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Abstract: 

This paper is an urgent call to get better prepared for unexpected events. 

The increasing spread of information technology in society leads to more 

complexity and non-linear behavior in the economic and financial system, and to 

more unpredictable, sudden events. This paper examines how people deal with 

non-linear behavior of systems, by looking at how we prepare for disruptive 

events in the economy and wider society, and it shows why we have a hard 

time dealing with non-linearities. The paper provides suggestions to improve 

our handling of non-linear system behavior for both better preparedness 

for disruptive events and better design of more resilient systems. A different 

approach to economic modelling is needed, away from equilibria thinking 

toward the realm of evolutionary complex adaptive systems. The paper is 

relevant to policymakers and decision makers who deal with long-term risk and 

uncertainty, and to those who want to improve their understanding of disruptive 

events. The ideas brought together in this paper come from various disciplines 

and mostly do not reflect mainstream economic thinking. 
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Executive summary

The central question of this paper is why many people experience disruptive 

events as unexpected. It covers both events beyond our imagination and 

events for which people misjudge risk. This subject relates to the recent shocks 

in the financial markets but applies equally to other systems people develop. 

The question is relevant to DNB as information technology seems to have an 

ever-increasing impact on the economy and the financial sector in particular.  

There are strong indications that the impact of the posed question is increasing 

because the world is becoming more complex. This is reinforced by networked 

information technology. People are connected through networks which 

open up new ways to launch emerging ideas, in a decentralized manner, 

to cooperate with anyone in the world. Information technology finds its way 

into a growing number of new and existing applications, including finance, 

transportation, health care and education, due to the exponential growth 

of computer power and a continuing decrease in cost per unit operation. 

The evolving technologies are having a firm impact on the existing, centrally 

governed businesses and institutions, also in the financial markets. These 

networked technologies spread an increase in dynamics and non-linearities in 

our systems, resulting in more unexpected events, unless we better understand 

the dynamics and change our systems and models to be better prepared to 

cope with these dynamics.

Answers to the question of why many people experience disruptive events 

as unexpected, are found in the way our brain functions, in how we deal 

with probability, risk and uncertainty, and limitations in imagining long-

term negative and positive consequences. Understanding a system and 

understanding the risks to the system as a whole, turns out to be less obvious 

than often thought. In particular mainstream economic models prove to be 

of little help in economic and financial crises, as such dynamics can either 

not be handled by the models or are made impossible by their assumptions. 



8 We therefore cannot rely too much on such models and additionally need 

models that can cope with the complexity of the economy. Our educational 

system reinforces such shortcomings. People are less in control than they 

usually think they are because of the complexity of systems, and they are badly 

prepared for unexpected events because they have difficulty understanding 

them and little practice with modelling and experimenting with such events. 

There is growing interest in introducing complexity theory to model economic 

interactions, which allows us to model disruptive events and other non-linear 

behavior of systems. 

As unexpected events pose a problem, suggestions are made for applying 

different models and to get better prepared for such events. It starts with 

awareness of the non-linear behavior of systems and acceptance of being 

less in control than people wish. It requires different behavior and different 

modeling. Where mainstream models assume tendency to equilibrium, 

we should give much more attention to models that consider the economy 

as a complex adaptive system, in order to better analyzing dynamics of 

interactions at the edge of order and chaos. This idea is not new, though 

complexity thinking in economics has still not been widely accepted. 

Moreover, technological and economic developments seem to follow a kind 

of evolutionary formula, including “differentiate, select and amplify”, forming 

an adapting mechanism to avoid being disrupted. As networked information 

technology seems to pose higher risk to more and faster propagating 

errors and attacks, the sensitivities of network applications needs to be 

better protected requiring a kind of immune system to make them resilient, 

preferably even stronger, when attacked. 



9Thinking in complexity and non-equilibrium models requires firm changes 

in the way people work, the models they use and the skills they need. It is 

an open question how today’s centralized governance model and national 

legislation are able to handle the increasing global dynamics and emergence 

of new technological applications because of their rapid global growth and 

disruption of existing structures. Centralized governance and control may need 

to be replaced progressively by decentralized models with inherent robustness 

and stochastic trust. Finally, economic educational programs have to further 

adapt, as an alternative to traditional equilibrium thinking, towards complex 

adaptive system thinking, recognizing the non-linear adaptive behavior with 

emergent and critical patterns that may arise. This would bring knowledge, 

experience and tools to get better prepared for sudden systemic changes and 

unexpected events. 
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1 Introduction

Usually people take life as if it were on a rather constant speed, in need 

for routine and assuming the next day of our life and environment will be 

similar to today. Handling change is a challenge for people. The possibility 

that tonight the world may be hit by a meteorite or large volcano eruption, 

suddenly destroying the basic conditions required for life, is usually not taken 

into account. Often changes either for better or for worse are underestimated, 

because extrapolations usually follow, unconsciously, a linear path. Fat-tail 

risks have been heavily underestimated as we learned during the recent 

financial crisis. The measures taken, such as higher financial buffers for banks, 

stress tests and more centralized control, are mostly meant to decrease the 

likelihood and impact of a similar crisis happening again, i.e. usually a linear 

extrapolation of what we had. Most likely the next financial crisis will be 

different. The same holds for unanticipated terrorist attacks, which were 

followed up by measures related to the event that had just occurred, such as 

more security at airports and increased security at buildings to better protect 

against a similar attack. More of the same along a linear imagination. Humans 

are barely able to anticipate events on a non-linear scale. Non-linearity means 

that the effect is not proportional to the cause. Nature however mostly 

evolves in a non-linear manner, via power laws and S-curves, as well as 

sudden discrete changes called phase transitions. 

1.1 The subject of discussion
The focus of this paper is on the question of why people often experience 

disruptive events as unexpected, why this is a problem, and what we can 

do about it. The question is relevant to DNB as the growing influence of 

information technology on the financial system causes more complex 

dynamics that are likely to cause more disruptive events. Digitization of 

products and its fast and wide spread through information networks cause a 

dynamic of complexity with power laws and exponentials. These technologies 

are called exponential because of their accelerating growth and impact 



12 on society, including the financial sector. Banking is rapidly changing into 

IT business. Technology is transforming the payments and settlement business 

into a system with tightly coupled interactions and interdependencies that 

provide us with instant services, but also exhibit complex dynamics including 

the risk of disruptions. It is important for DNB to understand the dynamics 

caused by exponential technologies as well to understand how we deal with 

sudden changes they may cause. The paper is relevant to policy makers and 

decision makers who deal with long-term risk and uncertainty, and to those 

who want to improve their understanding and grip on disruptive events. 

The ideas brought together come from various disciplines and do mostly 

not fit mainstream economic thinking which may confront the reader but is 

meant to show a different view.

Sudden major and disturbing events, both in nature and in human-created 

systems, seem to arrive to people as surprises, leaving us overwhelmed. 

Examples are the recent financial crisis and other financial crises before; 

but also cyber-attacks; a terrorist attack; an announcement of a serious 

disease; long-term negative effects of food (cigarettes, too much sugar); 

global impact of pollution; a flood like in New Orleans; an accident at a 

nuclear or chemical plant or a nuclear disaster like Fukushima. Such disruptive 

events have low probability. In some cases, the event is indeed beyond our 

imagination and unexpected. In other cases, we did imagine the event, 

we studied the probability, decided to either act or not, followed by the 

acceptance of the residual risk. But what does accepting residual risk mean? 

Still, when the event happens, many react as if it were unexpected, as if the 

acceptance of the residual risk has been neglected or forgotten. It could well 

be that magnitude or timing are beyond our imagination, that the event has 

been imagined, but the risk been underestimated. 
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Whether it is economic growth, IT projects, market adoption of solar panels, 

and the like, we seem to underestimate the range of forecasting uncertainty, 

resulting in forecasting errors. Illustrative examples on forecasting errors are 

shown in chart 1.1 on the IMF’s trade forecasts and chart 1.2 on successive 

projections of additions to electric capacity by renewables (mainly photo 

voltaic and wind) taken from the World Energy Outlook publications from 

the International Energy Agency (IEA).It also puts in perspective the day-

to day discussion of economists, politicians, financials markets experts and 

project steering boards on fine-tuning prediction in fractions of a percentage, 

Chart 1.1 Example of underestimation: multiple  
revisions of IMF’s world trade volume forecasts

Source: ZeroHedge.com, 
World Economic Outlook (IMF).
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whereas these charts show errors of 50% and more. Another example is given 

by Loungani (2001). At the IMF he analyzed the performance of consensus 

forecasts of annual average real GDP growth, from international institutions 

and from the private sector, based on a dataset from 63 countries over the 

period 1989-1998. He found that only two of the 60 recessions that occurred 

over the sample were predicted a year in advance. In October the extent 

of a recession in that year (so within 2 months) was underestimated in 50 

out of 60 cases. He also found that private sector forecasts and those of 

international organizations are rather similar with forecast errors correlation 

of 0.9 or better. Why do these forecasts collectively fail? Could it be the 

Source: EnergyWatchGroup.org, World Energy Outlook (IEA).
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15limitations in the models and the related assumptions? How do the models 

cope with the dynamics and non-linearity of real-life disturbances? Do we 

assume too often normal distributions and a tendency to equilibrium states?

In situations where we consciously accepted residual risk to an extreme 

event, we often get surprised when such an extreme event happens. Take 

the calculated probability of 1 event to happen in 10,000 years, for a flood or 

nuclear plant disaster; such disaster could happen tomorrow but many believe 

it won’t happen during their lifetime. As we took measures and the residual 

risk is accepted and remembered as being very small, we seem to misinterpret 

that it is not likely going to occur any time soon. And if our estimate was off, 

the extreme event may happen a few times in 40 years. The same with floods: 

when costly measures are taken we tend to forget the likelihood remains 

and potentially tomorrow a flood may affects millions of people. Another 

illustration is the surprise stock market crash of the late 1990s, three years after 

that, Federal Reserve chairman Greenspan warned the market with the phrase 

‘irrational exuberance’, referring to a mindset that occurs during speculative 

bubbles. It seems we are even taken by surprise after being warned. 

This paper seeks explanations for our negligence, underestimation and  

difficulty  we face with disruptive events and non-linear system behavior. 

Questions arise about what the reason could be for underestimation and not 

foreseeing disruptive events. Are we not able to imagine sudden changes and 

other non-linearity? Or if we can imagine, are we not willing to take negative 

major events properly into account? Would that be caused by psychological 

biases? Is it the way our brain functions that we underestimate the likelihood 

and impact of big events? How do we actually handle risk, probability and 

uncertainty? Do we use the right models for calculating risk and calculating 

forecasts? What is the role of education? Finding answers to these questions 

is important to get better informed about and prepared for disruptive events. 



16 Answers are also urgently needed as the world seems to get more complex, 

which may be caused by an increasing importance of information technology 

and interconnectedness in society. 

In summary this paper aims: 

 ▪  To analyze the growing impact of information technology as a cause of 

non-linear system behavior; 

 ▪  To clarify why people often experience disruptive events as unexpected;

 ▪  To look at how we can better understand and prepare for non-linear 

behavior and disruptive events.

1.2 Approach and limitations
The chosen approach in the paper is multidisciplinary, mixing views from 

physics, information technology, biology, psychology and economics It 

connects various views from the literature in order to get a broad view of 

possible explanations as to why people often experience disruptive events 

as unexpected. The paper presents different and intentionally sometimes 

provocative thoughts, away from mainstream thinking, believed to be 

necessary to improve our bad track record of forecasting and preparedness for 

disruptive events. 

Chapter 2 starts with the observation that the world is getting more complex 

and it investigates the dynamics that new technologies cause in society. 

Information technology leads towards an acceleration in our systems causing 

various dynamics and unpredictable events. The impact of dematerialization 

of products and the transitions to network-based information services 

is discussed as well as the changing dynamics between consumers and 

producers that allow for faster and wider distribution via platforms, at ever 

lower costs. The technological innovation shows exponential progression 



17which will cause more non-linear behavior in the economy which are likely to 

have profound implication on the financial sector. 

Chapter 3 presents a variety of possible answers to the central question of 

why we often experience disruptive events as unexpected. It is an attempt 

to find the main causes. It looks at the difficulties our brain has in imagining 

non-linear system behavior and also to deal with it, our tendency to provide 

quick answers and our tendency to extrapolate in linear ways while many 

systems (we built) have non-linear characteristics. Dealing with probability 

presents another challenge to our brain. This chapter further looks at the 

way people deal with risk and risk models, and how uncertainty is handled. 

Finally, limitations of economic modelling are discussed as one of the causes 

of unpreparedness to disruptive events, supplemented with a preview of 

complexity thinking in economics. The non-linearity of the dynamics caused 

by the exponential technologies as described in chapter 2 makes the need 

for better modelling and preparedness to disruptive events more urgent 

and important. 

Chapter 4 provides suggestions for such modelling as an answer to the 

findings of chapter 2 and 3. It briefly explains the characteristics of complex 

adaptive systems and shows the better fit with human behavior and 

propagation of technology in society. Complexity recognizes that the 

interactions in our economy tend more to the edge of chaos rather than 

seeking a state of equilibrium. Examples are provided of complexity models. 

Further, similarities are shown between a generic evolutionary process and 

economic developments from which ideas and services emerge, resulting 

into an evolutionary complex adaptive system. Given the dynamics of 

networks and complex behavior of systems, guidance is provided for better 

dealing with non-linear system behavior to improve resilience, based on 



18 other complex systems. This chapter ends with suggestions to use these 

techniques to improve the design and resilience of our financial 

infrastructures.

Chapter 5 provides the conclusions of the paper.



19It seems the world is getting more complex. The rapid advances of 

information technology (IT) through networks show an exponential curve 

of expansion. Sectors like finance, transportation, energy, health care and 

education have been transformed, and these technologies change the 

structure and interaction in society and affect our institutions. In general this 

leads to services that are more accessible and cheaper, but the dynamics 

in systems increase and show more chaotic behavior. Ignoring such 

characteristics will result in more surprises about disruptive events, non-linear 

behavior and unforeseen risk. This implies that the misconception about and 

overreliance on oversimplified models that misguide us when we need them 

the most, will become even more pressing.

2.1 Exponential technologies

Evolution, technology and complexity

People experience an increase in complexity in the world. Evolution and 

interconnectedness play a key role in this process as the evolutionary path 

of development moves from simple to more complicated. Life started with 

simple single-celled organisms, called prokaryote, followed by the more 

advanced eukaryote and then multicellular lifeform, exhibiting increasing 

complexity. Similarly, the birth of more complicated atoms developed 

in the course of time, from the simplest atoms just after the big bang. 

In general, on a time scale diagram going to the right towards more complex 

seems unlimited, while going back to simpler is limited. Illustrative is any 

development of a physical quantity expressed in a diagram (y-ax) with time 

on the horizontal ax, showing too late is open-ended, versus too early is 

limited (fastest possible speed; or ultimately the y-ax itself) and similarly, more 

complicated is open-ended while simplifying is limited. Examples from daily 

life are a flight and a project. A flight can arrive some time earlier, but that is 

physically limited, whereas delay is in principle unlimited. The same applies to 

2 Disruptive impact  
of technologies



20 finishing a project on time and clarifies why many projects become delayed: 

possibilities to simplify a project is rather limited whereas possibilities to make 

it more complicated or deviate from a plan, is nearly open ended. 

It is the same with technology. Our technology becomes ever more 

complicated, it builds on top of earlier developments. The increase of 

networked technologies that make us more interconnected, with easier 

access to more people, ideas and knowledge and at higher speed creates order 

at a higher level, but the whole system is more complex. Right after Darwin’s 

publication On the Origins of Species, Samuel Butler wrote Darwin among the 

Machines in which he explored the possibility that machines go through a kind 

of mechanical life with constant evolution and voiced his fear that humans 

are becoming subservient to machines that eventually would take over. Kelly 

(2010) calls Homo sapiens a tendency, not an entity, a process of evolution 

like any other living organism. He recalls that technology is not exclusively 

used by humans and technology has a transforming power. He continues that 

technology is subject to the same mechanisms and forces in the natural world 

that drives change. He calls progress the ‘reordering of the material world 

that is made possible by the flows of energy and the expansion of intangible 

minds’ and sees evolution marching towards more complexity and order. 

Evolution is a process of continuous innovation. Kelly puts us subordinate to 

the evolutionary processes, like technology has its own power and will and 

calls for humans to channel technology in the right direction, but at the same 

time he states that we are quite powerless to technological evolution. 

Studies by Prigogine and Stengers (1997), brought into relation with networks 

by Hinssen (2014), show that in a system powered by an energy source (Earth 

bathed in light and heat from the Sun) structures could evolve, become more 

complex and thrive. Order may emerge from disorder through a process of 

spontaneous self-organization. Other conclusions are 1) that a system in 



21equilibrium lacks the internal dynamics to respond to its environment and 

will slowly die; 2) a system in chaos ceases to function as a system; 3) the 

most productive state seems to be at the edge of chaos. That’s where there 

is maximum variety and creativity, leading to new possibilities and the best 

chance for survival. Along the same line Arthur (2009) views innovation as a 

result of the combination and the evolution of complementary technologies; 

breakthroughs come from combining new technological components in a 

novel way. His search for the nature of technology starts with Butler and 

Schumpeter and build a whole theory of how components of technology 

are used to create new ones. Each invention builds on former ones, rather 

smoothly, until the time that marginal gains do not add much anymore and 

a paradigm shift appears (a new S-curve). Innovation follows an evolutionary 

path and makes the world more complex.

How does it impact humanity? Kurzweil (2005) shows that technology 

develops at an exponential curve. He extrapolates the rapid technological 

advancement to a point of singularity for mankind, which is the point 

where our self-created technology is as smart as us and would continue 

exponentially developing itself beyond our (mental) capacity. Kurzweil, 

together with Diamandis (2012), set up Singularity University to study and 

teach the exponential technologies in a multidisciplinary setting, and to apply 

the developments of these exponential technologies to create an abundant 

future. While Kurzweil voices the prosperity technological advances will bring 

to us, Joy (2000) warns us of evil and disaster once the robots we develop 

become superior. Our possibilities to change nature presents many ethical 

questions about what life is and the risks we take when manipulating life. 

Joy’s concern is that when genetic engineering is abused (by the military, 

accidentally or through a deliberate terrorist attack) it will create a white 

plague. Of course this holds for any technological advance, such as nuclear 

technology, which has destructive and constructive applications. Fear and 



22 abuse of new technologies are old as history, like McWilliams (2015) refers to 

More’s Utopia for a timeless warning about modern mobile technology, which 

might corrode people’s self-government, freedom and traditions without 

them being conscious. Our belief in technological progress has peaked several 

times before. In the 19th and 20th century technology brought us electrical 

light, telephony, radio communication, cars, mass production, jobs, income 

and less inequality. For example the discovery of radioactivity and nuclear 

fission at the end of the 19th century led to an overly optimistic view on this 

technology and applications with radioactivity were introduced in people’s 

regular lives without them being aware of the dangers and health risks of 

radioactivity. After several accidents, common sense returned and people 

became more careful with the new technology. Each time we have to find 

ways to handle new technology, to answer the ethical question and provide 

the right protection to all actors in society. The expansion of technology and 

the increase of complexity put our belief to be in control firmly in perspective. 

We and our technology seem to be part of the process of an increasingly 

complex world that seeks the edge of chaos and could arrive through 

emergence into new states of order. It makes the issue of disruptive events 

and our shortcomings to prepare for them even more urgent.

Shannon, Moore’s law and the accelerating adoption of 

exponential technology

Technology started to develop even more rapidly with the arrival of 

information theory, of which Shannon (1948) is seen as the father. He proved 

the feasibility of a digital circuit, around the time the first transistor was 

created. Shannon than invented the bit and defined the theory of coding 

and transmitting digital signals. He described how to deal with uncertainty 

in the digital transmission as well as the rules for accurate transmission of 

information. These elements together allowed for transforming analogue 

signals into digital ones and transmitting them. Without these inventions 



23we would be without smartphones, digital data services and computers, 

and hardly able to model complex networks. It was the start of digitizing 

analogue signals, messages, music and video that used to be available in 

analogue signals on a tangible medium. Digitization means transforming it 

into digital representation. Once the technology allows to digitize a product 

or service, it opens new ways of processing, appearance, distributions, usually 

at much lower cost. The digitization typically transforms not only the product, 

but also the business process, the company and potentially a whole industry; 

this we call the digitalization of a business or process. 

The information theory brought us computer chips for fast calculation 

and data communication. Kurzweil (2005) puts the arrival of integrated 

circuits in a broader perspective of technological development, i.e. after the 

electromechanical applications, the relay, the vacuum tube and the single 

transistor. He shows that these five technologies allowed for a continuous 

increase of calculations per second per unit cost, and that this increase is an 

exponential, i.e. a curve on a log scale, see chart 2.1. 

The curve follows Moore’s Law and actual already did before Moore 

(1965) observed that one could squeeze twice as many transistors on an 

integrated circuit every 24 months (later an 18 month period showed a better 

fit). Electronic circuits for computation chips get smaller and the chip's 

performance goes up as the rate of executing computer instruction (clock 

speed) increases as well, see chart 2.2. It did so over the last 5 decades and 

is now reaching atomic level. Moore’s Law is an empirical trend rather than 

a law. It is not inevitable but rather a business plan to stay on this trend: 

the industry has set their goals to deliver computer chips to comply with 

Moore’s law.



24 Chart 2.1 Kurzweil’s five paradigms of technology of  
the last century
Moore’s Law, The Fifth Paradigm

Source: Kurzweil.
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Several times Moore’s Law has been declared as coming to an end, but the 

industry managed to overcome major hurdles and further miniaturized the 

transistors. In the strict sense, the number of transistors on a microprocessor is 

indeed limited due to the limits of physical size, heat dissipation and quantum 

uncertainties that make smaller transistors at a certain point unreliable or 

impossible. Limitations could be worked around by changing the method of 

improving performance, such as building vertical chips (3D chips). Therefore 
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Moore’s Law now has a slightly wider interpretation, not necessarily more 

transistors per surface, but to continue improving processing power at ever 

lower cost. This could extend the promise of faster and smaller for another 

decade. Besides, as Moore’s Law is rather a business plan and so much money 

and knowledge invested in searching for increasing performances, as well as 

the firm demand for more computer power at lower unit cost, the trend is 

unlikely to stop any time soon. New kinds of technologies and architectures 

are being researched and developed that could continue the trend of faster, 

smaller and cheaper. Optical computing, i.e. switching light instead of 

electrons, promises delivering even smaller and faster computer circuits. 

