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Abstract

We rationalize exclusive portfolio dealing in a novel three-period partial equilibrium
framework populated by a representative, risk-neutral seller and a small number of ex
ante identical broker-dealers. Endowed with independent, uncertain demand for a
representative asset, the broker-dealers may compete in prices for exclusivity. If no
exclusivity is granted, due to either the lack or seller rejection of offers, the seller
enters a second-price auction with a zero-loss reserve price. While seller profits are
constant under exclusivity (Bertrand Paradox), auction profits increase in the number
of broker-dealers. Therefore, exclusivity arises in equilibrium only for a seller with at
most two broker-dealers, reducing the trade frequency by one-third. The results are
robust to endogenizing the number of broker-dealers and to allowing for the ex post
asymmetry in asset demand. Exclusivity, however, does not arise when the auction
features a seller-optimal reserve price. We motivate and conclude with an application
to the security lending market.
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1. Introduction

The phenomenon of exclusive dealing in intermediated markets — such as classic and over-

the-counter (OTC) stock markets, secondary bond markets, standardized futures and for-

ward markets, real estate markets, or security lending markets — is anecdotally common,

yet systematically overlooked in existing literature. As housing market participants, we are

familiar with a single realtor exclusively representing the private home owner willing to sell

or the real estate investor looking to rent out multiple units in their apartment complex.

Utilizing a novel transaction-level data set of the EU-based equity lending market,
1
we

document similar trading patterns: We find an intermediated market (see Figure 1), where

20% of lenders grant a single broker-dealer exclusive access to their equity portfolio (see

Figure 2). On the buyer side, some home-seekers ex ante contractually limit themselves to

buy via a single realtor. Similarly, we find a small fraction of the ultimate equity borrowers

formally seek exclusivity with a broker-dealer. Perhaps surprisingly, most equity borrowers

without formalized exclusivity appear nevertheless to only engage with a single broker-dealer,

indicating independent demand.

Figure 1: Network Plot of the EU-based Equity Lending Market

Note: Figure 1 is based on 37 broker-dealers, 287 borrowers and 3821 lenders. Indi-
vidual lenders and borrowers with the same combination of counterparties are joined
and the dots reflect the logarithmic size of their joined trading volume.

1
The newly available and confidential Security Financing Transactions Regulation (SFTR) data allows

us to observe individual equity lending contract terms, including counterparty LEIs, maturity, ISIN of the
underlying, lending fees, and most importantly a flag for exclusivity.

1



Markets, where broker-dealers intermediate between sellers looking to sell (part of) their

asset portfolio, and buyers looking to purchase selected assets, are typically studied in either

a search and matching framework inspired by Duffie et al. (2005), or a network setting with

(partially) endogenous links (see, e.g., Atkeson et al. (2015), Gofman (2014) and subsequent

works). While complementary in nature, both approaches typically abstract from exclusive

dealing to maintain tractability. Additionally, insights are typically limited to a specific

pricing mechanism, such as e.g. Nash bargaining in the case of the search and matching

models.

Figure 2: Relative Share of Trading Parties per Type

Note: Figure 2 is based on 287 borrowers and 3821 lenders.

The core theoretical contribution of this paper is the development of a novel three-

period partial equilibrium framework that models trading between a representative seller and

competing broker-dealers where all equilibrium outcomes solely depend on two parameters:

The number of broker-dealer connections and the broker-dealers’ private and independent

demand uncertainty around a common reference value. As the revenue equivalence holds,

this results in an intuitive environment that captures a wide range of pricing mechanisms

including, but not exclusive to, first- and second-price auctions, and competition in prices.

Further, the model is easily adaptable to application-specific characteristics by, for example,

endogenizing connections, introducing relational frictions or adding complexity to the pricing

mechanism. This framework may thus be of interest when studying the impact of different

pricing frictions on market efficiencies in a variety of intermediated markets, such as the

real-estate sector, over-the-counter markets for derivatives, stock and bond, or multi-product

banking.

In this paper, specifically, we utilize the model to rationalize exclusive dealing in inter-

mediated markets and to reveal how exclusivity influences individual and aggregate market

outcomes. We show that exclusive dealing is granted by sellers with initial access to at most

two broker-dealers. Further, we show that exclusive dealing is anti-competitive in nature
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and reduces trading volume by up to one third at the seller level. Through a series of exten-

sions, we highlight both that the model remains solvable and that the results are generally

robust if complexity is added. Finally, we apply the model insights to the EU-based equity

lending market and show that exclusivity-induced inefficiencies aggregate to up to AC42.30

bn annually in foregone trading.

These theoretical insights apply to any intermediated market with risk-neutral portfolio

holders selling assets to broker-dealers with private, independent, and uncertain demand.

Here, sellers face a trade-off between granting exclusivity to the entire asset portfolio up

front or waiting until demand realizes for asset-by-asset competition to take place. The ex

ante competition in prices for exclusivity is fierce (Bertrand paradox), yet realized demand

is limited ex post to a single broker-dealer. Jointly, this ensures that seller payoffs under

exclusivity are independent of the seller’s number of broker-dealer connections. Alternatively,

the seller may wait until broker-dealer demand has realized to host auctions on an asset

level. Here, competition intensifies as more broker-dealers realize a positive demand and,

thus, participate in a single auction. Hence, seller payoffs increase in the number of broker-

dealer connections. Ultimately, only the least connected sellers find exclusivity to be more

profitable. Crucial here is that exclusivity is negotiated prior to trading, and exclusive

contracts are binding such that termination triggers compensation to the loss-incurring party.

Formally, we propose a three-period model that is populated by a representative, risk-

neutral seller with exogenously given access to N ≥ 2 competing broker-dealers seeking to

maximize profits. At t = 0, the seller is endowed with a portfolio, whose size is normalized to

one and that is characterized by a representative asset of known reference value.
2
Further, the

broker-dealers are each endowed with an uncertain ask price (buying demand) that will be

drawn independently from an identical uniform distribution with mean equal to the reference

value.
3
Thus, broker-dealers are symmetrical ex ante in expected demand, but not ex post in

realized demand. At t = 1, before the demand realizes, the broker-dealers choose whether to

compete in offering an exclusive access agreement that specifies a bid price paid upon trading

and a lump-sum transfer paid regardless of trade.
4
At t = 2, the demand realizes and each

broker-dealer draws an independent ask price that can be either above or below the reference

value. If exclusivity was granted, the exclusive dealer buys the representative asset when

2
These two assumptions are without loss of generality: The portfolio size enters linearly in all equations.

The transaction price is independent of the actual asset value but rather determined by the uncertainty of
the ask price around the value.

3
It follows directly from this that: [1] pricing is determined by demand uncertainty around the reference

and value and [2] the representative seller may but not necessarily must experience excess purchase demand
for the representative asset.

4
This structure of the exclusive access agreement is inspired by the demand-boost theory of exclusive

dealing by Calzolari et al. (2020).
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able to realize a positive bid-ask spread given the agreed-upon bid price. The lump-sum

transfer is paid independently of the actual purchase decision. If no exclusivity was granted,

the asset is traded through a representative second-price auction where all N broker-dealers

may participate.
5
Here, we assume that broker-dealers are unaware of each other’s realized

ask prices and, thus, possess private information when submitting their auction bid.
6

To derive when exclusive dealing arises in equilibrium, we apply the notion of termination-

proof subgame perfect Nash equilibrium (SPNE): At t = 1, both the seller and the broker-

dealer must agree to exclusivity, anticipating auction and market exclusion, respectively, in

the alternative. At t = 2, neither party can have an incentive to terminate the contract

conditional on compensating the counterparty for the potential losses from the breach. The

concept of termination proof equilibrium is novel in this paper as the more common concept

of renegotiation-proof equilibrium, see e.g. Segal and Whinston (2000), is not applicable in

this setting: Allowing for a lump-sum transfer in the exclusive dealing contract ensures that

one agent’s gain in results in an equivalent loss for the counterparty. As such, there do not

exist mutually beneficial deviations.

Whether the SPNE with termination proof exclusivity or the representative auction

arises thus depends on the representative seller’s and broker-dealers’ relative expected prof-

its under exclusivity and auction. Under exclusivity, the competition in prices (bid price

and lump-sum transfer) ensure that the Betrand Paradox applies: We have full-profit path

through, i.e. all broker-dealers make zero profits and the representative seller expects to

receive the trading surplus from the exclusive dealer. Under the auction, the expected seller

(broker-dealer) profits increase (decrease) in the number of broker-dealer connections, as

the higher the number of connections the higher the chance of excess demand in the second-

price auction driving up prices. Termination costs arise when the seller expects higher profits

under exclusivity than under the auction, yet the exclusive dealer terminates the contract.

Then comparing the sub-game outcomes, we find the auction SPNE to be unique for

a seller with at least three broker-dealer connections, we find the auctions SPNE to be

unique: For N ≥ 4, the seller always rejects offers for exclusivity, as she can benefit from

increased competition at the auction. For N = 3, the seller initially grants exclusive dealing

rights, however, the exclusive dealer finds the benefits of terminating larger than the cost to

compensate the seller for losses. Only for N = 2, there exists a SPNE with termination proof

exclusivity. Here, the seller strictly prefers to grant exclusivity, and the chosen broker-dealer

is indifferent between terminating the agreement or not. For completeness, we show that for

5
The revenue equivalence principle holds and the assumption of second-price auctions is without loss of

generality. Equal profits are obtained in a first-price auction or a Bertrand competition setting.
6
This is in alignment with both Duffie et al. (2014) and Babus and Kondor (2018), studying the implica-

tions of private information for competition in OTC market settings.
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N = 1, both the seller and the broker-dealer are indifferent between allocation with exclusive

access or auction: The broker-dealer is a monopolist who extracts all profits in either case.

In short, only sellers with one or two broker-dealers grant exclusivity.

From a normative perspective, we are foremost interested in whether a market is effi-

cient: Is the asset traded when at least one broker-dealer observes a positive bid-ask spread?

We confirm that the auction SPNE meets the first-best benchmark: Every broker-dealer

with positive demand (ask price above value) bids in the auction. The same holds for the

SPNE under N = 1 with termination proof exclusivity, as the broker-dealer is a monopolist

regardless. However, for N = 2 the SPNE with termination proof exclusivity is inefficient

relative to the auction SPNE and the first-best benchmark, as the total trading volume is

reduced by one third: Only 50% of the assets in the portfolio are traded, while the uniform

distribution of the ask prices with a mean equal to public value displays a trading probability

of 75%.

We challenge the robustness of our results in three theoretical extensions: Endogenous

number of broker-dealers, advantaged exclusive dealer, and seller-optimal reserve price. First,

we relax the assumption of an exogenously given number of broker-dealer connections and,

instead, allow connections to be a costly choice of the seller at t = 0. For a linear cost in new

connections, we find a unique, profit-maximizing number of broker-dealer connections that

decreases in the size of the marginal cost. Thus, for a sufficiently high cost, N = 2 is optimal

and exclusivity may arise in equilibrium. Notably, we show that N = 3 is never optimal

since the seller correctly anticipates that the exclusive dealer would terminate. In the second

extension, we show that an exclusive dealer strictly prefers not to terminate the exclusive

contract when surprised ex post negotiations with a favorable ask price distribution.
7

In

the third extension, we provide the seller with a commitment device to her optimal auction

reserve in the spirit of Levin and Smith (1996). Here, we confirm that, if possible, the seller

commits to a reserve price strictly above what is required to break-even. The presence of

such a reserve price boosts the seller’s auction profits to such a degree that termination is no

longer sufficiently costly for the exclusive dealer. Thus, any exclusive dealer would terminate

the contract, and exclusivity does not arise in equilibrium.

Finally, we illustrate the practical importance of our theoretical findings by predicting

the impact of exclusive dealing on aggregate inefficiency in the EU-based equity lending

market. Efficiency is of a particular concern here, as sufficient asset lending supply is cru-

cial for short sales to eliminate arbitrage opportunities, thereby ensuring that the law of

one price holds in our financial markets. We predict the trading volume in a counterfac-

tual market without any exclusivity by applying a bootstrapping strategy on the observed

7
We explicitly refrain from ex ante asymmetry, as this introduces an informed principle.
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lender-level trading in 2021. In simple terms, we randomly assign a share x ∈ [0, 1] of the

observed lenders with exclusive security lending agreements (ESLAs) two broker-dealers in

a hypothetical counterfactual auction. The remaining share 1 − x remains with a monopo-

listic broker-dealer in the counterfactual. Subsequently, we treat lenders with two assigned

broker-dealers with a 50% increase in trading volume, while those with one broker-dealer

remain untreated in trading volume. Repeating this for 100, 000 bootstraps, we obtain both

a predicted increase in total trading volumes and the associated confidence intervals. Each

0.1 unit increase in x, predicts a statistically significant AC4.23 bn increase in annual trading

volume.

Related Literature Rationalizing the existence of exclusivity and characterizing

associated outcomes in intermediated markets, our paper is foremost an addition to the

existing literature on pricing in OTC markets. Here, the seminal paper by Duffie et al.

(2005), studying pricing in a search-and-matching framework, has sparked a rich debate on

relevant pricing frictions. Typically, the subsequent articles in this literature study trading

in a dynamic setting (Gabrovski and Kospentaris, 2021). As we propose a three-period

framework, a full review of the literature goes beyond the scope of this paper. Instead, we

focus on reviewing the papers closest to us without implying anything as to the general

relevance of the omitted works. Modeling a choice between exclusivity and auction relates

to the frameworks proposed by Babus and Kondor (2018) and Dugast et al. (2022). Both

papers study dealers’ choices between bilateral trading and trading via centralized platforms

in inter-dealer markets. Novel relative to their papers is both our shift in focus to transactions

between the initial seller and the broker-dealer, and the generalization to asset portfolios

rather than a single asset. We reinforce their findings that less connected agents prefer the

bilateral option, in our case exclusivity, while more connected agents prefer the centralized

auction.

Building on the established notion that broker-dealers have private information on their

borrowing demand (Babus and Kondor, 2018; Duffie et al., 2014), we introduce private

and independent demand uncertainty that is symmetric around a common reference value.

However, we deviate from the focus on sophisticated traders that acquire knowledge over

time and clear the market via double auctions. Instead, we opt for tractable second-price

auctions to clear the market after demand is realized. Note that as the demand of broker-

dealers is independent, the revenue equivalence holds and results are robust to other pricing

mechanism. More crucially, we introduce ex ante market clearing via exclusivity before the

uncertainty over the broker-dealers’ private demand is realized. Here, we follow Babus and

Kondor (2018) and assume that the ex ante competition for (future) trading is in prices.

Deviating from their set-up, we shift the focus from quantity limitations on an individual

6



asset level competition for exclusivity over the entire portfolio. To the best of our knowledge,

we are the first to model and, thereby, to rationalize why portfolio holders engage in exclusive

dealing in equilibrium.

By comparing the SPNEs with and without exclusivity, we can show that exclusivity

leads to a 33% trading reduction on a seller-level — a sizable market inefficiency. Our paper

thus adds a counter-perspective to the theoretical literature on non-exclusive contracting in

financial markets. Here, papers by for example Attar et al. (2014), Biais et al. (2000), Bizer

and DeMarzo (1992), Detragiache et al. (2000), Kahn and Mookherjee (1998), Pauly (1978),

and van Boxtel et al. (2020) either imply or show directly that exclusive financing is not

obtainable in equilibrium, yet is efficiency improving and desirable. Crucially, we deviate in

set-up and assume that exclusive agreements are binding ex post in a sense that termination

is costly. Other differences assumptions are that we consider private information of value on

the buyer (broker-dealer) rather than the seller side (Biais et al., 2000), simultaneous trades

rather than sequential transactions (Bizer and DeMarzo, 1992; Detragiache et al., 2000; van

Boxtel et al., 2020), non-divisible stocks instead of divisible goods (Attar et al., 2011), and

the absence of moral hazard (Kahn and Mookherjee, 1998; Pauly, 1978). Unifying our model

with one or more of the above-mentioned alternative settings is a natural next step and, over

time, will hopefully lead to a fruitful discussion in this line of research.

Modeling exclusive dealing as a contract that spans a portfolio of assets (goods), in

limited capacity, relates to the literature on exclusive contracting between retailers and

manufacturers (Bernheim and Whinston, 1998; Calzolari and Denicolò, 2013; Calzolari and

Denicolò, 2015; Mathewson and Winter, 1987).
8
Most notably, we deviate from the assump-

tion of substitute goods common to this literature. Instead, we consider exclusive contracting

over a portfolio, where the representative asset poses a distinct good. Following Calzolari

et al. (2020), we allow the broker-dealers to compete for exclusivity by setting both a trans-

action fee (bid price) and a lump-sum transfer. Considering a multi-product setting, we are

able confirm their result that in equilibrium exclusive contracts have a zero bid premium

above reference value to boost demand and full profit-pass-through via the lump-sum trans-

fer. In both our and their paper, this demand-boosting leaves the buyer (broker-dealer)

with exclusive rights worse off than in the alternative equilibrium. Here, we would like to

highlight that in our setting price competition ensures demand boosting within an exclusive

dealing agreement but reduces overall trading vis-à-vis the auction. Mostly focused on con-

sumer welfare, this reduction in quantities is of secondary interest in the classic Industrial

8
See Armstrong and Wright (2007) for exclusive contracting by two-sided platforms, where the platform

does not interpose as an intermediary and therefore does not become the direct counterparty to both the
supply and demand side.

