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Abstract

We study whether floods can affect financial stability through a credit risk channel. Our focus is on
the Netherlands, a country situated partly below sea level, where insurance policies exclude prop-
erty damages caused by some types of floods. Using geocoded data for close to EUR 650 billion in
real estate exposures, we consider possible implications of such floods for bank capital. For a set of
38 adverse scenarios, we estimate that flood-related property damages lead to capital declines that
mostly range between 30 and 50 basis points. We highlight how starting-point loan-to-value ratios
are one important driver of capital impacts. Our estimates focus on property damages as the main
transmission channel and are also subject to a number of assumptions. If climate change continues,
more frequent floods or flood-related macrofinancial disruptions may have stronger implications for

financial stability than our estimates so far indicate.
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1 Introduction

Floods can have severe socio-economic consequences. Examples include the devastating floods
after hurricane Katrina in 2005 and the major impact of the 2021 summer floods in several European
countries. So far, however, floods have not had major effects on the stability of the financial system.
That is to say, flood-related disruptions have not impaired the financial system’s ability to serve the
real economy. This may change if climate change continues, as it would imply an increase in the
frequency of extreme weather events (Auffhammer, 2018). A string of flood events and the associated
macroeconomic disruptions may well start affecting financial institutions.

This paper focuses on the Netherlands, a densely-populated country situated partly below sea level.
In the Dutch case, almost all insurance policies would exclude covering property damages from major
floods. To be precise, insurers would not cover property damages if the flood were caused by a breach

1 These particular floods would, however, be the most impactful ones in

in primary flood defences.
terms of overall damages and socio-economic disruption. In the unlikely event of such a flood, one
consequence is that banks need to consider accounting for increased credit risk for their real estate
exposures. It is well known that these real estate exposures constitute a large share (roughly 45%)
of banks’ total assets. In addition, an institutional feature is that Dutch banks can grant relatively
large loan amounts to borrowers, namely up to 100% of the collateral.? Also, nearly 50% of the
mortgage portfolio of Dutch banks consist of interest-only mortgages. Such mortgages imply high
exposure amounts as these loans do not amortize until maturity. This combination of large real estate
exposures, high LTV ratios, and the inherent vulnerability to floods motivates our focus on banks’
credit risk.

If and how climate change can affect financial stability remains a topic of debate. In a seminal
speech, Mark Carney (2015) argued that climate change can affect financial stability through three
main channels. One of these channels is physical risk, e.g. property damage and trade disruption
due to floods and storms. Likewise, the European Systemic Risk Board (ESRB, 2016) has argued
that a delay in the energy transition could affect systemic risk via three main channels, including
more frequent natural catastrophes. The Network for Greening the Financial System (NGFS, 2019)
has emphasized that climate change could have much larger impacts than other structural changes
affecting the financial system. Bolton et al. (2020) suggest that climate change could even be the
cause of the next systemic financial crisis. Others seem less convinced. Fed Governor Waller (2023)
has argued that climate change is not a serious risk to the U.S. financial system, for instance because

climate physical risks are not likely to have a large effect on economic growth. Hansen (2022) focuses

1The Appendix has further details on flood types relevant to the Netherlands.
2Dutch borrowers do indeed often take out loans close to the loan-to-value (LTV) limit of 100%. Household debt in

the Netherlands is, therefore, the second-highest in the world (Caloia, 2022).



on climate analyses by central banks and issues a warning that there can be reputational costs to
overselling insights from long-horizon climate stress tests. In a similar vein, Cochrane (2021) argues
that climate change is highly unlikely to have a drastic and abrupt effect on financial institutions in
the short term.

Our study on floods and financial stability has two distinctive features. First and foremost, we use
scenario analysis rather than studying historical episodes. We make calculations for flood scenarios
that are severe and unlikely from today’s perspective, as is common in financial stress testing. We
first focus on 32 scenarios for floods due to a single breach in flood defence systems. Information
on these single-breach scenarios is available in an open-source information system. The single-breach
flood scenarios we consider have a probability varying roughly between once in every 100 and once in
every 10,000 years. Next, we consider even less likely events by studying six extreme multiple-breach
scenarios. These six extreme multiple-breach scenarios were constructed by Dutch flood experts in
2007. In the end, all 38 flood scenarios we study are unlikely, which is reflective of the high level
of flood protection in the Netherlands. By focusing on such unlikely—and, sometimes, very extreme
scenarios—we aim to understand how tail events surrounding climate physical risk could have financial
stability implications. This scenario-based approach sets our paper apart from work that has taken
a backward-looking perspective on financial impacts of natural disasters. For instance, Blickle et al.
(2022) consider data from the last 25 years and find that natural disasters have had insignificant or
small effects on U.S. banks’ performance. Taking a cross-country approach, Gramlich et al. (2023)
also find little evidence that natural disasters have affected banks’ Tier 1 capital ratio so far. Klomp
(2014) focuses on large-scale natural disasters between 1997 and 2010 and finds that these disasters do
increase the likelihood of bank defaults. Studying banks’ lending decisions, Koetter et al. (2020) focus
on a major flood of the river Elbe in Germany and find evidence for recovery lending (as opposed to
less lending).

Second, our analysis uses various data sources that have granular information on real estate ex-
posures. As the global financial crisis of 2007-09 has shown, real estate is an asset class with strong
implications for financial stability. Real estate is also relevant from the perspective of climate physical
risk, as floods can potentially lead to major damages to houses, offices and other properties. We use
granular loan-level data on about 3 million residential properties and 175,000 commercial properties
that underlie close to EUR 650 billion in exposures secured by real estate. In this way, we can include
flood considerations in the credit risk estimation for a sample of eight Dutch banks.

In terms of analysis, we trace the possible impact of floods on bank capital via a number of steps.
First, we use information on location-specific inundation depths under the 38 individual flood scenarios
to compute property damages for each of the roughly 3 million properties in our data set. Second, we
translate these property-specific damages into increases of the loan-to-value ratio of individual bank

loans. In principle, we are able to analyze such LTV increases at the level of scenarios, banks, and



types of exposure (i.e., either commercial or residential real estate loans). However, we will always
present financial impacts that are aggregated across the banks in the sample. Third, using the shocks
to LTV ratios, we compute implications for key credit risk parameters at the level of individual loans.
Here, we consider changes in the probability of default (PD), the loss given default (LGD), and the
risk weights of individual loans. Lastly, we consider the impact on bank capital, which we measure
via the changes CET1 ratio. In the empirical section, we will discuss these financial impacts from the
perspective of 38 individual flood scenarios and two main types of real estate exposures.