It has additional benefits such as less disturbance in a circuit, less energy 

consumption and the possibility of switching parallel streams of information. 

Another promising development is quantum computing technology. It forms 

Chart 2.2 Moore’s Law, transistors per microprocessor 
and clock speed (MHz)

Source: Kurzweil, Intel, Berndt.
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26 a different computer architecture, requiring different software, could be very 

fast in solving certain types of problems. According to Singularity University 

the primary applications are likely AI, cryptography, financial modelling, 

molecular modelling, weather forecasting and particle physics. The first three 

directly relevant to the financial sector. Quantum computing could be the 

sixth paradigm in chart 2.1. 

To go back to these successive paradigms, they show the principle of 

exponential technologies as they follow an exponential growth path by 

doubling in performance every period and continuing that growth by building 

developments on top of one another. Each paradigm is an S-curve building on 

top of the next one. Kurzweil identified here an important and fundamental 

property of technology that when you shift to an information-based 

environment, the pace of development jumps onto an exponential growth 

path and price/performance doubles every year or two. According to Kurzweil 

(2005, p.3, p.491) ‘Evolution applies positive feedback in that the more capable 

methods resulting from one stage of evolutionary progress are used to create 

the next stage’. In other words each generation of technology builds on the 

advances of previous generations, thus improvements in technology enable 

the next generation of even better technology, positive feedback loop. This fits 

the views on innovation by Kelly (2010) and Arthur (2009) expressed before. 

The same idea holds in terms of intelligence: intelligence creates technology 

and technology further improves our intelligence. Artificial Intelligence (AI) 

accelerates this process. AI is teachable software, it learns by means of labelled 

examples and improves, therefore looks intelligent for the task for which it 

has been developed. AI represents our increased intelligence through the 

tools we develop, resulting in an (exponential) increase of human intelligence. 

Incorporated in our biology, the technology changes us as a species. Kurzweil 

(2005) shows on a logarithmic scale the accelerating acceleration of adoption 

of new technologies, see chart 2.3.  



27

Networks and features

Shannon and Moore’s law led to digitization, increase in performance, 

at lower unit cost, but it is not the only explanation of the exponential 

growth curve of new technologies. Another explanation is the network. 

People are more connected than ever. A network is a set of vertices 

(or nodes) with edges (connections), be it a social network, computer 

network or road network. Some of these networks are centrally planned, 

like motorways, others are created without a grand plan like social networks 

and the World Wide Web. Networked connections have been out there for 

a long time, people have always had connections but the arrival of data 

communication, internet and the liberalization of the telecom markets 

boosted the impact of positive network externalities resulting in firm 

Chart 2.3 Accelerating adoption of new technologies

Source: Kurzweil, FCC, Census.
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28 increase of size, reach and use, as well as quality and speed. Newman 

(2003) provides a great overview of networks and a review of work on 

the structure and function of network systems. He distinguishes technical 

networks, biological networks, information networks and social networks 

and he describes their properties, features and the processes taking place on 

networks. He also reviews work on sudden changes like phase transitions on 

networks and dynamical systems on networks. His main observation is that 

networks are generally far from random and actually have distinctive statistical 

signatures. Still more work has to be done as he sees the techniques for 

analyzing networks are more or less a grab-bag of miscellaneous and largely 

unrelated tools. More sophisticated models of networks need to be developed, 

in order to better understand the behavior and function of the networked 

systems around us. 

By 2020 we will be close to 7 billion connected people. That means 

7 billion brains are connected forming a huge potential for cooperation, 

now connecting people who before were not able to participate in 

developments outside their neighborhood. According to ITU data from 2016, 

about half the world population has a computer and broadband network 

connection; and about 94% of the developing world has cellular phone; 

the world figure is close to a 100% as in the developed world subscriptions 

outnumber people. The Internet of Things (IoT) extends this number to about 

20-30 billion devices connected by 2020 (according to estimates by Gartner 

and Business Insider). The impact is enormous because highly-connected 

agents in a network can decide much quicker on future steps than hierarchal 

organizations ever could. The so-called six degrees of separation, which claims 

that any two people on Earth are connected via six or fewer links, emphasizes 

the importance of networks.
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of publication, education, communication (groups, social media) and 

commerce through new business models. This forms the World Wide Web. 

As an example, a vlogger makes homemade videos with equipment more 

advanced than movie studios had a few decades ago, he can publish on 

the web without the approval of a publishing company, at almost zero 

cost, he could potentially reach 7 billion people and he can make money. 

In its pure sense internet is user centric, allowing consumers to become 

producers. The web has a decentralized architecture with open standards 

and the content and services are distributed. The network supports the 

emergence of new services and content, at different sizes, at any moment 

and by anyone connected. Ideas and products can be distributed through 

a network fast and almost free of cost thanks to de digitization and the 

dematerialization of products. It empowers creative and productive 

individuals. Many innovations grow so fast thanks to the reach of internet 

and the available services of the web, following the same concept of 

decentralization and open standards. It also empowers the negative 

and destructive individuals, using the network to rag, fake or undertake 

illegal activities. The web has become the core concept of our information 

society both for private and public businesses and information exchange. 

The tendency of decentralisation could actually be seen in a wider context, 

like individuals producing energy with solar panels. 

Many networks are complex adaptive systems: they evolve and show 

emergent behavior. Emergent behavior means that non-trivial higher level 

behavior arises from lower level interactions, with different properties. 

It usually arises in a self-organized way. Miller and Page (2007) describe the 

generic properties of social connections as learning behavior of agents and 

the emergence of cooperation, in reference to Newman (2003). One of the 

contributions from complexity is the recognition of the importance of non-



30 linearity in the interactions: ‘tipping points and critical junctures emerge, 

where a given system can rapidly change its characteristic behavior’ (Miller 

and Page, 2007, p.216). Also Barabasi and Bonabeau (2003) applied the 

concepts of complex adaptive systems to the world of networks. They show 

that the most interesting networks are so-called scale-free networks, which 

turn out to form the architecture of various complex systems. Mitchell 

(2009) defines a complex system as a system in which large networks of 

components with no central control and simple rules of operation give 

rise to complex collective behavior, sophisticated information processing 

and adaptation via learning or evolution. It models the behavior of agents, 

individuals and their interactions. One could differentiate between complex 

adaptive systems and non-adaptive complex systems, although most 

complex systems seem to be adaptive. Scale-free networks are connected 

networks with the property that the distribution of the number of edges 

per vertex follows a power law, i.e. there are only a few vertices with 

many connections and many vertices with a few connections; vertices are 

certainly not randomly connected, see chart 2.4. Such a network evolves 

with the feature of preferential attachment, which means there is a higher 

probability of connecting to a vertex that already has more connections than 

to a random one. Like popular websites that grow ever faster as more links 

means becoming more popular. 

This power law property of scale-free networks could clarify the tipping 

points in IT networked driven developments. Preferential attachment is likely 

the mechanism that causes tipping points. Gladwell (2000) describes several 

examples of empirical tipping points, changes in society that happened 

spread similarly to an epidemic, like a contagious virus, whereby one or 

several minor causes resulted in a major effect. It seems these changes were 

passing thresholds, and were not gradual. It is hard to exactly define the 

tipping point. Mathematics defines specific ‘tipping points’ in the context 
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of catastrophe theory , which is part of bifurcation theory in the study of 

dynamical systems. A fold catastrophe function x3+ax contains a bifurcation 

point at a certain value of parameter ‘a’ were a stable solution is suddenly 

lost, which leads to a transition and different behavior, this bifurcation 

value of ‘a’ is called the ‘tipping point’. In complexity theory tipping points 

are described as a process. Mitchell (2009, p.253) refers to preferential 

attachment as the mechanism of ‘some process, such as citation, spread of 

fads, and so on, starts increasing dramatically in a positive-feedback cycle’ 

and, ‘alternatively, tipping points can refer to failures in a system that induce 

an accelerating system wide spread of additional failures’. Miller and Page 

Chart 2.4 Example of a scale free network

Source: Cockell, S. flickr.com.



32 (2007, p.144) define ‘tipping’ as the process by which the movement of 

agents causes cascades of further movement. Tipping points typically cause 

new structures and hierarchies in a system. The vertices that gain many 

connections become more important and form a hierarchy in the network. 

Such a structure makes the overall network more resilient to random loss 

of a vertex than a random network because most vertices have just a few 

connections. However, if a few of the most densely connected vertices get 

lost, the network falls apart. Other examples of scale-free networks are 

social networks, interbank payment networks and cities.

In sum, the arrival of the information theory leads to digitization of products 

and a chip industry that managed already for more than five decades to 

double computer processing power every period at ever lower costs per unit. 

The distribution of IT products through highly connected networks makes 

the technological increase exponential. The characteristics of the network 

show emergent behavior and self-organization, following power laws and 

leading to tipping points and disruption. The growing importance of the IT 

technologies in society causes a growing urgency and importance of dealing 

with unwanted and unforeseen disruptive events. 

2.2 Dematerialization, demonetization and its economic 
consequences
The exponential technologies have far reaching consequences, maybe best 

characterized by Andreessen (2001, p.1) who summarized the information 

revolution as ‘software is eating the world’. Software is transforming all 

kind of products and services into pure digital services and has become 

ubiquitous in work, finance, manufacturing, healthcare, communication, 

gaming, toys and education, basically everywhere. Diamandis and Kotler 

(2012) refer to a chain of technological progression, which leads to enormous 

upheaval and opportunity, summarized by him as the 6D’s: digitalization, 
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and democratization. They explain that digitalization usually starts small, 

the new product looks different and is not yet mature. The concept is not 

taken seriously and ignored, as its growth looks small and it constricts the 

cash flows and role of incumbent producers. The deception is caused by 

the initially small growth, with ups and downs and imperfections. Although 

it grows exponentially, it remains under the radar as long as the numbers 

are still very small; it is perceived as insignificant and derided, due to linear 

thinking. And then the disruption comes, all of a sudden for the incumbents, 

as they don’t understand or expect the exponential. It takes a long period 

of growth to reach 1% market share but 7 further doublings to reach 100%. 

The two further steps are dematerialization and demonetization. A digitized 

video camera is no longer a physical product, but an app. Once material goods 

have been transformed into software, it is dematerialized. Its multiplication 

and distribution through a network becomes possible, and allows for quick 

product updates without wasting new materials, and at a much faster 

speed. In general this drives the marginal production cost down to zero and 

is therefore called demonetization. At such low cost and with such wide 

accessibility, the product becomes abundant. Diamandis’ sixth D stands for 

democratization, i.e. the ability for anybody to produce something on the web 

and distribute it to everybody at near-zero cost. The web in principle offers 

access to anybody and to all knowledge connected, which allows an individual 

to be heard. We should keep in mind that one usually needs a commercial 

platform to reach others and these platforms are far from democratic (see 

next section). 

Just for illustration, the transition described above shows similarities with 

the enthalpy process of thermodynamics, in which matter moves from 

solid, to liquid, to gas and to plasma, see chart 2.5a, on the left. Plasma is the 

ionized form of matter, which does not naturally exist on Earth, though in 
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the universe it is probably the most abundant form of matter. These stadia 

could be recognized in the long-term development of several products. As an 

example the appearance of money, irrespective of the issuer, is mapped onto 

these four stages shown on the rights side in chart 2.5b. Initially there were 

shells and coins, these are the solid phase, next the banknotes requiring 

trust being liquid, than electronic money which is dematerialized, and can be 

seen as the gas form of money, and finally digital cryptocurrencies which are 

demonetization money, represented with plasma. Digital cryptocurrencies are 

coins in the form of software code in a computer network, cryptographically 

protected against double spending and other abuse, which contains the value 

as well as the ledger and administration, managed in principle decentralized 

in the network. Digital cryptocurrencies can be issues by the central bank in 

the sovereign currency, called central bank digital currency, or issued by third 

parties in a self-created currency, called virtual money. Today these coins are 
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35still expensive to generate because of the energy consumption so one cannot 

see them yet as demonetized, but the cost is expected to tend to zero due to 

abundantly available solar energy. 

It is important to keep in mind that acceleration of the technology causes 

disruptions. Once a product/service has been dematerialized, its development 

leaves the linear process and follows an accelerating growth path made 

possible by Moore’s law and by the network features. The speed and 

impact could change a whole business sector as the technologies leverage 

productivity. Originally, businesses needed twice as many people to double 

the output, a linear process. Then came the machines that significantly 

leveraged the output for a worker (like using a tractor or a robot in a factory). 

Still, on this basis, doubling output requires double input (two tractors plus 

additional worker). With IT, once no tangible materials are involved anymore, 

the acceleration goes through the roof: the same app can be used by a million 

users at zero marginal cost (extra users need the investment of a smartphone, 

but can use it for almost unlimited applications). New companies tend to 

serve much higher numbers of customers with far fewer employees (typically 

between ten and a thousand versus over a hundred-thousand), as the cost of 

scaling is totally different. Existing companies (e.g. telecoms, banks) have no 

choice but to transform, and shed large amounts of old-fashioned jobs while 

new jobs are created at other places in the same sector. 

In the context of this paper these development are relevant because this 

technology is about to change a number of systems into complex behavior 

with the dynamics and disruption that are hard for people to imagine and 

predict. The economic effects of dematerialization and demonetization are 

further discussed in this section.



36 The dematerialization of products could significantly change the 

business process and impact a whole sector. Dematerialization of a 

product significantly diminishes the costs of material as well as physical 

transportation, distribution and sales basically disappear, with remaining 

cost in development, energy and security. For instance, the dematerialization 

of bonds and shares cut the time lapse and cost of trade, resulting in full 

automation, and has made algorithmic trading possible. The impact on post-

trade is even higher as the handling and moving of titles can all be done 

electronically. The network connectedness further improves the efficiency of 

production, distribution, information processing and customer interaction. 

Also the potential change of a whole industry could have an important 

impact: wiping out intermediaries, with competitors needing to cut their 

high cost levels or completely change their business. Postal services had 

to change their business to distributions of parcels as competing with free 

email is impossible. At dramatically lower cost than the product it replaces, 

the marginal cost moves to zero and the product becomes abundant. 

Therefore, different business models are used, often based on advertising 

and reselling personal data as source of income. Yet the threat of scarcity 

still dominates our worldview. Few resources are truly scarce, most are 

mainly inaccessible. Scarcity usually means value, but new companies take 

something scarce and they make it accessible and abundant. 

More and more products get dematerialized. An increasing amount of 

equipment we used to carry around have become an IT application. 

As mentioned before, Kurzweil (2005) found that once a technology shifts 

to an information-based environment, the pace of development jumps onto 

an exponential growth path. Kurzweil, together with Diamandis and Kotler 

(2012) and Ismail et al. (2014) identify the following areas of technological 

developments heading for (partial) dematerialization and abundance: 



37 ▪  Transportation: e.g. driverless cars, drones, 3-D printing avoids 

transportation;

 ▪ Food: vertical farming and cultured meat; 

 ▪ Energy: near-zero solar panel costs;

 ▪  Healthcare: clean water globally (with abundant energy), medical apps, 

individualized medicines;

 ▪ Nanotechnology, synthetic biology: repairing body parts; 

 ▪ Education: internet learning (MOOC’s, Khan Academy, YouTube);

 ▪ Entertainment: games, movies;

 ▪ Banking: basic account services, virtual currencies; 

 ▪  Artificial intelligence, blockchain and robotics: horizontal technologies, 

impacting all areas;

 ▪  Time: would abundance lead to human boredom, how do you 

occupy yourself? 

What is the economic relevance of abundance? The trend may still look 

small, but the technology grows exponentially so we need to be careful not 

to forget that such developments may look insignificant for a while, until the 

tipping point after which it overwhelms us. A few examples: with MOOC’s 

the cost of education drops for repetitive use, as well as travelling cost and 

time; and one could reach exponentially more students from anywhere. 

The high density and distribution of smartphones allows for leveraging 

the power of the crowd as one can collect data from the sensors of many 

individuals’ smartphones and use all this data to compose a new data 

service. Take traffic services, estimating the number of people at festivals 

or demonstrations, search for a missing person, composing a mega movie 

compiled of crowdsource photos of a specific event. The point is, it is fast, 

dynamic and much cheaper as it leverages the installed base and it leads 

to a more robust product as one rarely had access to such a good sensor 

network before. Another example, when driverless cars become ubiquitous, 
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because you call a car only when you need one; the cost of individual 

transport would come down significantly (ultimately the poorest people on 

earth will be chauffeured around). The consequence would be as wide as 

changing cities (parking, roads), disrupting driving schools, taxi companies and 

car insurers. In a way similar to what happened with music stores and other 

retailers. A last example of an exponential technology that has a much wider 

impact than initially assumed is blockchain. It is the smart data structure used 

in Bitcoin but in the meantime people experiment with blockchain in all sorts 

of applications that require identity check, non-repudiation and full protection 

of integrity of data. Besides its potential to change money, these features are 

valuable to improve and further automate asset management, accounting, 

audit, supervision, national registries, automation of simple lawsuits and 

protecting the safety of our food by registering all ingredients. Some see 

blockchain as a new technological paradigm because of its broad potential. 

To continue on the economic relevance, the impact of dematerialization 

and related demonetization is pressure on prices. A smartphone today is 

apart from a telephone, also a computer, a photo camera, a videorecorder 

and player, a music player, a GPS, a voice-recorder, a pager, a digital 

watch, an alarm clock, an agenda, a remote control, a game console, 

a videoconferencing system, etc. Most of these products you do not need 

to buy separately anymore. Diamandis (p.289) illustrates this with today’s 

smartphone containing products worth 900,000 USD compared to the 

cost of these products in the eighties. One can argue that most people 

did not have all these products at that time, but many did have a few at 

least, bought at higher prices than people spend today on the smartphone. 

Chart 2.6 illustrates the significant price decrease of consumer electronics. 

Over the years, in the western world, an ever smaller part of income is spent 

on the basic needs in life, like food, and more money is spend on services and 
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information processing products; the information age is likely to drive this 

further, globally (for instance in the US between 1960 and 2007 the share of 

disposable income spent on total food by Americans, on average, fell from 

17.5 to 9.6 percent, see www.ers.usda.gov). The propagation of exponential 

technologies is likely to continue and to accelerate with a continuing 

downward impact on prices. 

Chart 2.6 Consumer price indexes of some electronic 
equipment

Source: US Bureau of 
Labor Statistics.

Consumer price indexes for televisions, computers, software, and related items, 
not seasonally adjusted, December 1997–August 2015 (December 1997 = 100).
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40 On the other hand, new technologies also require vast (initial) investments, 

sometimes accelerated by government policies. For example, an increase in 

usage of electric energy leads to investments in electric cars, charging stations, 

in electric power production facilities (solar panels, windmills, hydroelectric 

power) and could lead to disinvestments in other production facilities like 

coal power stations and result in a firm decrease of oil demand. The faster 

the usage and market grows, the faster the product could run towards 

abundance. 

Further pressure on prices could result from some services (news, 

communication) being ‘paid’ for through providing personal data and by 

watching ads. The importance of this business model increases with more 

products moving from tangible to software. This trend could diminish the 

role of money in the real economy and in the longer term information 

might replace money as the main mode of discourse in society. A further 

expenditure-reducing force, and sign of prosperity and wellbeing, is that 

better cooperation through social networks and platforms facilitates a sharing 

economy and helps to reduce waste of materials and energy. A sharing 

economy basically unlocks idle capacity which allows for an enormous 

efficiency gain. 

Economic relevance is also seen in the impact on jobs and skills required. 

Computers are performing increasingly more complicated tasks which will 

cause many white collar jobs to disappear. A shift that has already been taking 

place for a long time, since the advent of computers and before through the 

transition of jobs from agriculture to manufacturing, but the exponential 

growth characteristic of information technology could lead to a much faster 

shift this time. Several technology companies showed they only need a small 

fraction of employees to deliver similar services to their competitors before. 

Obviously affected sectors will show job growth for designing and building 
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the algorithms, but in the longer run also part of the programming jobs 

will be carried out by machines through artificial intelligence. The tendency 

is that people could focus more on the creative tasks, new ideas and new 

solutions. The structural changes also demand education to adapt radically 

and teach children the right skills and stop educating them for jobs that are 

about to disappear. In an extensive analysis, McKinsey (2017) estimated the 

impact that technologies available today could have on our jobs: about 45% 

of activities people are paid to do today, could be automated in the next few 

decades, and one third of the tasks of 60% of all jobs would be automated. 

They signal that the technical potential for automation differs dramatically 

across sectors and activities, and they warn of the uncertainty of the timing, 

depending on new technology adoption. Frey and Osborne (2013) analyzed 

how susceptible jobs are to computerization and estimated the probability 

Chart 2.7  The Future of Employment, Finance related 
jobs to be automated
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42 of computerization for more than 700 occupations; chart 2.7 shows jobs 

from this analysis related to finance. Diamandis and Kotler (2012) foresee 

a fundamental decrease in the number of total jobs and thus difficulties in 

obtaining income. They argue that a universal basic income will therefore 

be necessary, and assume a limited level would suffice based on the premise 

that exponential technologies will continue to rapidly demonetize our costs 

of living. Jobs will certainly change, and new jobs will appear like we have 

seen before, however it is uncertain how fast people could adapt if the 

forthcoming automation accelerates rapidly.

The impact of exponential technologies on existing companies is likely to 

be disruptive. Ismail et al. (2014) show the average lifespan of a company 

listed in the S&P 500 has significantly decreased from 67 years in 1920 to 

15 years today. They urge companies to swiftly become an ‘exponential 

organization’: a non-linear, scalable organization, not owning assets or 

workforces but leveraging external resources to achieve their objectives. 

Exponential organizations manage abundance, build their business on new 

sources of information or convert previously analog environments into 

information; they will use data dynamically and find new information in 

big data. Exponential organizations use scalability of those aspects of the 

company’s product that is information-enabled, as information is essentially 

liquid major business functions can be transferred outside the organization, 

to users, fans, partners or the general public. Typically, small companies are 

beating big ones, e.g. Airbnb versus hotel chains, and WhatsApp versus SMS, 

leading to more disruption of products, companies and markets. Incumbents 

have no choice other to change their business and become receptive to new 

ideas, to experiments and the risk of exponential technologies. To quote 

Abraham Lincoln: ‘The best way to predict your future is to create it’. 
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tendency to focus on managing existing products and cash-flows, and to 

become risk averse. Christensen (1997) shows that innovation rarely comes 

from the status quo, the success of the start-up is to offer a less expensive 

product using emerging technologies and meeting a future or unmet customer 

need or niche. Hagel and Brown (2010) clarify that ‘scalable efficiency’ is the 

paradigm that drives most corporate strategy and corporate architectures. 