7



Organization literature. However, it adds substantial value to the market micro-structure

literature concerned with the efficiency of financial markets.

With earliest works by D’Avolio (2002) and Duffie et al. (2002), the security lending

market has taken a center stage in the financial literature on market (in-)efficiency. The paper

by Duffie et al. (2002) studies the lending price formation in a search-and-bargaining model,

where pessimists are matched with both lenders and optimists over time, thereby being able

to short sell. For tractability, they abstract from the role of broker-dealers intermediating

between lenders and borrowers. Taking a complementary approach by introducing broker-

dealers that profit from the bid-ask spread, we prove that our model nests a security lending

market with intermediation.
9

With access to transaction-level data covering the EU-based equity lending market,

we can show that the individual-level inefficiency due to exclusive dealing effects 20% of

all lenders. Aggregating this reduction over all lenders, we can predict the total market

inefficiencies due to exclusivity. To the best of our knowledge we are the first to obtain

a micro-founded empirical estimate of such inefficiencies. With this, we provide a novel

micro-foundation for short sale constraints, whose market impact has been widely discussed

(Asquith et al., 2005; Bai et al., 2006; D’Avolio, 2002; Gutierrez et al., 2018; Nagel, 2005;

Nezafat et al., 2017).

2. Model Environment

The model is populated by a representative, risk-neutral seller (she), who is endowed with an

asset portfolio. The portfolio is normalized to unit size and contains a single, representative

asset with a positive and known value.
10

Furthermore, there exist N for-profit broker-

dealers (he/they) that are each endowed with an independent and uncertain demand for the

representative asset.
11

In the first period, and before the asset demand realizes, the broker-

dealers may compete for exclusive access to the seller’s portfolio. An exclusivity contract

specifies a bid price paid upon purchase and a lump-sum transfer paid independently of

trade. In a second period, each broker-dealer draws an independent ask price for the asset

from an identical uniform distribution with mean equal to the asset’s value. If exclusivity

was granted, the exclusive dealer pays the lump-sum transfer, but only purchases the asset

9
Specifically, the security lending market is captured by assuming the absence of broker-dealer default,

for example due to correctly priced collateral, such that the lender’s participation constraint reduces to a
zero reference value (a parameter in our model).

10
This common value can be interpreted as the average perceived market value of future cash flows from

all market participants.
11
For now, N is treated as a parameter. N is endogenized as part of the extensions in Section 5.
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when observing a positive bid-ask spread. In the absence of exclusivity, the seller hosts a

second-price auction to sell the asset. The timing is summarized in Table 1 below.

Table 1: Model Timing

Broker-Dealer Seller

t = 0 • Endowed with independent and uncertain
demand for each asset

• Endowed with asset portfolio

t = 1 • Anticipate its asset demand
• Offer competitive exclusive access agree-
ments:
– Uniform bid-premium above value
– Lump-sum transfer

• Anticipates profits with and without ex-
clusive access

• Decides whether to enter an agreement or
reject all offer

t = 2 • Demand uncertainty realizes
• With exclusive access agreement:
– Holder buys assets with positive bid-

ask-spread and pays lump-sum transfer
– Other broker-dealers remain inactive

• Without exclusive access agreement:
– Broker-dealers bid asset-by-asset in a

second price auction
– Highest bidder gets to buy asset

• With exclusive access agreement:
– Receives lump-sum transfers
– Receives uniform bid price for all sold

assets
• Without exclusive access agreement:
– Offers each asset via a second price auc-

tion
– Sells asset to highest bidder

Seller At t = 0, the risk-neutral seller is endowed with an asset portfolio. Without

loss of generality, we can normalize the portfolio size to one and let v denote the value of a

representative asset. The seller is assumed to be profit-maximizing and sufficiently liquid to

theoretically hold the assets for the long run. However, she is willing to sell the asset to a

broker-dealer when offered a favorable bid price b:

b ≥ v. (1)

Broker-Dealers There exist N ≥ 2 profit-maximizing broker-dealers, which we

label with sub-scripts n ∈ {1, 2, . . . , n, . . . , N}.12 The broker-dealers intermediate sales be-

tween the seller and (potential) buyers. We abstract from a detailed analysis on the buyer

side and simply assume that each broker-dealer n draws an independent ask price an from a

value-dependent uniform distribution at t = 2:

an ∼ U(v − a, v + a). (2)

12
The case for N = 1 is discussed separately further below.
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To realize such ask price, they must buy the asset from the seller at a bid price bn (more

below). For now, notice that broker-dealers are willing to buy and resell the asset when able

to realize a positive bid-ask spread πn:

πn = an − bn ≥ 0. (3)

Exclusive Dealing Anticipating their ask prices, broker-dealers may compete for

exclusivity over the seller’s portfolio by offering competitive exclusivity contracts at t = 1.

Each exclusive contract specifies a uniform bid price premium p
E
n paid above value v.

13
The

bid price b
E
n (v) under exclusive access is, thus:

b
E
n (v) = v + p

E
n . (4)

In addition, the exclusive contract specifies a lump-sum transfer T
E
n . Being ex ante

identical, broker-dealers compete in prices jointly on both the bid-premium and the lump-

sum transfer. Throughout the paper, we refer to the broker-dealer that has offered and was

granted exclusive access as the (single) exclusive dealer.

At t = 2, the exclusive dealer pays both the bid price and the lump-sum transfer: While

b
E
n (v) is paid upon purchase of the asset, T

E
n is always paid. We assume that the exclusive

contract is binding such that either nonpayment of T
E
n or one-sided termination entitles

the counterparty to receive compensation equal to the lost profits. Capturing their legal

complexity, exclusive contracts can neither be offered nor entered at t = 2. Assuming no

termination, the exclusive dealer purchases the asset at t = 2, when:

πn = an − b
E
n (v) > 0. (5)

Second-Price Auction In the absence of exclusivity at t = 2, the seller hosts

a standard second-price auction (Vickrey auction).
14

Simultaneously, each broker-dealer

observes his ask price realizations an and decides whether and how much to bid (bn).

With a small abuse of notation, we denote by maxk≠n bk the largest value of all other k

submitted bids. For a representative auction, a broker-dealer n’s profit (bid-ask spread) can

be characterized by the following step function:

13
Note that, for the uniform bid-premium assumption to be reasonable, ask price uncertainty a around

the true value must independent of the actual value. If we were to relax the latter assumption, we would
have to carefully evaluate the uniform bid-premium assumption.

14
Given the iid property of ask price draws across broker-dealers, the revenue equivalence theorem holds

and results are robust to assuming first-price auction or Bertrand competition with public information,
instead.
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πn =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

an −maxk≠n bk bn > maxk≠n bk ≥ v

an − v bn > v ≥ maxk≠n bk

0 maxk≠n bk ≥ bn ≥ v

0 otherwise

. (6)

Case one and two in the profit function (6) reflect the broker-dealer n submitting the

winning bid. Then, the bid-ask spread is the difference between the ask price and second

highest bid above v (case one) or the difference between the ask price and v (case 2). Here,

we follow standard convention and assume that the probability of having an equal highest

and second highest bid is zero. The third case in (6) reflects that profits are zero if the

broker-dealer n participated with a weakly positive bid, but did not have the highest bid.

Finally, the fourth line in (6) reflects that the broker-dealer n receives zero profits when

refraining from submitting a bid or bidding below value.

Equilibrium Notion We apply the notion of subgame perfect Nash equilibrium

(SPNE). We start by assuming that exclusivity was not granted at t = 1. Arriving immedi-

ately at t = 2, we derive each broker-dealer’s optimal auction bid and compute the respective

expected profits of the seller and broker-dealers. Subsequently, we derive the exclusive agree-

ment terms offered at t = 1. Here, we take into account that sellers can reject all offers when

expected payoffs are lower than the auction profits, which serve as her reservation utility.

Finally, we identify the SPNEs characterized by the broker-dealers’ strategic choices of of-

fering exclusive access agreements and check whether the SPNE is termination proof (more

below).

3. Equilibria

3.1. Second-Price Auction

Optimal Auction Bids Let us assume that we have arrived at t = 2, no exclu-

sivity was granted and ask-prices have realized. Then, we can derive the optimal auction

bids. Here, broker-dealers decide on an asset level whether to participate in the (represen-

tative) auction and, conditional on participation, what to bid. For participation, recall a

broker-dealer requires a positive bid-ask spread (see Equation (7)). Simultaneously, the seller

requires a bid-price weakly above value v to sell the asset (see Equation (8)). Combining

these two conditions in Equation (9), it is easy to see that broker-dealers participate in the

representative auction if he draws an ask-price weakly larger than the asset value:
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πn =an − bn ≥ 0, (7)

bn ≥v, (8)

an ≥bn ≥ v. (9)

As is standard in second-price auctions, the broker-dealer bids the entire ask-price upon

participation, i.e. whenever observing an ask-price realization above value (an ≥ v). Bidding

the entire ask-price is the highest possible bid that still ensures a weakly positive spread πn,

while simultaneously maximizing the chances of winning.

b
∗
n = an if an ≥ v. (10)

For an ask-price realization below reservation price v, bidding truthfully will not lead to

a broker-dealer winning the auction. Bidding more than the realized ask-price enhances the

chance of winning, but leads to a loss upon success. Therefore, broker-dealers refrain from

bidding whenever they observe an ask-price below value v:

b
∗
n = ∅ if an < v. (11)

A broker-dealer’s optimal bidding strategy is thus:

b
∗
n =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

an an ≥ v

∅ otherwise
. (12)

Ask-Price Decomposition To ease the notation for the rest of the paper, note

that the ask-price an can be decomposed into a value component and an uncertainty com-

ponent ãn around that value:

an =v + ãn where ãn ∼ U(−a, a). (13)

Then, the broker-dealer participates in the auction by bidding truthfully:

an ≥v, (14)

ãn ≥0. (15)

Notationally, it is further useful to sort the broker-dealer draws in descending order:

ã1 ≥ ã2 ≥ . . . ≥ ãN . (16)

Expected Seller Profits Given the optimal bidding strategy, we can move to

t = 1 and derive the seller’s expected profits. From a second-price auction with at least two

12



bidders, the seller realizes the difference between the second highest bid and true value v as

profit:

πS = max
k≠n

bk − v = v + ã2 − v = ã2 if ã2 ≥ 0. (17)

In the case of none of one bidder, the seller leaves empty handed:

πS = 0 if ã2 < 0. (18)

For a portfolio size normalized to one, the seller’s total expected profits are thus:

E1ΠS = Pr(ã2 ≥ 0)E1[ã2 ∣ ã2 ≥ 0]. (19)

The uncertainty component ã2 represents the second order statistic given N draws from

the same uniform distribution U(−a, a). Using well-established order statistic results, we

can derive the cdf and pdf of ã2. Denoted F2(ã2) and F2(ã2), respectively, they are:

F2(ã2) = [ ã2 + a

2a
]
N−1

[N + (1 −N) ã2 + a

2a
] , (20)

f2(ã2) =N(N − 1) 1

2a
[ ã2 + a

2a
]
N−2

[1 − ã2 + a

2a
] . (21)

Without going too much into analytical details here, we can derive the expected profits

as:

E1ΠS =Pr(ã2 ≥ 0)E1[ã2 ∣ ã2 ≥ 0], (22)

=(1 − F2(0))∫
a

0

ã2f2
f2(ã2)

1 − F2(0)
dã2, (23)

=
a

2N
[(2

N(N − 3) +N + 3)
(N + 1) ] . (24)

Expected Broker-Dealer Profits A broker-dealer profits from the representa-

tive auction only when realizing the highest ask-price draw. Given the independent draws

assumption a broker-dealer has the highest draw with a probability 1/N . Conditional on hav-

ing the highest draw, the expected profits depend not only on whether ã1 larger or smaller

than zero, but also whether ã2 larger on smaller than zero. Note here that by definition

ã1 ≥ ã2.

E1Πn =
1

N
[Pr(ã1 ≥ ã2 ≥ 0)E1[ã1 − ã2 ∣ ã1 ≥ ã2 ≥ 0]

+ Pr(ã1 ≥ 0 ≥ ã2)E1 [ã1 ∣ ã1 ≥ 0 ≥ ã2]
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+ Pr(ã1 < 0) ⋅ 0]. (25)

To derive the above expression (25) in closed form, we also need to define the distribution

for the highest draw ã1 conditional on ã1 being larger than ã2. Quite intuitively, the largest

draw from the uniform distribution must be uniformly distributed above the second largest

draw, given that both draws are independent. We denote the conditional cdf and pdf with

F1∣2(ã1) and f1∣2(ã1), respectively. Then:

F1∣2(ã1) =
ã1 − ã2
a − ã2

, (26)

f1∣2(ã1) =
1

a − ã2
. (27)

The first line in expression (25) represents the case where at least two brokers participate

in the auction. In that case, the winning broker-dealer realizes the difference between the

highest and second highest bid (ã1 − ã2). Again, without going too much into the analytical

solutions, and given the just defined distributional properties, the two elements:

Pr(ã1 ≥ ã2 ≥ 0)E[ã1 ∣ ã1 ≥ ã2 ≥ 0] =(1 − F2(0))∫
a

0

f2(ã2)
1 − F2(0)

∫
a

ã2

ã1f1∣2(ã1)dã1dã2, (28)

=
a

2N+1

(N − 1)(2N+1 −N − 2)
N + 1

. (29)

Pr(ã1 ≥ ã2 ≥ 0)E[ã2 ∣ ã1 ≥ ã2 ≥ 0] =Pr(ã2 ≥ 0)E1[ã2 ∣ ã2 ≥ 0], (30)

=
a

2N
[(2

N(N − 3) +N + 3)
(N + 1) ] . (31)

The second line in (25) represents the case, where only the highest draw is above v (i.e.

ã1 ≥ 0 ≥ ã2) and, thus, the winning broker-dealer can realize his whole ask-price premium.

Utilizing again the above defined functional properties and a similar logic, we can obtain the

following expression:

Pr(ã1 ≥ 0 ≥ ã2)E1 [ã1 ∣ ã1 ≥ 0 ≥ ã2] =
N

2N
a

2
. (32)

Finally, the third line in (25) represents the case, where even the highest draw is insuffi-

cient for participation. In that case, the broker-dealer makes zero. This is equally true for all

the (omitted) cases where he does not have the highest draw. Adding the three components

derived above and dividing by N , yields the following total expected broker-dealer profits:

E1Πn =
a

2N
2
N+1 −N − 2

N(N + 1) . (33)
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Note that identical analytical results for seller and broker-dealer profits can be obtained

in an alternative mathematical approach relying on the binomial theorem: One can treat

the number of draws ãn above and below zero as success and failure, which follow a binomial

distribution with N draws and a success probability of one-half. Given this, one can express

the expected highest and second highest draw as a function of the number of successes. The

derivations can be found in the Analytical Appendix C.

Sub-game Outcomes We summarize the sub-game outcomes under the second-

price auction in Lemma 1 below. We would like to highlight that both the seller’s and

broker-dealer’s expected profits do not depend on the underlying asset value v but are simply

determined by the bounds a on the uncertainty ãn around that value. Intuitively, profits

in our model stem solely from the bid-ask spread around the value but not from the value

itself. We acknowledge that this result crucially depends on the assumption that the upper

and lower bounds on the ask-price uncertainty ãn do not depend on v.

Lemma 1. The broker-dealers’ optimal bidding strategy in the representative second-price

auction at time t = 2 is:

b
∗
n =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

an an ≥ v

∅ otherwise
. (34)

Given the truthful bidding upon participation, the seller and broker-dealers expect the

following total profits, respectively:

E1ΠS =
a

2N
2
N(N − 3) +N + 3

N + 1
, E1Πn =

a

2N
2
N+1 −N − 2

N(N + 1) ∀n ∈ N. (35)

3.2. Exclusive Dealing

The seller compares the expected auction profits with the expected profits given the available

exclusive offers at t = 1. We denote all prices and profits associated with an exclusive

agreement with an additional superscript
E
.

