monthly index,

preserving short-term fluctuations while maintaining stability for empirical analysis.

To compute sentiment scores, we use the dictionary developed by Loughran and McDonald

(2011), which is tailored to financial news. We translate the list into Dutch and expand it

with sentiment terms specific to the Dutch context. We also account for word collocations

that reverse sentiment, such as treating “increase” as negative in the phrase “increase in

unemployment.” The final dictionary includes 1,345 terms, 457 positive and 887 negative

words.1

The daily CPU-Concern index is constructed in two steps. First, we compute an article-

level sentiment score for each news article about climate policy. Let Nt denote the number

of climate policy articles published on day t. For each article n published on day t, let PWn,t

and NWn,t represent the number of positive and negative words, respectively, and TWn,t the

total word count. The sentiment score is defined as:

Sentimentn,t =
1

2

(
NWn,t − PWn,t

NWn,t + PWn,t

+ 1

)
. (1)

1The full list of Dutch sentiment terms is available here.
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Figure 3: Evolution of climate policy uncertainty and article shares over time
(a) CPU-Concern (b) Articles Share

Note: The left panel displays the monthly CPU-Concern index based on the share of climate policy uncertainty-related articles
weighted by sentiment. The right panel shows the share of overall uncertainty articles relative to the total number of articles in
Financieele Dagblad.

The sentiment score ranges from 0 (very positive) to 1 (very negative), with a score of 0.5

indicating neutral sentiment. This measure can be interpreted as a weighted textual risk

metric, where more negative (positive) articles contribute more (less) to the overall concern

index.

In the second step, we aggregate article-level sentiment scores into a daily CPU-Concern

index. Let TNt denote the total number of climate policy articles published on day t. The

daily CPU-Concern index is defined as:

CPU-Concernt =
Nt

TNt︸︷︷︸
CPU intensity

× 1

Nt

Nt∑
n=1

Sentimentn,t︸ ︷︷ ︸
Average sentiment

. (2)

The first term captures the relative prevalence of uncertainty-related articles within overall

climate policy coverage, following the Baker-style CPU-Concern index. The second term

reflects the average sentiment of uncertainty-related articles on day t. The monthly CPU-

Concern index is constructed by averaging the daily index over each month.

The resulting CPU-Concern index thus captures both the intensity and perceived nega-

tivity of CPU as reflected in financial media coverage.

To illustrate the properties and dynamics of our index, we depict its evolution over time

alongside key patterns in media attention and sentiment. Figure 3 displays two complemen-
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Figure 4: Climate policy uncertainty in total uncertainty and associated sentiment
(a) Uncertainty (b) Average Sentiment

Note: The left panel decomposes total uncertainty into climate policy and other sources. The right panel reports the average
sentiment score of CPU articles, scaled between 0 (positive) and 1 (negative). The data indicates an increasing share of climate
policy-related uncertainty articles and a predominantly negative framing of CPU in Dutch media since 2015.

tary indicators derived from the index construction. Figure 3a shows the CPU-Concern index,

capturing the average monthly share of CPU articles weighted by their sentiment score. The

figure reveals a steady increase in media attention to CPU over time, particularly since 2015.

Several notable spikes are visible, coinciding with significant climate policy developments

in the Netherlands, such as the adoption of the Climate Law (2019), the introduction of

the Carbon Levy (2020), and heightened political debate surrounding the climate transition.

These peaks reflect moments of increased public and media focus on the risks, costs, and un-

certainties associated with climate policies. Figure 3b contextualizes the CPU-Concern index

within the broader media information environment. It shows the share of articles related to

CPU, overall climate policy, and total uncertainty in the Financieele Dagblad over time. The

data reveal a gradual but marked increase in the share of CPU articles, particularly since

the 2015 Paris Agreement. This is consistent with, among others, Houari et al. (2025) and

Frondel et al. (2017). While financial market and macroeconomic uncertainty continue to

dominate overall uncertainty coverage, the contribution of CPU has grown substantially in

recent years, highlighting their increasing salience in public discourse.

The increasing relevance of CPU is not only quantitative but also qualitative.

Figure 4 presents two additional indicators. Figure 4a decomposes the share of total

uncertainty-related articles, distinguishing between climate policy-related uncertainty and

other sources. The data reveals that, while total uncertainty has risen steadily since the
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early 2000s, the share attributable to climate policy has grown particularly fast since 2018.

This increase coincides with a period of intensified climate policy activity in the Netherlands,

marked by ambitious targets and contentious policy debates. Figure 4b, instead, reports the

average sentiment associated with CPU articles. Sentiment is scaled between zero (very

positive) and one (very negative), with 0.5 indicating neutral coverage. The figure shows

that, over time, the tone of CPU articles has become increasingly negative, particularly from

2015 onward. This trend suggests that media discussions of CPU are framed predominantly in

terms of risks, political contention, or economic costs, rather than opportunities or innovation.

These findings highlight two key dynamics. First, CPU has become a distinct and growing

component of the broader uncertainty landscape in the Netherlands. Second, media coverage

of CPU is increasingly framed in negative terms. Together, these trends suggest that rising

public concern over climate policy may create a more cautious environment for long-term

investment, as firms and investors internalize both the growing salience and perceived risks

of climate policy. These patterns motivate the empirical analysis presented in the following

sections.

5 Signaling Effects of Climate Policy Announcements

To further examine whether the CPU-Concern index captures real-world policy discussions,

we analyze how media uncertainty evolves around key moments in the legislative process.