Scale - linear scale - is the raison d’être of the linear organization, and they 

conclude that ‘our organizations are set up to withstand change from the 

outside, rather than to embrace those changes even when they are useful’ 

(Ismail, p.41). The lifecycle of products (and companies) could be seen as 

S-curves and the disruption is when you move from one S-curve to a next 

one. Christensen wonders why such jumps from one S-curve to another is a 

stumbling point for existing companies. He finds that the question of whether 

a technology is disruptive depends less on how radical a technological advance 

it is but more on its specific effect on the S-curve. If a technology pushes 

performance up an existing S-curve, it preserves the power of the incumbent. 

When a technology requires a new S-curve, particularly when it starts at 

a worse price-performance point than the current technology, the newer 

technology tends to be disruptive and to change the industry structure. 

He says the innovator’s dilemma is the tough decision by an executive who 

cannot justify investing in a technology that, at least initially, has a worse price 

performance, but may be preferential in future. Big companies risk their board 

not seeing the future importance of a new development and ideas perceived 

as less important do not get the resources. Usually resources go to promising 

technologies to continue near future cash flow. 

A known example of the disruption of a large company that missed the move 

to a new technologies is Kodak. It had invented the digital camera, had the 

patent and the opportunity to be the first and leading digital camera producer. 
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films and related business, ignored the technology and its implications 

and went bankrupt, disrupted by the technology (that they had invented). 

Another example is Blockbuster that was disrupted by Netflix, a company 

that dematerialized and demonetized the video industry, although 

Blockbuster seemed to have invented this business. In a similar way, banks 

may risk their profitable business to new software solutions for lending and 

payments. Even though regulation protects the industry, the fight between 

Uber and the taxi industry may lead as an example. 

In summary, exponential technologies allow products to dematerialize and 

to distribute them through the network. The feature of software to create 

multiple copies at near-zero cost causes demonetization of the product and 

the spread through the network makes the product ultimately abundant. 

This likely causes lower expenditure and lower prices. This model allows 

for start-ups to grow fast, and shakes up existing companies and jobs in a 

disruptive way.

2.3 Further consequences to society
This section looks at the wider impact of exponential technologies and the 

disruptive changes they cause in society. It looks at the platforms, the used 

model, the data, trust and dominance. Next it looks at the value of data 

and how the global force of the expanding technology put pressure on our 

institutions. 

In the previous section Diamandis’ (2012) sixth D for democratization 

was mentioned. He refers to individuals who can launch their ideas and 

products on the web with great reach, which was almost impossible to 

do with tangible goods and also because distribution required approval 

from a reseller. Individuals and small teams can create multibillion firms 
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Airbnb, Uber, Wikipedia, etc. Referring to the aforementioned example of 

the vlogger, a child can now be a producer and reach a million followers, 

which would have been impossible a while ago when the video camera, 

access to production and publication and the distribution channel itself 

were too expensive or inaccessible. The same holds for publishing your 

ideas, books or music. Local community initiatives are another example 

of the democratization opportunity that exponential technologies offer. 

Neighborhood surveillance, local energy production, car sharing, co-

working, there are multiple examples of sharing economy initiatives 

that emerged from the technology possibilities. Along the same lines, 

private cryptocurrencies  would be an example of the demonetization and 

democratization of money, as the issuance starts with some individuals 

mining the coins instead of issued by a central bank, and transactions could 

be performed at very low marginal cost. 

In practice one is not really independent as you usually need a platform to 

be noticed and reached. These platforms are usually dominant players that 

use a ‘winner takes all’ model. With large sums of capital they buy market 

share, push the new idea, create a world brand, maximize their network 

externalities and become a new, global, monopoly. The search engine decides 

what you will find, which depends on commercial interests and what others 

like, the retail platform decides your choices and what you should buy, 

and the social network platform commercializes customer data and locks you 

in leaving not much room for competition. The individual needs the reach 

and visibility of these players, or otherwise stays unnoticed. A few examples: 

the vlogger depends on Google/YouTube to be found and watched; Bitcoin 

mining now requires large investments impossible for the average individual 

to afford; and internet reviews tend to turn from a democratic voice into a 

commercialized recommendation. 
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richer theme, newly discussed after Piketty (2014) published his observation 

of an increase of wealth and income inequality in many countries. Would 

dominance of the large technology firms worsen inequality, or is the force of 

democratization due to technologically-driven abundance pushing this back? 

Piketty warns of a return of the 19th century situations when the rich got richer 

and their next generation doesn’t need to work, causing social and economic 

instability and posing a risk to democracy. He claims this is caused by return on 

capital being higher than the rate of economic growth and he predicts it will 

continue in the coming decades. Since the First World War, economic growth 

was outperforming capital returns, which according to him reduced income 

inequality. This causal relationship is questioned by Góes (2016) who shows 

data that proves the opposite: a decrease of income inequality in at least 75% 

of 19 developed countries where the return on capital was indeed higher than 

economic growth. To what extent Piketty’s hypothesis holds for the emerging 

technological developments, remains to be seen. Platforms may cause a risk to 

social and economic stability because of their dominant influence of knowledge 

and information of citizens they possess. On the other hand, democracy and 

stability could gain as they facilitate communication and people reaching 

out, which brings low cost opportunities to those who didn’t have access 

to telecommunication, education, banking and the like. Many technology 

companies manage to gain access to large sums of money to launch their 

ideas and quickly build up market share. A relatively small group of very rich 

provide capital to start-ups, and here indeed the rich do get richer. However 

these are entrepreneurial activities, those rich people take risk, and surely many 

technological ideas do not become successful at all. Here it is not money spent 

to retire, rather the opposite. As explained earlier, abundance could push down 

the economic growth numbers. Low growth rate is part of the issue identified 

by Piketty but these lower growth numbers are caused by abundance actually 

increasing welfare due to less material use and less waste to the population. 
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platforms and the competitiveness of the market. The commercialization of the 

network and the data provide so much power that alternative providers have 

little opportunity to compete, leaving the consumer with little choice further 

which reinforces the ‘winner takes all’ model. The competitive landscape has 

changed in many sectors by companies that, unexpectedly, shook up various 

markets with their new business model. As they use the network capabilities 

to the maximum and customers like the new possibilities they deliver, 

the network facilitates these companies to reach strong customer lock-in and 

they become a winner. The more people are interconnected and the more 

goods and services become software and get onto the network, the more we 

will see such complex behavior and non-linear developments. Which causes 

uncertainty in society. Andreessen (2001) said information accelerates every 

industry, at every level, software is automating and accelerating the world, 

hardware is the new software.

As an answer to the growing uncertainty, Hagel and Brown (2008, 2010) 

describe the idea behind the emergence of platforms explained with the 

push-model and a pull-model. With the push-model people are passive 

consumers and, as business is rather resource centric, demand can be 

anticipated and control is centralized. Whereas with the pull-model people 

actively mobilize the appropriate resources when they need it. People can 

immediately get together, innovate and use the distributed resources to exploit 

the opportunities the platform provides. Pull fits the uncertain demand which 

cannot be anticipated, is built around people rather than resources, typically 

allows for the lean rapid incremental innovation and can bring positive sum 

results. The strategy used is to scale the company executing a successful idea 

towards a platform: the increasing scale allows connecting more services to 

the same customer base, attracts new customers and lowers the chance they 

will leave as the platform services become an ever greater part of their lives. 
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two years have seen ten times more data created than in the entire history of 

humanity. The ones in control of the data have the power, they can monitor 

people’s behavior, in order to give better services as well as provide tailor-made 

commercial offerings. The platform also empowers its users further through the 

network effect. The result is an ever stronger customer lock-in. So the business 

model differs from the companies that grow to scale and save cost. 

The platform companies collect lots of data from individuals and companies 

which leads to convenient and low-cost services, but also to being influenced 

and restricted in freedom. People voluntarily upload lots of personal data, some 

of which is privacy-sensitive, to be able to use the so-called free service the 

platform offers. Information ownership has changed, often unconsciously. Apart 

from great services and opportunities social networks offer, they also create 

uncertainty and group pressure, and lead to exponentially growing amount 

of messages and time spent with such services. Consequently, the platform 

companies know so much about people, they can play the role of trustee 

and build trust based services. They create trust between strangers, connect 

them, offer reviews and recommendations. Some services depend totally on 

the reviews through the network: without a good reputation (good car driver, 

decent home renter) it is almost impossible to continue offering your service 

via such platforms. This could improve the quality of service in the sector and 

puts pressure on incumbent producers (taxis, hotels, banks). Companies that 

manipulate the review process show they do not understand the mechanism of 

trust and fall into the trap of a short-term gain and long-term loss. 

We tend to underestimate the impact of new applications and the value of 

data. Through providing their data, individuals risk their freedom and become 

influenced unconsciously. Many exponential technology applications are 

presented as a social activity of sharing data for a common service, which 
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But people forget that data provided by the user is filtered, commercially 

applied, and data sent to the user is also filtered based on user preferences 

and commercial reasons. As a consequence, people are influenced in their 

choices as they receive offers and news that has been selected based on such 

filters, either set by the companies or by the individuals themselves. As a 

consequence, it lowers critical thinking as people get further confirmed in their 

biases and less confronted with diverging views. The increased spread of data 

seems to harm individual’s privacy and freedom. Governments could also abuse 

modern technology to limits citizens’ political freedom and self-government 

(like Snowden’s revelations, increased possibilities of widespread surveillance). 

The rapidly changed use of data by companies and governments creates 

uncertainty and major shifts in ownership and dominance. 

New technologies have the potential to destabilize many of our institutions, 

such as peer groups, mass media, data ownership, money, the nation state, 

formal registries, etc. Some become automated rigorously, for others their 

relevance may change, or the relevant actors may change resulting in a shift 

of power, and some could well be replaced by new structures and institution. 

New technologies bring up discussions on ethics and regulation, e.g. on access 

to DNA, on neighborhood nuisance from Airbnb, and on ethics of unmanned 

aircraft used for warfare. Government institutions feel forced to quickly 

understand and react adequately to the risks and opportunities of new 

technology, its collected data, its applications and the risks they bring to human 

rights. Particularly in healthcare, the fast developments require a much quicker 

reaction from relevant authorities, on issues like integrity, ethics of replacement 

of body parts and medicines. Developments in drugs go so fast that some 

are already out of date once the regulatory approval for market introduction 

arrives. The technology opens up big issues that require a swift response. Clear 

limits need to be set to protect ethical values, safety and civil rights, think about 
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can flourish to bring us new and improved services, and new business models 

to overcome inefficiencies that we are unaware of. Regulation should be 

adapted quickly when new technology shows it is limiting us unnecessarily, 

each time striking a balance between not killing the innovation’s power for 

improvement and continuing the protection of our health, safety, privacy, etc. 

One can question the effectiveness of the intellectual property protection 

model for society, as it turns out to be counter-productive for solving a number 

of existential problems we have in healthcare, food and solving pollution. 

The effectiveness of patents is under pressure. More money is spent on 

litigations than on new patents and the required timelines and cost for patents 

seem no longer productive to companies like Toyota and Tesla, that opened up 

patents because they believe their companies will grow faster through open 

competition and de-facto standard setting instead of a business model based 

on royalties. Open source innovation facilitates cooperation and growth for 

new and better solutions like Linux and Android have shown.

New technologies have a global impact due to interconnectedness of 

networks. The technology is not bound, the reach of the internet allows 

technology to be used anywhere in the world and access and usage have 

become available and affordable globally, as shown in the beginning of this 

chapter. In terms of trade, countries heavily leaning on labor-intensive sectors 

for production and trade will be hurt the most. For instance, production of 

(plastic) goods could shift to local 3D printing, produced right at the location 

where it is needed. Biotechnology allows for meat production to be replaced by 

local protein growth at vertical farms, even right in cities close to consumers. 

Such examples of local production could affect the end-product distribution 

function of major harbors, although raw materials still need to be shipped. 

For dematerialized products, the distribution moves onto the data network. 

Call centers could be replaced by automatic voice systems. Following 
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important effect on nation states, expecting city states and small countries 

more likely to adapt sufficiently fast than large countries because they can 

afford being less risk averse and often have faster decision-making due to 

the smaller size. On the other hand, challenges like rights and limits of AI, 

ownership of data, DNA manipulation and power of global companies are 

global, and suggest the need for global structures to meet them. The world 

organization of nation states with national politics seems no longer 

consistent with the global problems mankind is facing.

Maybe our intelligence is no longer in sync with our consciousness, feeding 

the fear of some that our self-created AI will ultimately rule us like super-

humans, and we will end up jobless and bored. Biesboer and Van Est 

(2016) touch on the fear people have that we lose our uniqueness to new 

technologies. The human power to think makes us (feel) superior among 

animals but our development of AI creates machines that can think which 

undermines our unique feature. Van Est signals our struggle to cope with 

the emergence of new applications and technologies. Transitions and also 

the speed at which they arrive seem to be hard to understand for people. 

The institutions from which we expect structure and protection, have 

difficulties in quickly adapting to what new technology makes possible, while 

some companies take advantage of this lack of speed. He diagnoses that we 

do not fully understand the social and economic value of data. When in a 

country natural resources such as natural gas and oil are found, usually the 

government ensures the country as a whole will benefit from the resource. 

Either by setting up a government-controlled extracting company, or be 

setting up an agreement with the private sector to extract the resource but 

handing over the proceeds to the government. He suggest a similar deal 

could have been made with Google for its Streetview: to remain owner of 

the data and to retain the control over who and how that data is exploited.
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Kurzweil (2005) expect it to happen at the same speed as Moore’s Law and 

predict it runs towards a point of singularity and beyond. Singularity being 

the point where technology created by ourselves has become as smart as 

ourselves and will outpace us as it can continue Moore’s doublings because 

of this intelligence (chess and Go were just a minor preview). He expects 

one will be able to buy a computer with human brain capacity for USD 100 

in 2020, and expects man to be able to build computers with intelligence 

indistinguishable from that of humans by the end of the 2020s (passing 

the Turing test) and that most diseases could be eradicated as nano-bots 

become smarter than current medical technology. He expects humans to 

become non-biological after 2030 (redesign organs), exist in virtual reality, 

upload their brains, followed by multiplying and linking all human intelligence 

wirelessly from our neocortex to a synthetic neocortex in the cloud, leading 

ultimately to the onset of the singularity by 2045, when humans will be 

dematerialized, opening up the way for space travelling at the speed of light 

or even teleportation by using entanglement. From another point of view, 

Kelly (2010) sees the evolutionary forces driving technological development, 

and he questions whether we are able to manage the increasing complexity 

at all. He argues that we do not have much control over the long version of 

Moore’s Law; even if we wished to stop it we cannot anymore. Consequently 

the technological acceleration defines the speed of change; which would 

support Kurzweil’s futuristic view. Kelly (2010, p.197) states ‘Technology chips 

away at our human dignity, calling into question our role in the world and our 

own nature. This can make us crazy. The technium is a global force beyond 

human control that appears to have no boundaries’. Others believe humans 

will not embrace these changes so eagerly, will step on the brake and set rules 

to protect the status quo of organizations, jobs and power. However we saw 

national regulation does not fit global technological development, so that 
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innovation and centrally controlling such a process seems hardly feasible. 

In summary, we saw the wide impact of exponential technologies on society, 

how business models change and allow start-ups to emerge and quickly 

become a dominant platform, providing global access to services and great 

innovation and disrupting old structures. Institutions are usually late in their 

reaction to this new dominance, which has global impact. The exponential 

technologies could potentially change and disrupt any sector, and the 

certainty and control we think we have, is transformed in a more disruptive 

and uncertain world. 

2.4 Consequences of exponential technologies in  
the financial sector
For illustration purposes, this section provides a brief overview of the 

challenges that exponential technologies bring to the various actors in the 

financial sector. This section lists the lines of change of four main technology 

consequences: dematerialization, abundance, technology for body repair and 

new players in the financial market. 

Dematerialization

Dematerialization both effects bank services and the organization of a bank. 

The dematerialization stands for strong cost reduction and allows real-time 

processing. For instance in the last decades the securities industry has changed 

significantly due to the dematerialization of asset titles and it will continue to 

increase efficiency, probably towards real-time post trade handling. Algorithms 

have been introduced for optimization of liquidity in payments, for trading 

(high frequency trading counts for 70% of market volume), customer banking 

service have moved from paper based and branch office counter located 

services, towards desktop computers and smartphone apps. This trend 
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close to real-time lending and investing services, help insurance companies in 

processing claims and reduce cost and pressurize the financial advisory sector. 

Often the consequence of algorithms is increased vulnerability to sudden 

events: high frequency trading has shown several out-of-control jumps in the 

market place. 

Banks and insurers become real-time information processors, in a similar way 

to what happened with telecom providers and retailers, ultimately operating 

with just a small fraction of employees skilled in organizing new business and 

developing algorithms. Banks and insurers have to move, otherwise they will 

be disintermediated by new players who could start-off as a small IT company 

without the heavy costs of the existing organization. 

The dematerialization facilitates access to banking services. Banking has 

become available in countries where only recently the majority was still 

unbanked, via services such as M-Pesa, supported by the abundant availability 

of telecommunications. 

The dematerialization of money has been touched upon before with the 

enthalpy diagram. Apart from the effect of fewer notes and coins the most 

interesting phase is the demonetization of money in the form of virtual 

currencies with potentially large effects. Such currencies could be issued by 

central banks and by private parties. When issued by the central bank the 

digital coin is an alternative appearance of the sovereign currency and could 

be issued to the commercial banks replacing the electronic currency, but it 

could also be issued directly to citizens without the banks which would have 

a firm impact on the present financial system; it would allow citizens to 

exchange central bank money directly person to person without a commercial 

bank in between, similar to coins and notes today. When issued by private 
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circuit. Such a coin is initiated by a private party and issued by a network that 

decentrally manages the coin, like Bitcoin. A virtual coin could also be issued 

by a commercial bank, a retailer, but also by a city. Via exchange platforms 

people can buy and sell the virtual currency through paying with other, public, 

currency. People manage their virtual currencies with e-wallet software in 

the form of an app on the smartphone, and this way they can also initiate 

transactions to others, or to retailers. 

Private virtual currencies require no banks in the chain nor central banks, 

as trust is in the cryptographic protocol of the underlying virtual coin 

software. Some see this as the main benefit that the virtual currency is not 

managed by the present banking system. Many initiatives for local virtual 

currencies have been launched, some directly intended to support local 

trade and contacts as the banking system in crisis failed to serve these 

local needs. It proved to strengthen the social role of money as a means to 

connect people. Other benefits are lower transaction cost, in particular for 

cross-currency, and convenience of immediate payments with global reach. 

The trustworthiness of the unknown parties, platforms and software used, 

could be seen as a benefit or drawback, depending how much trust you put 

in the software and the issuing process. Drawbacks of virtual currencies 

are the fluctuating value and the limited acceptance of coins. These coins 

work as medium of exchange, but not (yet) as a unit of measure and store of 

value; they are mainly speculative. 

Abundance (intangible and at near-zero costs)

The trend towards abundance of products and service would lower the 

volume and total amount of loans. Much lower levels of car loans are 

necessary when ‘apping a car service when needed’ becomes normal. 
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promise to significantly reduce building cost. As a consequence prices 

of existing houses will fall, pushing existing mortgages under water and 

pressurizing the securitization of mortgage loans. The non-life insurance 

business could also be affected by abundance, as claims received decrease 

when more goods becoming intangible and costs down to zero. However, 

at the same time the value of data increases and need for protection and 

insurance increases. 

Abundance will have an effect on the inflation targets for monetary policy. 

As shown earlier, the firm price-pushing effect caused by abundance may lead 

to a structural lower inflation level, without a demand problem. It actually 

represents significant economic progress, globally, while hardly visible in 

classic GDP measuring. Local production could lower trade and distribution 

volumes, typically affecting trading countries. The sharing economy, supported 

by networked technology, may further push down growth in terms of GDP as 

it unlocks idle capacity and allows for substantial efficiency gains. 

Technology for body repair

Exponential technologies applied in biology, nanotechnology and medicines 

lead to detailed knowledge of the working of the body and allow for 

the possibilities of precision repairs in case of diseases. With algorithms, 

individuals gain more probabilistic knowledge of their health and risk to 

diseases, which they could use to game the (life) insurance company. 

Advanced medical apps, like IBM’s Watson, provide (probabilistic) insights 

in people’s life expectancies impacting health insurance and pension plans. 

Better informed people could make smarter selections to insure, which puts 

the social component of insurance and pension under pressure. Advances 

in medical IT and nanotech applications support more sophisticated and 

precise curing, including personalized drugs, and the knowledge will help 
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healthcare, and increase our life expectancy to levels that have firm and 

immediate consequences for retirement plans and the pension funds. Less 

paid work and longer living would make pensions unaffordable, which could 

only be mitigated by much lower cost of living thanks to abundance.

New players in the financial market

New players change the banking service landscape. A disruption of existing 

business models is foreseen, with the large impact on existing players (see above). 

They know this and are already adapting their business to an IT and 

experimental culture. New platform firms arrive, in niches but eager to 

apply the ‘winner-takes-all’ model. Lending platforms for businesses and to 

consumers may profit from platform and network dynamics providing peer-

to-peer lending and crowdsourcing. The new players will pick the services 

with the highest margins and services that best fit a social need. The bigger 

impact may come from the communication platforms (such as WhatsApp, 

WeChat, Google, Microsoft and Apple) to provide payment services as side 

business to their messaging services. They could further commercialize 

on the data and customer profiles they already have, for instance through 

lending services. These platforms could work with much lower running 

costs after platform initial investment, and offer creditworthiness checks 

in seconds rather than days. The interest of such new global players in 

the payment market may collide with the national regulator’s approach 

to safeguarding smooth functioning of payments. The mass payments 

processing business is typically scale business and already organized 

efficiently, there is most is to gain with the costly remittance services. 

