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Abstract 

 

In this paper we disentangle reservation prices of buyers and sellers for commercial real estate at 

the city level. To do so, we further develop and extend the Fisher et al. (2003, 2007) methodology 

to a repeat sales indexing framework. This has the advantage that it takes care of all unobserved 

heterogeneity, which is an important consideration in commercial real estate. Furthermore, it 

allows for the construction of supply and demand indexes without the need for many property 

characteristics or assessed values. A key innovation in our methodology, which also enables 

granular index production, is our use of a Bayesian, structural time series model for index 

estimation. By introducing these new methodological developments, we are able to estimate 

reliable, robust supply and demand indexes for all major metropolitan areas in the US. Here we 

focus on two very different urban markets: New York and Phoenix. Consistent with the notion of 

pro-cyclical liquidity, we find that buyers’ reservation prices move much more extremely and 

earlier than sellers’ reservation prices. Our results show that the demand indexes in both New York 

and Phoenix went down a full year earlier than the supply indexes during the crisis. 

 

Keywords: Liquidity, Price index, Commercial real estate. 

JEL classifications: R30, C11, C41. 

 

 

                                                 
* Acknowledgments: Many thanks go to seminar participants at the MIT Real Estate Price Dynamics Platform, the RCA 

Index 2017, and De Nederlandsche Bank seminars. In particular thanks to John Clapp, Peter van Els, Marc Francke, and 

Jakob de Haan for providing detailed comments. Finally, thanks to Real Capital Analytics for supplying the data. The 

views expressed are those of the authors and do not necessarily reflect the position of DNB. E-mail addresses of the 

authors are: d.w.vandijk@uva.nl, dgeltner@mit.edu, and avdminne@mit.edu. This version: January, 2018. 



1. Introduction and Motivation

Two of the most salient characteristics of private property investment markets in comparison
with and distinct from public securities markets such as the stock market is the pronounced
cyclicality of the private markets and the degree to which their trading volume is pro-cyclical.
Price and volume move together in real estate.

This has profound implications for the nature and meaning of asset price indexes in real
estate, and these implications are often overlooked. Price indexes are essentially means for
comparing the relative differences in prices across time. For example, based on a price index, we
might say something like, “values crashed by over 30 percent during the financial crisis.” But
what if over the same period trading volume crashed by over 60 percent. Then the “30 percent”
drop in the price index does not fully capture the degree to which the asset market collapsed.
Nor, by itself does the “60 percent” statistic on trading volume. The observed trading prices that
were 30 percent lower than their previous peak as indicated by the price index during the crisis
also reflected the fact that property owners chose to sell far fewer properties. The market was
much less “liquid” (as this term is used in real estate). The direct comparison of price levels
between the peak and trough of the price index is “apples versus oranges” to a large extent.

Fundamentally, observed prices in consummated transactions, the data on which price in-
dexes are based, reflect the reservation prices on the two sides of the asset market, potential
buyers on the demand side, and property owners, potential sellers, on the supply side. The vol-
ume of trading also reflects these reservation prices. A much deeper and richer, more complete
picture of the state of the asset market can be obtained if we can track the central tendencies
of these two reservation prices separately over time. The two reservation prices depict more di-
rectly the underlying valuation decisions of the two sides of the market. Furthermore, tracking
of reservation prices collapses the price and volume dimensions into a single metric. We can
make a statement like, “if potential buyers would raise their reservation prices by 20 percent,
and sellers would reduce their reservation prices by an equal percent, relative to current average
transaction prices, then liquidity as indicated by turnover volume would revert to its long-term
historical average.”

In tracking the relative changes over time within buyers’ and sellers’ reservation prices, there
is a particularly interesting interpretation of the demand side index, the potential buyers’ reser-
vation prices. The price changes indicated by this index are those which would, in principle,
provide the asset market with “constant liquidity” over time. If potential sellers would, in their
own reservation prices, match the changes of potential buyers’ reservation prices, then an equal
volume of trading (equal turnover ratio) would transpire over time, and this would occur at price
changes tracked by the buyers’ reservation price index. Thus, the demand side reservation price
index may be taken as a “constant liquidity” price index for the asset market, in some sense a
more complete indicator of the state of the asset market, expressed in a single dimension, a price
dimension, rather than the two dimensions of price and volume separately.1

The demand side reservation price index also will provide a leading indicator for where the
consummated transaction price index will soon be going. This is because in real estate markets,
volume tends to slightly lead consummated transaction prices in time. The reason for this may

1The contrary model, of buyers’ matching their reservation prices to the sellers’ as though sellers were in “the drivers
seat” would not be consistent with the pro-cyclical relationship between price and volume that is so characteristic of the
real estate market. See Fisher et al. (2003). From a conceptual perspective, “liquidity” is created by buyers, not sellers.
It is buyers who “have the money”, and sellers who “want money”.
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be that it is difficult to know the precise implication of relevant “news” for the value of any
specific property asset. Market participants can only “digest” the impact of news gradually by
observing the prices at which “comparable” properties have traded. Because sellers digest the
news slower than buyers, their reservation prices (hence listing prices) tend to lag behind buyers’
reservation prices (Genesove and Han, 2012; Carrillo et al., 2015; Van Dijk and Francke, 2017).
The result is that transactions tend to go up (down) when markets go up (down) and that prices
go up (down) more gradually. Hence market participants may first gain an indication of the
“heat” of the market, the relative movement in supply and demand, by witnessing changes in
trading volume, the number of deals that are being completed. Therefore, demand indexes can
potentially be used as leading indicators of the real estate market.