Section 5 summarizes the major Dutch climate policy laws included in this analysis, alongside

their proposal and publication dates. These events mark important milestones where public

attention and uncertainty may intensify, thus providing an opportunity to assess whether

CPU reacts to concrete policy signals.

Figure 5 presents the cumulative change in CPU around four critical stages of the legisla-

tive process: submission of the policy proposal to Parliament, approval by the Parliament

(Tweede Kamer), approval by the Senate (Eerste Kamer), and official publication in the

Government Gazette. The figures display cumulative changes in CPU from one day before

to five days after each event, across a range of major climate policies, including the Climate

Law, the Carbon Levy for Industry, and others.
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Law Description Legislative Process
Climate Law Establishes binding climate targets: 55%

emissions reduction by 2030 and climate neu-
trality by 2050, with periodic progress mon-
itoring.

12 Sep 2016 – 10 Jul 2019

Carbon Levy for Industry Introduces a carbon levy on heavy industry
to incentivize emissions reduction, with pro-
gressively increasing rates.

15 Sep 2020 – 23 Dec 2020

Climate Fund Creates a dedicated public investment fund
to finance climate-related projects, focusing
on emissions reduction and renewable energy.

14 Dec 2022 – 01 Feb 2024

Law on Early Closure of
Coal Plants

Mandates the early closure of coal-fired
power plants to reduce emissions and accel-
erate the energy transition.

08 Dec 2020 – 26 Jun 2024

Energy Savings Amend-
ment

Updates energy-saving obligations for busi-
nesses to strengthen energy efficiency re-
quirements.

11 Apr 2023 – 13 Jun 2023

The patterns reveal a clear dynamic in the evolution of CPU during the legislative cycle.

As shown by Figure 5a and Figure 5b, CPU tends to increase sharply around the initial

proposal phase, particularly when policies are submitted to Parliament. This reflects height-

ened media coverage, public debate, and political uncertainty about the scope, timing, and

implications of the proposed legislation. The right panel shows that CPU remains elevated,

though to a lesser extent, around formal approval by the Parliament.

In contrast, Figure 5c and Figure 5d illustrate that CPU stabilizes or declines during the

later ratification stages. Approval by the Senate leads to a flattening of CPU, and the index

decreases further after official publication of the law. These dynamics suggest that formal

ratification and legal finalization reduce uncertainty, as information about the policy content

becomes clearer and more credible.

Overall, the data reveals that the level of CPU is not constant throughout the policy

cycle. Instead, it varies systematically across different phases of the legislative process and

policy types. Our analysis shows that CPU tends to increase most strongly during the

early legislative stages, particularly when policies are sent to Parliament. This phase often

coincides with public debate, media scrutiny, political negotiation, and uncertainty about

the final form or timing of the law. In contrast, CPU flattens or declines following formal

approval by either chamber of Parliament and decreases further after the official publication
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Figure 5: CPU dynamics around legislative events
(a) Proposal submitted to Parliament (b) Approved by Parliament

(c) Approved by Senate (d) Official publication

Note: Cumulative change in CPU around four legislative milestones. The red line shows the average change across events.
Individual lines correspond to specific policy laws listed in Section 5.

of the law. This pattern is visible across multiple policies – including the Climate Law,

the Carbon Levy for Industry, and the Climate Fund – and is reflected in the average CPU

response.

These dynamics underscore the importance of institutional credibility: clear, predictable,

and legally anchored policy signals reduce uncertainty, while vague or drawn-out legislative

processes amplify it. From a policy design perspective, this suggests that uncertainty is not

only about the content of climate measures but also about the process by which they are

developed and communicated. Accelerating clarity and minimizing ambiguity in early stages

could significantly reduce CPU and its potential economic effects.

To provide further descriptive evidence that the CPU-Concern index captures real policy
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Figure 6: Timing of media articles around legislative events
(a) Climate Law (b) Carbon Levy for Industry

Note: Each dot corresponds to an article in Financieele Dagblad mentioning either the Climate Law or the Carbon Levy for
Industry. Vertical red lines mark key legislative milestones: proposal submission, approval by the Parliament and Senate, and
official publication.

discussions, we also examine the timing of media articles relative to key legislative events.

Figure 6 shows the distribution of articles in the Financieele Dagblad that mention either

the Climate Law (Figure 6a) or the Carbon Levy for Industry (Figure 6b), alongside vertical

lines indicating legislative milestones.

A comparison between these two cases illustrates how the relationship between media at-

tention and the legislative calendar varies depending on the policy type and political context.

For the Climate Law, media attention was concentrated in the early stages of the legislative

cycle. Articles mentioning the Climate Law increased shortly after the proposal was submit-

ted to Parliament in 2016 but diminished well before the law was formally approved, despite

the long legislative process lasting nearly three years. This pattern suggests that public un-

certainty and debate may have peaked early and faded as the legislative process progressed

and institutional clarity improved.

By contrast, the Carbon Levy for Industry exhibits a different pattern. Although the

formal legislative timeline was relatively short, moving from proposal to publication within a

few months, media attention was both earlier and more persistent. Articles referring to the

carbon levy appeared well before the policy was formally submitted and remained frequent

long after the formal ratification. This sustained attention likely reflects the contentious

nature of the policy, with significant implications for industrial competitiveness, economic
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costs, and stakeholder negotiations.