The demonetization of money allows new players to issue money, as we 

have seen with Bitcoin and other private cryptocurrencies. In principle, 

cryptocurrencies could be issued by anyone. The trust in money usually 
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blockchain architecture, the strong cryptography and the consensus protocol 

requiring enough sites to validate each payment and avoid double spending. 

The trust is offered by design between people who do not know and trust 

each other. Speed and energy consumption are still issues, but these may 

be resolved in time (abundant solar energy at near-zero cost). These coins 

threaten the monetary policy task of central banks as the (local) alternative 

currencies cannibalize the sovereign currency and complicate their task 

to safeguard the smooth functioning of payments. Of course the same 

technology could also be used by central banks to issue a digital coin in 

the sovereign currency. The blockchain technology is likely to have a much 

wider impact than just money, as many processes could profit from a fully 

automated check of identity and historic transactions applicable to any kind 

of registry; and it would make clerical work redundant. 

New players with their new business models will require access to the 

financial market from the regulator. This puts a challenge to the regulator. 

The requirements for a license should protect the claims of the consumers, 

should not limit the technology or model used as long as it protects the 

consumer’s interest and should protect the financial stability. Regulators may 

get confronted with emerging self-appointed banking platforms that operate 

potentially worldwide, from another country, based on quickly created trustee 

relationships with and between its users (cf. Airbnb, Uber). Authorities need 

to get prepared for overseeing companies that will be very different from the 

present ones. The new technology also offers opportunities for authorities to 

amplify or ease their tasks. Think about the transparency that could be gained 

from modern data techniques and AI algorithms that monitors money flows. 

Real-time settlement of securities could lower liquidity and collateral risks in 

today’s post-trade chain significantly. To what extent emerging start-ups can 

grow and provide services depends in the financial sector much on national 
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and to the extent they get access to the existing infrastructures. However IT 

companies work globally and could build firm pressure on existing markets 

thanks to the backing of major investors to acquire market share. Uber has 

shown it can put pressure on existing market regulation. 

Banks of course have already incorporated digital technologies but the digital 

revolution in banking has just started. Many end-to-end bank processes, 

such as financial transactions, opening an account or getting a car loan, 

can be fully automated turning the whole bank into a digital bank. McKinsey 

(2016) expects that a newly built all-digital bank requires substantially lower 

capital expenditure and lower operational expenditure per customer than for 

traditional banks, see chart 2.8. They foresee such a digital bank needs a two-

Chart 2.8 Build a new all-digital bank at substantially 
lower capital expenditure (capex) and lower operational 
expenditure (opex) per customer than for traditional banks

Source: McKinsey (2016).
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60 speed operational model, a traditional stable transaction back-end system and 

a flexible front-end system with short release cycles.

2.5 Conclusions
The propagation of software through our society transforms linear business 

into exponentially growing new business. The rapid development of new 

technologies causes dynamics in a world deemed to be stable world. 

Information theory led to digitization and a whole industry has grown 

to continuously improve computer processing power at ever lower costs 

per unit. Technology using the IT and its acceleration grows even faster 

once used in highly connected networks, which makes it an exponential 

technology. The characteristics of the network support self-organization 

of entities from which new phenomena can emerge, and developments 

in networks show power laws, tipping points and disruption. Exponential 

technologies allow products to dematerialize and distribute them through 

the network. 

The feature of software to create multiple copies at near-zero cost causes 

demonetization of the product and the spread through the network makes the 

product ultimately abundant. It brings us great innovation, new services and 

low cost access to reshaped products. This likely also causes lower expenditure 

by individuals and downward pressure on prices. Start-ups and major IT 

companies use the possibilities of the all-digital services to grow rapidly, 

cut inefficiencies and consequently shake up sectors and disrupt companies 

and quickly automate jobs. As an illustration this chapter has shown the 

potential impact of exponential technologies on the financial sector. 



61Exponential technologies are applied via a different business model, 

a ‘winner-takes-all’ model, allowing for start-ups to emerge and develop 

quickly, providing global access and becoming a dominant platform 

disrupting the old structures. Institutions have to handle the emergence of 

new applications and the dynamics it causes but have a hard time catching 

up and dealing with the global scale. Although the network in principle 

democratizes in the sense they allow each individual to publish ideas and 

distribute any digital form of product, you usually need a platform to have 

reach and be found, which makes the individual dependent of a large 

commercial platform. 

Exponential technologies potentially disrupt any sector and the certainty 

we think we have. Great benefits are expected in health care, energy 

and decreasing pollution, in addition to all kinds of convenience services. 

Development runs in a more dynamic and emergent way, with unexpected 

events, away from equilibria rather at the edge of chaos. This behavior is 

complex and does not fit reductionism and traditional modelling. We need 

tools and models to deal with the complex environment as exponential 

technologies seem to make the world behaving more complex. The rapid 

developments at an ever wider scale make the need to prepare for and 

handle disruptive events more urgent and important.
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complex and non-linear dynamics in society leading to more unexpected, 

disruptive events. This chapter reflects on a variety of possible explanations 

found to clarify people’s difficulties and ignorance of disruptive events. It starts 

with the brain to reflect on how we think, followed by descriptions on how 

we deal with time and probabilities. These form a base to focus further on risk, 

risk models as well as on uncertainty as clarifying avenues of our ignorance of 

disruptive events. In the last sections the focus is on limitations of mainstream 

economic models, on complexity economics that actually recognizes 

disruptive behavior and on the role of education in preparing us for non-

linearities in life. This chapter ends with concluding remarks. 

3.1 Possible explanations based on our brain functioning
People tend to think in an imprecise manner, we actually make up stories. 

Kahneman (2011) explains that most of our thinking is fast, instinctive and 

emotional, taking place in the part of our brain what he calls ‘system 1’. 

Our more deliberate and logical thinking takes place in our ‘system 2’ which 

is rather slow compared to system 1. It seems that most of the time we 

use our system 1. He shows when confronted with a difficult question, 

our system 1 seems to translate the difficult question into a different, more 

accessible, question that we can answer fast using heuristics. Heuristics are 

a strategy to simplify the world and a way to making things more efficient, 

saving energy and processing capacity of the brain. Heuristics are also called 

rules of thumb. You often gain speed at the cost of accuracy. What makes 

it challenging though, is that our system 1 cannot be turned off at will. 

Moreover, our system 1 is bad at causality and relates events of luck or bad 

luck as if they were related, often unjustifiably. Taleb (2010) calls this the 

narrative fallacy: the stories we tell ourselves to make sense of the situation. 

As a consequence we rewrite our own history. Both Kahneman and Taleb 

show our overwhelming tendency to see patterns in randomness. Human 

3 Various explanations 
of our ignorance of 
disruptive events



64 pattern recognition is a very fast and strong feature and necessary for survival. 

However, the drawback is that if there is no pattern our brain still makes one, 

which clarifies why we often see non-existing causality in unrelated events. 

Our need for causalities disturbs us in distinguishing facts from stories. 

System 1 works easily with similarity, but has a hard time with probability. 

Only our system 2 can understand statistics and requires good concentration 

and a well-rested brain. Kahneman explains system 2 should correct and 

control system 1, but he also shows the opposite is happening: when our 

reason knows the correct probability, our emotional system could feel 

uncomfortable with that system 2 outcome and will adjust. Kahneman 

(2010, p.24, p.201) concludes that because of the way our thinking works ‘we 

can be blind to the obvious and we are also blind to our blindness’ with the 

consequence ‘our almost unlimited ability to ignore our ignorance’. Taleb 

(2011) shows that indeed we do not think when making choices but rather use 

heuristics, and by using heuristics we filter out unlikely events. The interplay 

between system 1 and system 2 resembles Gödel’s strange loop, well 

described by Hofstadter (1979) who refers to the different levels of a formal 

mathematical system, in which a higher level influences a lower level, while at 

the same time it is defined by this lower level. Such a self-reference could lead 

obviously to a conflict between the different levels, like system 1 and system 2 

could have conflicting results in our brain.

Gladwell (2005) provides many practical examples of our unconscious 

thinking, our quick knowing, without knowing why, based on experience and 

pattern recognition and not arithmetic decision making. He describes how 

our unconscious brain is biased and often makes wrong judgments based on 

for instance length, skin color and gender, like our unconscious assumption 

that tall people are better leaders with the consequence that tall people are 

awarded higher income. This would fit Kahneman’s explanation that system 1 
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well with averages but poorly with sums. 

The reason of this behavior of our brain system 1 may relate back to the time 

our brain was predominantly used for surviving, constantly scanning for food, 

for quick interpretation of dangerous situations, for deciding whether to take 

flight, freeze or fight. Though we need to be careful for oversimplification. 

In the sixties a popular hypothesis was the Triune brain (MacLean, 1973): 

a distinction between a so-called reptilian brain, a mammalian brain (i.e. 

the limbic system) and a human brain (i.e. the neocortex), that would have 

developed in that order. Although still popular among some psychologists, 

it turned out to be a myth. Later research showed that it is all much more 

complicated, and the ‘reptilian’ actions such as finding food, eating, moving 

and building a shelter, are relevant to all vertebrates. The limbic system turns 

out to be a quite diverse structure and not uniquely responsible for emotions. 

Moreover it seems there is no basis for saying that one part of the brain is 

older than the other. 

The world was surprised by the experimental findings by Libet (1985) who 

showed that our cerebral cortex is already preparing motoric actions before 

our consciousness is aware of it. Swaab (2010) describes fMRI experiments 

(functional magnetic resonance imaging) that show a time gap of 7 to 10 

seconds of motoric action preparation before we become aware of this action. 

From this we may conclude that we think much less than we think we do, 

and that we act without thinking. This has an immediate consequence on 

how we deal with information, in particular when we are in a hurry and do 

not think. 

Swaab also describes another characteristic of our brain, the matter of 

reliability of information. When our brain does not receive information 
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produces its own information. Similarly, in case a sense organ does not 

provide information on its own, our brain produces such information as 

came from that very sense organ. Notably we cannot distinguish between 

the real sense signals and the created ones; this is beautifully described by 

Sacks (2007) in Musicofilia. So we create our own information, without 

being conscious of it. 

Humorous and shocking examples of how we fool ourselves with relative 

thinking are provided by Ariely (2012). The title summarize his conclusion 

very well: ‘The honest truth about dishonesty, how we lie to everyone, 

especially ourselves’. For instance, we put much more energy in achieving 

a saving of 8 euro’s on an article priced 15 euros than on an article priced 

300 euros, whereas the gain is the same. And car sellers know people spend 

a much higher amount on leather seats in an expensive car than they would 

for a leather sofa at home because they relate the amount to the price of the 

car. So, we think in a relative, rather than an absolute and rational manner. 

People have many biases. The way we act on information changes once we 

are in a group, called pluralistic ignorance. One example is that all members 

of a group did not act when an outsider cried for help, while most would 

have helped individually. Another example is that people in a group could 

become violent if a few members are, whereas those individuals would not 

have acted this way on their own. People relate to the majority. 

Finally, another perspective is the limitation humans have when it comes 

to the intake and processing of data. An observation by Moscoso Del 

Prado Martín (2009) shows that input/output processing time of humans 

is rather limited to 60 bits/s in a typical experiment; and Jensen (2006) 

found 25 and 36 bit/s in another experiment. These observations suggest 

humans need to be very selective with information intake. In contrast, 
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Similarly Hinssen (2014) concludes that many processes in the brain occur 

automatically and our unconscious part of the brain really runs the body, 

with many decisions being made by our unconscious mind. He states that 

our senses collect 11 million bits/sec, our conscious brain can only process 

40 bit/s. in our conscious brain we can recall 7 ±2 items at a time. The main 

goals of our unconscious mind were likely to be self-preservation, survival 

and replication of our genes/ourselves, but we learn and evolve. Whereas 

the growing amount of data and a world more interconnected suggest we 

get better informed, it could also overwhelm us and causing us to use more 

often the fast system 1 for decisions at the cost of accuracy. Therefore data 

interpretation and retrieving proper information from the rapidly growing 

amount of data is of utmost importance and necessary to consciously deal 

with this growth. 

In summary, there is a tension between our unconscious mind and the 

rational thinking part of it. We think much less and differently than we think 

we do. We create information, stories and causalities that do not exist. 

Our quick brain prefers fast and easy answers, like heuristics. When it comes 

to statistics, we prefer averages and normal distributions of a simple linear 

world, while diverging distributions and probabilities of non-linear systems 

require tough thinking and power to go against mainstream thinking as our 

habit to relate to others may pull us back to the quick thinking of a group. 

Therefore we can easily miss or forget about accepted residual risks as we 

unconsciously rewrite our stories. 
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Time is an agreed physical quantity defined as the duration of an event and 

used to sequence events; it is measured in the unit second. Humans usually 

treat time linearly and/or cyclically, and also directionally. However our time 

experience and perception are often non-linear. Our time perception very 

much depends on what we go through: when in pain we believe time runs 

slowly, whereas when experiencing pleasure perceived time runs fast. Both 

pain and pleasure are remembered from the peaks, in particular the last one, 

as well as from the last experience of pain. They are not remembered by the 

duration. This relates to Kahneman’s description of our quick brain function 

system 1, capable of dealing with norms, peaks and prototypes, but not sums. 

Rationally one would expect someone to prefer the shortest period of pain 

possible, however it turns out that system 1 prefers a bigger sum of pain 

as long as the peak and the end experiences are diminishing. It is probably 

caused by our memory that recalls both the most intense moment and the 

pain/pleasure at the end, but not the duration. This is why many movies end 

well, to avoid people believing it was a waste of time watching. A (financial) 

crises is usually recalled by the peak, not by the sum (of time or damage). 

We experience a crisis, but we recall something else because we build our own 

history (narrative fallacy). People choose by memory, and even deliberately 

feed the memory by making pictures, picking the news they want and creating 

their story. We seem to recall our experience mixed with our pictures and they 

are quite arbitrary, and then they fade and get rewritten. 

Hofstadter (1979, p.177) created a rule to state the difficulty of estimating 

accurately the time it will take to complete tasks of any substantial 

complexity. His law: ‘It always takes longer than you expect, even when 

you take into account Hofstadter's Law’. This law is a self-referencing 

time-related adage and the recursive nature of the law is a reflection of the 

universal experience of difficulty experienced in estimating complex tasks, 
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Hofstadter (1979, p.152) wrote: ‘In the early days of computer chess, people 

used to estimate that it would be ten years until a computer (or program) 

was world champion. But after ten years passed, it seemed that the day 

a computer would become world champion was still more than ten years 

away’. He then suggests that this was ‘just one more piece of evidence for 

the rather recursive Hofstadter’s Law’. On the contrary, just slightly later 

it suddenly went so fast and Deep Blue won; much quicker than people 

thought. A similar case happened with AlphaGo, beating the world’s best Go 

player in March 2016 (at 9th dan), only about half a year after the AlphaGo 

was ‘only’ at 2nd dan and the Go world believed the machine would not 

make top world level anytime soon. This illustrates how people conceive 

of progress in linear terms, when it is actually exponential. Our view of 

the future is therefore rather limited if we do not know or understand the 

type of process. By default we seem to have a tendency towards linear 

extrapolation of our history.  

Taleb (2012) clarifies well how often people choose for the short-term 

benefits and neglect the (risk of) long-term drawbacks. One example 

is how we cope with our health if we don’t think about the long-term 

consequences. Unhealthy eating and drinking (ingredients, amounts) give 

short-term pleasure but long-term pain. The same holds for quite a few 

medicines taken for short-term relief, with little knowledge of the long-term 

consequences. We value the long-term risk lower than the short-term pain, 

probably because we do not feel the long-term pain yet and have difficulties 

imagining it. Immediate use of fossil energy over long lasting pollution is a 

similar case, as are various short-term financial gains over long-term risk (of 

credibility). We tend to favor profit over endurance. This could explain why 

we neglect residual risks (as perceived to happen in the long-term) even 

when consciously accepted at the time. 
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complete a task or project is called the ‘planning fallacy’, see Kahneman 

and Tversky (1979). They explain that it is mainly due to the optimism bias, 

a cognitive predisposition found with most people to judge future events in 

a more positive light than is warranted by actual experience. Buehler et al. 

(1994) show it only has an effect on your own tasks: it seems that people 

make a better estimate of the task completion time by other people, than 

of their own task. Even if people are called out and recognize their past 

predictions have been too optimistic, they still insist their current predictions 

are realistic. The likely explanation is that the outcome on time is easy to 

imagine, whereas the alternative of failure is harder to imagine and there are 

many ways a project could go wrong. It could be that people neglect their 

full experience or it is simply wishful thinking. A further explanation may be 

that people take credit for past successes and discount bad experiences that 

were clarified by external factors. People believe that they are less at risk 

of experiencing negative events compared to others, like a large majority 

of people believe they are better in many tasks than the average (which is 

impossible by definition), and believe that crime, illness, loss on investment 

will not happen to them. Further, a search for information that supports a 

positive view increases the bias. People are also telling an optimistic story as 

they imagine that it is what other people want to hear and that could well 

be a habit contained in culture. 

Could the (effect of) optimistic bias be reduced? One would expect that 

experience leads to lowering the bias, but as shown by Buehler et al. 

(1994) people’s use of relevant past experiences is quite limited. A smaller 

distance between the subject and the reference group does reduce the 

bias. A solution to overcome the bias may be found in adapting a structural 

approach in planning and decision making. Flyvbjerg (2004) states that 

people ignore or underweight distributional information, i.e. data on 
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variance. By improving planning and forecasting methods one could try to 

bypass the optimism bias; see also Flyvbjerg (2008). Decision making in IT 

projects and risk management would of course profit from models that are 

robust for the optimism bias. 

Neglecting the long-term makes us vulnerable and sensitive to negative 

disruptions. From a more philosophical angle, Bregman (2013) describes the 

progression humanity makes is accelerating, but progression in the long run 

includes lots of progression traps, i.e. the sudden changes humanity faces 

which counts both for destruction and creativity. Like Taleb, he also signals 

that short-term benefits often lead to long-term drawbacks. 

In summary, our perception of time is not linear and peaks are better recalled 

than duration. We tend to favor profit over endurance. The way we handle 

time could explain why we experience disruptive events as unexpected. 

The unknown events, beyond our imagination, fit the optimism bias for future 

events and plans. And the events that were imagined, the accepted residual 

risks, are perceived to be only long-term risks, or neglected and forgotten 

when indeed it takes a long time before an event materializes. 

3.3 The way we deal with probability
It turns out we have limitations to deal with statistical distributions, 

averages, time, probability and uncertainty. Many of the psychological 

findings, the biases, are known from ancient times. Examples of biases are: 

hyperbolic discounting (prefer to receive one euro today rather than two 

euros next week); loss aversion (brain negatively affected by loss three times 

more than the joy of gain); holding to a loss position (people avoid scrapping 

failed projects/positions on-time); the paradox of progress (human 

nature knows no upper bound); cognitive dissonance (stress caused by 
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overconfidence; asymmetry between losses and gains; and endowment 

effect (difference between pain of giving up and pleasure of getting 

something; loss is more heavy than the pleasure the inverse gives).

Behavioral economics shows that people both overestimate and 

underestimate unlikely events. The overestimation happens when we 

well imagine the loss and consequence, like theft of luggage or damage 

of a smartphone. We treat the event as very plausible and consequently 

we are willing to pay in excess for certainty (such insurance policies sell 

well). Our brains violate the logic by confusing plausibility and probability. 

Kahneman (2011) refers to ‘conjunction fallacy’ when we judge a conjunction 

of two events to be more probable than one of the events in a direct 

comparison. He also shows the decision weight people assign to outcomes 

differs by probability of the outcome: low probability is overweighed 

(called possibility effect) whilst high probability is underweighted (certainty 

effect). The probability of an unlikely event causing a loss is overestimated 

particularly when the alternative is not fully specified, that is fear. From 

ancient times we have been wired to avoid risk and it is more costly 

to miss the signs of a predator, a threat, than to miss the signs of food, 

an opportunity. Consequently, our brain overestimates such threats and 

underestimates opportunities and resources.

The second case, the underestimation of unlikely events, happens for rare 

events further away in time. They are perceived as less plausible or rather 

ignored, such as tail risk events. The explanation could be our system 2 

consciously tells us a rare event may happen, though very unlikely, but as we 

lack experience of such a rare event we simply cannot imagine an outcome 

like that and we quickly answer a different question via our system 1 to 

forget about the rare event. We tend to ignore the odds of a flood, volcano 
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lack such specific history in our brain. When a crisis happened, we do have 

a picture of that crisis in our memories so we can imagine such rare event 

(the peak and ending are well remembered as stated before) and build 

constructions to prevent or lower the odds to that situation happening 

again. Still, we are not seriously prepared for different crises. This process 

is reinforced by our brains being vulnerable for group think. In groups there 

is little room for objective system 2 thinking: a majority gets easily the 

overhand with system 1 intuitive thinking and sets the outcome. The intuitive 

thinking is further supported through lobby, politics and amplified by 

some of the (social) media. This may cause irrational behavior and 

mismanagement. Quality media adds rational thinking back in the process, 

by showing facts and factual comparisons. Also universities, think tanks and 

authorities are in a position to present more factual (system 2) analysis to 

avoid the underestimation of unlikely events. 

Averages are easily picked up by our brain. But we got to be careful when 

averaging in a space of uncertainty. Plans based on average assumptions are 

wrong on average. For example, a group of people planning to depart for a 

trip together agree to leave at a certain time from a certain spot. The group 

will usually not depart at the average arrival time of the individuals, rather 

they will depart at the arrival time of the last one (to mitigate the risk of 

waiting long people could agree at a cut-off time). Another example typical 

for IT projects: if each one of 6 software developers communicates he/

she needs 3 to 5 weeks, on average 4 weeks, to develop a piece of code, 

decision makers could expect the code to be ready on the average 4 weeks’ 

time. However one cannot average out the consequence of the uncertainty. 

The distribution of time lapses of the 6 developers will use the complete 

range of outcomes which likely will be filled with one or more developers 

in need of the maximum 5 weeks’ time. Even if only one developer needs 
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the entire code of the 6 developers will most likely be ready not before the 

maximum of 5 weeks. One could use probability management tools to better 

prepare for the more likely outcomes and to overcome misjudgment. 

