# Payment network and bank stress nearcasting

by *Jacopo Di Simone*, Sébastien Kraenzlin, Christoph Meyer, Thomas Nellen, <u>Alfred Sutter</u>, *Paolo Vanini*, <u>Ermin Zvizdić</u>

Central bankers go data driven: applications of AI and ML for policy and prudential supervision

De Nederlandsche Bank Amsterdam 12-13 May 2022

SCHWEIZERISCHE NATIONALBANK BANQUE NATIONALE SUISSE BANCA NAZIONALE SVIZZERA BANCA NAZIUNALA SVIZRA SWISS NATIONAL BANK ↔



#### Introduction

**Basic idea:** Stress events change behaviour of counterparties and/or change behaviour of the stressed bank itself – mirrored in payment data – **network indicators (features)** 

Stress event (label): defined by pronounced changes or comparatively high levels in default risk on the basis of 5y CDS spread data

**Contribution 1:** <u>Unsupervised ML</u> (heterogeneous outlier ensemble) applied to capture the dynamics of payment topology of RTGS PS and its participants. Resulting *outlier score* is based on a comprehensive set of network indicators

Contribution 2: <u>Weakly supervised ML</u> is used to "nearcast" a *stress event likelihood* of a particular bank [based on *outlier score* residuals as features and *stress events* as label] (<u>stacked ML approach for binary labels</u>) based on interpretable concepts [& data background]

[Contribution 3: Estimated supervised learning models should be transferrable to nonCDS banks (using a common CDS bank model or bank subset model based on «similarity»)]

#### Literature review

- Bank run nearcasting: Sabetti and Heijmans (2021), Rainone (2020), Triepels et al. (2018)

- $\rightarrow$  We focus on individual banks too but have a broader concept of bank vulnerability in mind that is likely more in line with modern bank runs (as witnessed during the GFC such as eg repo runs)
- $\rightarrow$  We set up a likely more robust and versatile ML pipeline and allow for supervised learning...
- $\rightarrow$  ...and that is accessible to interpretation
- ML methods used in PS context: «Timmermans et al. (2017)», Triepels et al. (2018), Heijmans and Zhou (2019), Sabetti and Heijmans (2021), Castro et al. (2021)
- $\rightarrow$  We provide a new ML pipeline in the context of PS stacked learning based on heterogeneous outlier ensemble for binary labels
- RTGS monitoring (alert / outliers indicators) in the context of CPMI-IOSCO's PFMI: Berndsen and Heijmans (2020): Near-real-time monitoring in RTGS systems: A traffic light approach; Heijmans and Wendt (2020): Measuring the Impact of a Failing Participant in Payment Systems
- $\rightarrow$  Unsupervised ML provides outlier indicator for the topology of RTGS PS & participants

- Stress event label: Pronounced changes and comparatively elevated levels in default risk
  - Markit 5y CDS spread data 2005-2020 (from Bloomberg & Reuters) at daily frequency
  - Stress event (for bank<sub>i</sub>) = 1 <u>if</u> {CDS<sub>i</sub> > 120} <u>AND</u> {(daily △CDS<sub>i</sub> > 12) <u>OR</u> (*period-specific* z-score of CDS<sub>i</sub>-vs-MeanCDS<sub>i≠i</sub> > 1.96)} = TRUE, <u>else</u> = 0\*
- SIC data: Selection of banks (accounts) with continuous activity & priced default risk 2005-2020 (CDS bank versus nonCDS bank): 18 domestic & foreign CDS banks
  - Participant # ~ 350 18 selected banks: # = 54% & CHF = 76%
  - Daily transaction # 1-3 million & CHF 140-180 billion
  - *Interbank payments:* # = 4%, CHF = 90%
- Network indicators (features): Comprehensive set of 13 (nodal/account) to 15 (overall-system) network indicators: SIC transaction-level data of *interbank* payments from 2005-2020:
  - Aggregated to three intraday periods (overnight, morning and afternoon) and daily frequencies
  - Intraday dynamics important in stress periods (Bech and Garratt, 2012; Benos et al., 2014)