The supply side reservation price index will also be of interest in its own right, because it
reveals sentiment among property owners. During periods of uncertainty, both rational search
theory and behavioral economic theory predict that property owners would tend to react conser-
vatively, holding back from selling into a down market. The supply side index would reveal the
extent of this phenomenon.

While it would be nice to have separate indexes of the reservation prices of potential buyers
and sellers in the property asset market, these prices are private information, not directly revealed
in any single empirical phenomenon. There is probably no single perfect way to track reservation
prices. But the fact that both consummated prices and trading volume (turnover ratio) indirectly
reflect the underlying reservation prices allows reasonable and useful inferences to be made about
the reservation prices. By modeling both price and volume as functions of underlying reservation
prices, it is possible to “back out” a reasonable model of the demand and supply side reservation
prices, in terms of relative movements or price changes over time, that is, separate price indexes
of demand and supply.

The first and most widely employed technique for constructing separate demand and supply
reservation price indexes in real estate was pioneered by Fisher et al. (2003, 2007).2 Their ap-
proach was based on hedonic price modeling of individual sales observations, and it was applied
to the NCREIF population of properties (data contributing members of the National Council of
Real Estate Investment Fiduciaries). Hedonic price modeling is hampered in commercial real
estate applications, because of the scarcity of good data on the relevant hedonic attributes of the
properties, which tend to be more heterogeneous than houses. Furthermore, the NCREIF popula-
tion of properties is rather narrow and specialized, consisting of relatively large, prime properties
owned by cash-rich tax-exempt institutions.

In the present paper we further develop and extend the Fisher et al. (2003, 2007) methodology
to a repeat sales indexing framework. This enables us to develop demand and supply reservation
price indexes for the much larger and broader population of properties represented by the Real
Capital Analytics Inc (RCA) database. This database captures approximately 90 percent of all
commercial property transactions in the US over $2,500,000 in value.

The main benefit of using the repeat sales methodology is that it takes care of all unobserved
heterogeneity (Bailey et al., 1963), which as noted is a particularly important consideration in
commercial real estate. In order to apply the Fisher et al. (2003, 2007) method in a repeat sales
framework, we adapt the sample selection methodology for repeat sales models developed by
Gatzlaff and Haurin (1997). Perhaps even more importantly, our methodology allows us to esti-

2Goetzmann and Peng (2006) present a slightly different approach that provides similar results. The Fisher et al. (2003,
2007) methodology was employed by the MIT Center for Real Estate to produce and publish a quarterly-updated set of
demand and supply indexes during 2006-2011.
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mate supply and demand indexes at a much more granular level, in part because it allows us to
use the much larger RCA database. The Fisher et al. (2003, 2007) methodology was limited by
the NCREIF database coverage to just estimating national indexes, even though property markets
are inherently local in nature. A key innovation in our methodology, which also enables granu-
lar index production, is our use of a Bayesian, structural time series model for index estimation,
building on the work of Francke (2010); Francke et al. (2017). By introducing these new method-
ological developments, we are able to estimate reliable, robust supply and demand indexes for
granular markets. In principle, the method can be applied for every repeat sales data-set with a
minimal set or no property characteristics.

In this paper we construct quarterly supply and demand indexes for every major metropolitan
area in the United States from 2005Q1–2017Q2. (The index results are available upon request.)
Our historical period includes the Global Financial Crisis (GFC), which had not yet occurred at
the time when Fisher et al. (2003, 2007) published their work. The GFC is a particularly inter-
esting phenomenon for observing the behavior of the two sides of the market, how the demand
collapsed first, while the behavior among property owners was much more conservative and held
on to higher reservation prices.

In this paper we focus on the results for the New York City and Phoenix Metro areas (as
defined by RCA). These two provide a fascinating “tale of two cities”, as they represent very dif-
ferent underlying urban form and space markets, and displayed interestingly different responses
during the Crisis. New York is a typical land supply constrained market with high historical
price growth, whereas Phoenix is characterized by sprawl and high supply elasticity in the space
market.

Our results show that the demand indexes in both New York and Phoenix went down a full
year earlier than the supply indexes during the crisis. In Phoenix, the demand index also went up
first after the trough of the crisis. In New York, supply and demand bounced back up together.
In New York, the supply index, i.e. property owners’ reservation prices, hardly dropped even
during the worst of the crisis, suggesting an impressive confidence in the NYC real estate market
on the part of property owners in the face of a financial crisis that hit New York particularly hard.
The gap reflected in the relative difference between demand minus supply price movements was
much greater in Phoenix than in New York, resulting in a much greater collapse in trading volume
(greater loss of liquidity) in the Phoenix market.