Profit Functions We start by deriving the general expressions for the expected

seller and broker-dealer profits. For this, let us assume that the seller has agreed to grant

exclusivity to a generic broker-dealer n against a promised lump-sum transfer T
E
n and bid-

price b
E
n (v) that specifies an asset-independent bid-premium p

E
n above value:

b
E
n (v) = v + p

E
n . (36)

Recall the decomposition of the ask-price into a value component and an uncertainty

ãn around that value:
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an =v + ãn where ãn ∼ U(−a, a). (37)

Then, for a given asset, the broker-dealer with exclusivity purchases an asset at t = 2,

if:

πn = an − b
E
n (v) ≥0. (38)

ãn ≥p
E
n . (39)

Accounting for the likelihood of purchase, and given the unit-sized portfolio, the seller’s

and agreement-holder’s aggregate expected profits under an exclusive access are:

E1Π
E
S =Pr(ãn ≥ p

E
n )pEn + T

E
n =

a − p
E
n

2a
p
E
n + T

E
n , (40)

E1Π
E
n =Pr(ãn ≥ p

E
n )E1[ãn − p

E
n ∣ ãn ≥ p

E
n ] =

(a − p
E
n )2

4a
− T

E
n . (41)

Studying expression (40), we observe that the seller’s expected profits are monotonically

increasing in T
E
n . The profits are, however, nonlinear in the bid-premium: A higher p

E
n

increases the revenue from a single transaction, but reduces the probability of said transaction

taking place. This non-linearity must be taken into account when deriving the equilibrium

prices T
E∗
n and p

E∗
n under exclusivity.

Competitive Exclusivity We start by arguing that any equilibrium with an

active exclusivity agreement must have two or more broker-dealers competing over it and

that the exclusive dealer makes zero profits (Bertrand Paradox). Let us initially assume that

a single broker-dealer offers a profitable agreement for a given bid-premium p
E
n and lump sum

transfer T
E
n . Then any other broker-dealer has the incentive to offer the same bid-premium

but a slightly higher lump-sum transfer to attract the seller instead. Otherwise, he would

make zero profits when losing the agreement to a competitor. This applies for all bid-premia

and transfer combinations, where the agreement holder makes a positive profit. Therefore,

any two or more broker-dealers offering a competitive agreement must make zero profits in

equilibrium.

For completeness, assume that a single broker-dealer offers an agreement where he makes

zero profits. Without competition, he then has an incentive to lower lump-sum transfers to

keep some of the gains of trade. However, as just argued, such deviation is not an equilibrium

either as then again the competitor(s) have incentive to offer slightly favorable terms, thereby

attracting the seller. Hence, any SPNE with exclusive dealing is necessarily characterized

by at least two agreements, where the offered bid-premium and lump-sum transfer leave the

broker-dealer with zero profits.
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Equilibrium Prices Inserting the zero-profit condition into the exclusive dealer’s

expected profits (Equation (41)) yields the following equilibrium lump-sum transfer:

T
E∗
n =

(a − b
E
n )2

4a
. (42)

We then insert the equilibrium lump sum transfer (42) into the expected seller profits

(Equation (40)). By equating the associated first-order condition with respect to p
E
n to zero,

we can show that p
E
n = 0 is the unique seller profit-maximizing bid price:

E1Π
E
S =

a − p
E
n

2a
p
E
n +

(a − p
E
n )2

4a
, (43)

∂E1Π
E
S

∂pEn
= −

2

4a
p
E
n = 0, (44)

p
E∗
n =0. (45)

Expected Profits Inserting our optimal pricing into equations (40) and (41)

results in the following expected total seller and broker-dealer profits, respectively:

E1Π
E
S =

a

4
, (46)

E1Π
E
n =0 ∀n ∈ N. (47)

Seller Participation In a final step, we must verify that the expected profits of

the seller E1Π
E
S under exclusivity (Equation (46)) are greater than or at least equal to the

expected profits E1ΠS from the representative auction (Equation (35)). Alternatively, the

seller prefers to reject the agreement offers at t = 1 and simply lets the auction take place.

Figure 3 displays the two respective profit functions.

Intuitively, the second-price auction yields higher pay-offs the more broker-dealers com-

pete. Due to the Bertrand Paradox, exclusive access profits are, of course, independent of

N . Hence, it is not surprising that only sellers with few broker-dealer connections prefer to

grant exclusive access:

E1ΠS ≤E1Π
E
S , (48)

a

2N
2
N(N − 3) +N + 3

N + 1
≤
a

4
, (49)

N ≤3. (50)

Lemma 2. For N ≤ 3, competitive exclusive dealing may arise as a sub-game outcome,

where:
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Figure 3: Expected Seller Profits

N

profits
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E1ΠS

E1Π
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S

Note: Figure 3 displays the expected seller profits on the y-axis as a function of the
number of broker-dealer connections N on the x-axis. The dashed line represents ex-
pected seller profits under exclusivity and the solid line represents expected seller profits
under the representative auction.

b
E∗
n =v, p

E∗
n =0, T

E∗
n =

a

4
, (51)

E1Π
E
S =

a

4
, E1Π

E
n =0 ∀n. (52)

Exclusivity arises neither monopolistically nor when N ≥ 4 as a sub-game outcome.

Off Path Monopoly Off the equilibrium path, we may observe a single (monop-

olistic) broker-dealer offering an exclusive access agreement. Immediately below, we will see

that this is a relevant deviation, wherefore we briefly summarize these (off-path) expected

profits here.

In this case, the monopolistic broker-dealer simply charges the profit maximizing com-

bination of p
E
n and T

E
n constrained by the lender’s (binding) participation constraint:

E1Π
E
n = max

pEn ,TE
n

(a − p
E
n )2

4a
− T

E
n , (53)

s.t.

E1Π
E
S = E1ΠS. (54)

Solving the broker-dealer’s constraint maximization in (53) above, we find that setting

p
E∗
n = 0 is again optimal. Furthermore, optimal lump-sum transfers are set just such that
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the seller’s participation constraint just binds given p
E
n = 0. This ensures that the lender

agrees to exclusive access and all other broker-dealers are left empty handed. Remark 1

below summarizes the bid-prices, transfer, and resulting expected profits, whenever only a

single broker-dealer n requests exclusive access.

Remark 1. If offered a single exclusive access agreement, the lender always accepts, and the

optimal fee and expected profits are:

b
E∗
n =v, p

E∗
n =0, T

E∗
n =E1ΠS, (55)

E1Π
E
S =E1ΠS, E1Π

E
n =

a

4
− T

E∗
n , E1Π

E
k =0 ∀k ≠ n ∈ N. (56)

3.3. The Termination Proof SPNEs

We now turn to deriving the termination proof SPNE in this market. Here, we start by

deriving when, depending on N , the auctions versus exclusive dealing are candidate SPNE.

Consequently, we explain and apply the equilibrium refinement of termination proofness to

any candidate exclusive access SPNE.

Candidate SPNE From the above studied sub-games, we have two types of

candidate SPNEs: an auction SPNE and competitive exclusive dealing SPNE. Comparing

the above-derived expected profits from auctions versus exclusivity, we now determine the

broker-dealers’ equilibrium exclusivity offer strategy. For this, we compare a representative

broker-dealer n’s expected profits when (correctly) anticipating none versus at least one

other broker-dealer competing for exclusive dealing. Such expected profits are summarized

in Figure 4 below.

Figure 4: A Broker-Dealer’s profits given the Others’ Choices

k ≠ n

Auction Exclusivity

Auction

no Exclusivity Exclusivity

Competitive Exclusivity

n

( a

2N
2
N+1−N−2
N(N+1) ) (a

4
− a

2N
2
N (N−3)+N+3

N+1
) (0) (0)(E1Π

n)

The two sub-game outcomes derived above are indicated by the solid branches in Figure

4. Let us start by considering the left branch of the tree. Here, we consider a broker-dealer
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n that anticipates that no other broker-dealer k ≠ n has offered exclusivity. Conditional

on correctly anticipating such, the broker-dealer has a choice between moving onto the

auction or offering monopolistic exclusivity. Comparing the two left-most profits in Figure

4: E1[Πn ∣ Auctions] and E1[ΠE
n ∣ Auctions], we reach the following two (in-)equalities:

E1Πn ≥E1[ΠE
n ∣ Monopoly] ∀ N >2, (57)

E1Πn =E1[ΠE
n ∣ Monopoly] if N =2. (58)

Intuitively, the two inequalities state that a broker-dealer n, anticipating all other

broker-dealers to prefer the auctions, also (weakly) prefers the auctions over offering a mo-

nopolistic exclusive access agreement. More formally, conditional on no other broker-dealer

offering exclusivity, a single broker-dealer has no incentive to deviate by offering monopolistic

exclusive dealing. Because all broker-dealers are symmetric, we can directly conclude from

(57) and (58) that there thus always exists an auction candidate SPNE where broker-dealers

refrain from competing for exclusive access. Furthermore, combining this with the insights

from Lemma 2, we know that the auction SPNE is unique for N ≥ 4.

Lemma 3. There always exists a candidate auction SPNE. It is the sole candidate SPNE

for N ≥ 4.

The second type of candidate SPNEs is characterized by the right branch in Figure 4: At

least two broker-dealers compete for exclusive dealing in equilibrium. Comparing the profits

in the right branch of Figure 4, a broker-dealer is always indifferent between competing

for exclusivity or not, conditional on anticipating at least one other competitive agreement.

Again, relying on symmetry, this holds also for all other broker-dealers. Consequently, there

exist at most four of such competitive agreement SPNEs: one for each broker-dealer pair

and one for all three broker-dealers. Recall from from Lemma 2 that such exclusive access

SPNEs only exist for N ≤ 3, as otherwise the seller rejects any agreement in favor of the

auctions.

Lemma 4. For N ≤ 3, there exists multiple candidate SPNEs characterized by least two

broker-dealers offering competitive exclusive access agreements.

For completeness, also recall that monopolistic exclusive dealing has been ruled out in

Lemma 2. To avoid repetition, this option is not explored further as a candidate SPNE in

this section.

Terminations A common concern in the exclusive contracting literature is whether

the candidate SPNE is renegotiation proof (Segal and Whinston, 2000): Sellers and broker-

dealers renegotiating contract terms after signing but before ask-prices realize. In this model,

mutually beneficial renegotiations are not possible as we allow for exclusive pricing via both

a quantity dependent bid-premium and a lump-sum transfer. The latter ensures that any
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sure gain from exclusivity for the broker-dealer always results in a sure loss to the seller and

vice versa.
15

We thought of a closely related and more relevant concept in this setting:

SPNEs must be termination proof. The concept of termination proof SPNEs requires that

neither counterparty has the incentive to single-handedly terminate the exclusive dealing

contract in favor of triggering the auction. Crucially, we assume that contracts are binding

by law in the sense that one-sided termination triggers counterparty compensation for losses

from comparing profits under exclusivity and auctions.

Definition 1. A termination proof SPNE with exclusive dealing requires that neither of

the contracting parties has an incentive to single-handedly end exclusivity when required to

compensate the counterparty for expected losses due to termination.

As the seller always has the opportunity to decline exclusivity offers in favor of the

auction at t = 1, the seller never has an incentive to terminate ex post. For broker-dealers,

the Bertrand Paradox ensures that even the exclusive dealer makes zero profits. However, in

the auction candidate SPNE, every broker-dealer is expected to make strictly positive profits

(see Figure 5).

However, termination of exclusivity not only results in auction profits E1Πn but also

triggers seller compensation for her losses. The losses are the difference between the seller’s

expected profits E1Π
E
S under exclusive access and profits E1ΠS from the auction.

An equilibrium is, thus, termination proof when the broker-dealer’s cost of termination

exceeds the benefits:

E1Π
E
S − E1ΠS ≥E1Πn − E1Π

E
n . (59)

Inequalities (60) and (61) consider profit costs versus gains from termination whenN = 3

and when N = 2, respectively:

N = 3 ∶ E1Π
E
S − E1ΠS =

a

4
−

3a

16
≤
11a

96
− 0 = E1Πn − E1Π

E
n . (60)

N = 2 ∶ E1Π
E
S − E1ΠS =

a

4
−

a

12
=
a

6
− 0 = E1Πn − E1Π

E
n . (61)

As inequality (60) highlights, the multiple agreement SPNE is not termination proof for

N = 3. Here, the seller’s expected profits from the auctions are just 25% smaller than those

under exclusive access. As compensation is small, the broker-dealer prefers to terminate

to terminate the exclusivity contract, thereby triggering an auction SPNE. Therefore, for

N ≥ 3 the auction SPNE is the unique termination proof SPNE.

15
Note that in a more restrictive environment, where only quantity depending pricing is allowed, i.e. T

E
n = 0

by assumption, expected seller profits are an u-shaped function in p
E
n . Thus, the seller profit-maximizing bid-

premium leaves strictly positive profits for the broker-dealer. Here, depending on parameters, renegotiation
may be mutually beneficial ex post.
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Figure 5: Expected Broker-Dealer Profits
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Note: Figure 5 displays a single broker-dealer’s expected profits on the y-axis as a
function of the representative seller’s number of broker-dealer connections N on the
x-axis. The dashed line represents expected broker-dealer profits under exclusivity and
the solid line represents expected broker-dealer profits under the representative auction.

However, for N = 2, an additional competitive exclusive dealing SPNE exists. As

Equation (61) highlights, here the agreement-holder is just indifferent between entering the

auctions and paying the punishment or not and hence does not choose to terminate. In

Appendix 5.2, we show that the agreement-holders has a strict preference for not terminating

in case he ex post observes higher ask-prices than anticipated ex ante.

Of course, the auction SPNE is termination proof by assumption, as no agreement can

be offered or entered into at t = 2.

Proposition 1. There always exists a termination proof auction SPNE, which is unique for

N ≥ 3. For N = 2, there is also a termination proof SPNE with both broker-dealers offering

competitive agreements for exclusive access.

For completeness, we would briefly like to comment on the possibility of the exclusive

dealer terminating after ask-prices realize. Of course, one may simply argue that such late

termination does not allow for sufficient time for the seller to host an auction. In that case,

the exclusive dealer gains nothing from terminating, but must still compensate the seller.

Hence, he is left with a sure loss and would never terminate.

Alternatively, we could assume that the portfolio has enough different assets so that the

law of large numbers holds. In this case, expected and realized profits are approximately
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equal. Thus, the above-derivative conditions apply.

Mixed Strategy in Exclusive Dealing As we will rely on this in one of the

extensions, we would like to briefly mention that there exists a mixed strategy equilibrium in

exclusive dealing for N = 2. Here, we allow the broker-dealers to offer the following exclusive

dealing contract: The bid-premium is always zero. If the seller receives an additional exclu-

sive dealing offer, she gets a lump-sum transfer equal T
E
n to a/4, i.e. the price competition

case from Lemma 2. If the seller does not receive another exclusive dealing offer, the broker-

dealer pays a lump sum T
E
n = a/12, i.e. the monopolistic exclusive dealing case in Remark

1. Given the resulting expected profits, it is easy to show that each broker-dealer offers

exclusivity with a probability one-half. To see this, denote the probability of broker-dealers

n = 1 and n = 2 to offer exclusivity with µ1 and µ2, respectively. Then, the broker-dealers’

equilibrium probability with which to offer exclusive dealing is:

µ1µ2E1Π
E
1 + µ1(1 − µ2)E1[ΠE

1 ∣ Monopoly] =(1 − µ1)µ2 ⋅ 0 + (1 − µ1)(1 − µ2)E1Π1, (62)

µ1µ2 ⋅ 0 + µ1(1 − µ2)
a

6
=(1 − µ1)µ2 ⋅ 0 + (1 − µ1)(1 − µ2)

a

6
, (63)

µ1(1 − µ2)
a

6
=(1 − µ1)(1 − µ2)

a

6
, (64)

µ
∗
1 =

1

2
= µ

∗
2 . (65)

The last equality holds due to symmetry between broker-dealers, therefore µ1 = µ2.

Given the equilibrium probabilities, it is easy to compute expected profits under mixed

strategies:

E1Π
M
S =

1

4
E1Π

E
S +

3

4
E1ΠS =

a

8
, (66)

E1Π
M
n =

1

4
E1[ΠE

1 ∣ Monopoly] + 1

4
E1Πn =

a

12
. (67)

Lemma 5. For N = 2, there exists termination proof SPNE in mixed strategies, where each

broker-dealer offers exclusivity with probability µ = 1/2. The expected seller and broker-dealer

profits are:

E1Π
M
S =

a

8
, E1Π

M
n =

1

12
. (68)

For completeness, note that there exists a mixed strategy equilibrium for N = 2, where

each broker-dealer offers an agreement with probability one-half.
16

Monopolistic Broker-Dealer For completeness, we also derive the SPNE with

a single operating broker-dealer. For N = 1, the derivations are rather trivial as the broker-

16
In the mixed strategy SPNE, the uniform agreement bid-price is always zero. Transfers are, however,

conditional on the sellers total agreement offers.
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dealer is a monopolist and simply ensures that the seller just participates. Hence, the seller

makes zero profits from lending and the broker-dealer realizes the entire ask-price for every

asset where such is positive. An agreement may be offered and granted, but neither changes

profits nor fees. Hence, an agreement comes at no benefit to the seller.