Importantly, approximately 50% of these articles explicitly mention CPU, indicating that

media attention to these laws is not merely descriptive but often framed in terms of un-

certainty, credibility, and perceived risk. These two cases underscore that media-reported

uncertainty is not confined to formal legislative events, but reflects broader political dynam-

ics and public debate. Some measures – especially those having distributional implications

or contested economic consequences – may generate prolonged and intense media attention,

thus extending beyond the legislative timeline.

Overall, these descriptive patterns confirm that the CPU-Concern index captures mean-

ingful signals of climate policy debate and legislative activity. The dynamics of the index

align closely with the legislative process, rising during phases of political uncertainty and de-

clining once policies are ratified and published. Moreover, the intensity and duration of media

attention vary across policies, reflecting differences in economic stakes, political contestation,

and public interest.

6 Quantifying the Economic Effects

The previous sections have established that CPU in the Netherlands, as measured by our

index, exhibits clear dynamics around key policy events. We have shown that CPU-Concern

index tends to increase during early stages of the legislative process, when the content and

timing of climate policies remain uncertain, and declines once policies are ratified and pub-

lished. While these dynamics suggest that CPU reflects meaningful policy debate, an impor-

tant question remains: does CPU affect economic behavior?

Leveraging on the conceptual framework outlined in Section 3, we treat CPU as an

information shock that alters firms’ expectations and influences economic outcomes. In par-

ticular, the timing and credibility of climate policy announcements can generate fluctuations

in uncertainty, affecting firms’ investment plans, business sentiment, and financial market

valuations. This channel mirrors the well-documented role of credibility and commitment

in shaping expectations in the monetary policy literature (Bernanke et al., 2004; Faust and

Svensson, 2001).
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In this section, we formally quantify the dynamic effects of CPU shocks on key macroe-

conomic and financial indicators. We estimate a Bayesian Vector Autoregression (BVAR)

model to isolate unexpected increases in CPU and trace their impact on business confidence,

investment intentions, and stock market valuations. This empirical strategy allows us to

assess the extent to which CPU influences the real economy, beyond the descriptive evidence

presented in previous sections.

6.1 Data and Empirical Strategy

To investigate the structural relationship between macroeconomic and financial indicators

and CPU, we estimate a monthly Bayesian Vector Autoregression (BVAR) model including

the following endogenous variables in (log) levels: our CPU-Concern index; business confi-

dence taken from Eurostat, measured on the basis of survey responses by Dutch industrial

firms; economic sentiment as quantified by the European Commission’s Economic Sentiment

Indicator (ESI), which aggregates business and consumer expectations across sectors; indus-

trial production (manufacturing) and private non-residential investment data, sourced from

Eurostat and CBS, respectively; financial market reactions captured by the Dutch AEX stock

market index, obtained from Refinitiv. Investment data are seasonally adjusted using the

Census X-13 methodology. The time coverage spans from 2006M6 to 2024M12.

The reduced-form BVAR is then specified as:

yt = A1yt−1 +A2yt−2 + · · ·+Apyt−p + ut, (3)

where yt denotes the n× 1 vector of endogenous variables as listed above; Ai (i = 1, . . . , p)

are n× n coefficient matrices; p is the lag length; and ut is an n× 1 vector of reduced-form

residuals with covariance matrix Σu. Following standard practice, we set p = 7 lags to cap-

ture temporal dependencies and allow for delayed effects. The BVAR is estimated using a

Minnesota prior, which shrinks coefficients toward a random walk process for endogenous

variables while allowing for flexibility in short-run dynamics. This prior helps mitigate over-

fitting concerns in small-sample settings.

To identify structural CPU shocks, we impose a recursive identification scheme, based on
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the Cholesky decomposition of Σu. Specifically, we assume the following structural form:

A0yt = C1yt−1 + · · ·+Cpyt−p + εt, (4)

where A0 is an n× n contemporaneous impact matrix, Ci are coefficient matrices, and εt is

an n× 1 vector of orthogonal structural shocks, with E[εtε′t] = In. The structural shocks εt

are related to the reduced-form residuals as follows:

ut = A−1
0 εt. (5)

The recursive identification assumes a lower-triangular structure for A−1
0 , ordering the CPU-

Concern index first in the vector yt. This implies that CPU shocks can contemporaneously

affect all the other variables, while CPU itself is not contemporaneously impacted by the other

shocks. Such ordering reflects the interpretation of CPU as an exogenous information shock,

which influences economic expectations and financial variables with a contemporaneous im-

pact. In our baseline setting, we impose this recursive structure to recover impulse response

functions (IRFs) to an identified CPU shock. The Minnesota prior is calibrated following

standard conventions in the literature, with hyperparameters tuned to balance shrinkage and

flexibility. The dynamic responses of the endogenous variables to a standardized CPU shock

are traced over a 24-month horizon. This empirical strategy allows us to assess whether

unexpected increases in climate policy uncertainty lead to persistent effects on business sen-

timent, investment intentions, and financial market valuations, while accounting for dynamic

feedback and endogeneity.

6.2 Results

The conceptual framework outlined in Section 3 suggests that increases in climate policy

uncertainty can affect economic expectations and real activity through informational and

credibility channels. In this section, we empirically test this hypothesis by estimating the

dynamic responses of key economic and financial variables to a standardized CPU shock.

Figure 7 displays the IRFs of the BVAR model described in Section 6.1. Each IRF traces
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Figure 7: Impact of climate policy uncertainty shocks on expectations and real activity
(a) Economic Sentiment (b) Industrial Confidence

(c) Investment (d) Industrial Production

(e) Stock Market Index

Note: Impulse response functions (IRFs) to a one-standard-deviation shock to climate policy uncertainty. Shaded areas represent
68% highest posterior density intervals. Variables are expressed in percentage change relative to baseline.
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the dynamic effect of a one-standard-deviation CPU shock on business confidence, economic

sentiment, private investment, industrial production, and stock market valuations over a

24-month horizon.