Probability is hard to handle for the human brain. To calculate and apply the 

outcome we need to use our rational brain (system 2). Instead our fast brain 

replaces probability with similarity and plausibility. Bayes’ rule describes the 

probability of an event based on conditions. This rule is used to calculate the 

odds. In practice, our brain rarely uses Bayes’ rule, resulting in an overweight, 

underweight or even neglect of the outcome. We usually overweight the 

probability of the event for the condition met and neglect the probability 

for the condition not being met. Again, this is caused by our brain seeking 

a similar case following heuristics (and such a quick answer for a similar 

case would often be fine, but could also be plain wrong). An example by 

Kahneman (2011) on a relatively simple probability calculation based on two 

items of information: 85% of cabs in a city are green, 15% are blue. A cab was 

involved in an accident, a witness identified a blue cab at the accident and 

a court tested the reliability of the witness’ testimony being 80%. What is 

the probability that the cab involved in the accident was blue rather than 

green? Many people provide the quick answer to say that the cab seen to 

be blue has a chance of 80%, as that is what the witness reported, taking 

into account its reporting reliability. However this way the base rate is 

being ignored. The correct answer is 41%. Taking the base rate into account, 

the witness reports in 80% of the cases (the reliability) a blue cab when it 

was indeed a blue cab (80%*15%), whereas the witness reports in 20% of the 

cases a blue cab while it actually was a green cap (20%*85%) which is more 

often. So the outcome is proper blue cab reporting as a fraction of total blue 

cab reporting (80%*15% / (20%*85%+80%*15%) = 41%).
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Another challenge for the human brain is to imagine the consequences 

of exponential growth. We are often surprised by exponential growth, 

see chart 3.1. An exponential function, such as 2 to the power x, doubles with 

x+1. Growth in small numbers looks rather small and is therefore usually 

underestimated when taking off. A classic example is the growing number 

of waterlily leaves in a pond. Imagine the number of leaves doubling each 

day. With a tiny area covered you wouldn’t notice much of the growth. 

Eventually the surface of the pond will be fully covered. The day before that 

moment, the pond was only covered half, and only one week before full 

coverage just one percent of the pond was covered. Whether you count 

bacteria, or customers using a new product, the initial small numbers stay 

under the radar for a while. People may call the new product a failure, 

because of the negligible numbers; however, it keeps growing and then it 

tips, surprises people and it is suddenly unstoppable. Recall that when it 

reaches only 1%, it is just about seven doubling steps away from the 100%. 

Chart 3.1  Linear, power law and exponential functions 

f(x)=x^3 (power-law)
f(x)=50x (lineair)

Source: Wikimedia commons.f(x)=2^x (exponential)
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76 And then we have distribution. Outliers can sometimes be neglected, 

sometimes not. It depends on the shape of the distribution of outcomes. Taleb 

(2010) explains this when comparing the effect of outliers (particular events 

away from average) in his so-called mediocristan and extremistan worlds. In a 

mediocristan world, one outlier does not affect the average; like the tallest 

man of a large group of people hardly influences the average height of people 

of that group. On the contrary, in an extremistan world an outlier does affect 

the average of the group, for example a top earner in an income distribution 

has a significant influence on the average income of a group, and is called a 

meaningful outlier. 

Linear phenomena and averages are reasonably well handled by people. In the 

space of continuous probability distributions, we understand the well-known 

normal distributions (Gaussian distribution). A distribution is a mathematical 

description of random variables, for instance from experiments and surveys, 

showing the probabilities of events in a space of all possible outcomes. 

Examples of normal distribution are height, intelligence and blood pressure of 

humans. A second type of distribution is the log-normal distribution, where 

the logarithm of the random variables is normally distributed. The log-normal 

distribution is also known as the maximum entropy probability distribution. 

Examples are measures of size of living tissue (length, skin area, weight); 

file size of audio and video files; the length of comments posted in Internet 

discussion forums, the length of chess games, the size of cities and the size of 

cash payments and interbank payments. All common examples, but people 

have more difficulties understanding the distribution. A third common 

distribution is the power law distribution, where the log of the quantities is 

exponentially distributed (the cumulative distribution with a power law form 

is also known as Pareto distribution and follows Zipf’s law). A power law 

functions is x to the power c, like x to the power three (chart 3.1). The power 

law distributions (approximately) occur in a wide variety of biological, physical 
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and man-made phenomena, such as earthquakes, solar flares, moon craters, 

frequency of use of words in languages, number of papers scientist write, 

number of hits on web pages, sales of branded commodity, etc. In a normal 

distribution both sides are symmetrical and the slopes curve like a bell. 

Our system 1 can handle this. In a log-normal distribution the right-hand side 

of the curve has a more gradual incline, the diagram is called right-skewed. 

A power law distribution follows the typical asymptotic curve, with a long (fat) 

tail to the right. See chart 3.2. The log-normal and power law distributions 

have consequences for risk and growth, but they are not easy to imagine for 

people as their system 1 cannot deal with it but system 2 can. Misinterpreting 

distributions forms another reason why we are often not prepared for certain 

events. A simple conclusion of power law consequences is that major events 

happen rarely whereas minor events happen much more frequently. Power 

laws are natural but usually people fail to grasp the consequences. 

Chart 3.2 Distributions: (a) normal in blue, log-normal 
in red and power law in green; (b) and (c) show the 
distributions with log scales

Source: TRENDS in Cognitive Sciences.
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78 To summarize, probability estimation goes easily wrong in situations where 

the distributions of outcome is not a normal distribution. Our fast brain is 

often right with averages and normal distributions, but we should only rely on 

real calculations when it comes to more difficult situations. 

3.4 The way we deal with risk 
Risk means to dare, derived from risicare. Descriptions on risk go back to 

the 17th century with Pascal’s theory of decision making: the theory about 

deciding what to do when it is uncertain what will happen, and making that 

decision is the essential first step in any effort to manage risk. Bernstein 

(1996) calls it the remarkable story of risk, providing an important overview 

of risk, its history, the way we measure chance and how we deal with 

the results as well as ignore some. Bernstein (1996, p. 197) states that ‘The 

essence of risk management lies in maximizing the areas where we have 

some control over the outcome while minimizing the areas where we have 

absolutely no control over the outcome and the linkage between effect and 

cause is hidden from us’. Risk equals likelihood multiplied by consequence. 

Classic risk management contains the following options to deal with risk, 

after identifying and evaluating them. One needs either to manage down 

the risk or exploit the risk to gain from the positive consequences of the 

situation. The options to manage it include 1) avoid the risk, stop certain 

behavior so you are no longer vulnerable to that risk; 2) reduce the risk, 

through taking measures or taking away the cause of risk, all at a certain 

cost; 3) transfer the risk, to another party causing that party to manage the 

risk, like an insurance; and 4) accept the (residual) risk, by consciously taking 

into account the consequences which should be regularly evaluated.

The way we deal with risk is rather biased, irrational and ignoring. 

We saw that we get easily preoccupied with all kinds of risks with minor 

consequences and at the same time live unconsciously with much bigger 
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to be much higher than they actually are, compared to the much higher 

risk of being killed in a car accident or drowning in your own bathtub. 

The perception of risk is influenced by the relative amount of media 

attention it receives, as most media tend to report on what goes wrong 

in the first place, with emphasis on the bigger events involving mass 

casualties. There is hardly any mention of the risk to individuals taking 

place in and around the house, with (financial) consequences for society 

(work, healthcare). Small risks with huge impact, like a flood or an exploding 

chemical plant, are beyond the radar of many people. 

In many cases we do insure ourselves against risks with small probability 

and high impact. A first example is that many insure against the risk of 

losing their house because of fire. The probability seems to about 0.1%, 

the maximum material loss is capped to the total loss of the house. Another 

example is the Dutch multi-billion euro expenditure on waterworks 

including evacuation plans in place for managing extreme scenarios. This is 

worth the investment as it protects millions of lives against the risk of floods, 

with probabilities between 0.01% and 0.1%. In this case the maximum loss is 

practically speaking not capped, as tsunamis in various places in the world 

have demonstrated. It is important to use methods to put probabilities and 

impacts in perspective and make them comparable. An example of an overall 

risk comparison is the Dutch national all-hazard survey of potential threats 

and disasters that could disrupt society (Nationaal Veiligheidsprofiel, 2016). 

It provides an overview of the most important risks to national safety and uses 

one classification method of risk in order to make a diverse set of disasters, 

crises and threats, comparable. 

The most popular and traditional measure of investment risk, is volatility. 

Volatility is measured irrespective of the direction an investment moves, while 
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“how much could be lost?” Value at Risk (VaR) is a popular measure of that 

risk and has become the standard measure of market risk in risk management, 

see Jorion (2001). VaR estimates how much a set of investments may lose, 

usually with a 95% or 99% level of confidence and given normal market 

conditions in a certain time period. The VaR is thus expressed as a probability 

that a loss will not exceed a certain threshold. As a consequence, for the 

remaining 5% or 1% probability loss will be higher than that threshold and it 

may be hundred times higher than that threshold. It is uncapped, it simply 

does not specify how much higher. The representation in a few numbers 

makes it an easy to handle model and useful tool, in normal times and in 

the normal range of the given probability, which occurs most of the time. 

Although its usefulness and weaknesses are widely discussed in literature, 

some of the assumptions and consequences need to be analysed further as 

they provide relevant answers to the main question of this paper.

As VaR works under normal market conditions, which occurs most of the 

time, people trust this model. However this turns out to be a false confidence 

because in extreme events one may lose far more than the VaR amount 

indicates, as has been experienced in the financial crisis. What if market 

conditions are not normal? VaR assumes mark-to-market pricing, but in 

extreme market conditions market prices may be unavailable. VaR measures 

assume that the current portfolio is frozen over the horizon, but trading 

portfolio evolves dynamically and under abnormal conditions investors 

(algorithms) do trade. VaR assumes limited time horizon, which leaves certain 

long-term risk out of the model. VaR is a static measure of risk, whereas an 

evaluation of risk at different times, i.e. dynamic risk, would contain valuable 

information. VaR is not sub-additive, i.e. the combined risk of a portfolio may 

exceed the sum of the VaRs of the components of the portfolio. Altogether, 

VaR does not say anything about the remaining open-end risk and of course 
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no longer of use and to use other tools and measures. 

Actually well before the latest financial crisis, concerns over VaR were voiced 

in a debate back in the nineties in which Taleb (1997) and Jorion set out 

some of the major points of contention on VaR. Taleb claims VaR ignores 

2,500 years of experience in favor of untested models built by non-traders, 

he describes some of the problems. Jorion defends VaR as a good estimation 

of risk, not perfect, but the best we have. What is interesting about this debate 

is that both agree that traders may have incentives to game their VaR and 

choose investments that seem to have low risk (in VaR) for the wrong reasons 

(e.g. the Mexican Peso in 1994 had low volatility and therefore scored low 

risk despite the high devaluation risk). Taleb states that the risk management 

objective function is survival, not profits and losses. So Taleb (1997, rebuttal) 

concludes that the statements ‘VaR generally works’ is useless, as it could 

mean the trader ‘made $8 million in eight years and lost $80 million in eight 

minutes’. 

Similarly, Einhorn (2008, p.2) concludes that VaR has focused on the 

manageable risks near the center of the distribution, but basically ignores 

the tails. He argues the assumptions provide a false confidence of the VaR 

outcome which even leads to higher risk taking. He posited that VaR led to 

excessive risk taking and leverage at financial institutions and created an 

incentive to take ‘excessive but remote risks’. Einhorn (2008, p.2) compared 

VaR to ‘an airbag that works all the time, except when you have a car 

accident’. In an extensive New York Times article Nocera (2009) provides 

interesting insights in the history and the use of VaR during the crisis. 

He concludes VaR exacerbated the 2008 financial crisis by giving false 

security to bank executives and regulators. Firms that were aware of the 1% 

unlimited risk believed they could not afford to be the first to withdraw from 
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until an extreme event happens, whereas in the long-term an extreme event 

would hit everybody and the firm would not be blamed in particular. This 

reasoning leads of course to dangerous behavior. He views VaR a powerful 

tool but easy to misunderstand and dangerous when misunderstood. 

Of course you can’t blame the tool, but the way it is (mis)used. Like Keynes 

already considered that economics is not like natural sciences and had the 

insight that to convert a model into a quantitative formula is to destroy its 

usefulness as an instrument of thought. To summarize, VaR measures do 

not include the greatest risk of all: big events with very small probability, like 

discrete changes and phase transitions. Risk measures should be broadened 

in scope to cover high impact events, be it black swans, dragon kings or 

other. 

An alternative to VaR that is more sensitive to the shape of the tail of the 

distribution is Conditional VaR, also called Expected Shortfall. It calculates 

the weighted average of the losses that occur beyond the VaR cut-off 

point in the distribution. Analyzing the reliability of the two risk measures 

Danielsson and Zhou (2016) found that risk forecasts are extremely uncertain 

at low sample sizes, with Value-at-Risk more accurate than Expected 

Shortfall. They also mentioned the methods give banks some scope for 

deliberately underreporting risk without violating regulations and control 

mechanisms. 

Alternatively, the Extreme Value Theory (EVT) from the statistics discipline is 

sometimes suggested to have the potential to deal with extreme deviations. 

It seeks to assess the probability of events that are more extreme than any 

previously observed. 
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continuous function it is easy to imagine that continuous functions contain 

at least one value where the function reaches its maximum and at least 

one where it reaches its minimum), whereas discrete changes and phase 

transitions are not covered. Some research has been done on extending it 

to semi-continuous functions, like extreme events caused by earthquakes. 

EVT is concerned with extreme tail behavior (e.g. one per mil) and only 

looks at the tail events. EVT estimates quantiles and probabilities beyond 

the usual range of observed data, using only the extreme event data rather 

than all data but very few events remain a challenge in statistical methods. 

An EVT solution is investigating data in an intermediate area next to the 

tail and extrapolating the found properties to the tail area. For application 

in financial risk management, Diebold et al. (2000) show some limitations 

and pitfalls, to name the selection of such intermediate area as well as the 

validity of the assumptions in EVT. Financial data is often not independent 

and identically distributed rather serial dependent like volatility clustering. 

De Haan et.al. (2016) describe a way to deal with the two critiques and 

provide adapted EVT methods that overcome the two issues jointly. They 

show estimators for high quantile and extreme value index remain stable, 

even for data sets with serial dependence feature. The trade-off between 

high variance with a few observations and a bias when more observations 

from a larger area are used, is compensated with a bias correction. 

In conclusion, people have difficulties dealing with risk because of the 

shortcomings we have with estimating probability as well as imagining 

impact. It requires proper thinking and planning to cater for the less likely 

events. The most known risk measure method for investment risk is VaR 

which seems to works fine under normal circumstances however does not 

include the biggest risk of all, it does not inform us about the exceptional 

situations with very small probability and very high impact. Extreme Value 
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deal with discrete changes and other discontinuities we need other tools to 

cover the whole spectrum of probability. 

3.5 The way we deal with uncertainty
According to Keynes (1921, p.2), there is a difference between what is definable 

and undefinable in future: ‘The terms certain and probable describe the 

various degrees of rational belief about a proposition which different amounts 

of knowledge authorize us to entertain. All propositions are true or false, 

but the knowledge we have of them depends on our circumstances’. He did 

not distinguish categorically between risk and uncertainty. Knight (1964) did, 

he defined uncertainty as ‘risk that is immeasurable’ which means it is not 

possible to calculate uncertainty whereas risk in this sense is computable. 

Following Knight’s distinction, risk applies to situations where we do not know 

the outcome of a given situation, but we can accurately measure the odds. 

Uncertainty, on the other hand, applies to situations where we cannot know 

all the information we need in order to set accurate odds in the first place. That 

makes risk being measurable uncertainty, whereas true uncertainty cannot 

be measured. Some believe this distinction is too strict and hardly workable, 

as almost all situations are complex and contain uncertainty. This risk definition 

would only work in a highly controlled environment, like in games of chance, 

leaving all other cases as uncertain.

About a century ago Knight and Keynes analyzed the areas of uncertainty 

and probability, and the effect on decision making. They both questioned the 

value of decisions based on the frequency of past occurrences. According to 

Bernstein (1996), there is still the controversy whether best decisions are either 

based on quantifications and numbers from past experience or based on more 

subjective beliefs about the uncertain future. Chaos theory teaches us that 

the value of the numbers from the past have their limitations, in particular 

the averages that we extract from these data. That means Galton’s regression 
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with non-linearities; e.g. an exponential function runs away from its average. 

At the same time, all events do depend on earlier steps, so the past is relevant. 

How they depend, varies with the dynamics of the system, results don’t need 

to be proportionate to the cause, as shown in chaos theory. 

How do we deal with uncertainty? The British philosopher Carveth Read said: 

‘It is better to be vaguely right than exactly wrong’. That sounds very much 

common sense, but it is not what usually happens. Many of us cannot handle 

the uncertainty of being vaguely right. Policymakers and boardrooms often 

expect exact estimates of project costs, GDP growth, purchase power effects, 

etc. Many economic models deliver exact estimates, which pretend accuracy 

because of the use of formulae. Precise math delivers precise outcomes 

which suggests right answers fit to communicate. However, we usually do 

not know how mistakes in assumptions, incomplete input information and 

uncertainties propagate through a model. Even small changes may lead to 

an outcome that is way off because of non-linear effects. Moreover, larger 

ranges of uncertainty feel uncomfortable to communicate, as many of us 

fear uncertainty as it suggests we do not know, while we want to be in 

control and show it. A clear example is the global warming debate, where 

decision makers decided to set a maximum of two degrees Celsius to the 

world average temperature increase: a precise number showing they are 

in control to steer our planet’s climate. A clear goal is probably intended to 

free up budgets and get people moving, but it feeds an immodest attitude 

of being in control of a system we cannot control. Geologist Kroonenberg 

(2006) puts the human role in perspective, showing world’s climate changes 

all the time, with much higher temperature and carbon dioxide fluctuations 

in history, well before humans caused pollution; people actually feared global 

cooling only half a century ago. His message is humans are not in control 

of earth, we greatly overestimate our role in nature and we better adapt to 
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decisions to steer it. Similarly Bak (1996) warns about not making the same 

mistake as with the Club of Rome ‘The Limits to growth’ study from the 

seventies, when unpredictable factors were not incorporated into the model 

and wrong conclusions were drawn. This means we should take a much 

longer time scale perspective and dare to communicate the uncertainty we 

face in understanding our systems. Such uncertainty justifies for instance an 

energy policy, with reduction of pollution and start using alternative sources 

of energy, however does not justify a climate policy apart from adapting to 

the climate.

Hinssen (2014) describes that most things are uncertain, though we search for 

certainty. He states that the big disadvantage of models is that they cannot 

handle uncertainty and proposes to keep as many options open as possible 

to be prepared for the unknown (he illustrates that in WWII the French were 

centrally planned and organized, and therefore beaten by Germany that could 

attack by surprise as it better managed uncertainty). He provides several 

examples to show the world is complex, networked, adaptive and not linear 

causing lots of uncertainty. We got to focus on the emergence of patterns 

and realizes that many networks, such as roads as well social networks, 

are created without a grand plan. 

There is a challenge in communicating uncertainty. The brain seems to 

interpret uncertainty similarly to fear and we know people run away from 

fear (system 1). Transparent communication to the public with revealing 

the underlying uncertainty, risks losing the connection with the part of 

society that is not willing to think or take advice about the issue. In that 

case, the message blurs and the fear and negative thoughts caused by the 

uncertainty lead to the message being rewritten to a fictional but coherent 

story easier to memorize, as shown before. After all, the human brain prefers 
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uncertainty should go along with a well-thought message or action to take.

What about the experts? Professionals should recognize situations of 

uncertainty and should know what we know and not (yet) know, where the 

difficulties pop up and what is impossible to know and to forecast. Experts 

should know and indicate where the limits of their expertise lay. However 

this is also difficult as the expert is expected to know by the virtue of being 

an expert and as said uncertainty is not easily communicated and admitted. 

So there is a fear for not knowing as it could be interpreted as a weakness 

that the work was not (properly) done. This is the expert problem and keep 

in mind you are worse off being misinformed than uninformed. Confidence 

is usually valued higher than uncertainty. The same holds for a physician: 

people want to hear an explanation and get treatment, rather than an 

explanation about the factual uncertainty and the advice of not yet starting 

a treatment. The physician risks being replaced when exhibiting relatively 

more uncertainty. Meeting expectations prevents people from admitting 

the uncertainty. A way to deal with uncertainty is to keep the uncertainty 

throughout the model and to perform sensitivity analyses to find out the 

systems’ most vulnerable triggers. It is usually better to focus on the most 

important parameters and not too many, and steer in small steps.

In summary, uncertainty in the Knightian sense is defined as immeasurable 

risk. Subjective beliefs about the uncertain future could be more important 

in decision making than numbers from the past as we most often don’t 

know the proportionality between cause and effect. Uncertainty is hard 

to communicate and risks interpretation of fear and being translated into 

a coherent story rather than sticking to the facts, observations and true 

message. We want to be in control and show it; confidence is usually 

valued higher than uncertainty. Experts should indicate where the limits of 
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show the most important parameters and keep as many options open.

3.6 Understanding the system 
The philosopher Bertrand Russell (1912) has described the problem of 

induction, or problem of inductive knowledge. It is a major problem in life: 

how can we logically go from specific instances to reach general conclusions? 

How do we know what we know? And how do we know that what we 

have observed from given events is sufficient for us to figure out their other 

properties? It leads to the questions of whether and how we can know the 

future, given the knowledge of the past. 

The importance to answer these questions and the importance to really 

understand the system are clearly illustrated by Perrow (1999, first 

edition 1984) in his analysis of accidents, related to high-risk technologies. 

The accident at the Three Mile Island nuclear plant provided the basis for 

Perrow to analyze accidents in high-risk technological systems. He classifies 

systems in the way they are coupled (loose or tight) and their complexity 

(simple or complex) and claims accidents are inevitable in systems that are 

both tightly coupled and complex. He therefore refers to ‘normal accidents’ in 

such systems. 

Tightly coupled interactions have no slack, and consequently no time to 

adjust or recover, with propagation of errors as a result. By complex, Perrow 

means incomprehensibility, the system is no longer fully understood. 