The remainder of this paper is organized as follows. Section 2 introduces our methodology.
Section 3 gives the data and some descriptive statistics. Section 4 presents the results. Finally,
Section 5 concludes.

2. Reservation Prices and Liquidity

First, we discuss the theory of demand and supply in real estate in Section 2.1. Our method-
ology also follows from this. Section 2.2 gives the estimation procedures.

2.1. Model

The setup of the model is similar to that in Fisher et al. (2003) (henceforth FGGH): Hetero-
geneous properties are traded among heterogeneous agents in a search market. Both buyers and
sellers set their reservation prices based on property characteristics and the market situation:
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RPb
i,t = βb

t + Xiα
b + εb

i,t, (1)

RPs
i,t = βs

t + Xiα
s + εs

i,t. (2)

Here RP is the reservation price and subscripts i and t denote the property and time period,
respectively. Superscripts b and s represent buyers and sellers. X is a property-specific 1 × K
vector of property characteristics and α is the corresponding K × 1 coefficient vector, and εb, εs,
are independent normally distributed error terms with mean zero. βb

t and βs
t are common trends

across the reservation prices of all buyers and sellers, respectively. These reflect the market-wide
movements of buyers and sellers that we are interested in.

In a search market, we observe a transaction if RPb
i,t > RPs

i,t. The distributions of reservation
prices of buyers and sellers are displayed in Figure 1. The shaded area is the intersection between
the distributions and depicts transaction volume (a larger area reflects more transactions). The
outcome of the transaction price Pi,t depends on both the sellers’ and buyers’ bargaining power.
We follow Wheaton (1990) and FGGH by assuming that the transaction price is the midpoint
between the buyer’ and sellers’ reservation price.3 The average midpoint price we observe in the
market is denoted P0 in Figure 1. In a booming period the distribution of the reservation price of
buyers moves to the right.4 This movement results in more transactions and a higher observed
average midpoint price, denoted by P1. Finally, in a bust buyers move their reservation prices to
the left. The intersection area will be smaller which reflects a lower transaction volume and the
observed midpoint price will move down to P2.

By estimating a normal hedonic regression model we are able to estimate the average mid-
point price per time period βt = 1

2 (βb
t + βs

t ), other coefficients α = 1
2 (αb + αs), and residuals

εi,t = 1
2 (εb

i,t + εs
i,t):

E(Pi,t) =
1
2

(βb
t + βs

t ) +
1
2

Xi(αb + αs) +
1
2

E((εb
i,t + εs

i,t)|RPb
i,t ≥ RPs

i,t), (3)

E(Pi,t) = βt + Xiα + E(εi,t |RPb
i,t ≥ RPs

i,t). (4)

Let S ∗i,t = RPb
i,t − RPs

i,t and substitute Equations (1) and (2) to obtain:

S ∗i,t = RPb
i,t − RPs

i,t = (βb
t − β

s
t ) + Xi(αb − αs) + (εb

i,t − ε
s
i,t). (5)

Note that S ∗i,t is latent, instead we observe S i,t = 1 if a transaction is consummated. Let
γt = βb

t − β
s
t , ω j = (αb − αs), and ηi,t = εb

i,t − ε
s
i,t. The probability of sale can be estimated by

estimating the following probit model:

3We will not pursue the relationship between bargaining power and liquidity here since this would result in difficulties
of identification of the reservation prices, see Carrillo (2013) for a discussion on this topic.

4The distribution of sellers might also move, but it is generally accepted that buyers respond more quickly than sellers,
see Genesove and Han (2012); Carrillo et al. (2015); Van Dijk and Francke (2017). So in our case the buyer reservation
prices move more to the right than seller reservation prices.
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Figure 1: Buyers and seller reservation price distribution at different points in the cycle consistent with pro-cyclical
liquidity.
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S ∗i,t = γt + Xiω + ηi,t, ηi,t ∼ N(0, 1). (6)

= Pr(S i,t = 1|Xi) = Φ(γt + Xiω), (7)

here Φ is the cumulative density function (CDF) of the normal distribution. Note that S
includes both a subscript i (property) and t (time period): A property is “tracked” over time. S i,t

takes the value 1 when the property is sold (once, twice etc.), and 0 when it is not sold in a given
period. The γt reflects the shift in probability of sale of a given time period. Following FGGH,
the inverse Mills ratio (λt) is calculated from the probit results. The probit estimation only yields
the coefficients up to an estimated scale factor, σ: 5

γ̂ = γ/σ = (βb
t − β

s
t )/σ, (8)

ω̂ = ω/σ = (αb − αs)/σ. (9)

Deviating from FGGH, we estimate the transaction price model only on repeat sales. This has
the advantage that we can take care of all unobserved heterogeneity, which is of importance in
the heterogeneous commercial real estate market. This, however, does require some adjustments
to the FGGH method. In the next steps, we will discuss these adjustments. We start with the
selection corrected repeat sales model of Gatzlaff and Haurin (1997, henceforth GH). The main
goal of GH is to correct for the selection bias of second sales versus first sales. The main aim of
our set-up is to correct for the bias of sales (either first or multiple) versus no sales. However,
with some adjustments we can still apply the GH-model. The two equations for the first and
repeat sale conditional on the sale being observed are:

E(Pi,s|S i,s = 1) = βs + Xiα + E(εi,s|S i,s = 1), (10)
= βs + Xiα + σ1,3λ1 + σ2,3λ2, (11)

E(Pi,t |S i,t = 1) = βt + Xiα + E(εi,t |S i,t = 1), (12)
= βt + Xiα + σ1,4λ1 + σ2,4λ2. (13)

Here s and t denote the time of first and second sale, respectively. P denotes the (log) trans-
action price. Note that the equation includes two selection correction variables: λ1 and λ2. These
are the inverse Mills ratios for the first and second sale, respectively. In GH these are derived
by estimating a bivariate probit on the probability of a single sale on the one hand and the prob-
ability (conditional on the first sale) of a repeat sale on the other hand. The σ coefficients are
covariances between the errors terms of the selection and sale equations. More specifically, the
covariance matrix of the four error terms (ηi,s, ηi,t, εi,s, εi,t) is defined as (GH):

5The conditions for the identifiability of this “probit σ” in our context are discussed later on.

7



Σ =


1 σ1,2 σ1,3 σ1,4
σ1,2 1 σ2,3 σ2,4
σ1,3 σ2,3 σ3,3 σ3,4
σ1,4 σ2,4 σ3,4 σ4,4

 . (14)

Subtracting (11) from (13) and adding disturbance terms results in the repeat sales equation
from GH:

Pi,t − Pi,s = βt − βs + (σ1,4 − σ1,3)λ1 + (σ2,4 − σ2,3)λ2 + υi. (15)

By taking the exponent of β, we get a selection corrected price index. The correlations that
appear in Equation 15 are σ1,3, which is the covariance between the error terms of the first
selection equation (ηi,s) and first sale equation (εi,s), σ1,4, which is is the covariance between the
error terms of the first selection equation (ηi,s) and second sale equation (εi,t), σ2,3, which is the
covariance between the error terms of the second selection equation (ηi,t) and first sale equation
(εi,s), and σ2,4, which is, the covariance between the error terms of the second selection equation
(ηi,t) and second sale equation (εi,t).

In order to estimate constant-liquidity indexes, it is necessary to include a time trend in the
probit (e.g. by including time fixed effects in the probit). It is not clear whether this should be
included in the probit on first sales, on repeat sales, or on both (the original GH model does not
include any time fixed effects). Furthermore, it is not straightforward which λ (of the first or re-
peat sale) should be used to derive the supply and demand indexes in a later stage (see Equations
23 and 25). Therefore, our proposition is to estimate the following repeat sales equation:

Pi,t − Pi,s = βt − βs + σε,η(λ2 − λ1) + υi, υi ∼ N(0, σ2
υ). (16)

This does impose restrictions on the coefficients on the selection correction variables λ. More
specifically, (i) σ2,3 = σ1,4 = 0 and (ii) σ2,4 = σ1,3 = σε,η. (i) implies that there is no correlation
between the error terms of the first selection (sale) equation and the second sale (selection) equa-
tion. This means that the reason to buy cannot be related to the realized gain or loss in the future.
Therefore, it is important to remove properties built for redevelopment from the data. (ii) implies
the correlation between the first sale and first selection is equal to the correlation of the second
sale and second selection. This means that the decision to buy or sell must be “normal”. For
example, if a the second sale was in distress, and the first one is not, this assumption is violated.
Therefore, properties sold in distress need to be removed.

In the original GH paper, the selection equations where estimated in a bivariate probit and
these assumptions were not necessary. Since the selectivity in a repeat sales model (i.e. selection
effects of second sales vs single sales) was the main goal of the GH paper, these correlations
needed to be explicitly modeled. In our set-up we are merely interested in the selection effect of
no sale versus a sale, either a first or multiple. Hence, these assumptions are not too restrictive
in our case. Moreover, these assumptions are also implicitly made for observations that are
sold more than once when deriving supply and demand indexes in the widely applied hedonic
framework of FGGH. Finally, as mentioned, one can account partly for these factors by applying
the appropriate data filters.
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In order to apply the method in thin markets, the time trend in the repeat sales equation is
modeled as a random walk with an additional autoregressive parameter (ρ):

∆βt = ρ∆βt−1 + ξt, ξt ∼ N(0,
σ2
ξ

1 − ρ2 ). (17)

The identifiability of the “probit σ” for a hedonic framework is discussed in the Appendix
of FGGH and will also be briefly discussed here. Let σ2

s = Var(εs
i,t), σ

2
b = Var(εb

i,t), and σs,b =

Cov(εs
i,t, ε

b
i,t). Note that these are the (co)variances of equations (1) and (2). The scale parameter,

the “probit σ”, is equal to σ2 = σ2
s + σ2

b − 2σs,b, which is what we need to solve for. Following
FGGH, our model assumes random matching between buyers and sellers and we can assume
Cov(εb

i,t, ε
s
i,t) = 0. This simplifies the expression: σ2 = σ2

s + σ2
b. The conditional expected

variance of the pricing errors (ε2
i,t) in a hedonic model follows from the known relations for the

moments of the truncated bivariate normal distribution (Johnson and Kotz, 1972):