Figures 7a and 7b illustrate the response of forward-looking economic indicators to a CPU

shock. The Economic Sentiment Indicator decreases significantly, reaching a peak reduction

of approximately 1.6% within three months. Industrial confidence exhibits a similar pattern,

falling by 1.1% at its trough. Both effects are statistically significant and dissipate within

five to six months after the shock.

These results provide empirical support for the expectations channel emphasized in the

policy uncertainty literature. Increases in the CPU-Concern index generate short-term de-

clines in business and consumer sentiment, consistent with precautionary behavior in the

face of uncertain policy signals. This finding aligns with our conceptual framework, in which

uncertainty around policy announcements delays belief formation and depresses confidence.

Figures 7c and 7d show that CPU shocks also affect real economic outcomes, as private

non-residential investment declines by approximately 0.24% at its peak, while industrial

production falls by 0.55%. Both responses are statistically significant and condensed within

the first months after the shock.

These patterns are consistent with the theoretical prediction that uncertainty delays or

depresses capital-intensive investments, particularly when the credibility of long-term policy

signals is unclear. The reduction in industrial production reflects broader real economy

spillovers from weakened sentiment and lower investment. Together, these results indicate

that CPU operates as a supply-side drag, increasing transition costs and slowing the pace of

economic adjustment.

Finally, Figure 7e reports the estimated response of the Dutch AEX stock index. Stock

prices decline significantly, with a peak cumulative reduction of 2.16% within six months.

This reaction suggests that financial markets internalize the implications of CPU for firm

earnings, regulatory risk, and transition costs. Rising CPU-Concern leads to an increase in

perceived downside risk, prompting a repricing of equity valuations and higher risk premia.2

2Section C of the Appendix provides a range of robustness checks, such as replacing CPU with an indicator
of total uncertainty (Figure A.4), including Economic Sentiment and Industrial Confidence alternatively in
the model (Figures A.6 and A.7), accounting for the Covid-19 period (Figure A.5).
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Overall, these results confirm that CPU has measurable short-term effects on economic

expectations, real activity, and financial markets. The findings are consistent with the concep-

tual framework outlined in Section 3 and with theoretical insights from the broader literature

on policy uncertainty and credibility. Unexpected increases in CPU depress economic senti-

ment and confidence, reduce investment and production, and trigger a decline in stock market

valuations. These channels suggest that policy-induced uncertainty can act as a short-term

drag on economic performance during the low-carbon transition.

6.3 Isolating the expectations channel

To better gauge the relevance of the expectations channel in amplifying the impact of CPU,

in this section we run counterfactual simulations whereby we shut down the response of

Economic Sentiment and Industrial Confidence to a CPU shock for 12 months.3 We then

assess the IRFs of the other variables of interest against our baseline results (Figure 8).

Results show that the impact of CPU shocks is muted compared to the baseline. While

we still find some negative effects on both industrial production (Figure 8b) and stock market

valuations (Figure 8c), the magnitude is, respectively, around 60% and 30% smaller at the

peak compared to the baseline results.4

These findings underscore the critical role of expectations in the transmission of uncer-

tainty shocks. The macroeconomic literature has long emphasized that economic agents form

expectations about future conditions, including policies, regulations, and risks, and that these

expectations directly influence current behavior (Bloom, 2009, Bachmann and Sims, 2012 and

Leduc and Liu, 2016). In the case of climate policy, uncertainty can distort firms’ expecta-

tions about the regulatory and investment environment, leading to precautionary reductions

in investment and hiring. Similarly, households may revise their consumption and savings

decisions in anticipation of possible shifts in energy costs or labor market implications.

The substantial attenuation of the IRFs under the counterfactual scenario suggests that a

significant portion of the impact of CPU shocks operates through forward-looking channels.
3Refer to Section B of the Appendix for details on the counterfactual simulations.
4However, such difference is statistically significant only in the case of industrial production. Refer to

Figure A.3 in the Appendix for a decomposition of the difference between baseline and counterfactual IRFs
that teases out ES and IC contributions.
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Figure 8: Impact of climate policy uncertainty shocks–baseline vs counterfactual
(a) Investment (b) Industrial Production

(c) Stock Market Index

Note: Impulse response functions (IRFs) to a one-standard-deviation shock to climate policy uncertainty. In the counterfactual
simulations (yellow line), we shut down the response of Economic Sentiment and Industrial Confidence. Shaded areas represent
68% highest posterior density intervals. Variables are expressed in percentage change relative to baseline.
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This is consistent with models incorporating news shocks or anticipated policy changes, where

even shocks with no immediate real effects can influence macroeconomic dynamics by altering

beliefs (e.g., Beaudry and Portier, 2006). Our findings also align with more recent evidence

whereby business confidence and sentiment indicators often act as catalysts of uncertainty

effects, amplifying real responses before fundamental shocks fully materialize (Barsky and

Sims, 2012 and Altig et al., 2019).