Turning to results, we estimate that flood-related property damages could cause a drop in system-
wide bank capital that mostly ranges between 30 and 50 basis points. We show that flood-related
capital depletions are a function of flood-related vulnerabilities and financial vulnerabilities. Concern-
ing financial vulnerabilities, we highlight the role of the starting-point loan-to-value (LTV) ratio of the
loan for which the damaged property serves as collateral. We show that the flood impact increases
when properties are damaged that serve as collateral for loans with relatively high LTV ratios. Re-
lative to current levels of bank capital, one could argue that the estimated levels of depletion seem
manageable—especially since we already consider tail-risk events. At the same time, it is important to
note that our analysis focuses on only one transmission channel and is subject to a number of assump-
tions. In particular, if climate change continues, more frequent floods or flood-related macrofinancial
disruptions may have larger implications for financial stability than this paper’s estimates indicate.

This paper proceeds as follows. Section 2 discusses related literature on climate change, property
damages, and financial risks. Section 3 describes the various data sources, in particular the geocoded
exposures data. Sections 4 and 5 discusses our methodology to link flood damages to banks’ credit
risk. Section 6 provides results for system-wide capital depletions. Section 7 provides a discussion of
the results and also outlines a few key assumptions that could be explored in future research. Section

8 concludes.

2 Related literature

A first set of related papers studies how climate change could affect the financial system. As
indicated in the survey by Acharya et al. (2023), floods have not received much explicit attention yet.
In contrast, much of the focus has been on how disorderly transition paths could affect financial stability.
Battiston et al. (2017) consider exposures of 50 European banks to climate policy relevant sectors.
Using data on over EUR 1 trillion of equity holdings, they find that while direct equity exposures of
these banks to fossil fuels are small, the overall exposures to climate policy relevant sectors are large
as well as heterogeneous. Similarly, Vermeulen et al. (2021) find that financial losses under disruptive
transition paths could be sizeable, suggesting that climate-transition shocks warrant close attention

from a financial stability perspective. Jung et al. (2021) propose a new measure (CRISK) which is the



expected capital shortfall of a financial institution in a climate stress scenario. This measure indicates
a strong rise in climate vulnerabilities for banks in the U.S., U.K., Japan and France in recent years.
Our paper contributes by extending the discussion to physical risk and focusing on the role of real
estate as a key transmission channel. Also, our paper takes a innovative perspective by considering
how a range of increasingly severe flood scenarios could affect financial stability. This approach sets
our paper apart from work studying how natural disasters have so far impacted the financial system
(Blickle et al., 2022; Gramlich et al., 2023; Koetter et al., 2020; Klomp, 2014).

A second stream of literature considers how floods lead to property damage. For floods along the
Meuse river in the Netherlands in the mid-1990s, Daniel et al. (2009) estimate a price decrease of up to
9%. Atreya and Ferreira (2015) combine a hedonic pricing model with geospatial information to study
the 1994 flood in Albany, Georgia, and find damages up to 48%. Pistrika and Jonkman (2010) assess a
database of 95,000 damage estimates for buildings in New Orleans after hurricane Katrina and report
an average damage of 43.3%. Damage rates of more than 50% are reported for roughly a quarter of the
assessed properties. Two further studies focus on floods in the United Kingdom. Using a repeat-sales
model, Beltran et al. (2019) estimate price declines in flooded areas between 21% (in case of coastal
flooding) and 25% (in case of inland flooding). These price declines are estimated to be short-lived,
as differences are no longer significant after a period of 5 years. Garbarino and Guin (2021) focus on
one severe flood event flood in England in 2013-14. They find relatively small price effects related to
this flood. Compared to unaffected properties in the same district, properties in affected areas shows

decreases in sales prices of, at most, 4.2%.3

3 Data description

This paper uses information from three unique, proprietary data sources: loan-level data, adminis-
trative microdata, and supervisory data. The first two sources allow us to estimate the flood damages
per individual property and map these into the credit risk parameters of the loans that these proper-
ties secure. In particular, we use the loan-level data to compute multipliers for credit risk parameters,
while use the administrative microdata for information on property characteristics that are needed to
compute flood-related property damages. We use the supervisory data to obtain starting points for
capital ratios and credit risk parameters. Our analysis uses data for eight major Dutch banks, thus
covering nearly all of the outstanding loans secured by real estate in the Netherlands.*

First, we use several vintages of loan level data. This data covers virtually all residential and

commercial real estate properties that serve as collateral for loans provided by Dutch banks. The data

3There is also related work studying whether flood risk is already incorporated in property prices. For instance, Hino
and Burke (2021) find little evidence that housing markets fully price information about flood risk in aggregate. See also

Beltran et al. (2018), Bosker et al. (2019), Mol et al. (2020), or Mutlu et al. (2023).
4For confidentiality reasons, the individual data sources have not been combined.



on exposures contain detailed information at a quarterly frequency. The data set has information on
various aspects, such as the counterparty, the contract, the instrument and the protection related to
each real estate loan. We use information as per end-2020.°

Second, we rely on administrative microdata at the level of the property available from Statistics
Netherlands (in Dutch: CBS). This data set covers all objects registered in the basic property registry.
This registry contains several types of information collected for administrative purposes. To begin
with, the registry has information on the tax value of each property. In addition, the data set contains
a range of property characteristics, such as floor surface (in square meters), location (at the postal-code
level) and the type of real estate. We use postal codes to determine how much a property would be
inundated under different flood scenarios, while we use the other characteristics in the computations
for the flood-related damages to properties in case of a flood.

Third, we use supervisory data for individual banks from the Common (COREP) and Financial
(FINREP) Reporting frameworks. The COREP and FINREP formats cover various aspects of banks’
balance sheets, profitability, capital adequacy, and asset quality. The analysis in this paper uses starting
points for credit risk parameters and capital positions, also at end-2020.

Table 1 shows descriptive statistics for the residential and commercial real estate data. On average,
the collateralization of the portfolios (loan-to-value) is around 50%. In addition, a substantial amount
of debt is non-amortizing (i.e. interest-only), meaning that outstanding debt remains constant over
the lifetime of the loan. House prices have grown steadily in the Netherlands over the past decade,
with a cumulative growth rate above 50%. On the one hand, this growth results in risky lending,
as more-recent borrowers take high loan-to-values at origination (LTV-O), sometimes also with high
interest-only shares or high loan-to-income (LTI) ratios. On the other hand, the increase in house

prices has also increased the collateral value of less-recent exposures.

(insert Table 1 around here)

Figure 1 illustrates the distribution of real estate exposures across the municipalities in the Neth-
erlands. Most of the real estate exposures are in the western half of the country, which is also the
part of the country that is partly below sea level. In addition, there are also sizeable exposures in the

vicinity of the four main rivers, which poses an additional risk in terms of flooding.

(insert Figure 1 around here)

5This vintage of the data was also a basis for Caloia and Jansen (2021). Presumably, the inherent vulnerability of
real estate exposures to flood risk will not have changed materially since end-2020, although ideally one would like to

use updated information at some point.