E(ε2
i,t |S i,t = 1) = σ2

ε − σ
2
ε,η(γt + Xiω)λi,t, (18)

where σ2
ε = Var((εb

i,t + εs
i,t)/2) = (σ2

b + σ2
s)/4 = σ2/4. (19)

As expectation for the squared errors we plug in the squared residuals of the repeat sales
model ε̂2

i,t. Note that FGGH use the sum of squared residuals (SSR) from a hedonic model.
However, the SSR from a hedonic model with pair fixed effects is equivalent to the SSR of our
repeat sales model.6 σ̂2

ε,η is the square of the estimated coefficient on the inverse Mills ratio,
γ̂t + Xiω̂ is the linear prediction from the probit model, and λ̂i,t is the estimated inverse Mills
ratio.7 To solve for σ2

ε we further plug in the estimates of the probit (γ̂t, ω̂, and λ̂i,t) and repeat
sales estimates (ε̂2

i,t and σ̂2
ε,η):

σ̂2
ε = (1/N)

N∑
i=1

[
ε̂2

i,t + σ̂2
ε,η(γ̂t + Xiω̂)λ̂i,t

]
, (20)

σ̂ = 2σ̂ε. (21)

Here N is the number of observations from a hedonic model, so in our case that would be the
number of repeat sales times 2.8 Also note that we stack the repeat sales data: every pair gets
two observations (buy and sell). In this case we also use the level of the inverse Mills ratio of the
first and second sale instead of the difference.

In order to derive the buyers’ and sellers’ reservation price indexes, we combine the probit
and repeat sales model results to obtain the demand/supply indexes (FGGH). As estimated values

6The SSR and MSE are equivalent, but the individual squared errors are different. However, since we are eventually
interested in the MSE, we can safely assume E(ε2

i,t |S i,t = 1) = 1
2 E(ε2

i,1 |S i,t = 1) + 1
2 E(ε2

i,2 |S i,t = 1), where 1 is the first
sale and 2 is the second sale.

7Note that we estimate the coefficient on the difference of the inverse Mills ratio, however the restrictionσ24 = σ13 = σε,η
implies that the coefficient on the difference (σε,η) is the same as the same as the coefficient on the level of the inverse
Mills ratio of the first and second sale.

8When a property has more than 2 sales, for example 3 sales, this would result in 4 observations in the hedonic model
with 2 pair fixed effects. Hence the second sale enters twice.
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we have: γ̂ = (β̂b
t − β̂

s
t )/σ̂ (from equation 8) and β̂t = 1

2 (β̂b
t + β̂s

t ) (from equation 3)→ β̂s
t = 2β̂t =

β̂b
t . Substituting the latter in the former, we get the buyers’ reservation price index (constant

liquidity index):

γ̂ = (β̂b
t − 2β̂t − β̂

b
t )σ̂, (22)

β̂b
t = β̂t +

1
2
σ̂γ̂t. (23)

(24)

Further substitution yields the sellers’ reservation price index:

β̂s
t = β̂t −

1
2
σ̂γ̂t. (25)

2.2. Estimation

We estimate the model in a two-step approach (Heckman, 1979). We first estimate probit
Equation (7) by maximum likelihood. We subsequently calculate the inverse Mills ratios of the
first and second sales. We then plug in the difference between the inverse Mills ratios in the
repeat sales model as given by Equation (16). We estimate the repeat sales model in a Bayesian
framework similar to the Commercial Property Price Indexes published by RCA (Francke et al.,
2017). The difference is that we use normally distributed errors instead of t-distributed errors
in order to use the multivariate normality with the probit. Also, we do not allow the signal and
noise to vary over time for the sake of simplicity and consistency with the theory.

As explained in Francke and van de Minne (2017) estimating repeat sales models in a struc-
tural time series framework, especially with AR components, is very difficult using the Kalman
filter. We therefore estimate the model with Markov Chained Monte Carlo simulations. More
specifically, we use the No-U-Turn-Sampler (NUTS) to estimate the indexes (Hoffman and Gel-
man, 2014; Carpenter et al., 2016). The repeat sales indexes are estimated over 4 parallel chains
with different initial values. We use 4,000 iterations per chain of which 2,000 are warm-up itera-
tions that we discard. Hence, the total sample size is 8,000. Following Francke et al. (2017), we
use the R̂ combined with the effective sample size to determine the convergence of the model.
We additionally investigate the Monte Carlo error and the Heidelberger-Welch stationarity and
halfwidth statistics (Koehler et al., 2009; Heidelberger and Welch, 1981).

3. Data

We use transaction data from Real Capital Analytics (RCA) to estimate the indexes be-
tween 2005Q1 and 2017Q2. RCA has a capture rate of more than 90% of properties larger
than $2,500,000. A high capture rate is fundamentally important for our methodology since the
probit results should reflect the probability of sale with respect to the whole population. In order
to capture the whole population of properties each property should be sold at least once to be
included in the database. We are confident that the high capture rate combined with the fact that
RCA has been recording transactions since 2000 makes sure that almost all properties in the in-
vestment universe are in our data. Besides, properties that are not in the data after 17 years might
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never become part of the investment universe that investors are interested in (i.e. properties that
trade on a regular basis).