Relatedly, Gambetti et al. (2023) show that only agreed uncertainty, where expectations

are broadly aligned, generates strong macroeconomic effects, further reinforcing the impor-

tance of sentiment coordination in shaping real outcomes. The results imply that policy

uncertainty affects the economy not merely through informational noise, but through its

impact on collective beliefs about policy credibility. Therefore, ignoring the expectations

channel would lead to a significant underestimation of the macroeconomic consequences of

climate policy uncertainty. Our results highlight the need for policymakers to manage not

only the substance of climate policy, but also its predictability and clarity in order to avoid

unintended adverse effects via expectations.

6.4 Negative vs positive shocks

This section investigates the asymmetric macroeconomic effects of positive and negative

CPU-Concern shocks, by looking at how real and financial indicators respond differently

depending on the direction of the shock. Understanding this asymmetry is indeed essential for

evaluating the full transmission mechanism of uncertainty shocks and for designing effective

policy communication strategies during the climate transition. In order to do so, we construct

two separate CPU indexes as follows:

CPU-Concern+
t =

N+
t

TN+
t

, where N+
t = #{n : Sentimentn,t < 0.5}

CPU-Concern−
t =

N−
t

TN−
t

, where N−
t = #{n : Sentimentn,t > 0.5}

In other words, we construct two Baker-type indicators, capturing the media attention to

climate policy uncertainty – in the climate policy domain – considering only articles whose

sentiment is either positive or negative, according to Equation (1).
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Figure 9 depicts the IRFs to positive and negative CPU shocks. All the variables of

interest seem to react more strongly and persistently to negative CPU shocks (red lines)

compared to positive shocks (green lines). This asymmetry is particularly pronounced for

forward-looking variables like Economic Sentiment and Industrial Confidence (Figures 9a

and 9b) and stock market valuations (Figure 9e).

Negative CPU shocks, indeed, trigger a sharp and persistent decline in Economic Senti-

ment and Industrial Confidence, with troughs occurring around 4–6 months after the shock

and values remaining below baseline over the 12-month horizon. By contrast, positive CPU

shocks result in smaller and more short-lived improvements in confidence indicators. This

suggests that while favorable news about climate policy may temporarily boost expecta-

tions, the harmful effects of increasing uncertainty, likely driven by precautionary behavior

and heightened risk aversion, are more influential and durable.

These divergent confidence responses are mirrored in real and financial outcomes. Invest-

ment and industrial production drop markedly following negative CPU shocks, consistent

with firms postponing capital expenditures in the face of uncertain regulatory conditions. As

to the stock market prices, positive CPU shocks generate sustained gains of up to 2% after

four months, while negative shocks induce a swift and sizable contraction in the shorter-run

(up to two months). This seems to reflect a rapid repricing of perceived risk and future

earnings expectations.

Our findings are consistent with the growing literature on the nonlinear effects of uncer-

tainty, with contractions following negative shocks being much stronger than the expansions

from positive ones (Bloom, 2009; Caggiano et al., 2017; Fernández-Villaverde et al., 2022;

Lenoël and Young, 2021). In the specific context of climate policy, Ilzetzki et al. (2023)

highlight how ambiguous or abrupt announcements increase macroeconomic volatility and

dampen private sector responses, even when the policy direction is aligned with long-run

goals. From a theoretical standpoint, Kozlowski et al. (2020) show that rare and ambiguous

events can permanently shift belief distributions, reinforcing pessimism. Moreover, models

of informational rigidities (Vavra, 2014) suggest that increased uncertainty inflates the per-

ceived variance of future states, which in turn amplifies the economic agents’ precautionary

responses. Bachmann et al. (2022), instead, emphasize how narrative expectations, shaped
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Figure 9: Impact of climate policy uncertainty shocks–positive vs negative shocks
(a) Economic Sentiment (b) Industrial Confidence

(c) Investment (d) Industrial Production

(e) Stock Market Index

Note: Impulse response functions (IRFs) to one-standard-deviation positive (green) and negative (red) shocks to climate policy
uncertainty. Shaded areas represent 68% highest posterior density intervals. Variables are expressed in percentage change
relative to baseline.
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by media, policy signals, or prevailing sentiment, can amplify the real effects of uncertainty

via belief-driven fluctuations. More recently, Gambetti et al. (2023) have provided evidence

of different impact of uncertainty depending on disagreement.

In the context of climate policy, where regulatory change may entail significant struc-

tural transformations and compliance costs, negative CPU shocks likely heighten percep-

tions of downside risk. The asymmetric responses observed here highlight the importance

of predictable and transparent policy frameworks in mitigating the adverse macroeconomic

consequences of climate-related uncertainty.

6.5 Impact on prices

From the results discussed above, we infer that CPU can have relevant macroeconomic effects

in the short-run. In this section, we want to investigate the nature of such impacts, i.e.,

whether they are more supply or demand-driven. With this aim, we include the consumers’

price level, as quantified by the HICP, among the endogenous variables in Equation (3), and

we order it after industrial production.5 We then apply the same recursive identification

scheme as explained in Section 6.1.