4 Methodology: Floods and damages

4.1 Selection of flood scenarios

The Netherlands is vulnerable to different types of floods. This paper considers scenarios with
floods from either the sea or main rivers in areas protected by flood defences. There are two key
reasons for this choice. First, these are the areas where the concentration of economic activity and real
estate is the highest. If a flood event were to occur there, it is most likely to affect financial stability.
Second, an important institutional consideration is that flood damages would, in that case, not be
insured. Most Dutch insurance policies do not provide coverage for the specific type of floods that we
consider in this paper. In principle, the government could step in and provide compensation for the
flood damages. However, such government support would be discretionary and might well take some
time to be available. In that case, in the short-run the increased risk would need to be factored in by
the banking sector.

The analysis first focuses on 32 scenarios with single-breach flood events, i.e. cases where a local
failure of flood defence systems leads to a flood in a specific part of the Netherlands. Figure 2 shows the
location of the single-breach floods. These scenarios are available in an open-source information system
called the LIWO.% In total, the LIWO contains more than 5,000 flood scenarios for the Netherlands.

We use two selection criteria. First, we want to cover all relevant parts of the Netherlands that
could be vulnerable to breaches in primary flood defence systems (i.e., ‘type B’ floods).” Second, per
area of the Netherlands, we then always select the scenario for which available calculations (as found
in the LIWO) indicate the highest expected damages. Here, we do use a cut-off value of EUR 500mn.
in terms of expected property damages. Based on these two criteria, we are left with 32 scenarios that
are among the most impactful ones in terms of property damages. This particular selection procedure
is in line with our objective of focusing on tail risks. The reported impacts are not necessarily rep-
resentative of the average impact of single breaches in flood defence systems. We also note that one
cannot simply combine results for our set of single breach scenarios to estimate the impact of multiple
breaches occurring simultaneously. It is important to remember that we focus on the most impactful

single-breach scenarios out of a possible set of 5,000 flood scenarios.

(insert Figure 2 around here)

SLIWO stands for Landelijk Informatiepunt Water en Overstromingen (Nationwide Information source Water and
Floods). The LIWO-scenario’s discussed in this paper can be viewed at https://basisinformatie-overstromingen.

nl/.
"During the summer floods of 2021, a part of the Dutch province Limburg was also heavily affected. However, given

that this paper focuses on large floods of ‘type B’, this region is not included in the scenario set.


https://basisinformatie-overstromingen.nl/
https://basisinformatie-overstromingen.nl/

During extreme weather conditions, multiple dike breaches may happen simultaneously. As with
the 32 single-breach cases, we want to explore possible implications of the extreme versions of multiple-
breach scenarios. To do so, we rely on a set of six extreme scenarios constructed by Dutch flood experts
in 2007.8 Each of these six extreme multiple-breach scenarios is composed of dozens of larger and smal-
ler dike breaches occurring at the same time. We would emphasize that these are circumstances that
the flood experts, at the time, considered to be at the edge of what could happen in a highly unlikely

situation. Figure 3 shows the extent of floods under these six extreme multiple-breach scenarios.

(insert Figure 3 around here)

4.2 Inundation depths per postal-code area

For each flood scenario, a key metric is the inundation depth per location. Here, we do face a
challenge concerning data granularity. The LIWO allows the user to assess inundation depth at the
level of, at least, a 100x100 meter grid. However, the geocoded data on bank loans is only available at
the level of four-digit postal codes. In practice, this could be either a small town or a neighbourhood in
a larger city. While that level of geographical precision is still a major improvement compared to the
nationwide supervisory data available in FINREP, it does mean we need to make assumptions when
calculating the flood impact per scenario.

To obtain a proxy for the representative water depth per postal-code area, we proceed as follows.
First, we select the part of the postal-code that contains residential or commercial real estate. This is
necessary, because the inundation map also overlaps with other types of land use, such as agriculture
or infrastructure. Given our focus on real estate, these other types of land use should be excluded
from our calculations. Having excluded these other types, we then calculate the mean water depth
over the built-up area only. The not-inundated parts of the built-up area per postal code are included
as zero values when taking this mean for inundation depths. In other words: the mean water level
is representative for all properties in the postal code area, including those properties that are not

inundated.

4.3 Computing property damages

Our method for calculating property damage broadly follows the SSM-method, the standard method
for calculating flood damage in The Netherlands (Slager and Wagenaar, 2017). This SSM method
makes a distinction between direct damages (i.e. to the property) and indirect damages (i.e. to
household goods and personal effects). We focus on the former, as it is only the direct damages to the

property that would affect the collateral value.

8For details, see www.helpdeskwater.nl. URL last accessed on 24 November 2023.


https://www.helpdeskwater.nl/onderwerpen/waterveiligheid/crisismanagement/begrippen/toelichting/ergst-denkbare/

The SSM method has two key inputs for determining property damages. First, a maximum amount
of damage per property, for instance specified as a euro amount per m? for residential properties.
Second, a damage factor #(h) that increases non-linearly with inundation depth h, the so-called dam-
age function. Slager and Wagenaar (2017) provide separate damage functions for different types of
properties, such as single-family homes and apartments (for residential properties) or offices and in-
dustrial properties (for commercial real estate). We can apply almost all of these specific damage
functions directly using the information in the loan-level data set. The exception concerns apartments,
which constitute 14% of the properties in the data set (see Table 1). For apartments, flood damage
factors differ between floor levels. As information on floor levels is not available in our data set, we
use a weighted average of the damage functions for ground-floor and first-floor apartments. We place
most weight (65%) on the damage function for first-floor apartments, given that we neither want to
overestimate nor underestimate damages. Section 3.1 of the Appendix provides further details.

Next to this difference in damage function implementation, there are a few additional differences
between this study and the most recent SSM-damage calculations (Slager and Wagenaar, 2017) for the
32 LIWO scenarios. Our study uses more recent exposure data (2020 instead of 2014), only includes
properties that serve as collateral for a loan (instead of all properties), and uses a mean water depth
per postal code (instead of per 100*100 meter grid cell). Despite these differences, there is a strong
correlation (p = 0.95) between our damage estimates and those from the SSM method. Section 3.2 of
the Appendix provides further details.

The key parameter linking floods to financial risk is ¢. With this parameter ¢, we denote the
flood-induced decline in the collateral value of the individual property p. We compute this parameter
at the property-level for each flood scenario. As described in the next section, this parameter ¢ will
then affect the loan-to-value for each loan ¢ for which the property serves as collateral. To compute ¢,

we first calculate the property-specific damages (in euros, price level 2020) as:
damageg = 0(h)? - max damage; - A, - (1)

Here, S indexes the scenario, p the property, ¢ the type of property, while A denotes inundation depth
(in meters). The parameter 6 is the damage factor. This factor, which lies between 0 and 1, denotes
the fraction of maximum damages that are incurred. The parameter 6 is specific to property type and
inundation depth. Furthermore, max damage is the maximum flood damages (per property type, in
2011 prices) as provided by Slager and Wagenaar (2017). The information on the size of the property
(A, in m?) is obtained from the administrative microdata available from Statistics Netherlands. The
last term () is a correction factor to compute damages in terms of the 2020 price level, which is
necessary as the collateral values are all observed at end-2020. The last section of the Appendix
discusses how we calibrate this parameter 7.