Remark 2. For N = 1, the seller is indifferent between being offered an EAA or not, since

the broker-dealer is a monopolist that always extracts all transaction surplus:

b =b
E
= v, T

E
=E1ΠS = 0, E1Πn =

a

4
. (69)

Figure 6: Exclusivity in Equilibrium
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Note: Figure 6 summarizes when exclusivity may (not) arise in SPNE as a function
of broker-dealer connections N .

4. Market Inefficiency

From a market efficiency perspective, each asset in the seller’s portfolio where at least one

of the N broker-dealers observes an above value ask-price should be traded. Therefore,

the first-best benchmark implies that an asset is traded with probability 1 − 0.5
N
. At the

portfolio level, this aggregates to a total of (1− 0.5
n)∗ 100 percentage of assets traded. The

hollow circles in Figure 7 below indicate such percentages as a function of N .

The auction SPNE meets such a first-best benchmark: Every broker-dealer with ask-

prices weakly above value v participates in the auction. Thus, all assets with at least one

realized ask-price of above v are traded. This is indicated by the blue crosses in Figure

7 overlapping exactly with the first-best. For N = 2, there exists also an exclusive access

SPNE, where both broker-dealers offer an agreement, and a single one is ultimately selected.

Upon realization, the agreement-holder purchases each asset with probability one-half: the

probability of an ask-price weakly above value. For the entire portfolio, this implies that

50% of all assets are traded, as indicated by the red dots in Figure 7. Here, it can easily be

seen that the exclusive access SPNE does not meet the first-best benchmark.
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Figure 7: Percentage of Traded assets in SPNE
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Note: Figure 7 displays the expected share of securities traded on the y-axis as a
function of the representative seller’s number of broker-dealer connections N on the x-
axis. The hollow circles represent trading in efficient market (first-best benchmark), the
crosses represent trading in the auction SPNE and the red and filled circles represent
trading in the termination proof exclusive dealing SPNE.

Corollary 1. The auction SPNE always meets the first-best benchmark.

The exclusive access SPNE experiences a one-third lower trading volume relative to the first-

best for N = 2 but meets the first-best benchmark for N = 1.

5. Extensions

5.1. Endogenous N

The focus of the baseline model lies on rationalizing when exclusivity arises rather than

understanding what determines the seller’s number of broker-dealer connections: A valid

research question on its own. For tractability, we therefore assumed that the seller’s number

of broker-dealers is an exogenously given parameter N . In this extension, we would like to

relax this assumption in a simple and straightforward fashion to push the limits of the model

presented here. It is neither our intention to provide a mechanism for connection building

nor suggest definitive determinants.

Imagine a slightly refined period t = 0, where the seller is endowed with the asset

portfolio, contains the representative asset with value v, and a single broker-dealer connection

N = 1. Before moving to t = 1, the seller must decide how many additional broker-dealer

connections to establish. Each additional connection comes at a linear cost c ≥ 0. Total

costs C(N) for N broker-dealers are, thus:
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C(N) = c ⋅ (N − 1) where c ≥ 0. (70)

The seller decides how many connections to establish by comparing the marginal costs

and marginal benefits of each additional connection. The expected profits, underlying the

marginal benefits, are shown in Figure 8. Here, Remark 1 determines the profits under

N = 1: A monopolistic broker-dealer appropriates all games of trade and leaves the seller

with zero profits. For N = 2, the termination proof SPNE with exclusive dealing or the

auction SPNE may arise. Furthermore, a (unique) mixed strategy SPNE exists. As the

(lack of) exclusive dealing is not guaranteed, we assume that the seller anticipates the SPNE

in mixed strategies between exclusivity and auction. The associated profits are derived in

Lemma 5. Finally, the auction SPNE is unique for N ≥ 3 and the profits follow the function

stated in Lemma 1 deriving the sub-game outcome.

Figure 8: Expected Seller Profits at t = 0
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Note: Figure 8 displays the representative seller’s expected expected profits on the y-
axis as a function of the number of broker-dealer connections N on the x-axis. The solid
line represents the expected profits at t = 0, assuming an equilibrium in mixed strategies
between exclusive dealing and auctions for N = 2, while the dotted line represents the
marginal benefit in profits from increasing N by one.

Comparing the profits, its apparent that the largest benefit stems from adding a second

broker-dealer, i.e. from N = 1 to N = 2. Intuitively, the seller moves from facing a monopoly

to having broker-dealers compete. This puts an upper limit on cost c for connecting to an

additional broker-dealer:

E0ΠS(N = 2) − E0ΠS(N = 1) ≥c, (71)
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a

8
≥c. (72)

Thus, for c > a/8, the seller does not engage with more than one broker-dealer, while for

c < a/8, the seller connects with at least one additional broker-dealer or two in total.

The number of total connections depends on the added benefits. Here, we can further

see that the benefits from N = 2 to N = 3 are actually smaller than those from N = 3 to

N = 4.

E0ΠS(N = 3) − E0ΠS(N = 2) = a

16
, (73)

E0ΠS(N = 4) − E0ΠS(N = 3) = a

10
. (74)

Intuitively, this implies that a seller never engages withN = 3 broker-dealers but directly

jumps to N = 4, whenever:

E0ΠS(N = 4) − E0ΠS(N = 2) ≥ 2c, (75)

23a

80
−

a

8
≥ 2c, (76)

13a

160
≥ c. (77)

For all intermediate levels, c ∈ [a/8, 13a/40), the seller chooses to connect with two

broker-dealers.

Remark 3. For N ≥ 4, the expected seller profit functions are strictly concave and have the

following properties:

∂E0ΠS(N ≥ 4)
∂N

>0,
∂
2E0ΠS(N ≥ 4)

∂N2
<0, lim

N→∞
E0ΠS(N ≥ 4) =a. (78)

Now for all c < 13a/80, we can utilize the functional property of the expected profits

derived in Remark 2: Subtracting the weakly convex cost function from the concave profit

function results in a strictly concave function with a global maximum N
∗
. Furthermore, this

global maximum decreases in c, i.e. the slope of the linear function.

Lemma 6. For a linear cost function for broker-dealer connections C(N) = c(N − 1), the
seller chooses:

• N
∗
= 1 if c > a/8.

• N
∗
= 2 if c ∈ [a/8, 13a/160).

• And a unique N
∗
≥ 4 for every c ∈ [13a/160, 0].

As a word of caution, we would like to point out here that the parameter c is given by

the normalization of the portfolio size to one. Thus, c represents the true cost of connection
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divided by the seller’s portfolio size and is intrinsically dependent on that. It may, of course,

depend on further seller characteristics, such as asset types, business model, or location.

5.2. Advantaged Exclusive Dealer

In the baseline model, we argue that the appropriate time of concern for termination of

exclusivity is after the initial competition stage but before ask-prices realize. Thus, at the

stage of termination, broker-dealers are still symmetric. In this extension, we check whether

the competitive exclusive dealing SPNE is still termination proof when the exclusive dealer

realizes he is in a favorable position after negotiations have taken place.

More explicitly, we ask whether the exclusive dealer terminates when he realizes he

enjoys a positively biased ask-price draw and, thus, expects to purchase more on average.

We assume that the exclusive dealer e enjoys a cumulative probability of obtaining a draw

ãe above 0 that is ϵ above one-half (the baseline). Then:

Pr(ãe ≥ 0) =1

2
+ ϵ, Pr(ãe < 0) =1

2
− ϵ. (79)

To maintain tractability, we assume that, conditional on having a positive or negative

draw, the probability density is still uniform. Given this, the refined density functions

become:

f(ãe) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0.5+ϵ
a

ãe ≥ 0,

0.5−ϵ
a

ãe < 0
, (80)

F (ãe) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0.5 − ϵ + 0.5+ϵ
a

ãe ãe ≥ 0

(0.5−ϵ)(ãe+a)
a

ãe < 0
. (81)

For all other broker-dealers, we assume that their draws (on average) realize as antici-

pated, such that realized and expected profits are equal. Furthermore, we explicitly keep the

assumption of ex ante identical broker-dealers, i.e., we do not have an informed principal at

the stage of competition over exclusivity.

Assume that a broker-dealer arrives at t = 2 and observes the bias described above in his

draws. Furthermore, we assume exclusivity was granted and a contract with the following

bid-premium and lump-transfer was signed:

p
E∗
n =0, T

E∗
n =

Sa

4
. (82)

Then, given the revised ask-price distribution, expected profits become:
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E2Π
E
e = Pr(ãe ≥ 0)E[ãe − 0 ∣ ãe ≥ 0] − a

4
= (1

2
+ ϵ) a

2
−

a

4
=

aϵ

2
. (83)

To derive the auction profits, recall their general functional form:

E1Πe = Pr(ãe = ã
1)[Pr(ã1 ≥ ã

2
≥ 0)E[ã1 − ã

2 ∣ ã1 ≥ ã
2
≥ 0]

+ Pr(ã1 ≥ 0 ≥ ã
2)E1 [ã1 ∣ ã1 ≥ 0 ≥ ã

2]

+ Pr(ã1 < 0) ⋅ 0]. (84)

As ãe is still uniformly distributed above zero, the expected profits and their likelihoods

within the brackets of equation (84) do not change. However, what changes relative to the

baseline model is the likelihood Pr(ãe = ã
1) of winning the auction. In the baseline, winning

was equally likely for each broker-dealer and occurred with probability 1/N . Now, we must

account for the likelihood of ãe being higher than the largest ã1′ of N − 1 draws from our

original distribution. The highest value of N−1 from a uniform distribution has the following

cdf and pdf:

F1′(ã1′) = [ ã1′ + a

2a
]
N−1

, (85)

f1′(ã1′) =
N − 1

[2a]N−1
(ã1′ + a)N−2

. (86)

Now, the biased broker-dealer wins with the following probability:

Pr(ãe = ã
1) =Pr(ãe ≥ ã1′), (87)

=
1 + ϵ(2 − 2

2−N)
N

. (88)

Above, we have shown that the exclusive dealing is only termination proof when N = 2.

Inserting this into the above probability of winning, expected broker-dealer profits under the

representative auction become:

E2Πe =
1 + ϵ

2

a

3
. (89)

To check whether the competitive exclusive dealing SPNE remains termination proof,

we must again compare the benefits with the cost from compensating the seller upon ter-

mination. Here, we assume that the seller is unaware of the broker-dealer’s beneficial draw.

Then, we can show that he does not terminate whenever ϵ > 0:

E2Πe − E2Π
E
e ≤E2Π

E
S − E2ΠS, (90)
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(1 + ϵ)a
6

−
aϵ

2
≤
a

6
, (91)

0 ≤ϵ. (92)

From inequality (92), we can conclude that when enjoying a positively biased draw with

ϵ ≥ 0 and N = 2, the broker-dealer strictly prefers not to terminate for N = 2.

We have also shown that exclusivity is initially offered but eventually terminated if

N = 3. Repeating the above exercise, we get the following condition for non-termination:

E2Πe − E2Π
E
e ≤E2Π

E
S − E2ΠS, (93)

1 + 3

2
ϵ

3

11a

32
−

aϵ

2
≤
a

4
−

3a

16
, (94)

10

63
≤ϵ. (95)

Notice in the above inequality (95) that only the left-most and right-most terms, i.e., the

auction terms, have changed when moving to N = 3. Due to the Bertrand Paradox, profits

under exclusivity are independent of N . What we can see here is that if ϵ is sufficiently large,

then exclusive dealing may even be a termination proof underN = 3. Now, of course, whether

an increased likelihood by roughly one-six of obtaining an above-value draw is reasonable

remains up for debate.

Lemma 7. For N = 2 and an ϵ ≥ 0 increase in the likelihood to draw an ask-price above

asset value, the exclusive dealing SPNE is termination proof.

For N = 3 and an ϵ ≥ 10/63 increase in the likelihood to draw an ask-price above asset value,

an additional termination proof exclusive dealing SPNE emerges.

5.3. Endogenous Reserve Price

In the baseline model, we have assumed that the seller agrees to a transaction whenever the

bid-price exceeds v. In other words, her participation constraint cannot be violated. From

a theoretical perspective, this is equivalent to either assuming an exogenously given auction

reserve price r equal to the true value v or the lack of a commitment device to a higher

reserve price.

We acknowledge that there exists a literature on optimal auction reserve price setting by

sellers. Here, Levin and Smith (1996) establish that in private-value auctions, such as ours,

the seller sets an optimal reserve price r
∗
strictly above her valuation that is independent of

the number of bidders:

r
∗
= v +

1 − Fv(r∗)
fv(r∗)

. (96)
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In our setting, private valuations are ask-price draws with uniform distributions sym-

metric around v with the following cdf and pdf:

F (an) =
an − v + a

2a
, (97)

f(an) =
1

2a
. (98)

Inserting the functional forms of the ask-price distribution yields the following closed-

form expression for the optimal reserve price:

r
∗
=v +

1 − r
∗+a−v
2a

1

2a

, (99)

which solving for r
∗
reduces to:

r
∗
=v +

a

2
. (100)

Because both v and ask-price distributions are common knowledge in this market, the

reserve price does not reveal additional information to broker-dealers. Thus, truthful bidding

for an ≥ r
∗
and non- participation otherwise is still optimal. The broker-dealer’s optimal

bidding function is:

b
n∗

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

an an ≥ r
∗

∅ an < r
∗
. (101)

Notice that, similar to the ask-price, we can decompose the reserve price into a value

component and an uncertainty component r̃
∗
:

r̃∗ = r
∗
− v =

a

2
. (102)

Using this notation, expected seller profits from the representative auction are:

E1ΠS =Pr(ã2 > r̃
∗)E[ã2 ∣ ã2 > r̃

∗] + Pr(ã1 > r̃
∗
> ã2)r̃∗, (103)

=
a

22N+1

2
2N+1(N − 3) + 3

N−1(N2 +N + 18)
2(N + 1) . (104)

These auction profits exceed the exclusive dealing profits for all N = 3:

E1Pi
E
S ≥E1PiS, (105)

a

4
≥

a

22N+1

1

2(N + 1) [2
2N+1(N − 3) + 3

N−1(N2
+N + 18)] , (106)
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2 ≥N. (107)

Intuitively, the seller’s auction profits must be larger in this extension than in the

baseline: Setting a reserve price above v enables the seller to capture profits even in the

case of only one broker-dealer bidding. As we show with the inequality, (105) this benefit is

sufficiently large for the seller to reject exclusivity at N ≥ 3 instead of N ≥ 4 in the baseline.

We are thus left with checking whether for N = 2 the exclusive dealing remains nego-

tiation proof by comparing broker-dealers benefits and costs from terminating. The broker-

dealer’s bid-ask-spread under an endogenous reserve price is:

π
n∗

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ã
1 − ã

2
ãn = ã

1
& ã

2
≥ r̃

∗

ã
1 − ã

2
ãn = ã

1
& ã

2
< r̃

∗

0 otherwise

. (108)

Accounting for the likelihood of winning is equal to one-half given the two broker-dealers,

a broker-dealer’s expected profits are:

E1Πn =
1

2
Pr(ã1 > ã

2
> r̃

∗)E[ã1 − ã
2 ∣ ã1 > ã

2
> r̃

∗]

+
1

2
Pr(ã1 > r̃

∗
> ã

2)E[ã1 − r̃
∗ ∣ ã1 > r̃

∗
> ã

2], (109)

=
5a

96
. (110)

Finally, we can show that exclusive dealing is not termination proof as the benefits

out-weight the cost:

E1Πn − E1Π
E
n ≥E1Π

E
S − E1ΠS, (111)

5a

96
− 0 ≥

a

4
−

5a

24
, (112)

5 ≥4. (113)

Lemma 8. The auction SPNE is unique whenever a seller can credibly commit to an en-

dogenous auction reserve price r
∗
, where:

r
∗
= v +

a

2
. (114)

There are, of course, multiple reasons why a seller setting such a reserve price is not

possible. For one, trading platforms typically hosting such auctions are, of course, interested

in their trading volume rather than seller profits. Given that above value reserve prices
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reduce trading frequency, it may not be in their incentive to allow for such. There is also an

experimental literature, where, for example, Davis et al. (2011) show that even if possible,

sellers typically do not set the rationally optimal reserve price.

6. Application: The Security Lending Market

In this final section, we would like to briefly illustrate how the above derived theoretical

insights can be applied to a concrete market: The EU-based equity lending market. The

section is organized as follows: First, we confirm theoretically that our model nests the equity

lending market; then, we perform a counterfactual exercise assuming away all exclusive

dealing. Additionally, the Empirical Appendix A contains a detailed description of the data

set, and matches empirical insights with model inputs and outputs.

6.1. A Model for Security Lending

On first thought, equity lending transactions seem to differ slightly from the setup described

above, as the underlying asset (stock) is ultimately returned from the borrower to the broker-

dealer and then from the broker-dealer to the lender. Thus, bid and ask prices in this mar-

ket, here denoted b
′
and a

′
n, respectively, reflect lending fees rather than purchase prices.