Figure 10 depicts the IRFs of HICP to a one-standard-deviation shock in the CPU-

Concern Index in the baseline framework (Figure 10a), when disentangling between positive

and negative shocks (Figure 10b) and when shutting down the expectations channel (Fig-

ure 10c). All in all, a CPU shock entails a short-lived increase in prices by up to +0.14%

three months after the shock. However, the rise becomes much more relevant and persistent

after a positive shock (+0.33% over the 24-month horizon), the opposite of what observed

for the other variables. Taken together with the results for investment and industrial pro-

duction, this finding suggests that negative CPU shocks configure more as negative supply

shocks, characterized by a contraction in economic activity and a temporary increase in

prices, whereas positive CPU shocks are more similar to positive demand shocks, featuring

an expansion in output accompanied by a longer-lasting rise in prices. Our findings, then,

also contribute to the growing literature on uncertainty and monetary policy. In contrast to
5This ordering is based on the assumption, widely made by the relevant literature, that shocks first

propagate through the economy before affecting the price level, which derives from the causal structure
implied by New Keynesian models (see Stock and Watson, 2005; Bianchi et al., 2023).
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studies that treat uncertainty shocks as uniformly contractionary (e.g.,Bloom, 2009; Leduc

and Liu, 2016), our results align more with recent work by Carceller del Arco and van den

End (2023), who argue that monetary policy should respond cautiously to supply-driven,

but more actively to demand-driven uncertainty. This would potentially call for a state-

contingent policy approach, whereby central banks should not uniformly “look through”

CPU shocks, but, instead, tailor their response based on the underlying nature of the shock.

In our specific case, negative CPU shocks resemble adverse supply shocks, characterized by

falling investment and industrial production and temporarily rising prices. In this context,

the Brainard principle (Brainard, 1967) would advocate for a measured response to such

shocks, as too an aggressive tightening could aggravate the contraction. Conversely, positive

CPU shocks exhibit demand-like features, with output and prices increasing together, the

latter more persistently. In this context, the central bank may need to respond more actively.

Finally, as already observed for the other variables, the change in prices becomes insignif-

icant when shutting down the reaction of Economic Sentiment and Industrial Confidence,

which underscores once more the importance of the expectations channel in the transmission

of uncertainty shocks to the economy.

7 Policy Implications

The results presented in this paper have clear implications for the design and communication

of climate policy. Our analysis demonstrates that CPU, and the concern associated with it, is

not merely a byproduct of public debate but an economically meaningful phenomenon with

measurable effects on expectations, investment behavior, and financial markets. CPU acts

as a source of macroeconomic volatility, reducing business confidence and delaying capital

formation in the short term.

A first implication concerns the importance of policy credibility. The evidence shows that

uncertainty is endogenous to the legislative process and political communication. CPU spikes

during early stages of policymaking, when the content, timing, and enforcement of climate

measures remain unclear, and declines only after formal ratification. This dynamic mirrors

insights from the broader literature on monetary and fiscal policy credibility (Bernanke et al.,
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Figure 10: Impact of climate policy uncertainty shocks on HICP
(a) Baseline (b) Positive vs negative shocks

(c) Counterfactual

Note: Impulse response functions (IRFs) to a one-standard-deviation shock to climate policy uncertainty. In the counterfactual
simulations (yellow line), we shut down the response of Economic Sentiment and Industrial Confidence. Shaded areas represent
68% highest posterior density intervals. HICP is expressed in percentage change relative to baseline.

31



2004; Faust and Svensson, 2001): stable, predictable, and credible policy frameworks reduce

informational frictions and mitigate precautionary behavior by firms and investors.

Second, the empirical results suggest that the structure and communication of climate

policy shape its economic consequences. Our analysis highlights heterogeneity across policy

types. Policies with visible distributional consequences or cost implications, such as car-

bon pricing, generate more persistent uncertainty, even when legislative timelines are short.

Framework laws and long-term targets, by contrast, produce uncertainty primarily during

early announcement phases. This heterogeneity implies that governments can reduce the

economic costs of CPU by minimizing ambiguity in policy design, providing early clarity on

implementation mechanisms, and credibly committing to long-term targets.

Third, the findings emphasize that some degree of policy uncertainty is inevitable and,

in some cases, even desirable. Climate policy must retain flexibility to respond to evolving

technologies, preferences, and external shocks. The objective is therefore not to eliminate

uncertainty entirely but to strike an optimal balance between flexibility and credibility. Ex-

cessive rigidity may hinder adaptive policy responses, while persistent ambiguity increases

transition costs and delays investment.

From a normative perspective, our results seem to suggest that CPU generates real eco-

nomic costs through delays in capital formation, reduced production, and higher risk premia

in financial markets. These costs may compound over time, slowing the transition to a low-

carbon economy. In welfare terms, CPU can be conceptualized as an informational friction

that reduces the efficiency of resource allocation during the climate transition.

Policy design can mitigate these costs through institutional mechanisms that enhance

commitment and transparency. Long-term policy frameworks, such as climate laws anchored

in legislation, reduce uncertainty by establishing credible pathways. Complementary instru-

ments, including forward guidance, stable subsidy schemes, and regulatory clarity, can further

anchor expectations. Conversely, frequent policy reversals, ambiguous communication, and

protracted legislative processes amplify CPU and its economic effects.

More broadly, these findings underscore the need to incorporate policy-induced uncer-

tainty into the economic assessment of climate transition pathways. Standard cost-benefit

analyses typically overlook the macroeconomic costs of CPU. By integrating uncertainty
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dynamics into policy evaluation, governments can better account for the transition costs

associated with credibility gaps and informational frictions.

Our analysis also encompasses an evaluation of the effects of CPU for prices as well as the

potential implications for monetary policy. In light of our findings, the central bank might

be induced to change its stance, depending on the nature of the CPU shock.

Finally, our results point to avenues for future research. While the analysis focuses

on short-term macroeconomic effects, the long-term consequences of CPU – especially its

impact on green investment, innovation, and structural economic transformation – remain

underexplored. Understanding how policy credibility affects the cost of capital, risk premia,

and firm-level investment decisions is critical for designing efficient climate policy in a context

of uncertainty.