Lastly, we obtain ¢ by expressing the property-specific damages as a fraction of the observed



collateral value in the loan-level data, where we restrict the value of ¢ to be in the [0,1) interval.

S
45 = min( damagey 1) @)

P property value,’

It is important to emphasize again that we are able to compute ¢ at the level of individual properties.
At the level of the property, we observe the collateral value as well as the size of the property. The
only restriction remains that the scenario-specific inundation depths can only be approximated at the

level of the four-digit postal-code areas.

5 Methodology: Credit risk impact

The credit risk impact for banks will be driven by a few key parameters. We discuss, in turn, our
models for the loss-given-default and the probability-of-default parameters. We close by linking the
credit risk impact to banks’ capital adequacy, which we measure by the CET1 ratio. The CET1 ratio,
a key measure in financial supervision, is the ratio between the high-quality regulatory capital and
banks’ risk weighted assets. We measure the credit risk impact over a one-year horizon. The starting

points are taken as per end-2020.

5.1 Loss given default

The loss given default (LGD) indicates the part of the loan that the lender cannot recover in case
the borrower were to default. Using the loan-level data, we use a model that estimates LGD paths as
a function of flood-related collateral damages. To compute the LGD paths, a number of other metrics
are important: the loan-to-value ratio and the loss-given-loss.

First and foremost, the estimated decline in the collateral value ((b]f ) will lead to an increase in the
loan-to-value ratio of the loans for which the property serves as collateral. This means those loans will
become riskier from the perspective of the lender. The LTV of loan ¢ under flood scenario S is given

by:
1

1= 63

Here, p indexes properties, LTVZ-0 represents the starting-point loan-to-value ratio (per end-2020), and

LTV? = LTV - (3)

LTVZ-S is the LTV ratio for loan ¢ per flood scenario. The parameter gbg is computed based on equations
1 and 2 above.

Second, the increase in the LTV ratio under the flood scenario will increase the loss-given-loss
(LGL) of the loan. The LGL indicates whether a lender will be able to cover its exposures when selling
the property that serves as collateral. A positive LGL indicates that the lender will not be able to
recover the exposure in full. The link between the LTV and LGL is given by:

max[0 ; exposure — liquidation valuel]

LGL; = (4)

exrposure

10



Here, the liquidation value is a prudent estimate of the price of the asset in the event of a forced sale.
If we divide both the numerator and the denominator by the property value and then condition on the

flood scenario S, we obtain the following expression:

LTViS — sales ratio®
b )] (5)

LGL? = mazx|0;
LTV?

Here, the sales ratio denotes the ratio between the liquidation and current value of the property. In
line with global standards on valuations? Our calculations for the liquidation value take into account
the costs for getting the property in a condition ready for sale. So, the sales ratio in each flood scenario
S is reduced by an amount equal to the property damage.'’
Third, an increase in the LGL will increase the LGD parameter of loan 7. This relationship is given
by:
LGD? = ((1 — probability of cure) * LGLY) + costs (6)

Here, LGD indicates the loss-given-default for loan i per flood scenario S, while the LGL is the loss-
given-loss as computed in equation 4. The probability of cure denotes the percentage of loans that
previously reported arrears and, post restructuring, does not present arrears. The last term (costs)
indicates the administration costs that the bank would incur when moving ahead with selling the
property.

For each of the single-breach flood scenarios, we make calculations for LGD paths based on equa-
tions (1) - (6). Given the granularity of the loan-level data, we do so separately for residential and
commercial real estate exposures. The starting-point data is a cross-section of exposures backed by
real estate at end-2020. When available (i.e. for commercial real estate), we use the reported inform-
ation on liquidation values (for sales ratios) and administration costs. For residential real estate, this
information is not available to us. Therefore, we use values in line with those reported for commercial
real estate exposures.

Turning to system-wide impacts, the scenario-specific LGD multiplier for banks (relatively to the

starting point) is given by:

LGD?,
migp =Y > wyw; IGD., (7)
b A ’

Here, the weights wy and w; represent the bank-level and loan-level exposures, as a share of the total
system exposure and the total bank exposure, respectively. For a given flood scenario S, the final
impact on the banks reflects their relative exposure to the flood scenarios, the associated property

damages, as well as their starting point for the LGD.

9See, for instance, Red Book on Global Standards https://www.rics.org/profession-standards/

rics-standards-and-guidance/sector-standards/valuation-standards/red-book/red-book-global.

In other words, we calculate as follows sales ratio, = sales ratio * (1 — ¢j).
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5.2 Probability of default

Usually, a second key parameter for credit risk is the probability of default (PD). At first sight,
the PD may seem less relevant to this paper, given our focus on how property damages map into loss-
given-default parameters. However, PD paths can be relevant, given that empirically PDs are found
to comove with loan-to-value ratios. Therefore, we estimate the probability that a borrower defaults
on the loan, conditional on each of the single-breach flood scenarios, using a panel data approach that

includes LTV ratios as one of the explanatory variables. We estimate the following equation:
Yivt = b+ B'Zips + 0 Xips + uipy (8)

Here, the dependent variable y;;; is the default status of the counterparty ¢ of bank b at time t.
The set of control variables X, includes the mortgage type (amortizing, deferred-amortization, or
interest-only), the interest rate type (variable, fixed, or fixed with reset), the residual maturity, the
LTV at inception, the type of real estate that serves as collateral, and whether or not a National
Mortgage Guarantee (NHG) is attached to residential loans.!! We estimate a pooled OLS model using
the loan-level data.'> The main independent variables Z;yp, are the current loan-to-value, as well as
the mortgage interest rate and regional GDP growth. The parameters 5 then capture the effect on the
default probability of collateral, funding and income risk, respectively. We obtain the system-wide PD
multiplier in each scenario as:

E(ipt|Xips, L3y, t =T ,5=15)

S 'Yy ,0,0 ’L,b,t ? I

mpp = E g Wy W 9
Pp 5 " B Xipg s Zipy  t=T) ®)

Here, the numerator represents the predicted value of eq. (3) conditional on the values of the LTV
under each scenario, as of the last reporting period. The weights wj and w; are again the bank-level
and loan-level exposure shares.

In principle, we could extend the analysis further by also projecting PD paths in line with the
implied change for each main independent variable Z; j, ; under the various flood scenarios. In particular,
we could include considerations such as growth slowdowns or increases in risk premia.'® However, this
paper focuses on the role of property damages. The effect on the PD that we show, therefore, comes

purely from the flood-related damages and their effect on the LTV ratio via ¢I§ .