The descriptive statistics for the two metropolitan markets (New York City, NY and Phoenix,
AZ) are presented in Table 1. The number of properties is more or less constant in the data, which
provides confidence that the capture rate of the data is satisfactory. We are not able to identify
whether a property gets demolished. We do observe if a property is bought for the purpose of
redevelopment. These properties are removed for the reasons outlined in section 2.1. For the
same reasons, properties sold in distress are removed.

In the probit equation we control for property size (in log square feet), property type (Apart-
ment, Hotel, Industrial, Office, Retail, and Other), whether the property is in the Central Business
District (CBD), and construction period (< 1920, 1920 − 1945, 1946 − 1989, and ≥ 1990). We
also use the construction year to filter out properties that where not yet built. Since multiple
properties transact before the construction has been finished, we include the property in the pro-
bit data two years before completion. If the model is estimated without property characteristics,
this provides comparable results (not shown).

In both New York and Phoenix, the crisis is clearly visible in both the number of sales and
average transaction price. In 2009 the number of transactions is about 50% lower compared to
2008 and 70-80% lower compared to 2007. The average property size is more or less equal
over the sample. Most properties sold in Phoenix are outside of the CBD, whereas in New York
most are within the CBD. Properties in New York are, on average, older than in Phoenix and the
average construction year increases somewhat over the sample as newly constructed properties
enter the data-set.
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Table 1: Descriptive statistics of the two markets over the sample.

Properties Mean Sale Price Mean Size
Year Sales in data in MLN $ in 1000 Sqft Mean CBD Mean Year Built

New York City, NY
2005 1,948 17,867 18.7 35.8 0.73 1941
2006 2,215 17,993 21.5 32.4 0.74 1941
2007 2,248 18,062 23.8 30.2 0.75 1940
2008 1,313 18,127 18.8 28.1 0.71 1942
2009 690 18,174 9.9 25.1 0.72 1942
2010 852 18,227 18.3 34.1 0.73 1943
2011 1,090 18,265 23.9 30.9 0.75 1944
2012 1,790 18,298 18.9 24.8 0.83 1938
2013 2,218 18,334 22.1 25.1 0.78 1942
2014 2,423 18,358 24.2 25.7 0.79 1941
2015 2,715 18,366 25.0 23.4 0.77 1942
2016 2,253 18,370 27.0 25.3 0.74 1944
2017* 951 18,371 20.2 23.7 0.67 1946

Phoenix, AZ
2005 884 4,548 11.5 61.2 0.01 1987
2006 801 4,720 12.6 57.4 0.01 1989
2007 696 4,777 13.6 53.1 0.03 1990
2008 288 4,794 10.4 41.3 0.01 1990
2009 130 4,801 9.1 51.0 0.02 1993
2010 166 4,823 10.4 54.7 0.00 1993
2011 255 4,847 12.3 70.3 0.01 1992
2012 433 4,876 11.6 66.8 0.02 1991
2013 449 4,908 10.9 58.5 0.00 1992
2014 610 4,942 11.3 54.9 0.03 1991
2015 708 4,948 13.4 55.1 0.02 1991
2016 725 4,948 13.6 53.7 0.02 1991
2017* 317 4,948 12.3 52.8 0.03 1990

*2017 only consists of data on the first two quarters.

4. Results

As noted before, our estimation procedure consists of multiple steps. First, we estimate the
probability of sale by equation (7) and calculate the inverse Mills ratio. Second, we estimate a
repeat sales model including the difference in the inverse Mills ratio by estimating equation (16).
Finally, we derive the supply and demand reservation price indexes by combining the probit and
repeat sales results using equations (23) and (25).

4.1. Probability of sale

The estimates for the probability of sale for the two markets are shown in Table 2. The
estimates of the time fixed effects (γt in equation 7) are included in Figure 2. The magnitude of
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the coefficients cannot be interpreted directly, but the sign can be interpreted. Furthermore, the
relative effects of the categorical variables can be interpreted.9

In general, larger properties have a somewhat higher probability of sale, although the effect
is only marginally significant. In New York, properties located in the CBD sell quicker. With
respect to property types, apartments sell the quickest in both markets and “other” (i.e. elderly
homes, nursing cares, parking facilities etc.) sell the slowest. Hotel, industrial and office build-
ings sell roughly at the same speed. The newest buildings (built after 1990) sell the quickest in
both markets.

The estimates of the time fixed effects are somewhat noisy (Figure 2). Also, the estimates
show a seasonal pattern. Therefore we follow Fisher et al. (2007) and smooth and seasonally ad-
just these coefficients. More specifically, we use a local linear trend model with a seasonal factor
to distinguish between signal and noise. The probability of sale in New York is approximately
50% lower mid 2009 compared the end of 2007 and has recovered gradually to the pre-crisis level
between 2010 and 2015. Since 2015, the probability of sale seems to be somewhat decreasing.