8 Conclusion

This paper provides new evidence on the economic relevance of climate policy uncertainty

(CPU) and its role in shaping macroeconomic outcomes. It makes four distinct contributions.

First, we develop a novel, media-based index of CPU for the Netherlands. Unlike existing

indices, our measure accounts not only for the prevalence of uncertainty in climate policy

debates but also for the sentiment and tone of media coverage. The index is normalized

relative to the volume of climate policy news, enabling consistent comparison across time

and with broader policy uncertainty measures.

Second, we document how CPU evolves over the legislative cycle. Drawing from insights

in the fiscal and monetary policy literature, we show that CPU follows a predictable pattern:

it rises during the early stages of policy formulation, reflecting public debate and political

contention, and declines upon formal ratification and publication. This dynamic highlights

the informational role of institutional processes and policy communication in shaping per-

ceived uncertainty.

Third, we provide empirical evidence on the economic effects of CPU shocks. Building on

a conceptual framework that emphasizes policy credibility and commitment, we estimate a

monthly BVAR model to trace the short-term macroeconomic impact of CPU shocks. We find
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that rising CPU significantly reduces business confidence, investment sentiment, and financial

market performance. These effects are primarily driven by expectations: counterfactual

simulations show that shutting down the response of economic sentiment and industrial

confidence substantially attenuates the impact on real activity. This provides one of the first

direct tests of the expectations channel in the context of climate policy, and underscores how

uncertainty operates through coordinated belief formation.

Fourth, we find that the macroeconomic consequences of CPU are asymmetric. Negative

CPU shocks, those reflecting rising concern, pessimistic tone, or doubts about implementa-

tion, generate significantly larger and more persistent economic impacts than positive shocks.

This asymmetry suggests that the economic costs of CPU are not just a function of its fre-

quency, but of how uncertainty is framed and perceived. It also reinforces the idea that

downside risks in public expectations matter more than mere policy volatility.

Fifth, we present evidence of the differential impact of CPU shocks on prices. A negative

CPU shock is more akin to a negative supply shock, whereas a positive CPU shock is more akin

to a positive demand shock. This, in turn, may have significant implications for monetary

policy.

Taken together, these findings show that CPU can meaningfully influence short-run

macroeconomic conditions by undermining confidence and delaying investment. They also

reveal that the credibility and clarity of climate commitments are central to minimizing these

effects. Climate policy uncertainty is not just a byproduct of institutional complexity, it is a

measurable and consequential economic force.

Our results highlight the importance of credible, transparent, and stable climate policy

frameworks for supporting the low-carbon transition. Future research should examine the

long-term consequences of CPU, including its effects on financing conditions, green technology

adoption, innovation incentives, and structural transformation. As climate policy becomes

increasingly central to economic planning, understanding and managing its uncertainty will

be critical to sustaining both macroeconomic stability and environmental ambition.
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Appendix

A Additional Tables and Figures

Table A.1: English translation of Dutch keywords used in constructing the CPU index, grouped
into climate-related terms, policy-related terms and uncertainty terms.

Climate words Policy terms Uncertainty terms
Paris agreement ETS kyoto protocol tax risk
biobased fine dust methane policy uncertain
biofuel green deal environment cabinet doubtful
biodiesel renewable nuclear government hesitation
biodiversity IPCC warming measure tension
biogas nuclear energy coal regulation unrest
organic road pricing nitrogen standardization threat
biomass climate agreements urgenda government concern about
bioplastic climate accord water quality law unpredictable
biotech climate ambitions flooding legislation fear
fuel climate conference water level climate treaty
greenhouse gas climate crisis hydrogen
lignite climate goal wind
certificate climate fund sea level rise
CO2 climate measure solar boilers
sustainable climate minister solar cell
electric biking climate neutral solar collectors
electric driving climate panel solar roof
electric car climate plan solar panel
low-emission climate problem solar park
emissions trading climate risk solar power
emission price climate summit sulfur
emission right climate change climate science
emission reduction carbon dioxide
energy carbon
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Figure A.1: Evolution of total news coverage and climate policy-related articles
(a) Total News Coverage (b) Climate Policy and Uncertainty Articles

Note: The left panel shows the monthly count of total newspaper articles published in the Netherlands from 2000 to 2025. The
right panel reports the monthly count of articles mentioning climate policy uncertainty, climate policy, and uncertainty more
broadly. Shaded areas indicate periods of major economic or political uncertainty.

Figure A.2: Share of climate policy-related articles in total news coverage

Note: The figure shows the monthly share of climate policy articles in total news coverage from 2000 to 2025, decomposed into
articles related to climate policy uncertainty and other climate policy topics.
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Figure A.3: Decomposition of difference between baseline and counterfactual IRFs
(a) Investment (b) Industrial Production

(c) Stock Market Index

Note: Median difference in the impulse response functions (IRFs) to a one-standard-deviation shock to climate policy uncertainty.
In the counterfactual simulations, we shut down the response of Economic Sentiment and Industrial Confidence.
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B Counterfactual Analysis

This section explains the counterfactual analysis performed in Section 6 above, which draws

from Sims (1992, 1995) and Bernanke et al. (1997), and aligns with the methodology used in

recent empirical macroeconomic studies such as Mumtaz and Theodoridis (2020).