5.3 The impact on the CET1 ratio

We measure the impact of flood damages by computing how changes in credit risk parameters

affect system-wide bank capital. The metric we use is the CET1 ratio, i.e. the ratio between banks’

HThe availability of such an NHG guarantee would serve as a key risk mitigant, as the bank would be more likely to

recoup a sizeable part of its outstanding exposure in case of a default.
12We estimate the model at annual frequency. The sample is 2012 - 2018 (residential real estate) or 2015-2020

(commercial real estate).
133ee also Caloia and Jansen (2021) for further discussion on this point.
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high-quality regulatory capital (CET1 capital) and their risk weighted assets (RWA). Our calculations
take as a starting point a system-wide CET1 ratio of 16.7%.

First, we consider the flood-related changes in expected loss (EL) for banks, which will affect the
numerator of the CET1 ratio. Expected loss can be computed by multiplying the probability of default
(PD), the loss given default (LGD), and the exposure at default (EAD, measured in euros). Hence,
the expected loss under flood scenario S is then given by the product of starting-point risk parameters

(as given by the supervisory data) and multipliers (as computed by us):

EL® = PD - LGD (mppmigp) - EAD (10)

As expected loss increases under the flood scenarios, banks are assumed to book additional provisions,
thus lowering the available CET1 capital to hold against their risk weighted exposures. Although we
compute changes in EL at the level of individual banks—as well as portfolios and flood scenarios—we
will only report system-wide impacts.

Turning to the denominator of the CET1 ratio, we compute risk weighted assets as per the re-
quirements from the Basel Framework. We compute risk weighted assets as the product of exposures
at default, a constant factor of 12.5% (which represents the inverse of the 8% Basel minimum capital
requirement) and a factor K. This factor K is the relevant capital requirement from the Basel Frame-
work that depends, among other things, on the bank-specific and scenario-specific paths for LGDs
and PDs that we compute.!* Having computed scenario-specific RWAs, we can then also derive the
implied multipliers for risk weights (m}%w) by comparing to the starting-point RWAs (as given in the

supervisory data):

RW AS,

My = Z Z WpWi RWA?I,
b ,

K},

ib

:Zzwbwi[(
b i

Having derived bank-specific, portfolio-specific, and scenario-specific paths for expected loss and

(11)

risk weights, we can then consider implications for capital positions. As noted above, we only report
system-wide impacts. Comparing the paths for EL and RWAs to the starting points (as given by the

supervisory data), we can compute changes in the CET1 ratio per flood scenario as:

CET1 CET1 — AEL®
ACET1 ratio® = - 12
CETLratio” = piod = RWA + ARWAS 12)

Here, AEL® represents the difference between the EL under the flood scenario and starting-point

expected loss, while ARW AS denotes the scenario-specific change in the risk weighted assets. Both

14We refer to the documentation by the Basel Committee for the details of RWA computations: https://www.bis.org/
basel_framework/index.htm?m=2697. On a technical note, the RWA formula differs between residential and commercial

real estate exposures concerning the full maturity adjustment. We take this difference into account in the calculations.
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the increase in the expected loss and the higher risk weights will lead to a lower CET1 ratio under the
flood scenario. Hence, we will often use the term capital depletions when discussing changes in the

CET1 ratio.

6 Results

This section discusses how flood-related property damages would affect the capital position of the
Dutch banking system. To start with, we show the relationship between our calculated property dam-
ages and capital depletion. We find that this relationship is, within the set of scenarios we study,
non-linear. Figure 4 illustrates this non-linearity. The figure shows estimated property damages (in
EUR bn., horizontal axis) and the system-wide decline in the CET1 ratio (in basis points, vertical
axis). Here, the horizontal axis shows combined damages for residential and commercial real estate.
The gray line plots an estimated fractional polynomial of degree 2. The figure shows results for the

single-breach scenarios (blue diamonds) as well as extreme multiple-breach floods (red circles).

(insert Figure 4 around here)

The figure indicates that the 32 single-breach flood scenarios would all have similar implications for
bank capital. Three of the multiple-breach scenarios have comparable implications for CET1 capital
as well. Overall, this cluster of 35 scenarios would be characterized by property damages between
EUR 0.5bn and EUR 3bn. (in price level of 2020). Capital depletions are estimated to be between 30
and 50 basis points. There is an indication that capital depletions would taper off quickly as property
damages move toward zero, which is a first indication of non-linearity. Turning to the other end of
the spectrum, the remaining three scenarios—all of them multiple-breach cases—stand out in terms of
total damages and capital depletion. For the two scenarios with property damages around EUR 6 bn.,
we estimate a CET1 decline of around 75 basis points. Non-linearity is most pronounced when moving
to the most extreme scenario, for which we estimate a capital depletion of close to 110 basis points.
This scenario considers the extremely unlikely case in which a major multiple-breach event leads to a
flooding of most of the western part of the Netherlands.

In terms of composition, we find that most of the capital depletion is due to an increase in the
risk weights. The top panel of Figure 5 provides a breakdown across scenarios between the two key
components of the change in the CET1 ratio (as per Equation (12)). For the single-breach scenarios,
the average contribution of expected losses to capital depletion is around 6 basis points, i.e. around
15% of the total depletion. The average contribution of risk weighted assets is, in turn, 34 basis point.
When moving to the multiple-breach scenarios, the RWA effect is even more prominent. On average,

the contribution to the overall depletion is 66 basis points. Another decomposition (Figure 5, bot-
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tom panel) indicates that the role of PDs already strongly increases when considering multiple-breach
scenarios. Across the 38 adverse scenarios, most of the capital depletion is due to increase in LGDs.
However, the contribution of the PD becomes pronounced for multiple-breach scenarios. It should be
noted again that this increase in PDs is purely due to damage-related increases in loan-to-value ratios.
Adding further macrofinancial shocks, such as growth declines, will further amplify the capital impact

through higher PDs.

(insert Figure 5 around here)

The key linking pin underlying such aggregate results is Equation 3, which connects flood-related
damages (the ¢ parameter) to loan-to-value ratios. To explore this mechanism, we use outcomes for
two of the 38 flood scenarios. Figure 6 shows results for one single-breach scenario with a relatively
low overall impact (top panel) and results for one multiple-breach scenario with a fairly high outcome
(bottom panel). Each red circle corresponds to a postal code area that is affected under the respective
scenario. The size of the circle indicates how many properties within that area would be affected by a
flood. The horizontal axis indicates the average property damage in that area (i.e. the mean value for
@), while the vertical axis indicates the average starting point of the loan-to-value ratio. Of these four
metrics, the LTV ratio is a key indication of financial vulnerabilities, while the other three indicate

how vulnerable the property itself would be to floods.