## Methodology

#### Data – Stress event label and payment network indicators

- CDS spread based binary label\*\* named stress event
- Comprehensive set of payment network indicators\*. Nodal centrality indicators are
- unweighted
- reciprocally weighted
- iteratively weighted
- All network indicators are based on transaction level data
- daily and three intraday periods (overnight, morning and afternoon)

\*SIC account level

and system level

- Data Feature engineering
- Data = time series data (e.g. trend, seasonality, cyclicality):
  - Ensure stationarity
  - Input features as dev. from normal dynamics
- ARIMA model considering weekday, change-of-month, change-of-year
- Generate input features quarterly, using 3-year moving window → account for long-term shifts in dynamics
- ARIMA residuals as input features

\*SIC account level and system level

Unsupervised machine learning – outlier detection

- Heterogeneous outlier ensemble → output = outlier scores:
- K-fold crossvalidation, observation & feature subsampling
- Base learner types:
- kNN: anomaly = very distant
- **GMM**: anomaly = low likelihood region
- RAE: anomaly = large reconstruction error
- iFOR: anomaly = quickly isolated

\*SIC account level and system level

Weakly supervised machine learning – stacked learning

- Supervision for selected banks\*\* considering stress events as labels
- Model: Binary lasso (L1) logistic regression
- L1 penalty: implicit feature selection through zero weights
   Output = stress-event likelihood
- Interpretability: pipeline set up to measure contribution of input features to stress event likelihood

\*\*Economic unit level

#### Evaluation

- Metric: AUC / ROC curve
- K-fold cross-validation to i) compute "out-ofsample" outlier scores from each base learner and to
- ii) estimate "out-ofsample" predictive performance
- Threshold for binary alerts is selected to maximize the TPR at a fixed FPR
- Metric: Feature importance using feature permutation
- Qualitative analysis and visualization

\* Possible to aggregate SIC accounts of an economic unit (here not applied); \*\* Turnover-weighted average based on all SIC accounts of the economic unit

### Results – Outlier score at SIC network level...

#### Overall network (interbank)

Unsupervision: prob\_vulnerable (averaged over four base-learner types)



### ... differs from outlier score at bank level



### Results – Stress event likelihood for selected banks



 - (Generally reasonable occurrence of stress events in line with conventional wisdom)

- All banks suffered from vulnerability during the GFC, but *unevenly*
- Not all banks suffered from the European investment bank crisis 2016 or from the outbreak of the Covid-19 pandemic
- Overall, high stress event likelihoods (red lines) cluster with stress events (grey)
- Perfection would be wrong and imperfection rises the question of performance:

# Results – Stress event likelihood – AUC values

| Dank    | Stress events | AUC   |       |  |
|---------|---------------|-------|-------|--|
| Бапк    |               | Base  | SupSt |  |
| Dom-1   | 29            | 0.739 | 0.972 |  |
| For-57  | 58            | 0.804 | 0.967 |  |
| For-111 | 59            | 0.517 | 0.964 |  |
| For-102 | 112           | 0.766 | 0.963 |  |
| For-39  | 171           | 0.588 | 0.957 |  |
| For-163 | 27            | 0.448 | 0.945 |  |
| For-11  | 119           | 0.732 | 0.945 |  |
| For-252 | 111           | 0.569 | 0.941 |  |
| For-264 | 100           | 0.781 | 0.930 |  |
| For-55  | 109           | 0.684 | 0.918 |  |
| Dom-2   | 90            | 0.679 | 0.916 |  |
| For-188 | 74            | 0.627 | 0.916 |  |
| For-131 | 104           | 0.486 | 0.903 |  |
| For-27  | 62            | 0.591 | 0.886 |  |
| For-127 | 110           | 0.837 | 0.850 |  |
| For-68  | 18            | 0.387 | 0.839 |  |
| For-90  | 31            | 0.649 | 0.791 |  |
| For-13  | 11            | 0.695 | 0.744 |  |



- Accuracy confirmed in terms of AUC (13>AUC 0.9)
- Both domestic and foreign banks show promissing results
- AUC lowers with a lower # of stress events
- (How many stress event should we have? → How should we define stress events?)