The probability of sale in Phoenix decreased by more than 80% during the crisis. The prob-
ability of sale increased between 2010 and 2016, but has never recovered fully to the pre-crisis
level. Also, starting in 2016 there is a small decrease in the probability of sale in Phoenix. Finally,
notice the very similar development in the rate of sales across the two markets. This indicates
that there are small differences in regional dynamics in the probability of sale.10 The develop-
ment of the probability of sale actually shows a very similar pattern across different markets in
the US (not shown in here, but available upon request). This does, however, not imply that the
probability of sale is similar across different markets. The baseline level of sales, for example,
could be substantially different.

9Another option would be to present marginal effects. The supply and demand indexes, however, require the “raw”
coefficients. Therefore, we choose to present the coefficients instead.

10The correlation between the probability of sale in New York and Phoenix is 0.92 in (index)levels and 0.66 in first
differences.

13



Table 2: Coefficient estimates including 95% confidence intervals of the probit equation for the two markets over 2005Q1
and 2017Q2.

New York City, NY Phoenix, AZ
Variable ω P2.5 P97.5 ω P2.5 P97.5
Constant -1.971 -2.039 -1.903 -1.858 -2.227 -1.488
Log(Size) 0.004 -0.001 0.009 0.006 -0.004 0.017
CBD 0.036 0.020 0.052 0.022 -0.063 0.107
Apartment (Omitted) (Omitted)
Hotel -0.025 -0.077 0.027 -0.041 -0.105 0.024
Industrial -0.075 -0.093 -0.057 -0.082 -0.115 -0.050
Office -0.057 -0.074 -0.041 -0.072 -0.105 -0.039
Retail -0.055 -0.071 -0.039 -0.083 -0.118 -0.049
Other -0.079 -0.127 -0.032 -0.145 -0.210 -0.079
Built <1920 (Omitted) (Omitted)
Built 1920-1945 0.001 -0.014 0.016 0.137 -0.233 0.507
Built 1946-1989 -0.009 -0.027 0.010 0.145 -0.198 0.489
Built ≥ 1990 0.035 0.013 0.057 0.168 -0.175 0.512
Time fixed effects Yes (γt) Yes (γt)
N 922450 244607
Loglike -104607.6 -28847.5

Figure 2: Raw and smoothed/seasonally adjusted estimates of the time fixed effects in the probit equation (γt) for the two
markets over 2005Q1 and 2017Q2.
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4.2. Repeat sales indexes

The repeat sales indexes for New York and Phoenix are shown in Figure 3. These are the
“midpoint-indexes” that follow from the estimation of equation (16). The indexes are, by con-
struction, on the midpoint between the demand and supply indexes. The GFC is clearly visible in
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the indexes. New York started recovering in 2010 and the prices surpassed the pre-crisis level in
2013. In contrast, Phoenix has been recovering much more slowly, starting in 2011. Substantial
recovery in Phoenix took off not before 2016 when prices increased by almost 25%. The price
levels, however, are still lower than the pre-crisis ones at the end of the sample.

The model statistics and the estimate on the coefficient of the difference of the inverse Mills
ratio are presented in Table 3. All model statistics are satisfactory, the Monte Carlo error (MC
error) is very close to 0 and the effective sample size (Neff) relative to the number of samples
is close to 1 for all models (note that the number of samples is 8,000 for every model). The
Heidelberger stationary statistic is equal to 1, indicating that the test is passed by every param-
eter in the model (a parameter gets the value 1 if the test is passed). The same holds for the
Heidelberger halfwidth statistic, which is close to 1. This indicates the number of chains is high
enough. Finally, the R̂ values close to 1 indicate that the models have converged well.

Figure 3: Repeat sales indexes of commercial real estate in New York and Phoenix between 2005Q1 and 2017Q2.
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Table 3: Coefficient estimates on the inverse Mills ratio (σε,η) in the repeat sales equations including the 95% Highest
Posterior Density (HPD) intervals and model statistics.

Statistic New York City, NY Phoenix, AZ
σε,η -0.1617 -0.3095
σε,η,p2.5 -0.3843 -0.5533
σε,η,p97.5 0.0549 -0.0735
Repeat sales 4106 1452
Loglike -2394.1 -777.2
MC-error 0.0011 0.0024
Neff 7986 7993
Heidelberg stationarity 1.0000 1.0000
Heidelberg halfwidth 0.9889 0.9783
R̂ 1.0000 0.9999

Repeat sales denotes the number of repeat sales pairs, Loglike the log-
likelihood, MC-error the mean of Monte Carlo standard error for all parame-
ters, Neff the mean effective sample size (total number of samples = 8000) of
all parameters, Heidelberger-Welch stationarity and the Heidelberger halfwidth
tests are the mean of the tests of all parameters (a parameter gets the value 1
(0) when the test is passed (failed) at the 5% level). Finally, R̂ is the mean Rhat
statistic for all paramers.

4.3. Supply and demand indexes

The indexes for demand and supply reservation prices that follow from equations (23) and
(25) are shown in Figures 4 and 5 (mind the difference in scale). Following Fisher et al. (2007),
the indexes are presented such that the mean of the supply and demand indexes are equal. The
indexes can also be used as a liquidity indicator; if the difference between demand and supply
becomes smaller (larger) there is less (more) liquidity in the market.