(insert Figure 6 around here)

Starting with the top panel of Figure 6, we sketch the reasons why the overall impact remains
low in the single-breach scenarios. One factor for the low impact is that single-breach events impact
only few postal codes areas. In addition, in some of those areas relatively few properties are damaged.
Third, the average damages remain contained, in this case to 20% or less. Lastly, this flood affects also
affects a few areas with fairly low starting-point LTV ratios. In other words, the flood affects areas
where the existing level of financial vulnerabilities (as measured via LTV ratios) was low. The bottom
panel of Figure 6 shows the other end of the spectrum. In this extreme multiple-breach scenario, many
postal codes areas are affected. Within those areas, the number of damaged properties is high, while
average damages can run up to 70%. Lastly, this extreme flood also impacts areas where financial

vulnerabilities are larger, as seen by the relatively high starting-point LTV ratios.
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7 Discussion

Taken at face value, our estimates for tail-risk events would suggest that the Dutch banking system
is resilient in the face of flood risk. We find that the system-wide capital depletion under adverse
flood scenarios would be mostly between 30 and 50 basis points. Relative to recent levels of bank
capital, such depletions seem manageable. In this section, we provide some further intuition for this
finding. At the same time, we highlight how three elements of our research design are relevant for the
interpretation of our findings.

Starting with flood-related vulnerabilities, although a sizeable portion of the Netherlands is below
sea level, our findings reflect the fact that the level of flood protection is extremely high. Considering
the occurrence of a flood—Ilet alone a multiple-breach event—already implies that one is imagining
situations with low levels of probability of ever occurring. More importantly, given the set-up of its
flood protection mechanisms, a local flood in one part of the Netherlands would not automatically also
affect the rest of the country. This level of containment makes it unlikely that a large share of banks’
real estate exposures would be damaged at the same point in time. Figure 7 provides an illustration
of this point. The top panel focuses on banks’ exposures to residential real estate, while the bottom
panel focuses on commercial real estate. In both panels, the horizontal axis shows (as a fraction) how
many of the properties in the loan-level data are damaged in the various scenarios. The vertical axis
shows the average value loss (as a fraction of current value) of damaged properties. Hence, the values
on the vertical axis correspond to the parameter ¢ defined above. In nearly all of the flood scenarios
we consider, more than 95% of the properties would not incur damages. The main exception is the
extreme scenario for the western part of the Netherlands. Both for residential and commercial real
estate, this particular extreme multiple-breach flood would affect close to 25% of the properties that

serve as loan collateral.

(insert Figure 7 around here)

Perhaps most importantly, our paper highlights that loan characteristics are highly relevant also.
In this paper, given our focus on real estate, we have focused on loan-to-value ratios as a key aspect
of financial vulnerabilities. In some flood scenarios, the damaged property serves as collateral to loans
with fairly low starting-point LTV ratios. From a financial stability perspective, this means there is
a degree of resilience to flood events. In such cases, mild to moderate floods would not immediately
lead to large declines in bank capital.

Turning to assumptions, our paper has abstracted from various other types of socioeconomic im-
pacts that a flood may have. Even though property damages will be a relevant component of the

overall effect on bank capital, there are other ways in which floods could wreak havoc. For instance, if
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a major flood were to lead to a decline in economic growth, the increased probability-of-default would
lead to a further increase in banks’ credit losses (Caloia and Jansen, 2021). Also, if climate change
were to continue, more frequent floods could mean that banks have less time available to restore their
capital position. We leave the consideration of such macrofinancial channels for future research.

A second important assumption concerns the damage calculations that we use. Even though we
use the most current damage curves available in the Dutch context, there is some debate on whether
these curves may be on the conservative side. For instance, Endendijk et al. (2023) compare actual
damages in the wake of the 2021 summer floods to the numbers suggested by the method of Slager and
Wagenaar (2017). They find indications that actual damages may have been higher than suggested by
the SSM-method for inundation depths below 175 cm. Any upward revision of damages curves would
have direct implications for our credit risk calculations, naturally.

A last important assumption to highlight remains our modelling of inundation depth at the level
of four-digit postal code areas. In reality, water stress will not be uniformly distributed across postal
code areas. Given the granularity of the exposures data available to us, there is no immediate way to
assess the extent to which this affects our estimates for property damages. If such more detailed data
were readily available, this would be one clear dimension along which the precision of our estimates

could be assessed.

8 Conclusions

This paper uses scenario analysis to study how property damages caused by severe and unlikely
floods would affect credit risk for a sample of Dutch banks. We focus on specific floods causing property
damages that would not be covered by current insurance policies. We calculate the implications for
banks’ capital positions using geocoded data on EUR 650bn. in exposures backed by real estate. We
find that the system-wide capital depletion would mostly range between 30 and 50 basis points. In terms
of drivers, we show that the overall financial impact is a combination of flood-related vulnerabilities
and financial vulnerabilities. In terms of the latter factor, we highlight how in some cases floods
would have mild effects as they would affect properties that serve as collateral for loans with fairly low
loan-to-value ratios.

Compared to current levels of bank capital, the estimated degrees of flood-related capital depletion
seem manageable. This finding is not unexpected, given the investment that the Netherlands continues
to make in an adequate system of flood protection. The probability of a major flood is very low indeed.
Also, in case a breach in flood defence system were to occur, effects in terms of damaged properties
would often still be contained. However, it is also important to note that our estimations focus on
one particular channel (i.e. property damages) and are subject to a number of assumptions (for

instance concerning damage calculations). In particular, an open question is how our conclusions on
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implications for financial stability would be affected if climate change continues. More frequent floods
and associated macroeconomic disruptions may then have stronger implications for financial stability
than these present-day estimates on increased credit risk indicate. For instance, if floods were to
happen more often, banks would have less time available to replenish capital. In addition, if floods
were to lead to recessions, banks would face a further increase of credit losses. A third effect could be
that a flood event makes this type of risk more salient, which could lead to a revaluation of properties

located in flood zones.'® We leave the exploration of such additional considerations for future research.