It seems there was no clear definition of complex systems at that time 

yet. His analysis took place in the early eighties, before more precise 

descriptions of complex systems emerged, among them at the Santa Fe 

Institute (founded in 1984). He distinguishes linear systems, being simple 

from non-linear systems, being complex. Complex interactions are ‘those of 
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not visible or not immediately comprehensible’, compared with linear 

interactions that are ‘expected and visible even if unplanned’ (Perrow 1999, 

p.78). In line with later definitions, he views complex systems as having a 

high degree of uncertainty, lack of central control, whereby small events 

could cause big changes. However, no clear view of agent interactions, 

emerging patterns and self-organization are described. He recognizes a 

fighter plane being anything but simple, though linear, a system we would 

now call complicated, as opposed to complex. The cause of accidents in 

tightly coupled complex systems is the interaction of multiple failures 

that are not in a direct operational sequence. A few small bugs may cause 

serious malfunctioning, whereas each of the bugs are not enough to disturb 

the system. These normal accidents are failures that are inevitable in such 

systems. His analyses are based on accidents in man-made systems such as 

nuclear plants (in particular the Three Mile Island nuclear accident), aircraft 

crashes and dams. Perrow views accidents forming an inherent property 

of complex systems, they are embedded in the system. There is no control, 

the operator cannot be blamed, as he cannot understand and therefore 

control the system. 

Perrow’s advice to deal with the tightly coupled complex systems is quite 

rigorous, namely to simply abandon them. To add redundancy to such 

systems could be of help if it is part of the original design, but if added to 

the system at a later stage, such as after facing problems, causes additional 

risks as ‘the more redundancy is used to promote safety, the more chance 

for spurious actuation’ (p.260). Some openings are given to more nuanced 

ways of dealing with the problem, by improving our understanding of the 

system, reducing the size to minimize damage and by deconcentrating high-

risk situations. High-risk deconcentrating seems to be a sensible thing to do, 

as shown with the distributed set-up of the internet and the diversity and 
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any infrastructures, among them the financial infrastructure, to improve the 

resilience of the total system. In the afterword of the 1999 edition he views 

the financial system as a complex and tightly coupled system. The growing 

global connections and increase in speed and automation in trade cause 

complexity and tightness to become stronger. Mezias (1994) considers the 

saving and loan crisis in the US as a ‘normal accident’ that fits Perrow’s 

theory of the combination of highly complex and tightly coupled. 

The information theory leading to digitization allows for much faster 

processing and tighter relationships between processes and actors, than was 

the case before automation. The distribution of IT-based solutions through 

highly connected networks potentially tightens everything together. The mix 

of IT and networks risks the creation of systems that are very complex and 

tightly coupled, and thus vulnerable to accidents. In their answer to The 

Queen’s question: ‘Why had nobody noticed that the credit crunch was on 

its way?’, Besley and Hennesy (2009, p.8), on behalf of the British Academy 

Forum, wrote ‘the difficulty was seeing the risk to the system as a whole 

rather than to any specific financial instrument or loan. Risk calculations 

were most often confined to slices of financial activity, using some of the 

best mathematical minds in our country and abroad. But they frequently 

lost sight of the bigger picture’, they view not understanding the risk to the 

system as a whole ‘a failure of the collective imagination’.

Another example to show the importance of understanding the system is 

given by Taleb’s (2010) description of the life of a turkey (the original example 

by Russell was a chicken). A turkey is fed every day, and every single day 

feeding confirms the bird’s belief that it is the general rule of life to be fed 

every day. On the day before Thanksgiving something unexpected will happen 

to the turkey, a so-called phase transition, when it is slaughtered  
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feeding and that the feeling of safety just reaches the maximum when the risk 

is at the highest point. In other words Taleb (1997, rule No. 7) says: ‘the fact 

that someone never died before does not make him immortal’. 

Obviously many parallels can be described when our beliefs are confirmed 

doing the right thing every day until a sudden change happens. The turkey 

example also shows we may believe having the overview, based on 

past events, but the expected (linear) consequence may suddenly not 

happen. A possible disruptive event can always happen, despite of our 

built up confidence from the past suggesting a decrease of likelihood. This 

clearly shows that the absence of evidence is not evidence of absence. 

The perspective is important: to the farmer the slaughtering is not a disruptive 

event. The turkey does not fully understand the underlying mechanisms of 

the system. This essentially refers back to the philosophical question of how 

we know that what we have observed from given events is sufficient for us to 

figure out their other properties.

Chart 3.3 The unexpected event after slow buildup  
of confidence
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92 Phase transitions are well known from physics. For instance, when at a certain 

rise in temperature solid substance suddenly becomes liquid, and at an even 

higher temperature a liquid suddenly turns to gas. These phase transitions 

are reached by tuning a parameter, such as temperature. In physics, 

we found what the mechanism is, but a phase transition is a more general 

phenomenon. Newman (2006) describes critical phenomena, i.e. when the 

scale in a system diverges towards a critical point and the system experiences 

a phase transition. He shows the example of a model for forest fires caused 

by lightning: with small clusters of trees, forest fires have little effect on the 

forest. However if no lighting strikes for a while, more trees will grow and the 

clusters of trees get larger. Next, when the lighting strikes, the cluster is gone. 

Newman shows with his so-called percolation model that the distribution of 

cluster sizes follows a power law and the size of clusters and the size of fires 

converges to a power law. It turns out that with the increase of probability 

that trees occupy an empty spot, clusters get larger, until this percolation 

probability reaches a critical point (at probability 0.5927462...). After the fire 

the whole story repeats, again until that critical point. At that critical point 

the system turns out to be vulnerable, i.e. the system oscillates right around 

the critical point. The model is called self-organized criticality. Self-organized 

criticality was first described by Bak et al. (1987) and visualized with the sand 

pile model, which is a cellular automaton: the slope of a pile builds up when 

sand is randomly added, until the slope exceeds a certain threshold value and 

collapses. Self-organized means organized behavior arises without an internal 

or external controller or leader. Self-organized criticality is also used to model 

earthquakes, solar flares, biological evolution and avalanches, see Bak (1996) 

in which he describes the phenomenon in a broad sense. Bak et al. (1987) 

show a difference between phase transitions in physics caused by the change 

of a parameter (like boiling water) and phase transitions after reaching a 

critical point. The driving force is likely dissipation. The critical point in these 

dynamical systems is like an attractor, automatically reached by starting away 



93from equilibrium. An attractor is defined in mathematics as a set of numerical 

values to which, for a wide variety of starting conditions, the dynamical system 

evolves. It looks like these systems organize themselves towards a critical 

point or state. A main question in understanding a system is to know what the 

attractors are. 

We do not know when lightning strikes, but we know it will. The timing is 

beyond our control, so the aim should be to work on limiting the impact. 

Using Agent-Based Modelling, Miller and Page (2007) show implementations 

of the forest-fire model using different dynamics of agents’ behavior to reach 

an optimal macro outcome. They show that different levels of adaptation 

impacts behavior and optimal system outcome, by distinguishing between 

homogeneous and heterogeneous adaptation of agents (trees). In the former 

one, agents adapt to maximize productivity, and a critical value is reached. 

Thus adaptation leads the system to a state that is both optimal and fragile. 

In the latter one, agents are allowed to differ their growth rate resulting in 

the emergence of firewalls and increased productivity, both without central 

planning. So this model shows higher level phenomena arising from lower-

level interaction, increasing productivity and at the same time making the 

system less fragile. They suggest adapting the model to analyze bank failures. 

This also shows the importance of sufficiently understanding the underlying 

mechanisms of the processes and systems we create and not underestimating 

the variety of the dynamics and possibilities to steer. 

Taleb’s (2010) black swans are the extreme events that are rare, unexpected 

and something never considered a possibility. These events appear on the 

fat tail of the power law distribution. Newman (2006) shows power law 

distributions are self-similar, scale-free distributions, i.e. they are similar to a 

part of itself, and both small, regular and extreme events belong to the same 

distribution and origin from the same mechanism. Taleb considers black swans 
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be forecasted in advance, but one could prepare for the unpredictable event. 

Taleb says ‘any system susceptible to a black swan will eventually blow up’, 

which sounds familiar to Murphy’s Law. Could a black swan be a phenomenon 

indicating we do not sufficiently well understand the system? Both black 

swans and self-organized criticality could start very small and growing but 

remains initially hard to notice, until it develops following the power law 

into a large or extreme size event. Sornette (2003, 2009), who explores the 

great challenge of predicting crises in stock markets, questions whether 

extreme events are due to the same mechanism. He argues that the power 

law paradigm may miss an important population of events and he therefore 

invented the notion of ‘dragon-kings’. A dragon king is a metaphor for an 

event that is both extremely large in size or impact (a ‘king’) and born of 

unique origins (a ‘dragon’) relative to other events from the same system, 

but different than black swans. Sornette (2009, p.1) defines dragon-kings 

as ‘meaningful outliers, which are found to coexist with power laws in the 

distributions of event sizes under a broad range of conditions in a large variety 

of systems. These dragon-kings reveal the existence of mechanisms of self-

organization that are not apparent otherwise from the distribution of their 

smaller siblings’ and views them as ‘extreme events that are statistically and 

mechanistically different from the rest of their smaller siblings’ which ‘opens 

the way for a systematic theory of predictability of catastrophes’. Sornette 

hypothesizes that many of the crises that we face are in fact caused by 

dragon kings rather than black swans, i.e. they may be predictable to some 

degree. Such extremes are interesting because they may reveal underlying 

and hidden organizing principles, although significant uncertainty will remain 

present. Sornette (2003) studied the critical events based on the hypotheses 

that (financial) bubbles can be diagnosed in real-time before they end; 

and the termination of (financial) bubbles can be confined using probabilistic 

forecasts. He performed tests on the biology of pregnancy, on glaciers, 
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few decades, and found that a class of critical events can be predicted based 

on the various signals of his algorithms and thus qualify as dragon-kings and 

not black swans.

Extreme events are hard to imagine for people before they have ever 

happened. Equity markets going down by 30 percent, tsunamis over 

500 meter high, massive cyber-attacks, etc. The least we can do is to be 

vigilant for the dragons as they will hurt us, but it is better to put an effort in 

understanding the dynamic system and its non-linear behavior. Non-linear 

systems are very common, linear systems are actually the exception. Non-

linear dynamic systems are sensitive to initial state and are path dependent, 

which means it does matter what happened before. Path dependency 

typically occurs in a network when a small advantage attracts more 

followers, creating a further benefit for others to adhere to this solution. 

These phenomena are difficult to work with and the mathematics has only 

been developed relatively recently. The famous French mathematician 

Poincaré discovered deterministic chaos in dynamic systems and developed 

the math. A chaotic system is deterministic, but never exactly repeats itself; 

it is bounded, usually has only few degrees of freedom and may lead to 

bifurcation. That is when a dynamic system changes qualitatively the nature 

of its behavior. A small change of a parameter could cause a sudden change in 

behavior of the system. It is only since we have powerful computers that we 

can model and get a better understanding of such systems. 

To conclude, many systems are non-linear or complex and include 

discontinuities, like phase transitions. It looks like nature organizes itself 

towards a critical point. Systems we created show similar behavior with 

higher level phenomena that we do not like, often not fully understand, 

but that arise naturally from lower-level interactions in the system. Systems 
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network, show behavior that we cannot control, oversee and predict. We have 

to better understand the existence and consequences of dynamic systems and 

their non-linear behavior, such as critical points and phase transitions, in order 

not be surprised like a turkey.

3.7 Limitation of the models of mainstream economics
In search of answers to the main question of why people often experience 

disruptive events as unexpected, it is important to also look at the economic 

models in use, quantitative, qualitative or stochastic models. If a model can 

never produce a disruptive event as output, than we should be aware not to 

rely much on that model under all circumstances, as we would never know 

when and in what circumstances such an outcome would be missed. If a 

model could forecast such an event it may be caused by limitations in the 

input or in conditions applicable to the model. Mainstream economic models 

usually assume a market tends to equilibrium, which may be a root cause of 

forecast failure. This classical concept of general equilibrium theory assumes 

supply and demand are balanced, in one market as well as all markets 

simultaneously (Cournot, Walras) and assumes in principle no external 

influences and the behavior of agents should be consistent and without 

incentive to changes. It further assumes stable markets, rational human 

behavior and information availability immediately to all agents. We know 

these assumptions are unrealistic. The wide use of the ultimate escape clause 

ceteris paribus summarizes well the lack of reality of the economic models 

as of course it is never the case that other things remain constant. Today’s 

dominant economic thoughts, using models like dynamic stochastic general 

equilibrium (DSGE), Real Business Cycle and Arrow-Debreu models, still 

assume the economy is an understandable and equilibrium-seeking machine. 

In this paper this is viewed as traditional thinking. 
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information, control, rational behavior) were understandable at the time they 

were put forward, and this was the only way to make calculations with the 

available mathematics at that time. Mathematically elegant, but tendency to 

equilibrium puts a strong filter on what you can see: strictly taken, it allows 

no scope for exploration, creation, transitory phenomena, structural change, 

innovation and history. For a while, economists wished to align economics 

with the exactness of physical science from Newton. But physics continued 

with relativity, speed of light (the very big), thermodynamics, quantum 

mechanics (the very small), dynamical systems and chaos theory. Also in 

economics, the models were improved and time and other dynamics were 

introduced in the models, but unfortunately, attention to non-linear behavior 

is rather limited. It turns out to be hard to move away from the assumptions 

of traditional models. In recent years more attention has been paid to 

behavioral economics, with names like Marshall and Robins who studied 

the aspects of human behavior. Behavioral economics moved away from 

the traditional assumptions by taking into account non-rational behavior of 

economic actors, market inefficiencies as well as earlier mentioned heuristics 

and psychological biases. For example, game theory was developed to deal 

with the more common situation of incomplete information as opposed to 

the traditional assumption of complete information. However, for relying 

largely on data from surveys and experiments, behavioral economists received 

criticism from traditional economist. 

Keynes (1921) already warned of inherent instabilities in markets and the 

possibility that markets fail to self-correct. Analyzing the impact of debt on 

system behavior, Minsky (1992) found the empirical positive feedback loops 

of inflation (feeding inflation) and debt-deflation (feeding on debt-deflation) 

as a support for his financial instability hypothesis. He stated ‘the economy 

does not always conform to the classic precepts of Smith and Walras’ 
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already back in the seventies. The Economist (2003, p.1) brought his work 

to the attention as ‘never been more pertinent’, referring to his criticism on 

the growing reliance on too narrow rational models and growing reliance of 

economists on mathematics. Later, after stock market crashes, the efficient 

market theory came under further attack. Behavioral economists saw the 

market bubbles as evidence that the markets are irrational and not perfect. 

Others argued that we lack understanding of the fundamentals of valuation 

of securities, but the question remained why rational investors do not 

arbitrage away bubbles. 

Economic forecasts are usually communicated through precise numbers, 

often without a range of uncertainty, which of course cannot be realistic 

given the limitation on both the input, the assumptions and the model itself. 

An assumed sense of accuracy without range of uncertainty poses a risk to 

decision making. Indeed, the close relationship between economic theory, 

with amoral valuation of goods and services, and its use in practice for 

political purposes distorts the pure economic profession. When politicians 

demand a calculation of the economic effects of their proposals, they 

want clear numbers that are easy to communicate and which support their 

political goals. This leaves little room for uncertainty. This presents a trap 

for economists who dare not express the limitations of the models and the 

uncertainty that goes with them. 

Rodrik (2017) addressed the issue of critics on economic modelling by pointing 

at overconfidence from economists about the model they use. He stated 

that the real failings originate from behavioral and sociological aspects of 

the economic profession, from mistaking a model for the model, from having 

a categorical preference for certain axioms, from having a preference for 

questions that are amenable to available tools of analysis and from implicit 
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attitude about how much economists know, recognition of economics as 

portfolio of models (rather than looking at the model) and being open to 

developing new models. Besley and Hennesy (2009, p.9), on behalf of the 

British Academy Forum, acknowledge the models don’t work when you need 

them the most: ‘These views were abetted by financial and economic models 

that were good at predicting the short-term and small risks, but few were 

equipped to say what would happen when things went wrong as they have’. 

However, even short-term forecasts require quarterly updates as was shown 

with an example in the introduction (chart 1.1). 

Many economists admit they did not see the last economic crisis coming, 

as with other crises, and some wonder why economics seems to be blind to 

failures or crises in a market economy. Shiller (2015) said ‘economists failed 

to forecast most of the major crises in the last century’, as was the case for 

previous severe crises. But as he argues, doctors also fail to predict diseases. 

This suggests we may not expect proper prediction, but why do economists 

then produce so many economic forecasts? The failure of prediction has also 

been demonstrated in the study by Loungani (2001) who found that only two 

of the 60 economic recessions that occurred over the sample period 1989-

1998 were predicted a year in advance (see introduction). Besley and Hennesy 

(2009) write that many people did foresee the crisis, however, the form, 

timing and ferocity were foreseen by nobody. There were certainly warnings 

about imbalances and risk in financial markets, but seems hard to act, change 

and avert a crisis. There also seems to be a kind of acceptance, to deal with 

consequences when they arrive, as stated by Besley and Hennesy (2009, p.9): 

‘There was a broad consensus that it was better to deal with the aftermath 

of bubbles in stock markets and housing markets than to try to head them 

off in advance’. Part of the explanation could be that nobody really had the 

overview of total risk to the system. Like Perrow’s (1999) observations on 
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becomes vulnerable to unknown risks and accidents and no single authority 

has the overview of the system, is in control or has jurisdiction.

The recent economic crisis made very clear that the models didn’t work. 

In a speech drawing lessons from the crisis for macroeconomics and finance 

theory, Trichet (2010, p.7) said ‘When the crisis came, the serious limitations 

of existing economic and financial models immediately became apparent’ 

and ‘As a policy-maker during the crisis, I found the available models of 

limited help. In fact, I would go further: in the face of the crisis, we felt 

abandoned by conventional tools’. The key lesson he draw was ‘the danger 

of relying on a single tool, methodology or paradigm. Policy-makers need 

to have input from various theoretical perspectives and from a range of 

empirical approaches’. He calls for learning from other disciplines which 

already recognized the complexity of systems, using agent-based modelling 

in economics and taking into account the non-linear behavior of the 

financial system and its pro-cyclical build-up of leverage and vulnerabilities. 

In ‘The Origin of Wealth’ Beinhocker (2006) describes in a clear and 

rather confrontational manner the limitations of mainstream economic 

models. He describes the shortcomings, explanations and consideration 

for alternatives. He explains that presently used models lead to incorrect 

predictions and under- and overestimation of economic indicators. 

Obviously simplified economic forecasts, presented with exact numbers, 

even for long-term parameters such as economic growth, suggest we know 

what is coming, and government policies are based on such economic 

predictions. Indeed, the precise numbers provide, unjustifiably, comfort 

because of their ease of use in politics and communication. We all know 

how often these numbers are adjusted, while sudden changes are rarely 

forecasted. With wrong models we draw wrong conclusions and make 
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oversimplified medical test. The example in the introduction of the multiple 

revisions of IMF’s world trade forecasts also shows the magnitude of the 

inaccuracy: real world trade was only half of the 5.5% forecasted 2 years 

earlier (see chart 1.1) so the error is in the same magnitude as the bandwidth 

of the quantity measured. It is likely that the longer term economy cannot 

be predicted at all, but people need predictions because we do not like 

uncertainty, and predictions do work for the physical world like seasons and 

gravity. Beinhocker states that the neoclassical model that lies at the heart 

of traditional theory was built on a misused metaphor. Without realizing 

it and with the best intentions, the late-nineteenth-century economists 

borrowed from physics a set of ideas that fundamentally misclassified the 

economy as a closed equilibrium system. He says a system in equilibrium 

lacks the internal dynamics to respond to its environment and will slowly 

die, a system in chaos ceases to function as a system. System dynamic 

studies indicate that the most productive state seems to be at the edge of 

chaos, a zone between stability and chaotic turbulence. That’s where there 

is maximum variety and creativity, leading to new possibilities and the best 

chance for survival. 

In an article in the Financial Times Taleb (2007) makes a firm stand against 

some of the financial economics that do not take into account rare events: 

Markowitz’s portfolio theory would be incompatible with rare events like a 

stock market crash. He warns that business schools still teach these theories 

while lessons from market crashes and booms are ignored. It seems we do 

not learn from rare events, continue to employ the same models and are 

again surprised by the next rare event. Being misinformed is worse than 

being uninformed. Taleb (2010, p.252) also expresses criticism on the Black-

Sholes formula and variants, that assume normal distributions and take 

standard deviation as the measurement of risk. This equation for calculating 
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use and it produces precise prices, though its limitations were clearly stated. 

The price of an option is derived from the directly measurable quantities 

time, asset price and risk-free interest, supplemented with an estimate of the 

volatility. The volatility is probably hardest to estimate and could have a large 

effect on the resulting option price. The model assumes volatility to remain 

constant over time and does not cope with sudden or extreme changes of 

volatility (in other words, it works in Taleb’s so-called mediocristan world 

but not in an extremistan world). Over time, people forget about such an 

assumption and limitation, the outcome gets taken for granted but could be 

off when the assumption is not met. 

Besley and Hennesy (2010), on behalf of the British Academy Forum propose in 

their ‘Financial and economic horizon-scanning: developing an early warning 

capacity’, raising several issues to improve preparedness to economic shocks 

like caused by the recent financial crisis. They refer to economies that are 

inevitably unstable, to the genuine uncertainties of the financial and economic 

system which cannot be quantified, and to the challenge to understand 

discontinuities. An open mind needs to be encouraged to try anticipating what 

economic and financial shocks may occur in future. Besley and Hennesy (2010, 

p.13) call for ‘an environment which provides sufficient criticism of assumptions 

and is open to considering a wide range of possibilities’ and show how difficult 

this is to achieve: ‘The hierarchical structures and histories of our many 

organisations provide a major challenge to making this work effectively. It was 

even suggested that there should be a rule that allows nobody to work in a 

particular position of responsibility for more than eight years.’

To summarize, economic crises are rarely predicted, the models in use fail to 

forecast sudden changes and disruptive events in the economy. There must 

be something missing in the models, the assumptions or the data. Model 
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be used. The models’ reliability is at stake. Although dynamics and behavior 

has been incorporated in economics, hardly any economists foresaw the latest 

financial and economic crises. Something has to change.

3.8 Improving economic modelling through  
recognizing complexity
In the last decades alternative views in economic thinking have attempted to 

better deal with dynamics and the behaviour of single agents. Actually going 

back hundreds of years, Smith already wrote on the complexity in the social 

sciences representing one of the earliest and most cohesive discussions of 

the topic. Later, Schumpeter recognized the characteristics of innovation and 

change in the economic flow, causing spontaneous change, discontinuities 

and disturbance of equilibrium. He defined economic development through 

creative destruction. The entrepreneur has incentives to innovate causing the 

economy to be dynamic and disturbing the equilibrium state.