- High steepness of the ROC curve in lower FPR regions → high detection accuracy comes at a low cost of mislabeling nonvulnerable events
- If FPR of 10% acceptable, a generally high detection accuracy is achieved
- For some banks the model performs outstandingly well, e.g. for Dom-1 it identifies 92% of vulnerability events at almost no false alarms

# Results – Interpretability – Feature importance (top 10)



- Indirect measure of feature importance: the reduction of the AUC when omitting a feature (Permutation Feature Importance)
- Per bank / (per stress event) / [increase feature granularity]
- Each bank shows a different set of important features → banks have an "individual fingerprint"
- "Common feature importance":
  Value-based turnover,
  connectedness and centrality KPIs

tend to contribute strongly to accurate nearcasting. Changes in intraday network dynamics contribute to stress detection too.

# Results – Interpretation – Common & individual feature importance

Performance of the benchmark model for selected four banks

| Bank    | AUC<br>Base SupSt Benchmark |       |  |       |  |
|---------|-----------------------------|-------|--|-------|--|
|         |                             |       |  |       |  |
| Dom-2   | 0.679                       | 0.916 |  | 0.818 |  |
| For-55  | 0.684                       | 0.918 |  | 0.805 |  |
| For-102 | 0.766                       | 0.963 |  | 0.809 |  |
| Dom-1   | 0.739                       | 0.972 |  | 0.801 |  |

- Base: AUC based on outlier scores
- SupSt: Weak supervised learning with single bank
- Benchmark: Weak supervised learning with all banks (but the evaluated one)

#### «Common» model approach as benchmark

- Markup from the Base model (nonsupervised AUC) *«is due to»* common and individual factors
- Roughly 50% may be attributed to common and individual feature importance with Base as the reference
- [Promissing and troubling starting point for the third application model transfer]

[Supervised model transfer – estimate stress event likelihood for nonCDS banks]



- -Idea: Supervised model transfer to nonCDS banks = estimate stress event likelihood for nonCDS banks (based on supervised regression weights of CDS banks using features of the nonCDS bank)
- Implementation: Idiosyncratic footprint suggests using «common» model (benchmark) or a model based on a subset of «similar» banks
- Evaluation: non-considered CDS banks (eg Lehman Brothers,...) and nonCDS banks (eg cantonal banks with & without cantonal guarantee, insolvent banks)

# Where to go from here?



#### – Label – definition of stress event (robustness):

- 120bp/12bp  $\rightarrow$  60bp/24pb / share prices
- Features:
  - Use more information: 80+ additional transaction attributes available / move away from the pure network feature approach and use additional features
- Methodology:
  - ARIMA model: improve ARIMA or use other method to achieve stationarity / 3y training of ARIMA model – reduce loss of data
  - ML pipeline: evaluate ensemble (for instance, iFOR is most relevant) / benchmarking to understand drivers and inhibiting factors
  - Operational usage: improve interpretability

#### - Extensions:

— ...

- Move from nearcasting to forecasting? CDS spreads or implied default probability as label?

#### Conclusion

- Policy relevance:

- Application 1: RTGS and participant monitoring by means of outlier scores:
  - Comprehensive monitoring requires both levels, the network and individual participants
- Application 2: Supervisory monitoring by means of the stress event likelihood
  - Complementing low-frequency regulatory or manipulated market data
    - Very accurate stress event nearcasting for domestic and foreign banks
  - Qualifying CDS spread changes
    - Interpretable approach
- [Application 3: Supervisory monitoring for *nonCDS banks* 
  - Substituting missing market data by means of transferring supervised learning models to estimate the stress event likelihood for nonCDS banks]
- Improvable and adaptable model (features, label, methodology, interpretation, extensions) as a first step towards a model that can be put into operation and that covers all three apps

# Thank you for your attention!

© Swiss National Bank

SCHWEIZERISCHE NATIONALBANK BANQUE NATIONALE SUISSE BANCA NAZIONALE SVIZZERA BANCA NAZIUNALA SVIZRA SWISS NATIONAL BANK