5Based on two surveys of Dutch homeowners, Jansen (2023) finds that flood risk awareness has indeed increased since

the 2021 floods.
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Figure 1: Distribution of real estate exposures

Note: This figure shows the geographical distribution of EUR 650bn. in Dutch banks’ real estate exposures by muni-
cipality at end-2020. Darker colours indicate a higher level of exposure. This figure combines information for exposures

to residential and commercial real estate.
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Figure 2: Scenario set for single-breach floods
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Note: This figure gives an overview of 32 scenarios with single-breach floods. In each scenario, a local breach in the
system of flood defence leads to a flood in a specific part of the country. The source for the flood scenarios is the LIWO,
which is an open-source information system. From the LIWO, we select the scenarios that have the largest impact in each
compartment of the flood protection system. In addition, we use a cut-off value of EUR 500mn. for overall estimated

damages.
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Figure 3: Scenario set for extreme multiple-breach floods
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(a) Extreme scenarios 1 to 5

Note: This figure gives an overview of six scenarios for extreme multiple-breach floods. Dutch flood experts constructed

these six extreme multiple-breach scenarios in 2007. These six scenarios are intended to represent extreme impacts that

are still theoretically conceivable, yet very unlikely.
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Figure 4: Property damage and capital depletion under 38 flood scenarios
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Note: This figure presents a scatter plot for estimated property damages (in EUR bn., horizontal axis) and banks’
capital depletion (in basis points, vertical axis). The blue diamonds show results for 32 single-breach flood scenarios;
the red circles indicate results for six extreme multiple-breach scenarios. The property damages (horizontal axis) are the
sum total of direct damages to residential properties and commercial real estate that serve as collateral for bank loans.
Insurance policies would not cover these property damages. We use the CET1 ratio to measure bank capital. The capital
depletion is a weighted average across a sample of eight Dutch banks. The dashed gray line plots an estimated fractional

polynomial of degree 2.
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Figure 5: Decomposing the capital depletion
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(b) Credit risk parameters

Note: This figure shows a decomposition for capital depletions across the 32 single-breach and the 6 multiple-breach
scenarios. In the top panel, the contributions to the overall depletion are split between expected losses and risk weights,
as per Equation (12) in the main text. The bottom panel shows a decomposition across credit risk parameters, i.e. the

probability of default (PD) and the loss given default (LGD).
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Figure 6: Average damages and starting-point loan-to-value ratios
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(b) Extreme multiple-breach flood scenario

Note: This figure illustrates four drivers of capital depletion based on two scenarios, one with a single-breach scenario
(top panel) and one with an extreme multiple-breach scenario (bottom panel). Each red circle corresponds to a postal
code area that is affected under the respective scenario. The size of the circle indicates the number of properties within
that area that are affected by the flood. The horizontal axis indicates the average property damage in that area (or ¢),

while the vertical axis indicates the average starting point of the loan-to-value ratio.
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Figure 7: Damaged properties and value losses across flood scenarios
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Note: This figure show scatter plots for the fraction of damaged properties (horizontal axis) and associated property
damages (as fraction of value, vertical axis) The blue diamonds show results for 32 single-breach flood scenarios; the
red circles indicate results for six extreme multiple-breach scenarios. The average property damages correspond to mean
of the parameter ¢ in equation 2 of the main text. This parameter ¢ indicates the percentage value loss for affected
properties in a given flood scenario. Panel a) shows this relationship for residential properties; panel b) focuses on

commercial real estate.
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Table 1: Descriptive statistics

Residential Real Estate

Commercial Real Estate

Loan characteristics mean median mean median
Interest rate (%) 2.60 2.35 2.23 2.25
LTV (%) 52.3 54.5 53.4 49.0
LTV-O (%) New business 76.7 83.0 66.0 65.0
LTV-O (%) Starters, New business 86.6 95.0 - -
Interest-only (%) 50.9 50.7 22.4 0.00
Outst.amount (€) 182,672 152,750 1,677,100 357,707
Protection value (€) 384,371 321,000 4,914,289 605,810

Type of
Property

Location

Total
Portfolio

Residential Real Estate

Commercial Real Estate

of which properties

Detached (%)
Apartment (%)
Terraced (%)
Commercial (%)
Large 4 cities (%)
Instruments (N)
N)
N)
N)
Exposure (€m)
In default (%)

Protections

o~ o~ o~ o~

Contracts

32.8
14.3

424
2.3

14.3

6,129,774
5,352,319
3,030,383
3,124,998
577,217
0.90

Residential (%)  52.7
Offices (%)  26.9
Retail (%) 7.0

Industrial (%) 4.9

Large 4 cities (%)  24.1

Instruments (N) 46,744
Protections (N) 222,928

of which properties (N) 175,721
Contracts (N) 40,979
Exposure (€m) 70,730

In default (%) 3.62

Note: Summary statistics for loan-level data related to residential and commercial real estate for eight Dutch banks

at end-2020. The top panel presents information on risk characteristics, such as the loan-to-value (LTV) ratio and the

LTV ratio at origination (LTV-O). The bottom panel presents information on the type of property, the location, and

the portfolio characteristics. The labels Starters and New business refer to first-time buyers in the housing market and

to newly originated loans, respectively.
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1. Flood types relevant to the Netherlands

As described in Slager (2019), the at-risk areas in the Netherlands are distributed across four catch-
ment areas, i.e. that of the rivers Rhine, Meuse, Scheldt, and Ems. For each of these four catchment
areas, a further distinction is made based on two dimensions: whether or not there is protection against
water, and whether the water system is primary or regional. All four combinations of these two di-
mensions are indicated by the letters A - D. Table A.1 has an overview. This paper focuses on areas
at risk from flood type B. Property damages by floods of this type are almost always excluded from

coverage by insurance policies.

Table A.1 Taxonomy of flood risks in the Netherlands
This table describes the basic taxonomy for areas with a potentially significant flood risk. The columns indicate
whether or not there is protection against water; the rows indicate whether the water system is main or regional. The

resulting four classes are indicated by the letters A - D. See Slager (2019).

Protection against water

yes no
Water system
Main B A
Regional C D
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2. Return periods for single-breach flood scenarios

Figure A.1 provides information on the return periods for the 32 single-breach flood events. The
source for these return periods is the LIWO (variable ‘Ref’). The vertical axis reports (on a log scale)
the return periods (in years). The Netherlands is divided in a number of areas when it comes to flood
protection (in Dutch: dijkring). The numbers on the horizontal axis correspond to those geographical
areas. Most of the return periods are between once every 100 and once every 10,000 years. The highest
probability in our scenario set is once every 100 years, for example for LIWO scenario no. 19562. The
lowest probability is less than once every 10,000,000 years. This is for LIWO scenario 5108—a scenario

with a coastal flood affecting Scheveningen.

Figure A.1 Return periods of single-breach flood scenarios
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Note: The figure shows on the vertical axis the return frequencies (in years on a log scale) for the 32 flood scenarios

with a single breach in flood protection. The labels in the graph correspond to the number of each scenario in the LIWO.

The horizontal shows the number of the area of the Netherlands (in Dutch: dijkring) in which the flood would occur.
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3. Background on damage calculations
3.1 Damage curves from the SSM methodology

Our method for calculating property damage broadly follows the SSM-method, the standard method
for calculating flood damage in The Netherlands (Slager and Wagenaar, 2017). Figure A.2 shows the
damage curves that we apply. Panel A shows two damage functions for residential real estate, while
panel B shows three damage functions for commercial real estate. In all cases, the curves indicate how
to map inundation depth (horizontal axis) into a fraction of the maximum damage amounts (vertical
axis). This latter fraction corresponds to the parameter 6 in the main text.