Hayek (1945, 1967) presented early ideas of economic thinking in evolutionary 

systems, though at that time it was limited to mapping biology models 

onto the economy. In his development of arguments he anticipated many 

of the key themes of complexity economics. Although he emphasized the 

importance of equilibrium, he expressed doubts on the linear mathematics 

and he came up with alternative models introducing complexity economics. 

At that time, computer power to experiment with the theory was limited; 

complexity needs computational modelling to analyze the complex interaction 

of agents and their environment. Hayek argued that in practical terms, 

it was impossible for any central planner to acquire all information needed 

to calculate correct prices; there is a knowledge coordination problem as all 

knowledge lies scattered all over society. Deductive rationality is simply not up 

to the job of understanding, predicting and planning in a system as non-linear 
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from which the economic calculus starts, are never for the whole society 

“given” to a single mind which could work out the implications, and can never 

be so given’. Information is dispersed, incomplete, contradictory and possessed 

by all individuals, it is a problem of utilization of knowledge which is not given 

to anyone in its totality. You cannot take a picture of a complex system, only 

a movie. Hayek defined that ‘a social system is complex if all information that 

is needed to describe the state of the system at any point in time cannot be 

collected at one point’. 

Georgescu-Roegen (1986), trained by Schumpeter, was one of the first to 

look at evolutionary theory and physics for answers to the shortcomings of 

traditional economics and in 1971 published ‘The entropy law and the economic 

process’. He noticed the contradiction between neoclassical economics and the 

physical energy characteristics of the economy. His take was that economic 

systems exist in the real physical world and therefore they must obey the same 

law of entropy as everything else in the universe does. If the universe cannot 

escape the second law, then neither can economics. Economic activity is 

fundamentally about order creation, and evolution is the mechanism by which 

that order is created. Schumpeter called this evolutionary process ‘creative 

destruction’ and highlighted the importance of risk-taking entrepreneurs to 

make this evolution work through contributing to the prosperity of a society. 

Georgescu-Roegen’s alternative view and criticisms were never seriously 

answered by the economic establishment, see Georgescu-Roegen (1997). It was 

Prigogine and Stengers (1997) who delivered the insight that the evolutionary 

process in biological and sociological systems does not lead to chaos; rather it 

adds value resulting in higher level of organization. They refer to the arrow of 

time and the constructive role of irreversible processes through which nature 

achieves complex structures and structure, only being possible in a non-

equilibrium universe. Clearly the economy is not as a closed equilibrium system, 
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drifting away from a stable state; more specifically, it behaves as a complex 

adaptive system. If it were a closed system, then there would be a trend 

towards lower order of complexity and structure over time.

In the mid-eighties, a famous meeting took place in Santa Fe, in the US. 

Top scientists (both economists and physicists) exchanged ideas on major 

questions of life and discussed concepts of adaptation and emergence. They 

established complexity as a new branch of economic thinking, approaching 

challenges in society in a holistic way, based on the interaction of independent 

agents who adapt to each other and to their environment, from which new 

dynamics emerge. This goes beyond the old reductionist approach. Complexity 

in economics does not assume tendency to equilibrium in the marketplace, 

it rather assumes self-organization more or less following the mechanisms of 

evolution and may cause the economy to move in a zone between stability 

and turbulence, called the edge of (order and) chaos. Most of the initial 

theories are postulated by economist Arthur, one of the participants of the 

SFI meeting. The Santa Fe Institute (SFI) was born, studying complexity across 

all kinds of disciplines. Waldrop (1992), describes the formation of the SFI, 

the participants and their ideas, and states that particularly the diversity of 

people and ideas advanced the thinking about complexity much more rapidly 

than would otherwise be possible. The multidisciplinary approach of SFI is an 

asset to allow for broader scope. However, nowadays complexity economics is 

still not widespread and meets resistance from traditional economic thinkers. 

The Organization for Economic Cooperation and Development (OECD) 

launched in 2015 an initiative called New Approaches to Economic Challenges, 

to renew and strengthen policy instruments and tools. They look in particular 

at complexity economics. The OECD (2015, p.3) states that ‘The starkness 

and magnitude of the recent crisis and its lingering legacy calls for a serious 
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a new policy agenda for stronger, more resilient, inclusive and sustainable 

growth’. From debating the issue the OECD (2017, p.4) concludes that 

‘Economists and policy makers have failed to appreciate the complexity of 

human behavior and the systems in which we live. A complexity approach 

allows us to look at systems of systems consisting of vast numbers of 

individual elements that interact in complicated ways, such as ecosystems, 

financial markets, and energy networks, or societal phenomena such as 

urbanization and migration.’ 

In that meeting 

 ▪  White (2016, p.5) dismisses the dominant thought of modelling the economy 

(using DSGE models) as a totally understandable and changeless machine. 

He calls for viewing the economy as a complex adaptive system, like a 

forest, with massive interdependencies among its parts and the potential 

for highly non-linear outcomes. A lesson learned is that crises are inevitable 

in a complex system, therefore: ‘we must have ex ante mechanisms in place 

for managing them’. He finds that ‘the trigger for a crisis is irrelevant, policy 

makers should focus on interdependencies and system risk and identify 

sign of potential instability building up and to react to them (e.g. built up of 

credit and debt levels). Complex systems can result in very large economic 

losses much more frequently than a normal distribution would suggest.

 ▪  Hoogduin (2016, p.11) calls for the ‘modesty principle’, being modest about 

what can be achieved with economic policy, as economic policy cannot 

deliver specific targets for economic growth, income distribution and 

inflation. This modesty principle also implies refraining from detailed 

economic forecasts as a basis for policymaking and execution. He states 

that ‘societies and economies are complex systems, but the theories used to 

inform economic policies predominantly neglect complexity’, and similarly 

humans have to deal with uncertainty rather than assumed risk. 
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could have helped policymakers: ‘A team of researchers at Yale and 

several other universities have constructed a detailed bottom-up model 

of the housing market which shows the bubble in a new light. Unlike 

conventional top-down models, which show gentle self-correction, 

the team’s ‘agent-based model’ showed the bubble bursting and markets 

crashing. The team modelled various policy responses to the housing 

bubble using real data. Conventional wisdom has been that sustained 

low interest rates following the 2000 dot-com crash were the primary 

cause of the housing bubble. But in the model raising the interest rates 

did not prevent a bubble forming, but tighter regulation of banks almost 

completely eradicated it.’

A number of people realize the financial market is complex but this insight has 

still not been sufficiently elaborated since. According to Rickards (2014, p.269) 

‘Complexity has not been warmly embraced by mainstream economics, in part 

because it reveals that much economic research for the past half-century is 

irrelevant or deeply flawed. Complexity is a quintessential example of new 

science overturning old scientific paradigms. Economists’ failure to embrace 

the new science of complexity goes some way towards explaining why the 

market collapses in 1987, 1998, 2000, and 2008 were both unexpected and 

more severe than experts believed possible’. But as far as known, those 

working on complexity economics are not yet in a position to forecast crises; 

if they were it would have helped boost this approach among economists. 

At least complexity offers a way to understand the dynamics of feedback 

loops through recursive functions, it allows experimentation with modelling 

disruptive events and could prepare us for ‘strange’ outcomes. Better to be 

vaguely right than exactly wrong. In the next chapter we will look more into 

complexity economics, modelling and some results. 
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modelling and acknowledged the economy being an evolutionary or 

complex system. Although complexity economics receives more attention in 

economic science lately, it is still not common and still meets resistance from 

traditional economic thinkers. Today’s available computer processing power 

opens up better modelling possibilities for economic science, although 

compared to other sciences there is relatively little data available about the 

economic processes, except for financial transactions data. 

3.9 Education
Much of what has been found as an answer to why we experience disruptive 

events as unexpected relate to how we think, what we assume and how 

we model. Here, education plays a very important role. If one wants to get 

better prepared for unexpected events, it is necessary to break out and 

challenge assumptions, models and the like and dare to look at alternative 

ways to avoid running in circles. It is challenging to have the formal 

educational system evolve at the same speed society is changing. Some 

put it quite firmly, like Hinssen (2014) when he claims society still has the 

old educational system from King Frederick William I of Prussia. With the 

goal of producing obedient workers for the mines, soldiers, well-subordinated 

civil servants to government, clerks in industry and citizens who thought alike 

about major issues. This would equalize the conditions of man.

It turns out that considerations described in this chapter are rarely embraced 

in the education system. Usually we start with only linear counting in primary 

school,  and basic equilibrium seeking economic models teaching in secondary 

schools. Still little attention is paid to non-linearity, chaos and complexity 

thinking in higher economic education and the same holds for business 

schools. It looks like lessons from market crashes and booms lead to virtually 

no fundamental changes in the educational approach, while in the meantime 
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This lag obviously reinforces blind spots in thinking for future society, it is 

neglect of part of the outcome space. Insufficiently adapting the teaching 

materials, assumptions and models would leave us unprepared and again 

being surprised by the next rare event. We risk spreading misassumptions 

through education which strengthens the continuation of errors.  It would be 

wise to spend more attention to complexity economics, and more generally, 

to the application of power laws, exponentials and non-linear behaviour of 

systems. If illustrated with practical examples teaching power laws and other 

non-linear behavior could even start in primary schools, when the mind is very 

open to new approaches.

Permanent education is important to basically everybody and holds in 

particular for teachers as they teach the next generation who deserve to 

learn new and alternative models. Even if they go with higher uncertainty or 

use a less stylistic math. Computational modelling could be supportive and 

fun at school, and allows experiments to watch alternative system behavior 

and study effects of changing assumptions. Methodological improvement 

could be made by better utilizing information technology in education. On-

line learning delivers different and situationally better learning experience 

than class lessons, for instance as it could accelerate learning through direct 

feedback, and could help a teacher to show a broader variety of views 

on a certain problem or solution. Thanks to the ubiquitous availability of 

telecommunications, universities can now reach a wider public more easily 

through Massive Open Online Courses (MOOCs). Also other on-line education 

offerings (such as Udacity, Kahn Academy and channels like TED talks) could 

contribute to spreading alternative views to a potentially broad public. It is 

yet unclear whether these alternatives deliver better education, at least they 

allow for reaching a wider public and spreading alternative views easier and at 

low cost. 
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disruptive events, in particular by broadening the scope to a wider variety of 

models and techniques, to build up experience with non-linear and chaotic 

behavior of the economy. 

3.10 Conclusions
A multitude of possible answers has been provided in an effort to explain 

why people often experience disruptive events as unexpected. These answers 

cover both things we do not expect as we simply never thought about them, 

and things we have been thinking about, for which we accepted the risk, 

but then neglected or forgot it. 

It turns out our brain seems to prefer a quick answer based on heuristics 

rather than a well-calculated accurate answer. A consequence is that 

we wrongly estimate long-term risks. The human brain seems to prefer 

handling averages and normal distributions. We have a hard time imagining 

the consequence of exponential or power law functions, and consequently 

misjudge low probability high impact events. If such shortcomings on 

individual level are recognized, we could use structures or methods to protect 

society from such shortcomings. 

However on the level of economic forecasting and policy we use economic 

models that suffer from other significant shortcomings. Important risk 

models do not help warn us of the biggest risk of all, as they don’t work 

for the exceptional situations with very small probability and very high 

impact. Besides risk, people have difficulty dealing with uncertainty. 

We would rather use simple numbers and easy math than deal with 

uncertain outcomes, also as we fear losing face with communicating 

uncertainty. Economic models still often work with unrealistic assumptions 

on equilibrium seeking of markets, linearity, and using averages and normal 
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situations and have rarely forecast an economic crisis. Education using such 

models reinforces the continuation of mindset.

We clearly need other tools to cover the whole spectrum of probability, 

the unlikely events, as they cause big changes in economy and society. 

Complexity economics has been recognized as a promising road, though is 

still not common and needs to receive more attention and less resistance 

from traditional economic thinking. However, since the last crisis leading 

policymakers are astonished their models did not warn them, and now there 

seems more interest in renewing models using from complexity theory. It is 

key that we urgently update education programs too. Teaching non-linear 

behavior, power laws and complexity should start at an early age so avoid 

deepening a linear bias , allowing experimentation with non-linear models 

and chaotic system behavior. 

The philosopher Hume said ‘It is not reason which is the guide of life, 

but custom’. Too often we extrapolate the past, keep doing what we have 

always done. As argued in this chapter, we risk continuing being oblivious 

to the fat tails and phase transition, and being surprised by the next 

unexpected event.
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unpredictable, driven by the growing influence of new technologies in our 

daily lives. These technologies are mostly network-based IT services that 

show exponentially curved growth. Both the network features and the 

exponential growth of computer capacity add more complex behavior to our 

systems. We also saw people have a hard time dealing with non-linearities 

and disruptions. Economic models dominantly in use cannot deal with non-

linearities and chaotic behavior, and assume tendency to an equilibrium 

situation as output. However, there are clear signs that the economy acts 

like a complex system which would clarify disruptive moments and non-

equilibrium seeking dynamics. 

This chapter discusses three types of suggestions to better deal with 

complex behavior in order to get better prepared for the unexpected. 

First, complexity theory seems to be a much better fit to describe the 

interactions in our economy, tending more to the edge of chaos rather 

than seeking a state of equilibrium. It starts with an explanation of complex 

adaptive systems, showing the main characteristics and consequences, 

followed by further support of complex behavior of the economy. Next, 

examples of models of complex adaptive systems are provided. Second, 

further suggestions to better deal with complex behavior are focused on 

improving system design and resilience, looking at natural systems that are 

evolutionarily robust to absorb sudden events without the destabilizing 

the system. Third, suggestions are provided to improve education, to give 

complexity a more prominent place in economics. Let us return to the 

definition of complex systems and look at the main characteristics.

4 Suggestions to 
improve preparedness 
for unexpected events
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A complex system is defined as a system in which large networks of 

components with no central control and simple rules of operation give 

rise to complex collective behavior, sophisticated information processing 

and adaptation via learning or evolution, see Mitchell (2009). It models the 

behavior of agents, individuals and their interactions. One could differentiate 

between complex adaptive systems and non-adaptive systems, although 

most complex systems are adaptive. Adaptions means the systems change 

their behavior to improve their chances of survival or success through 

learning or evolutionary process. Reductionism doesn’t work for complex 

systems. Reductionism has been dominant for many centuries with the idea 

to divide the difficulties under examination into parts, to understand the 

parts and the whole is the sum of the parts. However Einstein’s relativity 

and quantum mechanics changed the world and marked the end of a 

reductionist era. The whole could be more than the sum of its parts, also 

called antireductionism. Physicists use complexity to explain the very small 

(quantum mechanics) and very large phenomena in the world (galaxies), 

however complex phenomena close to the human scale, such as human 

behavior, remain rather unexplained. 

Complex systems are related to chaos theory, both are a branch of 

mathematics. Lorentz (1963) is considered as the founder of chaos theory, 

which looks at dynamic systems that are highly sensitive to initial conditions. 

Chaotic systems are deterministic, show randomness, but also underlying 

patterns, repetition and self-organization. Lorentz is famous for the insight of 

‘butterfly effect’, which describes how a small change in an initial condition 

(the flap of a butterfly’s wings in Brazil) can result in a large difference in a 

next state (set off a tornado in Texas), which obviously forms a big challenge 

to predict system behavior. Lorentz is particularly known for the so-called 

‘strange attractor’. An attractor is a virtual point, a state or a range of states 



115where a system stabilizes, irrespective of a wide range of initial conditions 

in the system. A strange attractor typically occurs in chaotic systems when 

initial conditions of a process are very close to one another but after several 

iterations a path around two (or more) points arises, for instance in the 

shape of an eight. So, such a system is sensitive to the initial condition, a local 

instability, but shows a globally stable, complex outcome. Attractors play an 

important role in the emergence of order in a system. A main question in 

understanding a system (chaotic, complex) is to know what the attractors are. 

The properties of chaotic systems can be found in complex system behavior. 

However complex systems have a broader definition, they have more degrees 

of freedom, have elements that are only partly independent. They both deal 

with the dynamics of the parameters, but complexity also with the dynamics 

and structure of the system itself, and how it interacts with its environment. 

We call systems like brains, insect colonies, cells, the immune system, 

the global economy and biological evolution, complex and adaptive. 

The question is how those systems in nature produce such complex and 

adaptive behavior from underlying simple rules. Despite the simple rules, 

the behavior of a group of actors, agents, becomes complex because of 

adaptation, which as we saw is influenced by preferential attachment. 

Agents organize themselves from which new, higher order patterns or 

behavior emerges. Such higher order structures and behavior have new 

and different properties that emerge from the lower level interaction and 

the self-organization. Emergence has been nicely framed by Holland (1998) 

with ‘The hallmark of emergence is the sense of much coming from little.’ In 

complex adaptive systems agents adapt to one another but also to higher 

structure and to the environment. Evolutionary behavior arises when the 

system creates possibilities of which some are chosen and further developed. 

Barabasi  and Bonabeau (2003) show how various complex systems have an 

underlying scale-free network that evolves through preferential attachment, 
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refers to self-organized criticality being the foundation for catastrophism. 

There is a tendency for large systems to evolve into a critical state, out of 

balance and sensitive to avalanches. Most of the changes take place through 

catastrophic events rather than by following a smooth gradual path. Real-

life operates at a critical point between order and chaos. Although complex 

adaptive systems may show stability, they are not in control and are not 

perfect. They are most stable when variety and diversity are present.They 

could end in equilibrium, but mostly do not and evolve in coevolution, on the 

edge of chaos and away from equilibrium. Typically large fluctuations cannot 

be prevented by local adjustments and any small behavior in the critical 

state of a complex system will eventually affect everything in the system. 

There is neither a single science of complexity nor a single complexity theory 

yet. There are many ways proposed for how we could measure complexity, 

but no universally accepted way has been agreed by scientists yet. Mitchell 

(2009) describes several possibilities for measuring complexity, such as 

thermodynamics, fractal dimensions and hierarchy. 

A main question is how to compute or predict the outcome of complex 

behavior. You can use models to simulate the behavior of agents, 

use probabilities and distributions. When more and more information is 

obtained, concepts get recognized and dominant patterns arise which 

makes the outcome more deterministic. But deterministic does not mean 

predictable. Chaotic systems are deterministic, i.e. no randomness in the 

process so their behaviour is determined by the initial condition, but these 

systems are sensitive to small changes in initial conditions and therefore 

show unpredictable behaviour. Like the weather, a small distortion may lead 

to a major change. Complex systems, with even more degrees of freedom 

and dynamic structures, cause their own unpredictability and are inherently 
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complexity models, as Bak (1996, p.9) said ‘at most, the theory can explain 

why there is variability, or what typical patterns may emerge, not what the 

particular outcome of a particular system will be’. Timing is hard and the 

consequences of triggers may vary. 

A prediction is a statement about an uncertain event, often based on 

knowledge or experience. Prediction is often what we are looking for, 

in particular since we have so much data, but it is far from obvious because of 

complex behavior. Kelly (1956) revealed the deeper patterns about the nature 

of prediction for a type of gambling, known as the Kelly criterion. He described 

the mathematics for the case of having an information or statistical edge and 

how to maximize benefits from asymmetries in information and statistics. 

The power of the Kelly criterion is the fact it is a simple formula which forms 

a heuristic in a situation of uncertainty, however the use of this criterion is 

limited to some systems. The human success of prediction is quite limited: 

the biggest discoveries in the world were not predicted. Larremore and 

Clauset (2017) suggest that we do not see big discoveries coming just because 

they reorganize how we thought the world worked, they view big discoveries 

as valuable precisely because they are fresh and new whereas predictions are 

based on historical patterns. They also state that in the age of bigger data and 

better algorithms, researchers are discovering straightforward systems that 

appear to be fundamentally unpredictable, as well as complicated systems 

whose behavior is surprisingly predictable. 

Finding the organizing patterns and at the same time challenging the limits 

to prediction are at the core of complex systems research. Miller and Page 

(2007) clarify that complexity can produce predictions. Although any outcome 

of the model differs from others as the rules contain random features, 

a large set of outcomes produces a distribution of outcomes providing an 
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distribution outcomes are more accurate than the precise looking numbers 

from traditional models, but probably perceived as harder to deal with in 

policymaking requiring learning and changing habits. It is difficult though 

for the human brain to deal with complexity. Complexity models such as 

agent-base models, could be used to identify signals of growing instability, 

for instance a steep growth of debt, and model what reaction would be best. 

They could deliver policymakers the insight that a small increase of a high 

debt level could just be too much and makes the complex system chaotically 

moving into a different phase. Policymakers could use such models to reduce 

outcomes of economic instability. 

4.2 The economy as an evolutionary complex system
Complexity theory could be used to explain the dynamics of the economy 

and the financial system. The dynamic behavior in the economy is widely 

recognized as being complex as shown in the former chapter, but complexity 

is still not widely applied and deserves much more attention to provide better 

insights in economic behavior, to improve economic (financial) systems and to 

develop early warning systems. 

Limited rationality in behavior of individual agents has been recognized 

by economists. Simon (1957) viewed agents as bounded-rational agents, 

as rationality is limited by the information and time available, as well as 

(willingness) to process all available information. So individual agents often 

act rationally within their scope of possibilities. The higher order patterns that 

could emerge show (a perceived) irrational outcome or politically unwanted 

outcome. Recognizing the interconnectedness and adaptive characteristics 

of agents, the emergent order that arises from individual agent behavior and 

network effects like path dependency of events are key to improving our 

understanding of developments that may lead to sudden events. Typically 
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edge of chaos and may lead to some major shift, crisis or phase transitions. 

For example Gladwell (2000) shows changes do not happen gradually in 

society, rather radically, like the fall of crime in a city. The change propagated 

like a virus, a few little causes lead to big effects, fast, radically and dependent 

of context. Inherently to complex systems small changes may lead to totally 

different outcomes as passing a tipping point causes the small feature 

to break through and becoming dominant. Collective behavior in society 

clearly does not follow a linear path. Another complex system effect in the 

economy, not grasped by mainstream models, is the dependency of history. 