Assuming away broker-dealer defaults for simplicity,
17

the participating constraint of a rep-

resentative equity lender is:

b
′
≥ 0. (115)

Ultimate borrowers borrow equity from broker-dealers’ predominantly for short-sell mo-

tives. As such, broker-dealers’ ask prices an
′
represent the ultimate borrowers’ perceived

over/under valuation in the market:

a
n
s
′
∼ U(−a, a). (116)

Given bid and ask prices, a broker-dealer intermediates if:

π
′
n = a

′
n − b

′
n ≥ 0. (117)

Combining the lender and broker-dealer’ participation constraints, trade happens if:

17
This is equivalent to assuming that correctly priced collateral is posted for every sale, generating the

same expected lender pay-offs Baklanova et al., 2019. Investigating potential collateral mispricing frictions
in the security lending market is beyond the scope of this paper.
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π
′
n = an − b

′
n ≥ 0, (118)

b
′
n ≥ 0, (119)

a
′
n ≥ b

′
n ≥ 0. (120)

Comparing equation (120) with its counterpart (9)) in the baseline model, one can

easily see that the equity lending market is a special case of the baseline model where

v = 0. Therefore, the baseline model nests the equity lending market. Note further that no

equilibrium outcome characterizing the baseline model depends on v. Therefore, Proposition

1, and its preceding and consequent results hold without loss of generality.

Corollary 2. The equity lending market nests in the model environment described above and

is captured by setting v = 0. Thus, all baseline results hold without loss of generality.

Having shown that the security lending market is an application of our model, we can

utilize the available data equity lending transactions to predict the aggregate market inef-

ficiency stemming from exclusivity: How much do individual reductions in trading volumes

impact aggregate trading volumes?

6.2. Model-Implied Counterfactual Trading

As part of the Security Financing Transactions Regulation (SFTR) database, available to

euro zone central banks, we observe all equity lending transactions entered and matured in

2021 with at least one counterparty based in the European Union. For each transaction, the

data set contains over 100 contract fields including: counterparty ids (LEIs), lending fee,

collateral alsotype and amount, maturity, and, most importantly, an exclusivity flag. The

exclusivity flag indicates whether a transaction between two counterparties was covered by

an exclusive security lending agreement (ESLA).

After an initial round of data cleaning (see Appendix A), we keep transaction between

lenders (corporate entities with ≥ 99% lending transactions) and broker-dealers (corporate

entities with at least 100 counterparties and both borrowing and lending).
18

Finally, we

aggregate the transactions on a lender level.
19

Table 2 displays the observed lending by

lenders with and without active ESLAs in 2021, including the average lender’s number of

ISINs, average value per ISIN and total loan value given ESLA status. Summing up all

lenders’ total loan values, we obtain a total market size of AC1, 144, 34 bn annually.

As a natural follow up question of your inefficiency result in Corollary 1— for lenders

18
We drop transactions by private clients, between broker-dealers and ultimate borrowers and between

any market participant and small traders.
19
For transactions performed by a subsidiary, we utilize the LEI of the ultimate parent. Intra-group trades

were dropped.
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Table 2: Observed Lending by ESLA Status

Without ESLA With ESLA

Mean SD Mean SD

Avg. Number of ISINs 83.99 255.90 29.75 103.51

Avg. Volume per ISIN (AC mn) 21.08 790.51 2.15 7.19

Total Trading Volume (AC mn) 347.58 1635.57 110.47 512.32

Number of Lenders 3046 775

with two (one) broker-dealer connection ESLAs reduce individual lending by 33% (0%) — is

to which extend the observed ESLAs reduce aggregate trading in our market. To quantify the

aggregate inefficiency, we perform a counterfactual analysis that assumes away all observed

ESLAs in the data and subsequently predicts the aggregate increase in total lending volume.

To obtain the counterfactual aggregate lending, we want to predict how many ISINs

each lender with an ESLA would have lent out in the absence of such. Based on the results

of Corollary 1, we assume that one-and-a-half times the original ISINs are traded in the

counterfactual with two broker-dealer connections while trading volumes are unchanged in

the counterfactual case of a single broker-dealer connection. The core challenge is that

neither the model nor the data allow us to infer which of the lenders with an ESLA would

have two broker-dealer connections in the counterfactual.

To account for this, we simply obtain predictions for different shares x ∈ [0, 1] of lenders
that we randomly assign two broker-dealers in the counterfactual and the associated trading

volume increase. The remaining share 1 − x of lenders with ESLAs is then assumed to

continue having one broker-dealer connection even in the absence of exclusivity. Formally,

assume that a lender is randomly indexed with l ∈ {1, . . . , l, . . . , L} and let us denote her total

number of traded ISINs with Il. In addition, let the superscript
C
denote the counterfactual.

Then:

∀l ≤ x ⋅ L ∶ I
C
l = Il ⋅ 1.5, (121)

∀l > x ⋅ L ∶ I
C
l = Il. (122)

Subsequently, we multiply each lender’s counterfactual size I
C

by her (true) average

loan value per ISIN to obtain the counterfactual total portfolio value. Summing over all

lenders in the market and subtracting the original total market volume, we obtain the ag-

gregate inefficiency. We repeat this process over 100, 000 Monte Carlo simulations to obtain
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both average inefficiency and bootstrapped standard errors. A detailed description of the

algorithm applied can be found in Appendix A.4.

Figure 9: Predicted Aggregate Inefficiency of ESLAs

Note: Figure 9 displays the predicted increase in market volume in bn euro (left axis)
and percentage (right axis) as an average of 100,000 bootstraps in which each a share
s ∈ [0, 1] of the 775 lenders with ESLA is randomly treated with two broker-dealer
connections and trading via auctions in a counterfactual.

Figure 9 displays the predicted average reduction in trading volumes due to ESLAs

across the 100, 000 Monte Carlo draws. We omit the (bootstrapped) confidence intervals,

since they are so narrow that they would be invisible. Needless to say that all predictions

are significant. Standard errors can be found in Appendix A.4.

We find that whenever at least some lenders with ESLAs would instead trade with

two broker-dealers, the overall trading volume increases significantly. Not surprisingly, this

increase in total volume is bigger the more lenders are assumed to have two broker-dealer

connections in the counterfactual. What is surprising is the magnitude. Even when only

one in ten lenders are assigned two broker-dealers in the counterfactual, the total market

volume increases by AC4.28 bn. If all lenders with active ESLAs had access to two competing

broker-dealers, market volume would even increase by AC42.30 bn annually or 3.74%.

Conjecture 1. In the counterfactual, ruling out ESLAs would likely result in additional

lending in the billions of euro.
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7. Conclusion

In this paper, we show that exclusivity over a portfolio is granted to intermediating broker-

dealers by sellers with at most two broker-dealer connections. However, this reduces trading

volume by up to a third at the seller level. In financial markets, such as the security lending

market, these can aggregate to billions of euro in foregone trading volume annually.

To derive these insights, we develop a novel three-period partial equilibrium framework,

where a representative seller has access to a small number of identical broker-dealers. The

seller is endowed with a representative asset, while the broker-dealers are each endowed with

uncertain asset demand. The seller’s value of the asset is public knowledge and the broker-

dealers are ex ante symmetric. Before the demand realizes, broker-dealers may compete

in prices for exclusivity. If exclusivity is granted, the exclusive dealer buys the asset when

a (weakly) positive bid-ask-spread realizes. When exclusivity was either not granted or

terminated early, broker-dealers bid in second-price auctions for those securities, where they

realize an ask-price above seller value.

Due to the nature of price competition, the seller’s profits under exclusivity are identical

if there are at least two broker dealers: The Bertrand Paradox applies and we have full profit

pass through. The profits in the second-price auction naturally increase in the number of

broker-dealers: More potential participants imply a higher likelihood of at least two bids and

a higher expected value of the second-highest bid. The seller thus faces a trade-off between

full profit pass through from the exclusive dealer or partial profit pass through in the second-

price auction that increases in bidders. Ultimately, this leads to exclusivity being granted

by sellers with at most two broker-dealer connections. Here, the equilibria with exclusive

dealing and with the auction coexist. For all sellers with more than two broker-dealers, the

auction equilibrium is unique.

The auction equilibrium meets the first-best of an efficient market: A security is always

traded when at least one of the broker-dealers can realize a positive bid-ask spread. The

exclusive dealing equilibrium, however, does not meet the first best: The security is traded

only if the exclusive dealer realizes a positive bid-ask spread. Comparing the exclusive

dealing and auction equilibrium for sellers with two broker-dealers, we find a 33% lower

trading likelihood in the former. Applying this to all sellers in the EU-based security lending

market, where we observe exclusivity on the transaction level, we find that exclusivity poses

the risk of reducing trading by several billion euros: AC4.28 bn if 10% of lenders would face

two competing broker-dealers instead and AC42.30 bn if 100% of lenders had access to two

broker-dealer.

The results are robust to both endogeneizing the number of broker-dealers and intro-
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ducing an exclusive dealer that surprisingly enjoys a higher ask-prices than anticipated.

However, exclusivity is ruled out as an equilibrium, when providing the seller with a com-

mitment devise to her optimal auction reserve price: This price is strictly above the one

implied by the participation constraint, thereby, resulting in higher profit-pass through from

broker-dealers to the seller. Ultimately, this is good news, as it does not require prohibiting

exclusive dealing to improve exclusivity. Simply, allowing sellers to set minimum reserve

prices, when auctioning their portfolio on trading platforms, is equally potent.
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Calzolari, G., & Denicolò, V. (2013). Competition with Exclusive Contracts and Market-

Share Discounts. American Economic Review, 103 (6), 2384–2411. https://doi.org/

10.1257/AER.103.6.2384
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Appendix A. Empirical Appendix

A.1. Data Description

We are able to apply the model to the EU-based security lending market, since recently the

Securities Financing Transaction Regulation (SFTR) has come into force. As part of this

regulation, EU-based counterparties are required to report all transactions regarding repur-

chase agreements, margin lending, security buy-and-sell back, and securities or commodities

lending transaction on a daily basis. The data reported contains ca. 100 contract fields

and, in addition, 800 enrichment fields for every single transaction since mid-2020. Thus,

it provides a rich source of information for both policy makers and researchers alike. For

this paper, the data set is particularly useful, since market participants are required to flag

whether the transaction is covered by an exclusive security lending agreement (ESLA).

For this exercise, we focus entirely on the subset of non-cleared equity lending transac-

tions. Simplified, the raw data contains both a daily stock and flow report from execution

until maturity submitted for each of their individual transactions. First, we combine all daily

reports in a single observation utilizing the unique transaction identifier and collect contract

variables of particular interest: loan volume, quantity, prices and fees, collateral, realized

maturity, both lending and borrowing side counterparty Legal Entity Identifiers (LEIs) and,

most importantly the ESLA-flag. Next, we limit our sample to transactions both entered

and matured in 2021 to have consistent reporting standards throughout the sample. Sub-

sequently, we drop all intra-group transactions, where the equity holder and the security

receiver have the same parent LEI code. On the remaining transactions, we perform a series

of additional quality checks and cleaning steps. A detailed description of the data set, the

cleaning procedures and the output generation process can be found in a complementary

market analysis (Kessler et al., 2023).
20

In the market analysis, we identify five different types of market participants to showcase

who lends to whom and under which conditions: borrower, broker-dealer, lender, private

client, and trader. Types are assigned based on their aggregate trading patterns across all

observations in our sample. All types, except private clients, are corporate entities that are

identified by their LEI code. For borrowers and lenders, we observe that 99% of all their

20
Given the explicit focus on ESLAs we perform an additional cleaning step, where we correct for misre-

porting of the ESLA-flag variable. For lenders with more than one counterparty, we replace ESLA=”TRUE”
with ”FALSE”, when less than 10% of the transactions are (falsely) reported to be covered by an ESLA.
If the reverse holds, we remove the lender from the sample. For lenders with a single counterparty, we
replace ESLA=”TRUE” with ”False” when less than 40% are covered by an ESLA. Vice versa, we replace
ESLA=”FALSE” with ”TRUE” when more than 60% of transactions are covered by an ESLA. For the re-
maining misreporting, where lenders have between 40%-60% covered by an ESLA and only one counterparty,
we simply drop the lender.
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transactions are borrowing and lending, respectively. Broker-dealers and traders engage in

both lending and borrowing. Broker-dealers have large trading volumes and more than a 100

counterparties, while traders are typically smaller agents that also own their own portfolio

to lend. Private clients are typically natural persons not subject to reporting requirements.

To match the model, we will restrict our sample to lenders, broker-dealers and borrowers.

We can consistently remove traders as 91% of the lenders interact only with broker-dealers.

Of the remaining lenders, the majority interacts predominantly with broker-dealers. There-

fore, we can discard traders without loss of generality. We also disregard private clients, as

we cannot determine their total number of counterparties: We only observe the client ID

as assigned by the reporting counterparty; therefore, we cannot identify them consistently

across our sample. In (Kessler et al., 2023) we show that these private clients have negligible

trading volume compared to lenders and can safely discard them.

An important characteristic of the contract, which determines, among others, the fee

structure, is the type of collateral underlying. In the equity lending market, we observe three

types of collateralization: none, basket, and cash. In the case of cash collateral, a net-rebate

rate is reported instead of a lending fee. In (Kessler et al., 2023) we find that only 6.2%

of the total transaction volume is collateralized with cash. Given the low market share,

we abstract from further analysis of contracts with cash collateral and a rebate rate rather

than a lending fee. Instead, we focus on the remaining transactions secured with either a

collateral basket (85.9%) or without collateral (7.8%). Ultimately, we are left with 3,624,859

observations. Table 3 shows the characteristics of the market participants per counterparty

type.

Table 3: Trading Party Characteristics

Type Nr. Parties Avg. Total Loan Avg. Transaction Avg. Nr. Avg. Nr. Avg. Nr.
Value (AC mn) Value (AC mn) Transactions Borrowers Lenders

Borrower 287 3071.15 1.89 5219.29 1.02
Broker-Dealer 37 90254.84 1.29 117584.90 18.28 381.24
Lender 3821 299.49 13.60 366.69 3.59

Before moving on, please note that we continuously ensure data confidentiality by mak-

ing sure that each reported statistic contains at least three lender and broker-dealers each,

and no two market participants make up more than 85%. Tables, where only aggregated

statistics are shown, are derived on data points between the 1s
st

and 99
th

percentiles to

ensure that outliers are not driving the results. All figures are produced using data points

between the 10
th

and 90
th

percentiles.
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A.2. Matching Model Inputs

In the model, we have risk-neutral owners of a security portfolio and a small number of dis-

tinct intermediaries with private, independent demand. As demand is uncertain, the portfolio

owner must decide upfront whether to sell/lend the securities exclusively or competitively.

As we show in the paragraphs below, these assumptions match the security lending market

quite well.

Risk-Neutral Lender In in the raw data, we observe two types of lenders: pri-

vate clients, identified by a broker-dealer issued id, and corporate clients, identified by a LEI.

Due to a very small market share and negligible trading volumes (Kessler et al., 2023), we

drop private clients from our final sample. Thus, we are left with 3821 registered corporate

entities that are typically well-diversified lenders with rather large and frequent trades (see

Table 3). Therefore, we see the assumption of risk neutrality to be well justified.

Representative Lender In the model, we further assume that the lender is

representative — a short hand for broker-dealers engaging in many lenders that are unlikely

to strategically interact with each other and only make up a small portion of a broker-dealer’s

portfolio. From Table 3, we can see that the average broker-dealer has over 381 lender-

counterparties. As such, strategic interaction between lenders is unlikely, especially in the

opaque over-the-counter security lending market. Thus, the assumption of representativeness

is justified from an empirical perspective.

Small N Additionally, Table 3 shows that lenders without ESLAs trade only

with a selected handfull of broker-dealers, and rarely more than three. On the demand

side, we predominantly observe single-homing: 92% of all borrowers trade with only a single

broker-dealer. Thus, the assumption of private borrowing demand of broker-dealers seems

justified.

Independent Demand Further, we assume in the model that broker-dealers

have independent demand. As we can see from Table 3, the average ultimate borrower has

indeed only one broker-dealer connection.

Profitable Intermediation We model broker-dealers as market makers that

profit from intermediating between lenders and borrowers. Figure 10 shows that broker-

dealers receive higher lending fees for lending, than they pay for borrowing. The median

lending fee paid and received by broker-dealers is 0.15 and 0.20 respectively.
21

Thus, we can

indeed assume that they engage in profitable intermediation. As a caveat, we would like to

mention that not all stocks that are borrowed by broker-dealers from ultimate lenders are

lend out to ultimate borrowers and not all lend out stocks are initially borrowed. This could

21
Note here that the whiskers of the two boxplots in Figure 10 indicate the 10

th
and 90

th
percentiles to

ensure confidentiality.
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indicate that they use some of the borrowed stocks for short-selling while simultaneously

lending out of their own inventory. For this paper, we focus on their role as market makers,

which should on average be profitable.