Starting with the top panel, the red curve shows the relevant damage function for single-family
homes as provided by Slager and Wagenaar (2017). For floods up to 2.5 meters, the damage factor
remains below 0.2. Between 2.5 meters and 5 meters, the damage fraction quickly increases to 1.

The blue line in panel A denotes the damage function we use for apartments. Slager and Wagenaar
(2017) provide, in fact, three separate damage functions for apartments. These three separate curves
are for apartments that lie, respectively, on the ground floor, the first floor, or above the first floor. Of
these three curves, the one for the ground floor is the most severe, whereas the damage function for
apartments above the first floor would be least severe. In fact, that particular damage function only
has positive values for floods above 5 meters.

Given that our data set does not have information on the floor level of the apartment, we need
to make some assumptions on the relevant damage curve. Our estimates use a damage curve that
gives most weight to the first-floor damage curve. We see that as a reasonable middle ground to avoid
both an overestimation and an underestimation of damages. Next to that, we give some weight to the
damage function for the ground floor. The blue curve in panel A weights the curve for ground-floor
apartments with 35% and the curve for first-floor apartments with 65%. This means that the curve
remains relatively flat for floods with inundation depths below 2.5 meters. With this particular curve,
we find a strong correlation between our damage estimates and the number reported in the LIWO,
as discussed in Section 3.2 of the Appendix. We considered four additional weighting schemes that,
for instance, also assign some weight to the curve for apartments above the first floor. In those other
cases, the correlation between our estimates and the LIWO numbers would be lower, though still at
least 0.85.16

The bottom panel of Figure A.2 shows four separate damage curves for commercial real estate
suggested by Slager and Wagenaar (2017). These functions are, respectively, for retail properties,
industrial properties, offices, and residential properties. Of these, the curve for retail properties is the
steepest, reaching the maximum damage factor for floods of three meters. For residential properties that

serve as collateral for commercial real estate loans, we use the same damage curves as for apartments.

16Results available upon request.
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Figure A.2 Flood damage functions
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Note: The figure shows the various damage functions used in this paper. The top panel focuses on residential real estate
(either single-family homes or apartments), the bottom panel shows damage curves for four types of properties (retail
properties, industrial properties, offices, residential properties) that serve as collateral for commercial real estate loans.
The horizontal shows the inundation depth (in meters), while the vertical axis shows the damage fraction (parameter 0

in the main text). The damage functions are based on Slager and Wagenaar (2017).
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3.2 Comparing our damage estimates to the LIWO

The LIWO reports estimated property damages for residential real estate against which we can
compare our computations based on the loan-level data. To make the comparison, we can compute
damages at the four-digit postal codes and then aggregate per scenario. In doing so, two methodological
points are important.

First, to compare against the LIWO numbers, we need to calculate damages in 2011 prices. This
means we will no longer use the m parameter to account for price level differences between 2011 and
2020.

Secondly, we need to account for the different coverage between our loan-level data and the LIWO.
Our damage calculations only cover a part of the properties used to calculate damages for the LIWO.
In our case, the data set only has information on properties that serve as loan collateral. In contrast,
the LIWO uses the property registry and, therefore, has information on all properties that would be
affected under each of the flood scenarios. To make a fair comparison, therefore, we apply a rescaling
of our damage estimates as follows. Per postal code, we collect information from Statistics Netherlands
on the number of residential properties. We then compute a scaling factor, per postal code, by dividing
the total number of properties (according to the CBS) by the number of residential properties in our
data set. We then multiply our damage estimates, per postal code, with this scaling factor and again
compute aggregate damages per scenario.

Figure A.3 shows a scatter plot comparing damages estimates (in EUR bn., price level 2011) as
reported in the LIWO (horizontal axis) and our calculations following the SSM method, with an
adjustment for the differences in the number of properties (vertical axis). The correlation between the
two sets of estimates is 0.95.

Measured in 2011 prices, the damages in the 32 single-breach scenarios we study would range
between EUR 0.5 bn and EUR 3.5 bn. In closing, it is important to emphasize that these are not the
numbers that we use in our credit risk calculations. These numbers reported on the vertical axis in
Figure A.6 are only calculated for the purposes of comparing against the LIWO damage estimates. In
our credit risk calculations, we measure damages in 2020 prices and only consider direct damages to

properties when these serve as loan collateral.
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Figure A.3 Comparing damage estimates (in EUR bn.)
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Note: For 32 single-breach flood scenarios, this figure compares our damage estimates for residential properties (vertical
axis) against those available in the LIWO (horizontal axis). All number are in EUR bn. and in price level of 2011. For the
numbers on the vertical axis, we apply a rescaling to account for sample differences between our data set and the LIWO.
Our data set only has properties which serve as collateral for a loan, while the LIWO contains damage calculations for

all properties in a postal-code area. p = 0.95.
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4. Adjusting maximum damages to price level 2020

Our financial exposure data is for end-2020 but the SSM-method computes damages in price level
of 2011. To adjust our damage calculations to 2020 prices, we need to calibrate scaling parameters
per type of real estate, i.e. the parameter 7 in the main text. We broadly follow De Grave and Juch
(2023), who provide guidance on translating the SSM damage amounts to 2022 prices.

For residential real estate, we use a maximum damage of EUR 1,200 per m2 instead of the EUR
1,000 currently used in the SSM approach. One approach for rescaling is using the consumer price
index for housing. This would result in a rescaling by a factor of 1.217. An alternative is rescaling
using an index for building costs, which would imply a factor of 1.178. We use a rescaling factor of 1.2
as the middle ground.

For commercial real estate, we start from Table 14 in De Grave and Juch (2023). This table reports
maximum damages for different types of properties in 2022 prices. To rescale these into 2020 prices,
we use the fact that these numbers are, in fact, based on estimates for 2020 but rescaled by an inflation
rate of 12.9%. In the end, we use the following maximum amount (in EUR, per m2):

- For offices, EUR 1,423.
- For retail properties, EUR 1,591.
- For industrial properties, EUR 1,258.

Reference

De Grave, Peter, and Sanne Juch (2023). Update basisinformatie SSM 2022.
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5. Inundation depths per postal codes

The two figures below present information on the distribution of inundation depths for the various
flood scenarios. Figure A.4 presents results for the single-breach flood scenarios. Figure A.5 provides
information for the six extreme multiple-breach flood scenarios. The horizontal axis in each figure

represents the postal code (measured at the four-digit level).

Figure A.4 Inundation depths per scenario (single-breach floods)
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Note: This figure shows, for 32 single-breach flood scenarios, box plots for inundation depth (in meters, vertical axis)

per scenario (using the labels available in the LIWO, horizontal axis).
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Figure A.5 Inundation depths per scenario (extreme multiple-breach floods)
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Note: This figure shows, for six extreme multiple-breach flood scenarios, the inundation depth (in meters, vertical axis)

per four-digit postal code (horizontal axis) in the Netherlands.
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