We consider the reduced-form monthly BVAR:

yt =

p∑
i=1

Aiyt−i + ut, ut ∼ N (0,Σu)

and its structural form:

A0yt =

p∑
i=1

Ciyt−i + εt, εt ∼ N (0, In)

with A−1
0 εt = ut. As explained in Section 6 above, the matrix A0 is identified via a Cholesky

decomposition of Σu, so that Σu = A0A
′
0. The VAR(p) can be expressed as a VAR(1) in

companion form:

Zt = BZt−1 + vt,

with

Zt =


yt

yt−1

...

yt−p+1

 ∈ Rnp,

B =



A1 A2 · · · Ap−1 Ap

In 0 · · · 0 0

0 In · · · 0 0
... ... . . . ... ...

0 0 · · · In 0


,
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and

vt =


ut

0
...

0

 .

Iterating backward, we obtain the moving average representation:

Zt =
∞∑
h=0

Bhvt−h.

To extract the impulse response function for yt, define the selection matrix:

J =
[
In 0 · · · 0

]
∈ Rn×np.

Then, the impulse response function at horizon h is given by:

Φh = JBhJ ′,

so that:

yt =
∞∑
h=0

Φhut−h.

Orthogonal impulse responses can be obtained using the Cholesky decomposition of Σu,

yielding:

Ψh = ΦhA0.

The impulse response at horizon h is hence given by:

yt+h = Ψhεt

We aim to isolate the impact of a structural shock – in our case the CPU-Concern – while

setting the response of other n = 2 variables — Economic Sentiment (ES) and Industrial
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Confidence (IC) – to zero over K = 12 months. We hence construct a K × 3 shock vector:

εcf =

[
εCPU︸ ︷︷ ︸
K×1

η︸︷︷︸
K×2

]
,

where εCPU is the primary CPU shock and η includes K auxiliary shocks for ES and IC. We

define the objective function as:

f(εcf) =


Ψ

(ES,IC)
0 εcf − target0ES,IC

vec(Ψ(ES,IC)
1 εcf − target(1)ES,IC)

...

vec(Ψ(ES,IC)
K εcf − target(K)

ES,IC)

 ,

where target is a vector specifying the desired IRFs, e.g. zeros for ES and IC. We then

solve minεcf ‖f(εcf)‖2 to retrieve the vector of simulated shocks for ES and IC (η). Finally,

we compute the counterfactual IRFs to a unitary shock to CPU-Concern using these simu-

lated shocks. Our procedure is conceptually similar to the counterfactual path generation in

Bernanke et al. (1997), where shocks are selected to achieve a specific trajectory of endoge-

nous variables, and to the methodology of Mumtaz and Theodoridis (2020) to estimate the

propagation of shocks in VARs with stochastic volatility.

C Robustness checks

We conduct several robustness exercises to assess the stability of our results. First, we

estimate the same BVAR specification using an alternative uncertainty measure based on

general policy uncertainty. Specifically, we replace the climate policy uncertainty index with

an index of total policy uncertainty constructed from the full set of uncertainty-related articles

in Financieele Dagblad, without restricting to climate content. Figure A.4 reports the impulse

responses to a total uncertainty shock. The estimated effects are larger in magnitude and

more persistent than those of CPU-Concern shocks, particularly for investment, production,

and financial markets. This finding is consistent with the broader economic literature showing

that large, economy-wide uncertainty shocks produce substantial real effects. The comparison
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underscores that, while CPU-Concern shocks are economically relevant, their effects are

smaller than those associated with broader macroeconomic uncertainty.

Second, we re-estimate the baseline model following the approach of Lenza and Primiceri

(2022), in order to account for the Covid-19 period (see Figure A.5). This adjustment takes

into consideration the temporary change in volatility induced by the pandemic and ensures

that the estimated CPU-Concern shocks are not confused with pandemic-related uncertainty.

Results are not qualitatively different from our baseline.

Third, we examine whether the choice of forward-looking sentiment variables affects the

results. We re-estimate the BVAR model including only economic sentiment or only industrial

confidence, rather than both indicators simultaneously (Figure A.6-A.7). The results remain

qualitatively and quantitatively similar, confirming that the estimated effects are not sensitive

to the specific choice of sentiment proxies.6

6In unreported exercises, we also check for the robustness of our findings to the variable ordering in the
VAR and to the inclusion of energy prices (oil and gas) as exogenous controls. Results remain similar to our
baseline.
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Figure A.4: IRFs Total Uncertainty
(a) Total Uncertainty (b) Economic Sentiment

(c) Industrial Confidence (d) Investments

(e) Industrial Production (f) Stock Market Index

Note: Shaded areas represent 68% HPDs. Total uncertainty is expressed in standard deviation terms, while the other variables
are expressed in percentage change.
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Figure A.5: IRFs with Covid Prior
(a) CPU-Concern (b) Economic Sentiment

(c) Industrial Confidence (d) Investments

(e) Industrial Production (f) Stock Market Index

Note: Shaded areas represent 68% HPDs. CPU-Concern is expressed in standard deviation terms, while the other variables are
expressed in percentage change.
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Figure A.6: IRFs Only Economic Sentiment
(a) CPU-Concern (b) Economic Sentiment

(c) Investments (d) Industrial Production

(e) Stock Market Index

Note: Shaded areas represent 68% HPDs. CPU-Concern is expressed in standard deviation terms, while the other variables are
expressed in percentage change.
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Figure A.7: IRFs Only Industrial Confidence
(a) CPU-Concern (b) Economic Sentiment

(c) Investments (d) Industrial Production

(e) Stock Market Index

Note: Shaded areas represent 68% HPDs. CPU-Concern is expressed in standard deviation terms, while the other variables are
expressed in percentage change.
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