Figure 10: Broker-Dealer Lending Fee Distribution

Note: Figure 10 is based on 37 broker dealers with 2,126,924 borrowing and 2,223,718
lending transactions.

Timing The timing difference between ESLA and auction offers cannot be in-

ferred directly from the data. Here, we must rely on anecdotal evidence from practitioners

highlighting the typically lengthy bilateral negotiations required to set up Master agree-

ments, such as the Global Master Securities Lending agreement (GMSLA) provided by the

International Capital Market Association (ICMA) that cover the exclusive access (ICMA,

n.d.). Negotiating such complex legal documents must be compared to the relative ease

with which large-scale lending is conducted over trading platforms where portfolio holders

can announce individual stock level auctions. Examples of such trading platforms are the

BlackRock Security Lending platform, Sharegain and FIS Securities Lending Platform. All

three exclusively serve institutional clients. In a complimentary paper on corporate bonds,

Hendershott et al. (2021) show that sellers predominantly sell to their existing broker-dealer

connections, even when selling via an auction platform.

A.3. Matching Model Outcomes

Naturally, our analysis leads to the question: To what extent are reported fees fitting the

model outcomes? All lenders in our final sample receive a lending fee for each transaction

from the winning broker-dealer. Lending fees are typically reported as an annualized per-
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centage of loan value rather than euro or dollar amounts. Figure 11 displays the box plots

for lending fees with and without ESLAs, where the whiskers represent the 10th and 90th

percentile.

Figure 11: Lending Fee Distribution by ESLA

Note: Figure 11 is based on 1,246,039 transactions of 3046 lenders without ESLAs
and 155,102 transactions of 775 lenders with ESLAs.

To match the observed fees with the model prices expressed in units, we transform the

observed the lending fee (f
∗
) expressed as a percentage paid on loan value (V ) given q units

of stick into a bid price b
∗
per single unit of asset:

b
∗
=

f

100

V
q . (123)

To verify the model prices fit the data, we only focus on comparing equilibrium outcomes

for N ≤ 2 with contract terms from lenders with at most two counterparties, as we have

shown that ESLAs arise only for sellers with two or less counterparties. Furthermore, in the

case of lenders with three or more broker-dealers theoretical price predictions are cumbersome

and without any substantial additional insights. Given this selection, we derive three model

implications that we match with realized and observed lending using visual output.

Exclusive Security Lending Agreements We start by considering the subset

of transactions by exclusivity-granting lenders. From Lemma 3, we know that lenders with

ESLAs should pay zero bid-prices. Of course, this simplifies reality, as we assume in the

model that lenders face zero marginal transaction costs. Softening our expectations slightly,

the first model implication (M1) states that per-unit lending fees should be close to zero

when covered by ESLAs.
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M1 Per-unit lending fees of transactions under ESLAs should be close or equal to zero.

Testing M1 statistically using conventional methods is difficult, as the lending fees do

not follow a normal distribution: They have both a clear cutoff and a mass point at zero. To

verify I1, we instead rely on visual output by estimating the Kernel density over all per-unit

lending fees paid by lenders with ESLA. As Figure 12 below shows, the transaction fees

under exclusive agreements are indeed very close to zero. In fact, 84% of all transactions

have zero lending fee and all are less than 11 cents.

Figure 12: Kernel Density of the Per-Unit Fees under Exclusivity

Note: Figure 12 is based on 155,102 transactions of 775 lenders with ESLAs.

Auctions In the absence of agreements, a lender’s realized fee distribution de-

pends on the number of broker-dealer connections. As the number of lender with exactly N

broker-dealers decreases sharply for N ≥ 3, we abstract from those cases. Instead, we focus

on the cases N = 1 and N = 2 separately.

For N = 1, the baseline model predicts that transactions have a zero lending fee, since

the single broker-dealer acts as a monopolist. Testing such hypothesis in the data is chal-

lenging though, as we are only observing the realized number of counterparties and not

the (hypothetically) available number. As such, we adjust our expectations and the second

model implication (M2) states that lenders with a single active broker-dealer connection

should receive predominantly zero lending fees.

M2 Outside ESLAs, transactions of lenders with a single broker-dealer have more often

than not zero bid-prices.

To verifyM2, we estimate the Kernel density over all per-unit lending fees paid by lenders

with a single broker-dealer connection. Displayed in Figure 13, we observe that fees are likely
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to be zero or close to zero. However, we also see that a non-negligible number of lenders

indeed makes a profit. This could be due to nonzero lending costs or relational factors outside

the security lending market. In the latter case, their restriction to one broker-dealer might be

by choice. A lender requesting offers from multiple broker-dealers, but ultimately selecting

one, allows her to nevertheless enjoy the benefits of (some) competition without paying e.g.

on-boarding costs. Unfortunately, the data does not show how many counterparties they

considered ex ante.

Figure 13: Kernel Density of Per-Unit Fees without exclusivity and N = 1

Note: Figure 13 is based on 112,130 transactions of 1010 lenders without ESLAs and
N = 1.

For lenders with two broker-dealers (N = 2), obtaining the distribution of realized bid-

prices b
∗
we can rely on Lemma 1 : The broker-dealers bid truthfully in the second price

auction. Thus, the realized bid price is equal to the second highest draw a2 whenever a2 > 0

and is equal to zero when a2 is smaller or equal to zero. Relying on the derived distributional

properties of the second highest draw (see Section 3.1), this leads to the following theoretical

bid price pdf:

pdf(b∗) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

a−b∗

2a2
b
∗
> 0

3

4
b
∗
= 0

. (124)

The density function, shown in Figure 14a below, takes the value 3/4 at exactly zero.

This is cumulative density of broker-dealer 1 drawing an ask price below 0 but not broker-

dealer 2, broker-dealer 2 drawing an ask price below 0 but not broker-dealer 1, and both
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broker-dealer’s drawing an ask price below 0. In all three cases, the second highest draw is

below or equal to zero.

For a marginal increase in bid prices, we observe an immediate jump downwards to

1/2. This jump reflects that a zero bid-price is more frequent relative to all other positive

bid-prices due to the absence of second bids whenever one of the two broker-dealers draws

a negative ask-price. For every other value above zero, the density is a linearly decreasing

function with a slope equal to −1/2a−2. The model implication M3 below summarizes such

behavior.

M3 For transactions of lenders trading with two broker-dealers, zero is the most frequent

realized bid-price, followed by an immediate downward jump and consequent decrease.

Figure 14: Bid-Price Distributions without exclusivity and N = 2

0 a b
∗

1
2

3

4

pdf

(a) PDF of Bid-Prices (b) Kernel Density (N = 2)

Note: Figure 14b is based on 29,011 transactions of 494 lenders without ESLAs and
N = 2.

Notice here thatM3 intentionally does not describe the decrease in density for increasing

fees as linear, although the theoretical model predicts this. Again, this is motivated by the

fact that we only observe the realized but not the initially available number of broker-dealers.

In reality, some lenders could access offers from three (or more) broker-dealers, but chose

to engage with two for simplicity. This increases the density of fees the closer they are to

zero. Figure 14b displays the estimated Kernel densities using the transactions of sellers who

trade with two broker-dealers.

As a small caveat, we did not estimate a discrete Kernel with a jump at zero, but rather

relied on the standard assumption of continuity common to available statistical packages.

Nevertheless, we can clearly see that values just above zero indeed have the highest density.

Furthermore, the density declines for higher values. However, such a decline is convex rather
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than linear. This is additional evidence that some sellers may choose to let several broker-

dealers compete but ultimately only engage with two.

A.4. Aggregate Market Inefficiency

In this section, we describe our algorithm to compute the predicted increase in trading due

to the counterfactual assumption of eliminating ESLAs. In a first step, we calculate the

portfolio size of each lender in our data. Here, we decided to measure portfolio size by

the number of distinct ISINs a lender trades the average annual volume per ISIN. This

aggregation of trades on an ISIN level is motivated by the fact that loans are often split

into multiple identical transactions with the same borrower. The portfolios of the lenders

without ESLAs are temporarily put aside. For those with ESLAs, we perform the following

bootstrapping algorithm:

1. We define a grid of 100 values denoted x falling in equal steps between zero and one:

x ∈ [0, 1]. Each x represents the share of lenders having two versus one connected

broker-dealers in the counterfactual.

2. For each share x defined in the grid, we repeat the following 100,000 times:

(a) Draw a random number from a standard uniform distribution for each lender.

(b) Sort the lenders by their draw.

(c) Assign the first x share of lenders two counterfactual broker-dealers and the re-

maining 1 − x one.

(d) For those where we assign two broker-dealers, we follow Corollary 1 and predict

a 50% increase in the traded portfolio size.

(e) We compute the counterfactual aggregate portfolio by summing the counterfactual

portfolios of the ESLA holders and the actual portfolios of the non-ESLA holders.

(f) We obtain the percentage increase in the counterfactual market volume (MV
C

relative to the true market volume (MV ):

%MV =
MV

C −MV

MV
× 100. (125)

3. From the 100,000 bootstraps, we calculate the average predicted increase in total port-

folio and the bootstrapped standard errors. With both, we can obtain the 5
th
and 95

th

confidence intervals.

Figure 9 in the main text shows the predicted increases in traded portfolios in euro and

as percentage of market size, but omits confidence intervals due to their extremely small

size. Figure 15 below plots the standard errors of the percentage increase. Note that, as
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Figure 15: Bootstrapped Standard Errors around Aggregate Predictions

.

expected, the standard errors increase for medium shares x around 0.5. Here, there simply

is higher variation between the bootstraps when assigning one versus two counterparties at

random. Nevertheless, the standard errors (se) always remain below 0.001.

We can use the above standard errors to test for significance of the predictions. Here,

we test:

H0: The predicted percentage increase in market value is equal to zero.

Ha: The predicted percentage increase in market value is not equal to zero.

To test such hypothesis, we perform a t-test with the following t-statistic for each

x ∈ (0, 1):22

tx =
%MV − 0

se . (126)

The critical t− value is taken from a Student-t distribution with 100, 000− 1 degrees of

freedom and assuming a 1% significance level:

t − crit = 2.58. (127)

The lowest t-value from the bootstrapping is equal to 194.84 at x = 0.0101. All other

t-values are substantially larger. To display the t-statistics and critical t-value in the same

Figure, the natural logarithm was taken. As one can see from Figure 16, all predictions are

significant at the 1% level.

22
Please note that testing significance for x = 0 and x = 1 is trivial, as there is no uncertainty. All lenders

are assigned N = 1 and N = 2, respectively.
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Figure 16: Bootstrapped Standard Errors around Aggregate Predictions

.

Appendix B. Proofs

This section derives the results presented in Sections 2 and 4 in consecutive order. For

ease of reading, note that superscript n denotes broker-dealer related variables, superscript

S denotes seller related variables, subscript
E

and denotes everything related to exclusive

dealing. Further, we decompose the ask-price into a value and uncertainty component:

an = v + ãn where ãn ∼ U(−a, a). (128)

Finally, we sort the broker-dealer draws of ãn in descending order such that:

ã1 > ã2 > . . . > ãn. (129)

Here, and in all further sections, we apply the assumption that the likelihood of two

equal draws is zero.

B.1. Auction Sub-Game Outcome

Proof for Lemma 1 :

1. We start by assuming that we have arrived at t = 2 without any exclusive dealing.

2. Next, recall that a risk-neutral seller only provides the security when receiving a

weakly above value bid-price: b ≥ v.

This lower limit on the price results in broker-dealers participating only when an ≥ 0,

as they would otherwise realize the loss:
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πn = an − bn ≥ 0, (130)

an ≥ bn ≥ v. (131)

.

Therefore, the optimal bidding strategy whenever an < v is abstinence and:

bn = ∅ ∀an < v. (132)

3. If an ≥ v, truthful bidding is the optimal strategy.

3.1. First, assume that all other broker-dealers k ≠ n draw a below value ask-price

ak < v and thus bk = ∅. Then, n is indifferent between truthful bidding, overbidding

and underbidding (above v). In either case, he would always pay zero and make a profit

πn = an − v ≥ 0. Underbidding below v is not optimal, as it would leave a sure profit on the

table.

3.2. Second, assume that at least one other broker-dealer k participates in the auction

bidding a generic bk < a
n
. Here, the broker-dealer find truthful bidding optimal. Conditional

on winning, n is indifferent between truthful bidding or bidding slightly less: He would win,

pay bk regardless and make a positive return. However, underbidding below bk is not optimal,

as he would lose and forego a profitable transaction. Bidding truthfully maximizes the chance

of winning without risking any losses or extra cost.

3.3 Finally, assume that n participates in the auction bidding a generic bk > a
n
. Then

the broker-dealer n is indifferent between truthful bidding and underbidding: He would lose

regardless of making zero profits. With sufficient overbidding, the broker-dealer would win

the auction. However, because bk > a
n
, he would make a loss. This is less optimal than the

zero profits from truthful bidding.

3.4. With the same arguments applied for all other (symmetric) broker-dealers, we can

conclude that the optimal bidding strategy is:

bn =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

an an ≥ v

∅ otherwise
. (133)

3.5. Given truthful bidding, the bid ask-spread can be rewritten as follows:

πn =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

v + ã1 − ã2 ãn = ã1 > ã2 ≥ v

v + ã1 − v ãn = ã1 > v ≥ ã2

0 otherwise

. (134)

4. As we can see from Equation (134), the bid-ask spread ultimately depends on the
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distribution of the second highest draw of the uncertainty component (second order statis-

tics). Let us denote the cdf and pdf of ã2 with F2(ã2) and f2(ã2) respectively. Applying

well-established order static properties, these distributions are:

F2(ã2) = [ ã2 + a

2a
]
N−1

[N + (1 −N) ã2 + a

2a
] , (135)

f2(ã2) =N(N − 1) 1

2a
[ ã2 + a

2a
]
N−2

[1 − ã2 + a

2a
] . (136)

Furthermore, the spread depends on the conditional distribution of the highest draw

ã1 given the second highest draw ã2. Because our ask-price draws are iid from a uniform

distribution, by assumption ã1 must be uniformly distributed above ã2. Denote the cdf and

pdf of conditional distribution of ã1 given ã2 with F1∣2(ã1) and f1∣2(ã1) respectively. Here:

F1∣2(ã1) =
ã1 − ã2
a − ã2

, (137)

f1∣2(ã1) =
1

a − ã2
. (138)

5. With the optimal bids and order statistic distributions in mind, we now turn to

calculating the broker-dealers’ expected profits.

5.1. The equation below states the expected broker-dealer profits from a representative

broker-dealer n:

E1Πn =
1

N
[Pr(ã1 > ã2 ≥ 0)E[ã1 − ã2 ∣ ã1 > ã2 ≥ 0]

+ Pr(ã1 ≥ 0 ≥ ã2)E1 [ã1 ∣ ã1 ≥ 0 ≥ ã2]

+ Pr(ã1 < 0) ⋅ 0]. (139)

First, note that 1/N represents the probability that a broker-dealer n has the highest

draw (i.e., ãn = ã1).

The second term is the expected difference between the first and second highest draws

of the uncertainty component, conditional on both draws being above value. The third term

is the expected value of the highest draw of the uncertainty component conditional on being

above v but second highest draw being below v. The third term is the

5.2. A closed-form expression for the first term in Equation (139) can be derived in the

following steps.

First, notice that the first term can be separated into two terms:

Pr(ã1 > ã2 ≥ 0)E[ã1 − ã2 ∣ ã1 > ã2 ≥ 0] =
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Pr(ã1 > ã2 ≥ 0)E[ã1 ∣ ã1 > ã2 ≥ 0] − Pr(ã1 > ã2 ≥ 0)E[ã2 ∣ ã1 > ã2 ≥ 0]. (140)

Deriving the first term in (140):

Pr(ã1 > ã2 > 0)E[ã1 ∣ ã1 > ã2 > 0], (141)

= Pr(ã1 > ã2 ≥ 0)∫
a

0

f2(ã2 ∣ ã2 ≥ 0)∫
a

ã2

ã1f1∣2(ã1)dã1dã2, (142)

= Pr(ã1 > ã2 > 0)∫
a

0

f2(ã2 ∣ ã2 ≥ 0) 1

a − ã2
∫

a

ã2

ã1dã1dã2, (143)

= Pr(ã1 > ã2 > 0)∫
a

0

f2(ã2 ∣ ã2 ≥ 0) 1

a − ã2
[a2 − ã

22

2
] dã2, (144)

= Pr(ã1 > ã2 > 0)∫
a

0

f2(ã2 ∣ ã2 ≥ 0)a + ã2
2

dã2, (145)

= Pr(ã1 > ã2 > 0)∫
a

0

f2(ã2)
1 − F2(0)

a + ã2
2

dã2, (146)

= Pr(ã1 > ã2 > 0) 1

1 − F2(0)
N(N − 1)
[2a]n

1

2
∫

a

0

(ã2 + a)N−2(a − ã2)(a + ã2)dã2, (147)

= Pr(ã1 > ã2 > 0) 1

1 − F2(0)
N(N − 1)
[2a]n

1

2

a
N+1(2N+1 −N − 2)

N(N + 1) . (148)

Now, let us compute the probability:

Pr(ã1 > ã2 > 0) =∫
a

0

f2(ã2)∫
a

ã2

f1∣2(ã1)dã1dã2, (149)

=∫
a

0

f2(ã2)1dã2 = (1 − F2(0)). (150)

Finally, we can derive the first term in (140)

Pr(ã1 > ã2 > 0)E[ã1 ∣ ã1 > ã2 > 0] = a

2N+1

(N − 1)(2N+1 −N − 2)
N + 1

. (151)

Let us turn to the second term in Equation (140) and notice that by definition ã1 > ã2.