In both markets, the demand-side (or constant-liquidity) indexes seem to move quicker and
more extreme than the supply side indexes. The demand side indexes are decreasing a year before
the supply side indexes during the crisis. Especially in Phoenix, the recovery also happens much
earlier. Comparing the demand side indexes from Figure 4–5 and the midpoint indexes from
Figure 3, we observe that the demand side constant-liquidity indexes also lead the midpoint
indexes. The lead is smaller than the full year in the supply and demand indexes, but it is still
visible. A Granger causality analysis confirms this: Changes in the demand side indexes Granger
cause changes in the midpoint indexes in both markets. The same holds for the relationship
between the demand side and supply side indexes: Changes in supply reservation prices are
Granger caused by changes in demand reservation prices at the 1% level.11

In New York, suppliers’ reservation prices remained surprisingly constant which suggests
that property owners remained very confident about the New York commercial real estate market.
The difference between peak (2008Q3) and through (2010Q2) was only 17%, compared to 29%
in the demand side index (2007Q3–2010Q2). After the crisis, supply and demand show a joint
recovery in New York. In Phoenix, suppliers’ reservation remained sluggish through as late
as 2015Q4. The difference between peak and through is also much larger in Phoenix: Sellers’

11Both Granger causality analyses are significant at the 1% level and are based on a VAR model with 4 lags estimated
separately for each market.
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reservation prices went down by more than 40% (2008Q4–2012Q4) and buyers’ reservation went
down by 46% (2008Q1–2010Q2).

The more extreme movents of the demand side indexes is also documented in Fisher et al.
(2007) and is consistent with the notion of pro-cyclical liquidity. Liquidity, as indicated by the
difference between demand and supply reservation prices, substantially decreased during the
GFC. This is also clearly visible in the probability of sale (Figure 2).

Figure 4: Supply and demand indexes in the New York City, NY.
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Figure 5: Supply and demand indexes in the Phoenix, AZ.
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4.4. A recent anomaly?

Recently, a rare phenonemon is visible in the commercial real estate markets, as prices keep
steady or increase, deal volume is going down. Usually, liquidity is pro-cyclical, liquidity goes up
when prices go up and vice versa. RCA suggests that a difference in buyer and seller reservation
prices is the cause: “The current impasse suggests a widening gap between buyer and seller
pricing expectations” (Real Capital Analtyics, 2017). This implies that the distribution of sellers’
reservation prices moves more to the right than the distribution of buyers’ reservation prices. This
results in fewer transactions and a decrease in liquidity. Prices, however, increase. This is shown
in Figure 6, which depicts the cumulative distributions in the reservation prices. Our empirical
findings for both Phoenix and New York are consistent with this view. The decrease in liquidity
is visible in Figure 2 and the increase in (midpoint) prices is visible in Figure 3. These dynamics
are also visible in the supply and demand indexes, especially in New York, where the reservation
prices of sellers are increasing more than the reservation prices of buyers in the final year (Figure
4).
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Figure 6: Situation where the sellers’ distribution of reservation prices shifts more to the right than the buyers’ distribution
of reservation prices, the cumulative distributions are shown.
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5. Conclusions

In this paper we extent the constant liquidity index methodology introduced by Fisher et al.
(2003). We introduce two new components: (i) We cast the method in a repeat sales framework,
and (ii) we estimate the model in a structural time series format. As a result, we can disentangle
reservation prices of buyers and sellers for commercial real estate at a city level without needing
a substantial set of property characteristics. We apply our model using data provided by Real
Capital Analytics (RCA). RCA tracks properties over $2,500,000, or the typical institutional /

large private investor space. In this paper we focus on two cities in a very different urban setting:
New York and Phoenix.

Tracking demand and supply separately does not only give us more insight into the real
estate market, it can also be used as a predictive model. Indeed, supply tends to move slower
compared to demand, due to anchoring and loss aversion (Bokhari and Geltner, 2011) and issues
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related to mortgage debt (Genesove and Mayer, 2001). The “midpoint” index that is usually
estimated in a repeat sales framework also lags behind reservation prices of buyers. We find
that in both New York and Phoenix demand dropped a full year prior to supply during the crisis.
We further find that buyers’ reservation prices went down by 29% and 46% in New York and
Phoenix, respectively. In New York, reservation prices of sellers only dropped moderately by
17% compared to the large drop in Phoenix of 40%.

Finally, we document a rare phenomenon. In all markets and for most of the time liquidity is
pro-cyclical. In recent quarters, however, prices seem to be increasing and liquidity is decreasing.
This is also visible in our demand and supply indexes: Reservation prices of sellers are increasing
more than reservation prices of buyers.

Although we only analyzed the indexes for New York and Phoenix, indexes for all major
metropolitan areas are available upon request. We encourage future research to examine more
markets in different urban settings and to answer additional questions related to reservation price
dynamics. Also, our method is general and can be applied to every data set in which repeat sales
can be identified and for which transaction prices are known.
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