Then:

Pr(ã1 > ã2 ≥ 0)E[ã2 ∣ ã1 > ã2 ≥ 0], (152)

= Pr(ã2 ≥ 0)E[ã2 ∣ ã2 ≥ 0], (153)

= (1 − F2(0))∫
a

0

b2
f2(b2)

1 − F2(0)
db2, (154)

=
a

2N
[(2

N(N − 3) +N + 3)
(N + 1) ] . (155)
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5.3. A closed-form expression for the second term in Equation (139) can be derived in

the following steps.

Pr(ã1 ≥ 0 ≥ ã2)E[ã1 ∣ ã1 ≥ 0 > ã2], (156)

= Pr(ã1 ≥ 0 ≥ ã2)∫
a

−a
f2(ã2 ∣ ã2 < 0)∫

a

0

ã1f1∣2(ã1 ∣ ã1 ≥ 0)dã1dã2, (157)

= Pr(ã1 ≥ 0 ≥ ã2)∫
0

−a
f2(ã2 ∣ ã2 < 0) 1

1 − F1∣2(0)
∫

a

0

ã1
a − ã2

dã1dã2, (158)

= Pr(ã1 ≥ 0 ≥ ã2)∫
0

−a
f2(ã2 ∣ ã2 < 0) 1

1 − F1∣2(0)
1

a − ã2

a2
2
dã2, (159)

= Pr(ã1 ≥ 0 ≥ ã2)∫
0

−a
f2(ã2 ∣ ã2 < 0)a − ã2

a
1

a − ã2

a2
2
dã2, (160)

= Pr(ã1 ≥ 0 ≥ ã2)
a

2
∫

0

−a

f2(ã2)
F2(0)

dã2, (161)

= ∫
0

a

f2(ã2)∫
a

0

f1∣2(ã1)dã1dã2
a

2
, (162)

= ∫
0

−a
f2(ã1)(1 − F1∣2(0))dã2

a

2
, (163)

= ∫
0

−a
f2(ã1)

a

a − ã2
dã2

a

2
, (164)

=
a2
2

N(N − 1)
[2a]n

∫
0

−a
(ã2 + a)N−2

dã2, (165)

=
a2
2

N(N − 1)
[2a]n

a
N−1

N − 1
, (166)

=
N

2N
a

2
. (167)

5.4. Bringing everything together by adding/subtracting and dividing by N , a broker-

dealer’s expected profits from the auction are:

E1Πn =
1

N
Pr(ã1 > ã2 ≥ 0)[ã1 − ã2 ∣ ã1 > ã2 ≥ 0] + 1

N
Pr(ã1 ≥ 0 > ã2)E[ã1 ∣ ã1 > 0 > ã2],

(168)

=
1

N

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a

2N+1

(N − 1)(2N+1 −N − 2)
N + 1

−
a

2N
[(2

N(N − 3) +N + 3)
(N + 1) ] +

aN

2N+1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (169)

=
a

2NN(N + 1) [
(N − 1)(2N+1 −N − 2)

2
− 2

N(N − 3) −N − 3 +
N(N + 1)

2
] , (170)

=
a

2NN(N + 1)
1

2
[(N − 1) (2N+1

−N − 2) − 2
N+1(N − 3) − 2N − 6 +N(N + 1)] ,

(171)
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=
a

2NN(N + 1)
1

2
[2N+1(N − 1 −N + 3) + (N − 1)(−N − 2) − 2N − 6 +N(N + 1)] ,

(172)

=
a

2NN(N + 1)
1

2
[2N+2

−N2 − 2N + 2 +N − 2N − 6 +N2 +N] , (173)

=
a

2NN(N + 1)
1

2
[2N+2

− 2N − 4] , (174)

=
a

2NN(N + 1)(2
N+1

−N − 2). (175)

6. Finally, we derive the seller’s expected profits:

E1ΠS =Pr(ã2 ≥ 0)E1[ã2 ∣ ã2 ≥ 0] + Pr(ã2 < 0) ⋅ 0, (176)

=
a

2N
[(2

N(N − 3) +N + 3)
(N + 1) ] . (177)

B.2. Exclusive Dealing

Next, we move on to the proof for Lemmas 2 and 3. Before doing so, we briefly discuss the

general properties of the seller’s profits under exclusivity. As highlighted above, an ask-price

draw can be decomposed into a fixed and an uncertain component:

an = v + ãn where ãn ∼ U(−a, a). (178)

Further, the bid-price under exclusivity is composed of a value component and a fixed

bid-premium:

b
E
n (v) = v + p

E
n . (179)

Assume that the seller has granted exclusivity with a given uniform bid-premium p
E
n .

Then, the lending happens with probability:

Pr(ãn ≥ p
E
n ) = 1 − Pr(ãn < p

E
n ) = 1 −

p
E
n + a

2a
=

a − p
E
n

2a
. (180)

Given this, the seller expects a total payoff:

E1ΠS = (Pr(ãn > p
E
n )pEn + T

E
n = S

a − p
E
n

2a
p
E
n + T

E
n . (181)

We can similarly derive the expected profits of the exclusive dealer and show that they

are strictly decreasing in both p
E
n and T

E
n :
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E1Π
E
n =Pr(ãn > b

E
n )E1 [ãn − p

E
n ∣ an > p

E
n ] − T

E
n , (182)

=
a − p

E
n

2a

a − p
E
n

2
− T

E
n , (183)

∂E1Π
E
n

∂pEn
=S

p
E
n − a

2a
< 0, (184)

∂E1Π
E
n

∂TE
n

= − 1. (185)

Proof for Lemma 2 :

1. We start by establishing that the Bertrand Paradox holds: For N ≥ 2 at least two

broker-dealers offer competitive bid-premia and transfer combination that maximizes seller

profit while leaving all broker-dealers with zero profits. Any other combination of prices

cannot be sustained.

1.1. Assume that one broker-dealer sets a bid-premium and transfer combination that

allows him to make strictly positive profits. Then, any of the other broker-dealers can offer

the same bid-price and marginally higher lump-sum transfer. This would allow him to attract

the seller instead while still making a positive, albeit slightly lower, profit. This rules out a

monopolistic broker-dealer winning the exclusive dealing and making a profit.

1.2. Next, assume that two broker-dealers compete and the winning broker-dealer offers

an agreement where bid-premium and lump-sum transfer is such that he would make a profit.

Then the losing broker-dealer has an incentive to slightly underbid by offering an epsilon

higher lump-sum transfer and, thereby, winning over the seller. Hence, this can also not be

an equilibrium.

1.3. This logic of underbidding continues until two or more broker-dealers offer bid-

premium and transfers that leave all of them with zero profits. Only here does there not

exist an incentive to deviate. Both broker-dealers that have offered exclusivity and those that

have not are indifferent to changing action, as they make zero profits regardless. Raising

prices will not make them win the exclusive dealing, not offering exclusivity leaves them

with losing to someone else, and offering/winning the exclusive dealing leaves them with

zero profits. This is commonly referred to as the Bertrand Paradox.

1.5. For completeness note that a single broker-dealer offering exclusivity with terms

that lead to zero profits is not an equilibrium strategy either. Correctly anticipating that no

other broker-dealer enters, he has an incentive to reduce the lump-sum transfer and retain

some profits. In return, per point 1.1, however, this is also ruled out as an equilibrium.

1.6. Concluding, any exclusive dealing equilibrium must have two or more broker-dealer

competing and offering such bid-premium and lump-sum transfers, that they are left with

zero profits. In other words, there is full profit pass through.
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2. Next, we show that there exists a unique p
E
n and T

E
n combination that maximizes

seller profits.

2.1. First, note that the lump sum transfer T
E
n must necessarily equate the chosen

broker-dealer’s expected profits to zero given the offered bid-premium p
E
n :

E1Π
E
n =

a − b
E
n

2a

a − b
E
n

2
− T

E
n = 0, (186)

T
E
n =

a − b
E
n

2a

a − b
E
n

2
. (187)

2.2. Inserting this into the seller’s profit function, we can see that the seller profits are

highest at p
E
n = 0:

E1Π
E
S = max

pEn

S
a − p

E
n

2a
p
E
n +

a − p
E
n

2a

a − p
E
n

2
, (188)

∂E1Π
E
S

∂pEn
= − 2

S

4a
p
E
n = 0, (189)

p
E
n =0. (190)

2.2. Inserting the solution back into the broker-dealers zero profit condition yields the

the following transfers:

T
E
n =

a − p
E
n

2a

a − p
E
n

2
=

a

4
. (191)

3. Having derived optimal bid-price and lump-sum transfer, we can calculate the ex-

pected broker-dealer seller profits:

3.1. Trivially, all broker-dealers make zero profits. This is regardless whether they

offered and subsequently granted the exclusive dealing or not.

E1Π
E
n = 0 ∀n. (192)

3.2. The seller then expects the following profit:

E1Π
E
S = T

E
n =

a − p
E
n

2a

a − p
E
n

2
=

a

4
. (193)

4. Finally, notice that the auction pay-offs serve as a participation constraint for the

seller. She may always reject the exclusivity offer and try her luck at the auctions. Hence,

exclusive dealings are only ever accepted when expected payoffs exceed those from the S

auctions:
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E1Π
E
S ≥E1ΠS, (194)

a

4
≥

a

2N
2
N(N − 3) +N + 3

N + 1
, (195)

3 ≥N. (196)

Hence, sellers accept competitive exclusive dealing only if connected with less than four

broker-dealers.

Proof for Remark 1:

1. For completeness, we also derive optimal fee terms in case of a single exclusive dealing

offer. Notice that those will be ruled out as potential SPNE.

p
E
n =0, T

E
n =E1Π

E
S = E1ΠS, E1Π

E
n =

a

4
− T

E
n , E1Π

E
k =0 ∀k ≠ n ∈ N. (197)

2. We start by assuming only one broker-dealer offering exclusivity and correctly an-

ticipating the other broker-dealer not to. Note that this is happens only off the equilibrium

path.

3. Being a monopolist, the broker-dealer then sets the lowest combination of bid-price

and transfer possible that still motivate the seller to grant the exclusive dealing. Hence, he

equates the sellers participation constraint:

S
a − b

E
n

2a
p
E
n + T

E
n =

a

2N
2
N(N − 3) +N + 3

N + 1
, (198)

T
E
n =

a

2N
2
N(N − 3) +N + 3

N + 1
− S

a − p
E
n

2a
p
E
n . (199)

4. Inserting (199) into the sellers profit maximization problem yields:

E1Π
E
n = max

pEn ≥0

a − p
E
n

2a

a − p
E
n

2
−

a

2N
2
N(N − 3) +N + 3

N + 1
+ S

a − p
E
n

2a
b
E
n . (200)

And the FOC wrt. p
E
n is equal to:

∂E1Π
E
n

∂pEn
= −

S

a4
2p

E
n = 0, (201)

p
E
n = 0. (202)

5. An optimal bid-price p
E
n implies a lump-sum transfer:

T
E
n =

a

2N
2
N(N − 3) +N + 3

N + 1
. (203)

6. The respective total payoffs are thus:
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E1Π
E
S =

a

12
, (204)

E1Π
E
n =

a

4
−

a

2N
2
N(N − 3) +N + 3

N + 1
. (205)

7. Because the transfers take the participation constraint into account, the sellers always

accept.

8. For the broker-dealers, the profits from exclusive dealing decrease in N . Here, offering

a single exclusive dealing is only optimal as long it is better than the auction payoffs.

E1Π
E
n =

a

4
−

a

2N
2
N(N − 3) +N + 3

N + 1
≥

a

2N
2
N+1 −N − 2

N(N + 1) , (206)

N ≤2. (207)

B.3. Candidate SPNEs

Proof for Lemma 3 :

1. Let us start by assuming we are at t = 1 and no other broker-dealer offers exclusivity.

Then, a representative broker-dealer n does not have an incentive to deviate by offering

monopolistic exclusivity instead:

E1Πn ≥E1[ΠE
n ∣ Monopoly], (208)

a

2NN(N + 1)(2
N+1

−N − 2) ≥a

4
−

a

2N
2
N(N − 3) +N + 3

N + 1
. (209)

Lets start by showing that the above equation holds with strict equality for N = 2:

1

222(2 + 1)(2
3
− 2 − 2) =1

4
−

1

22

22(2 − 3) + 2 + 3

2 + 1
, (210)

4

24
=
1

4
−

1

12
, (211)

2

12
=

3

12
−

1

12
, (212)

0 =0. (213)

Next, let us show that it holds with strict equality for N > 0. For this purpose, we

rearrange the inequality to:

E1Πn ≥E1[ΠE
n ∣ Monopoly], (214)

a

2NN(N + 1)(2
N+1

−N − 2) ≥a

4
−

a

2N
2
N(N − 3) +N + 3

N + 1
, (215)

4N(N + 2) + 2
N(N(3N − 13) + 8) − 8 ≥0. (216)
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We know that for N = 2, the above equation holds with equality. Then, one can simply

treat it as a function of N , where it is sufficient to show that it is strictly increasing for

N > 2.

f(N) =4N(N + 2) + 2
N(N(3N − 13) + 8) − 8, (217)

f
′(N) =8(N + 1) + 2

N(−13 + 6N) + 2
N(8 +N(−13 + 3N))log(2) > 0 ∀N ≈> 1.6537.

(218)

The exact analytical expression is quite complex and does not add value in this study.

The interested reader is encouraged to plug in the equation in appropriate software such as

Wolfram Mathematica.

2. Now, let us move to t = 2. By assumption, we have ruled out the possibility that

the exclusivity can be entered at t = 2. Hence, arriving at t = 2 without exclusive dealing

automatically triggers the auctions.

1. From Lemma 1, we know that both the seller and all broker-dealers make a strictly

positive profit from the auctions. Therefore, no one has an incentive to not participate,

conditional on all other agents participating.

2. From Lemma 2, we know that the seller rejects any competitive exclusive dealings

for N ≥ 4.

3. Combining all three, there always exists a candidate auction SPNE and that it is the

only candidate for N ≥ 4.

Proof for Lemma 4 :

1. From Lemma 2, we know that the seller rejects any competitive exclusive dealing for

N ≥ 4, but accepts those for N ≤ 3.

2. Here, conditional on some or all other broker-dealers making a competitive exclusive

dealing, a single exclusive dealing is indifferent between making also a competitive exclusive

dealing offer or not: he would be left with zero profits in either case.

3. As all broker-dealers are symmetric, this holds for every broker-dealer. Hence, an

candidate SPNE with competitive exclusive dealings exist.

4. Note, here for N = 2 is requires both broker-dealers making a competitive exclusive

dealing. For N = 3, it only requires two out of three making one.

B.4. Termination Proof SPNEs

Finally, we turn to test whether our candidate SPNEs are termination proof. This requires

that the exclusive dealer has no incentive to terminate the exclusive dealing at t = 2, com-

pensating the seller for potential losses.
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Proof for Proposition 1 :

1. By assumption, the auction SPNE is termination proof. Once all agents have arrived

at t = 2, no further exclusive dealing can be offered and/or accepted. Hence, in the absence

of exclusive dealings being offered at t = 1 the auctions remain unchallenged at t = 2.

2. Assume instead that exclusivity was granted at t = 1. The exclusive dealer can

terminate the contract at t = 2, triggering the auction SPNE. However, he must compensate

the seller for the profit losses due to breach of contact. The exclusive dealer thus terminates

if:

E1Πn − (E1Π
E
S − E1ΠS) ≤E1Π

E
n . (219)

3. Let us start by assuming N = 3 and insert this into (219). It can easily be shown

that the inequality is violated:

Sa11

96
− (a

4
−

Sa3

16
) > 0 = E1Π

E
n . (220)

This implies that for N = 3, the exclusive dealer terminates the exclusive dealing and

triggers the auction SPNE instead. Hence, for N = 3 exclusive dealings are not termination

proof. Hence, the auction SPNE is the sole SPNE.

4. Inserting N = 2 into (219) instead yields in an equality:

a

6
− (a

4
−

a

23
) = 0 = E1Π

E
n . (221)

Hence, for N = 2, the equilibrium is termination proof.

5. Just to provide some intuition, the punishment for termination decreases faster than

the benefits from termination. And hence, for N = 3, the exclusive dealer gains slightly less

from termination than for N = 2, but pays substantially less punishment.

Finally, we conclude with studying the case of a single connected broker-dealer and

N = 1.

Proof for Remark 2: For N = 1, the seller is indifferent between being offered

exclusivity or not, as the broker-dealer is a monopolist that always extracts all transaction

surplus:

b =b
E
= v, T

E
=0E1ΠS = 0, E1Πn =

a

4
. (222)

Proof:

1. Starting with the auctions at t = 2. Given that there is no competitive bid, the broker-

dealer always pays a bid-prices equal to v such that the seller’s participation constraint is
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just binding. He realizes the whole ask-price premium as profits for every purchased security.

This leads to:

Πn =Pr(an > 0)E1[an ∣ a0] = a

4
, (223)

ΠS =0. (224)

2. Because the auction profits serve as the sellers outside value, the broker-dealer can

offer exclusivity with zero bid-premium and lump-sum transfer. The profits of both agents

remain the same.

B.5. Proof for the Extension: Endogenous Reservation Price

1. We assume that the reserve price is public knowledge, but does not impact the information

set available to broker-dealers: v remains public knowledge. Therefore, broker-dealers bit

truthfully in the following fashion:

b
n∗

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

an an ≥ r

an < r
. (225)

Again, we can sort the bids in descending order, such that the bid-ask spread is, thus:

π
n∗

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

a
1 − a

2
an = a

1
& a

2
≥ r

∗

a
1 − r

∗
an = a

1
& a

2
< r

∗

0 otherwise

. (226)

2. Given truthful bidding, we can express the seller’s expected profits as:

E1ΠS =Pr(a1 < r)v + Pr(a1 > r > a
2)r + Pr(a1 > a

2
> r)E1[a2 ∣ a1 > a

2
> r]. (227)

In a next step, we can insert the (general) the cdf and pdf of the second and first order

statistics, respectively:

F2(a2) =[F (a2)]N−1[N + (1 −N)F (a2)], (228)

f2(a2) =N(N − 1)f(a2) [F (a2)]
N−2

[1 − F (a2)] , (229)

,

F1(a1) =[F (a1)]n, (230)

f1(a1) =Nf(a1)[F (a1)]N−1
. (231)
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Inserting this into the above seller profit function, yields:

E1ΠS =[F (r)]nv

+N[F (r)]
N−1

(1 − F (r))r

+N(N − 1)∫
a

r

anf(an)[F (an)]
N−2

[1 − F (an)]dan, (232)

=[F (r)]nv

+Nr[F (r)]
N−1

−Nr[F (r)]
N

+N(N − 1)∫
a

r

anf(an)[F (an)]
N−2

[1 − F (an)]dan. (233)

Then, the optimal reserve price, r
∗
, can be derived taking the first-order condition:

0 =N[F (r)]N−1
f(r)v

+N[F (r)]
N−1

+N(N − 1)[F (r)]
N−2

f(r)r

−N[F (r)]
N

−N
2[F (r)]

N−1

f(r)r

−N(N − 1)f(r)[F (r)]
N−2

[1 − F (r)]r. (234)

Dividing both sides by N[F (r)]N−2
yields:

0 =F (r)f(r)v
+ F (r) + (N − 1)f(r)r

− [F (r)]
2

−NF (r)f(r)r

− (N − 1)f(r)[1 − F (r)]r (235)

=F (r)f(r)v + F (r) − [F (r)]
2

− F (r)f(r)r. (236)

Rearranging for r
∗
yields:

r
∗
=v +

1 − F (r∗)
f(r∗) . (237)
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The above result is well-established and first derived by Levin and Smith, 1996. Relying

on the functional properties of an∑U(v − a, v + a), we obtain a closed form solution:

r
∗
=v +

1 − r
∗−v+a
2a

1

2a

, (238)

r
∗
=v +

a

2
. (239)

3. Conveniently, we can again decompose the optimal reserve price into a value compo-

nent and an uncertainty component r̃:

r̃
∗
= r

∗
− v =

a

2
. (240)

With this, we can rewrite seller profits as:

E1ΠS = Pr(ã2 > r̃
∗)E[ã2 ∣ ã2 > r̃

∗] + Pr(ã1 > r̃
∗
> ã2)r̃∗. (241)

Where the first term becomes:

Pr(ã2 > r̃
∗)E[ã2 ∣ ã2 > r̃

∗] (242)

=(1 − F2 (
a

2
))∫

a

a
2

ã2f2
f2(x)

1 − F2(a2)
dã2, (243)

=∫
a

a
2

ã2f2(ã2)dã2, (244)

=∫
a

a
2

ã2N(N − 1) 1

2a
[ ã2 + a

2a
]
N−2

[1 − x + a

2a
] dx, (245)

=
N(N − 1)
[2a]n

∫
a

r̃∗
x (x + a)N−2 (a − x)dx, (246)

=
N(N − 1)
[2a]n

a
N+1

2N+1N(N + 1)(N − 1) (2
2N+1(N − 3) − 3

N−1(N2
+N − 18)) , (247)

=
a

22N+2

2
2N+1(N − 3) − 3

N−1(N2 +N − 18)
N + 1

. (248)

The second term becomes:

Pr(ã1 > r̃
∗
> ã2)E1[r̃∗] =∫

a
2

−a
f2(ã2)∫

a

a
2

f1∣2(ã1)dã1dã2
a

2
, (249)

=∫
a
2

−a
f2(ã1)(1 − F1∣2(

a

2
))dã2

a

2
, (250)

=∫
a
2

−a
f2(ã1) (1 −

a

2
− ã2

a − ã2
) dã2

a

2
, (251)
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=∫
a
2

−a
f2(ã1)

a − a

2

a − ã2
dã2

a

2
, (252)

=
a

2

a − a

2

[2a]n
N(N − 1)∫

a
2

−a
(ã2 + a)N−2

dã2, (253)

=
a

2

a − a

2

[2a]n
N(N − 1)3

N−1

2N−1

a
N−1

N − 1
, (254)

=
a

2

a

2

1

[2a]n
3
N−1

2N−1

N(N − 1)
N − 1

a
N−1

, (255)

=
a

22N+1
3
N−1

N. (256)

Total seller profits under the auctions are:

E1ΠS =
a

22N+2

2
2N+1(N − 3) − 3

N−1(N2 +N − 18)
N + 1

+
a

22N+1
3
N−1

N, (257)

=
a

22N+1

1

2(N + 1) [2
2N+1(N − 3) + 3

N−1(N2
+N + 18)] . (258)

4. Then, the seller prefers exclusive dealing if:

E1ΠS ≤E1Π
E
S , (259)

a

22N+1

1

2(N + 1) [2
2N+1(N − 3) + 3

N−1(N2
+N + 18)] ≤a

4
, (260)

N <3. (261)

Thus, we have excluded exclusive dealing as a candidate SPNE for N ≥ 3.

For N = 2, expected seller profits are:

E1ΠS =
5a

24
. (262)

5. Next, we must check whether for N = 2, the broker-dealer would terminate.

For N = 2, expected Broker-Dealer Profits are:

E1Πn =
1

2
Pr(ã1 > ã2 > r̃

∗)E[ã1 − ã2 ∣ ã1 > ã2 > r̃
∗]

+
1

2
Pr(ã1 > r̃

∗
> ã2)E[ã1 − r̃

∗ ∣ ã1 > r̃
∗
> ã2]. (263)

Where:

F2(ã2) =
(a + ã2)(3a − ã2)

4a2
, (264)

f2(ã2) =
a − ã2
2a2

. (265)
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Recall further that:

f1∣2(x) =
f(x)

1 − F (ã2)
=

1

a − ã2
, (266)

F1∣2(ã1) =
x − ã2
a − ã2

. (267)

Then:

Pr(ã1 > ã2 > r̃
∗)E[ã1 ∣ ã1 > ã2 > r̃

∗], (268)

= Pr(ã1 > ã2 ≥ r̃
∗)∫

a

a
2

f2(ã2 ∣ ã2 > 0.5a)∫
a

ã2

ã1f1∣2dã1dã2, (269)

= Pr (ã1 > ã2 >
a

2
)∫

a

r̃∗
f2(ã2 ∣ ã2 > r̃

∗) 1

a − ã2
[a

2 − ã
2
2

2
] dã2, (270)

= Pr(ã1 > ã2 > r̃
∗) 1

1 − F2(r̃∗)
∫

a

a
2

a − ã2
[2a]2 (a + ã2)dã2, (271)

=
1

4a2
5a

3

24
, (272)

=
5a

96
. (273)

Further:

=Pr(ã2 >
a

2
)E1[ã2 ∣ ã2 >

a

2
], (274)

=∫
a

a
2

ã2
a − ã2
2a2

dã2, (275)

=
a

24
(276)

Finally,

Pr(ã1 ≥
a

2
≥ ã2)E[ã1 ∣ ã1 >

a

2
> ã2], (277)

= Pr(ã1 ≥
a

2
≥ ã2)∫

a
2

−a
f2(ã2 ∣ ã2 <

a

2
)∫

a

a
2

ã1f1∣2(ã1 ∣ ã1 >
a

2
)dã1dã2, (278)

= Pr(ã1 ≥
a

2
≥ ã2)∫

a
2

−a
f2(ã2 ∣ ã2 <

a

2
) 1

1 − F1∣2(a2)
∫

a

a
2

ã1
a − ã2

dã1dã2, (279)

= Pr(ã1 ≥
a

2
≥ ã2)∫

a
2

−a
2
a

f2(ã2 ∣ ã2 <
a

2
) 1

1 − F1∣2(a2)
1

a − ã2

3a
2

8
dã2, (280)

= Pr(ã1 ≥
a

2
≥ ã2)∫

a
2

−a
f2(ã2 ∣ ã2 <

a

2
)2(a − ã2)

a
1

a − ã2

3a
2

8
dã2, (281)

= Pr(ã1 ≥
a

2
≥ ã2)

3a

4
∫

a
2

−a

f2(ã2)
F2(a2)

dã2, (282)
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= ∫
a
2

a

f2(ã2)∫
a

a
2

f1∣2(ã2)dã1dã2
3a

4
, (283)

= ∫
a
2

−a
f2(ã2)(1 − F1∣2(

a

2
))dã2

3a

4
, (284)

= ∫
a
2

−a
f2(ã1)

a

2(a − ã2)
dã2

3a

4
, (285)

=
3a

2

8
∫

a
2

−a

a − ã2
2a2

1

a − ã2
dã2, (286)

=
3

16
∫

a
2

−a
1dã2, (287)

=
3

16

3a

2
. (288)

Pr(ã1 ≥
a

2
≥ ã2)

a

2
, (289)

=
a

2
∫

a
2

a

f2(ã2)∫
a

a
2

f1∣2(ã2)dã1dã2, (290)

=
a

2
∫

a
2

−a
f2(ã1)

a

2(a − ã2)
dã2, (291)

=
a
2

4
∫

a
2

−a

a − ã2
2a2

1

a − ã2
dã2, (292)

=
1

8

3a

2
. (293)

Adding all elements, total broker-dealer profits are:

E1Πn =
1

2
[5a
96

−
a

24
+

9a

32
−

3a

16
] , (294)

=
5a

96
. (295)

6. Finally, we can show that exclusive dealing is not termination proof as:

E1Πn − E1Π
E
n ≥E1Π

E
S − E1ΠS, (296)

5

96
≥
1

4
−

5

24
, (297)

5

96
≥
24 − 20

96
, (298)

5 ≥4. (299)
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Appendix C. Analytical Appendix

This section indicates how the expected profits under auctions can be derived using the

binomial theorem instead of order statistics.

1. First note that the ask-prices are symmetric around the true value v. Thus, the

probability with which a broker-dealer draws an ask-price above v and, thus, participates

with probability Pr(an > v) = 0.5.

2. Conditional on participating, a broker-dealer’s expected profits from the representa-

tive auction depend on the number of other participating broker-dealers. Each broker-dealer

independently draws an above value bid-price and, thus, participates with probability one

half. The total number k of other submitted submitted bid-prices, thus, follows a Bernoulli

distribution with N − 1 trials and p = q = 0.5. Thus, the probability of k is characterized

by the pmf of a binomial distribution:

Pr(k) =
⎛
⎜
⎝
N − 1

k

⎞
⎟
⎠
0.5

N−1
0.5

N−1
. (300)

3. Next, recall that a broker-dealer makes a profit only if he has the highest bid condi-

tional on k other bids, or k+1 bids in total. We know from 3. above that only broker-dealers

with ask-prices above v particpate. Further, ask prices above v are uniformly distributed.

Thus, having the highest of k + 1 draws happens with probability:

Pr(an > max
k≠n

b
k
≥ v) = 1

k + 1
. (301)

4. Conditional on participating and winning the auction, the broker-dealer expects a

bid-ask-spread equal to the difference between his winning bid and the second highest bid

out of k+1 bids. Relying on the properties of the uniform distribution, the highest bid takes

on the following value in expectations:

E1[an ∣ an > max
k≠n

b
k
≥ v] = v +

k + 1

k + 2
a. (302)

Next, the second highest of k + 1 bids is equally easily characterized for a normal

distribution as:

E1[max
k≠n

b
k ∣ max

k≠n
b
k
≥ v] = v +

k

k + 2
a. (303)

This leads to the following expected bid-ask-spread:

E1[an −max
k≠n

b
k ∣ an > max

k≠n
b
k
≥ v] = v +

k + 1

k + 2
a − (v + k

k + 2
a) =

a

k + 2
. (304)
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5. Combining the elements from 1.-4., the broker-dealers expected profits from a single

auction are:

E1π
n
=Pr(an ≥ v)

N−1

∑
K

Pr(k)Pr(an > max
k≠n

b
k ∣ an > max

k≠n
b
k
≥ v ≥ v)

⋅ E1[an −max
k≠n

b
k ∣ an > max

k≠n
b
k
≥ v], (305)

=0.5
N−1

∑
k

⎛
⎜
⎝
N − 1

k

⎞
⎟
⎠
0.5

N−1
0.5

N−1 1

k + 1

a

k + 1
. (306)

Here, we can rely on mathematical software, such as Mathematica, to apply the binomial

theorem to arrive at a closed form expression:

E1π
n
=

a

2N
2
N+1 −N − 2

N(N + 1) . (307)

5. Applying a similar logic, we can derive the seller’s expected profits. The seller expects

positive profits equal to the second highest bid minus v only whenever two or more broker-

dealers submit to the auction. Whenever, only one broker-dealer submits, the v is paid,

leaving the seller with zero profits. The same holds true, when no broker-dealer participates

in an auction. Denote with n the number of participating broker-dealers. For all auctions,

the expected profits then become:

E1Π
S
=

N

∑
n=2

Pr(n)E1 [max
k≠n

b
k
− v ∣ n] , (308)

=

N

∑
n=2

⎛
⎜
⎝
N

n

⎞
⎟
⎠
0.5

N
a
n − 1

n + 1
= S0.5

N
a

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

N

∑
n=2

⎛
⎜
⎝
N,

n

⎞
⎟
⎠

n

n + 1
−

N

∑
n=2

⎛
⎜
⎝
N

n

⎞
⎟
⎠

1

n + 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (309)

=S0.5
N
a

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N
2 + 3N − 2

N+2 + 4

2 (N + 1) −

(N − 1) (N − 2 (2N − 1))

2(N + 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (310)

=
a

2N
2
N(N − 3) +N + 3

N + 1
. (311)

71



De Nederlandsche Bank N.V.  

Postbus 98, 1000 AB Amsterdam 

020 524 91 11 

dnb.nl


	No. 802N
	voorblad-no.802
	Kessler_van_lelyveld_van_der_Woerd_2024_Exclusive_Portfolio_Dealing_and_market_Inefficiency
	Introduction
	Model Environment
	Equilibria
	Second-Price Auction
	Exclusive Dealing
	The Termination Proof SPNEs

	Market Inefficiency
	Extensions
	Endogenous N
	Advantaged Exclusive Dealer
	Endogenous Reserve Price

	Application: The Security Lending Market
	A Model for Security Lending
	Model-Implied Counterfactual Trading

	Conclusion
	Empirical Appendix
	Data Description
	Matching Model Inputs
	Matching Model Outcomes
	Aggregate Market Inefficiency

	Proofs
	Auction Sub-Game Outcome
	Exclusive Dealing
	Candidate SPNEs
	Termination Proof SPNEs
	Proof for the Extension: Endogenous Reservation Price

	Analytical Appendix

	ACHTERKAFT