Gladwell (2008) views outliers in society as successful partly by hard work 

(the famous ‘you need at least 10,000 hours of practice’) but also cultural 

legacy is of importance. Success partly arises out of the steady accumulation 

of advantages, like when and where you were born, what your parents did 

for a living and what the circumstances of your upbringing were, all make a 

significant difference in how well you do in the world. So the path followed 

is relevant, in other words history matters. Path dependency is a positive 

feedback mechanism in the network and clarifies many higher order patterns 

in the economy. Complexity models fit such progression, whereas mainstream 

models miss such dynamics and may produce wrong conclusions. 

The complexity of human behavior causes the economy to behave as a 

complex system. We see copying behavior by individuals, resulting in positive 

feedback loops triggering herd behavior, and groups of people acting together 

from which self-organized behavior emerges. Economic growth is an 

emergent property. Beinhocker (2006) explains ‘trades happen bottom-up 

and are self-organized, there is no full control over the whole chain of trade; 

there is no one in charge of the global economy.’ As explained earlier there 

is no central control in a complex adaptive system. The effect of attempts to 

control are rather uncertain as the complex behaving system will react in a 
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depends very much on the (critical) phase it behaves. Beinhocker states that 

our rationality and creativity feed and shape the workings of the evolutionary 

algorithm in the economy, but do not replace it. The evolution discovers 

designs, through a process of trial and error. A variety of candidate designs 

are created and tried out in the environment; designs that are successful are 

retained, replicated and build on (the amplification), while those designs that 

are unsuccessful are discarded. It is the way how (small) businesses usually 

work with prototyping and quickly improving and trying. Beinhocker (2006, 

p.15) says: ‘Despite all the strength and virtues of human rationality, prediction 

in a system as complex as the economy over anything but the very short-

term is next to impossible’. All we can do is to build in more resilience in the 

system and to recognize and identify signals of distortion. 

Beinhocker (2006) sees the economy as an evolutionary complex adaptive 

system. He sees evolution as an algorithm, not just biological, rather an 

all-purpose formula for innovation, it creates new designs through trial 

and error and solves difficult problems. This process consists of three steps: 

differentiation, selection and amplifications, which together according to 

Beinhocker form the process of economic wealth creation. His idea that the 

economy is an evolutionary system is a radical idea and contradicts with 

standard economic theory from the past century, however it is not new. 

It seems that Darwin was inspired by economist Malthus for his theory on 

the formation of new species, which then influenced economic thinking in 

evolutionary systems by Schumpeter, Hayek, Nelson and Winter. However 

it had too little impact and traditional thinking around economic equilibria 

remained. Dennett (1995) called evolution a general-purpose algorithm 

for creating ‘design without a designer’. Evolution would be information 

processing, it creates order in computer software, in the mind, in human 

culture and in the economy. Assume that both economic and biological 
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systems. Evolution consists of a powerful three step formula of differentiate 

ideas, select, amplify the best one(s) and reiterate. The vital ingredients of 

‘survival of the fittest’ are adaptation and cooperation. These characteristics 

can be applied ubiquitously to the survival of an idea, organization or 

economy, so evolution can be seen as the algorithm that can reliably and 

quickly find good designs in an enormous design space, be it in biology, 

economy or technology.

In the economic evolution, Beinhocker (2006) identifies three sub-processes: 

the development of 1) physical technology, such as tools, machines, chips, 

software; 2) social technologies, i.e. ways to organize people to do things, such 

as the assembly line, and which impacts our interactions and changes the 

way we used to live; and 3) business models, which turn physical and social 

technologies from concept into reality, via products and services. He sees 

business designs as evolving over time through a process of differentiation, 

selection and amplification, with the market as the ultimate arbiter of fitness 

and technology often changing the business model and creating different 

business opportunities. From this evolutionary point of view, one sees that 

companies have an interest to not only focus on growth and profit, but also on 

endurance. Adaptability is important to remain relevant and to survive, though 

experimenting with and investing in new and risky technologies could be 

challenging if that would cannibalize own cash cows (as we saw in the Kodak 

example before). This idea is in line with Christensen (1997), who clarifies that 

boards risk not seeing the future importance of a new development, and if 

an idea is perceived as less important it won’t get the resources; whereas 

assigning resources to promising technologies could continue near future 

cash flow. The evolutionary approach puts more emphasis on continuity and 

endurance, and sees profit as a support to these goals, in the interest of all 

stakeholders including the shareholders.
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Beinhocker (2006, p.214) emphasizes the endogenous part of evolution, 

as it is not assisted by an outside designer or programmer. He views 

the evolutionary process of technologies as a process of ‘sifting from an 

enormous space of possibilities’, with errors creating copies not quite 

identical, with good replicators get replicated and evolution ultimately 

selects for building blocks that support replication, supporting their own 

replication (i.e. ‘selfish’, compare with Dawkins’ selfish gene). From this 

perspective a virus is a replicating disruptor. Information processing is key 

in this evolution and communication of humans, i.e. spoken and written 

language, amplified information processing has speeded up this evolution 

process. The evolution algorithm creates order from randomness. ‘From 

simple random beginnings, the algorithm creates complex designs that 

are ‘ordered’ from the point of view of the fitness function. All evolutionary 

processes operate in open systems, so in effect the algorithm harnesses 

energy to decrease local entropy and turn randomness into order’. 

A consequence of no central control is the limited use of attempts to 

centrally steer the economy or financial system. The political focus on GDP 

growth and the central bank’s focus on targeting a certain level of inflation 

are at least immodest in a system context of no central control. Rickards 

(2014) sees the central bank top-down approach being in contradiction 

with complexity theory and warns inflation targets fit equilibrium thinking 

which neglects the positive feedback loop that emerges, which leads to 

even higher inflation. Along the same lines, Hoogduin (2016, p.11) argues the 

need to recognize the complexity of the economy and the fact that agents 

do not face risk about the future rather uncertainty which is by definition 

unpredictable. As a consequence he argues that ‘economic policy makers 

would be wise to stop pretending that they can deliver what they cannot. 

This insight implies that many current policies should be discontinued. 
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pass the modesty test. This principle also implies refraining from detailed 

economic forecasts as a basis for policy making and execution’. 

Summarized, it is likely that the economy is as an evolutionary complex 

adaptive system. The three-way coevolution of physical technologies, social 

technologies and business designs account for the patterns of change 

and growth we see in the economy, following an evolutionary process of 

differentiation, selection and amplifications. The adaptability in the system 

is key to surviving this evolutionary process. The evolutionary complexity 

approach helps us to model the selection and adaption mechanisms in the 

real economy and clarifies why those who do not adapt, get disrupted. 

The approach leaves no room for central control.

4.3 Examples of models of complex adaptive systems
One of the earlier models known for accepting chaotic outcomes is the 

cobweb model. It acknowledges that lack of perfect information and 

adapting expectations can lead to instable outcomes, though one can 

question whether it models a complex adaptive system. The cobweb model 

describes supply and demand that periodically fluctuate, like in agriculture 

markets, when price and amount produced are set at different moments 

in time. The outcome of the model shows a web of demand and supply 

fluctuations, which could convergence to equilibrium but also diverge to 

chaotic price fluctuations. Hommes (1994) investigates a non-linear cobweb 

model with adaptive expectations (an S-shape supply curve) and proved 

chaotic price dynamics occur generically, showing chaos may occur under 

simple and reasonable economic assumptions.

Agent-Based Modelling (ABM) is probably the most known and used 

way to model emergent behavior in a complex system. ABM is a class of 
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with their own goals and behaviors, which can any moment react to each 

other and to the environment. The agents can learn and adapt their behavior 

according to certain decision-making rules. For example, agents could be 

banks, consumers, producers and governments, who all react to each other 

and to the outcome those agents together create. One can test forecasts, 

strategies and actions for survival within a certain set-up. From the agents’ 

interactions economic occurrences emerge. One could experiment with 

initial settings to study stability and desirability of outcomes. ABM are 

scalable, dynamic, process oriented repeatable and low-cost. A well-known 

software example for agent-based modelling is NetLogo, developed by 

Wilensky at Northwestern University. 

ABM certainly does not assume tendency towards an equilibrium, like 

mainstream economics does, it actually starts to assume non-equilibrium as 

the natural state. This way you can cope with the fundamental uncertainties 

(Knight; Keynes) of agents that do not know what they face. Equilibrium 

may be the outcome of the model, and it may not be. Schelling’s model of 

segregation from 1971 is probably one of the oldest agent-based models. 

He modelled social integration in neighborhoods through testing how 

to achieve the lowest number of unhappy people. The model shows 

adaptation of agents leads to more segregation and no stable equilibrium 

while the expectation was that equally spreading people would result in an 

equilibrium and robust social integration outcome. 

A valuable introduction to ABM, the objectives and set-up is provided by 

Miller and Page (2007). They discuss the Forest Fire model, an interesting 

implementation of an ABM showing the dynamics of agents’ behavior 

to reach an optimal macro outcome to protect a forest, see explanation 

in section 2.4. A number of other models for complex adaptive social 
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computational modelling. The main other models are:

 ▪  Cellular automata: each agent’s behavior is driven by the same 

generic rule.

 ▪  Social Cellular automata: accept the notion that all agents employ 

a common, fixed rule; socially acceptable behavioral rules; outcome 

symmetry; rules looking at local copy behavior.

 ▪  Majority rule model: assume that agents attempt to take actions that are 

consistent with the majority of their neighbors. Could be deterministic, 

or have random elements to capture features such as mistakes, 

experimentation, and tendency to bias choices imperfectly.

 ▪  Models to deal with the “Edge of chaos”: systems at the edge of chaos 

have the capacity for emergent computation. Systems that are too simple 

are static and those that are too active are chaotic, and thus it is only at 

the edge between these two behaviors where a system can undertake 

productive activity. If we attempt to incorporate more delicate behavior 

by adding more structure to a rule, we are likely to make the underlying 

system less robust. Because the structures necessary for delicate behavior 

require an underlying system that is rich in possibilities, it need to fall into 

the right state with only a gentle tap and could lead to unpredictable 

results. The edge of chaos captures the essence of all interesting adaptive 

systems as they evolve to this boundary between stable order and 

unstable chaos.

Let us look at a number of examples of agent-based models. A famous 

application of agent-based modelling is the ‘Santa Fe artificial stock market’. 

It is an agent-based market that generates several features resembling actual 

financial data and investors’ choices, and allows a financial market to be built 

with several trading strategies. Like an evolutionary mechanism, successful 

strategies remain and gain influence, weak strategies could disappear and 
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stock markets, it does not assume fully rational investors, nor perfect efficient 

markets. The earlier version of the market is described by Palmer et al. (1994), 

key results of this version and further developed ones can be found in Arthur 

et al. (1997), while LeBaron (2002) describes the design questions that went 

into building the market. 

Simon (1996) discusses various tools for analyzing complexity. He looks 

at artificial systems in various disciplines, in search of understanding the 

natural and artificial (man-made) world and investigates the implications 

of artificiality for complexity. He also looks at the importance of hierarchy 

in complex systems and shows how complex systems evolve from simple 

to complex more rapidly through intermediate forms, causing hierarchical 

complex systems. Looking at the behavior of an agent, Simon (1957) explained 

in earlier work that agents make bounded-rational decisions. They cannot act 

fully rationally because of uncertainty and cost of information, they use limited 

information and look at satisfactory rather than optimal payoffs. This is line 

with Kahneman’s heuristics and biases as described before. 

A variety of complexity modelling has been performed on financial 

systems, studying the interaction of large numbers of interacting agents 

with heterogeneous goals and behavior. LeBaron (2000) analyzed the 

results of a number of studies and finds that these studies reveal very 

different perspectives on traditional theoretical thinking and provide new, 

important and very different approaches to mainstream economic modeling. 

The following studies are analyzed by him: one that deals with evolution and 

learning in a population of traders; another with trading experiments seeking 

the amount of ‘intelligence' necessary to generate the results they were 

seeing; one on a simulation of more complicated foreign exchange market 

structures; another that focuses on ideas of uncertainty and information in 
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finally one on a neural network based market structure where agents trading 

takes place in a random matching environment. 

Further on heterogeneity, Hommes (2006) reviews a number of dynamic 

heterogeneous agent-based models that describe financial markets as 

a complex system. Agents are assumed to be bounded-rational agents 

as defined by Simon (1957). Heterogeneous agents use different decision 

processes, and a decision by one agent impacts the others who learns 

dynamically or through forward looking. These models include non-linear, 

chaotic and evolutionary features and can be used to explain important 

dynamics in financial markets, such as ‘excess volatility, high trading volume, 

temporary bubbles and trend following, sudden crashes and mean reversion, 

clustered volatility and fat tails in the returns distribution’ (p.2).

A further example is shown by Van den End (2017), who applies complexity 

theory to interest rates. Complexity helps to illustrate that accelerating 

dynamics in a financial system with too much liquidity could face a critical 

transitions to a new state, a bifurcation, caused by the excess liquidity. 

At some level of excess liquidity the system can become unstable and shift to 

a new stable state. It may well be just a small, even unexpected, trigger that 

drives the system into the critical transition, followed by a positive feedback 

looping bringing the system to a new (stable) state. He concludes with ‘The 

complexity approach provides central banks a new framework to assess the 

(unintended) consequences of their interventions in financial markets’ (p.26).

The various examples of computational modelling show a variety of 

possibilities for analyzing the complex dynamics of systems, and they 

indicate how changes in parameters could lead to non-linear and sometimes 

disruptive changes in system behavior. The area is still in development, but it 
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disruptive events. In order to better understand the systems we use as well as 

to better understand the impact of (small) changes we make to our systems, 

computational modelling should be used more often. 

4.4 Resilience, diversity and the opposite of fragility 
Taleb (2012) shows that adding robustness (redundancies, buffers) to a system 

is not enough, or is simply not the answer. He argues the goal should be to 

make a system or network the opposite of fragile, namely antifragile which 

means it becomes stronger when it is kicked (like our immune system). 

Antifragility is beyond resilience or robustness; the resilient resists shocks and 

stays the same whereas the antifragile gets better. It is like hormesis: a small 

dose of harmful substance is actually beneficial for the organism and acts as 

medicine. Thanks to the small dose of toxin, the body can resist higher levels 

of toxicity and so becomes stronger. Similar with vaccination, injecting a little 

illness to activate the immune system to get prepared for a much tougher 

invasion of the same illness. Examples by Taleb of systems having this feature 

are: evolution, culture, ideas, revolution, political systems, technical innovation, 

recipes and bacterial resistance. Antifragile loves randomness and uncertainty, 

and even errors. It benefits from uncertainty and chaos. Antifragility allows 

us to deal with the unknown, to do things without understanding them and 

do them well. Taleb reasons that we are better at doing than at thinking 

so you are better off being dumb and antifragile than extremely smart and 

fragile. He continues that (anti)fragility is easy to detect by using a simple test 

of asymmetry: anything that has more upside than downside from random 

events (or certain shocks) is antifragile; and the reverse is fragile. To stay on 

the safe side we need to respect variety, and limit the dose of anything to 

about half of its maximum. That means on an S-curve of growth one should 

stay on the convex part (the left side) to remain antifragile, as the concave 

part represents (a move to) fragility; see chart 4.1. It represents something 
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with monotone growth and bounded, e.g. a dose, or wealth, anything. 

From left to right something becomes gradually more effective, but further 

to the right the dose becomes ineffective and may hurt, i.e. the system 

becomes fragile.

In practice, many man-created systems have become very much fragile as 

the focus shifts towards short-term interference. Taleb (2012, p.10) warns to 

‘engage in policies and actions, all artificial, in which the benefits are small and 

visible, and the side effects potentially severe and invisible’. As examples he 

mentions doctors who tend to deny the body’s natural ability to heal and give 

medications with potentially very severe (long-term) side effects; economists 

who mistake the economy for a machine that continuously needs fixing; 

and financial specialists who make people use risk models that destroy the 

banking systems. Taleb says the blindness to fragility is caused by selective 

memory and absence of skin in the game, as those who have skin in the game 

prefer simplicity over complexity, and operate more fluidly following own 

convictions. The same holds for flexibility over precision. Precise models and 

precise preconditions, using detailed mathematical techniques, often lack 

flexibility in the phenomena that we can explore, whereas computation models 

represent an interesting trade-off between flexibility and precision. However, 

Chart 4.1 A convex-concave diagram: growth from left 
to right, from antifragile to fragile

Convex

Concave

Source: Taleb.
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causes a problem. There is a big risk that, while seeking efficiency, we build 

more and more systems vulnerable to black swans, of which the odds are 

not computable. The rarer the event, the less tractable and the less we know 

about how frequent its occurrence. We have to take into account that people 

underestimate randomness and underestimate (long-term) harm. 

Haldane (2009) addresses the emergence of two characteristics of the 

financial network, i.e. complexity and homogeneity. He finds that these 

characteristics make a financial network 1) both robust and fragile, 

a property exhibited by other complex adaptive networks; 2) whose 

feedback under stress actually adds to the fragilities through a positive 

feedback loop; 3) the emergent behavior amplifies uncertainty in the 

pricing of assets; 4) innovation increases further network dimensionality, 

complexity and uncertainty; and 5) diversity has eroded lowering the 

resilience of the system. Robust and fragile could apply to the same 

system, namely robust when still on the convex side where the network 

can afford losing a few randomly selected vertices and fragile when at the 

concave side where the network could fall apart when losing a few of the 

largest vertices. Haldane provides three explanations for the robust and 

fragile property of interconnected networks. First, these networks have a 

tipping point property. In the range before that point, connections offer 

alternatives and diversity, so absorb shocks and provide overall robustness, 

however beyond that tipping point fragility increases when connections 

serve as shock propagators. Second, he refers to others who found that the 

longer-tailed distribution feature of many complex systems (like internet, 

food webs and payments systems) seem to make them more robust to 

random disturbances compared to normal distributed systems, but more 

vulnerable to targeted attacks. Third, he concludes that the small-world 

property, known from the six steps chain letter experiment by Milgram 
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networks quickly have a global reach. This would clarify why relatively small 

disturbances of banks in some smaller European countries caused such a 

wide-reaching disturbance in the financial network. Similarly a local cyber-

attack could have far reaching implications because they propagate fast 

through a network lacking diversity and variety. Recall that from the general 

characteristics of complex systems typically large fluctuations cannot be 

prevented by local adjustments and any small behavior in the critical state of 

a complex system will eventually affects everything in the system. 

If one takes the complexity characteristic as a given, the solutions for 

keeping the financial network resilient is in staying well before that tipping 

point, that is the area with diversity among the players. Policies should 

focus on retaining diversity and incentivize creating more diversity among 

actors to counter a trend towards homogeneity. If indeed homogeneity is 

a characteristic of the financial network, one could conclude that this is a 

design error as it increases fragility and lowers resilience. This conclusion 

would fit the outcome of the forest fire model in which homogeneity led 

to a critical situation whereas heterogeneously adapting agents made 

the system less fragile (and even led to higher productivity of the system). 

The opposite actually happened to the financial system, the diversity and 

variety has diminished lately causing risk to (the longer-term) continuity 

and resilience of the system. As we saw, Taleb (2012) calls for systems that 

actually improve from disturbance, like the human immune system, which 

is a good example of adaptability. Evolution and discovery can handle 

disturbance and tend to get better, they have a high degree of adaptive 

capacity. He views the present policies with bailouts and assumed statism 

not only makes the system weaker, but it blocks economic evolution and 

prevents this mechanism from letting the economy become stronger and 

less fragile.
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stability. The challenge is to design an antifragile financial system, or add 

antifragility features to the system, in order it to handle what Taleb (2012, p.13) 

calls the ‘extended ‘disorder family’: uncertainty, variability, imperfectness, 

incompleteness of knowledge, chance, chaos, volatility, disorder, entropy, time, 

the unknown, randomness, turmoil, stressor, error, dispersion of outcomes and 

un-knowledge’. We saw that these characteristics fit (natural) evolutionary 

complex adaptive systems and an artificial (financial) system should be 

designed following the characteristics of such complex systems as discussed 

earlier. Consequences for the present system would be: diversity among 

vertices and rich in possibilities, no vertices ‘too big to fail’, skin in the game, 

simple rules for agents and vertices and an immune system to make the whole 

system antifragile. 

When discussing systems at the edge of chaos, Miller and Page (2007, 

p.139) question the edge of robustness. Their modelling shows that fine-

tuning these systems creates a tension: ‘As we attempt to incorporate more 

delicate behavior by adding more structure to a rule, we are likely to make 

the underlying system less robust. This is because the structures necessary 

for delicate behavior require an underlying system that is rich in possibilities. 

In essence, we need a quivering system that will fall into the right state 

with only a gentle tap. In such a system, an improper tap can lead to very 

unpredictable results. Adaptive systems have to deal with the tension between 

the benefits of achieving precise behavior and the cost of increased system 

fragility. One hypothesis is that adaptive systems will have a bias towards 

emphasizing simple structures that resist chaos over more complicated ones 

that handle difficult situations.’ 

In sum, every system that does not like volatility, does not like stressors, harm 

and chaos. Robust systems are neither harmed nor helped by volatility and 
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limited size, simplicity and adaptability of actors or subsystems are key to keep 

the system resilient. 

4.5 Suggestions for improving the financial system to 
handle complexity
The recent financial crisis shows that the interconnectedness of financial 

institutions led to uncertainty whether or not a threatened bank, i.e. a vertex in 

the network, could be missed in the networked system. From Perrow’s (1999) 

‘normal accident’ theory we learned that the combination of highly complex 

and too tightly coupled components causes the biggest risk of accidents in 

systems. Moreover, diversity and heterogeneity of actors and technology limits 

the vulnerability of becoming too tightly coupled. Perrow advises to either 

completely redesign systems that are too complex and too tightly coupled, 

or abandon them. Mezias (1994) analyzed the savings and loan crisis (S&L, 

US 1986-1995) and finds a fit with Perrow’s theory. Mezias argues that the main 

causes of that crisis were not the commonly mentioned fraud, mismanagement 

and unusually high inflation rate, rather the very tight coupling between firms, 

auditors and the state. He argues the institution’s offerings became increasingly 

the same and inadequate regulatory responses to the changing circumstances 

exacerbated the tight coupling. He argues that the institutional environment 

added tightness to the system. He views isomorphic pressure from regulation 

and the accounting profession made the firms more similar, and the huge jump 

in the ceiling of the deposit insurance made the government suddenly the 

big guarantor, which led to high risk taking across the whole S&L sector and 

to a tight coupling among all depositors. The tight coupling caused a cascade 

of failures. They all followed the same, wrong model. Mezias (1994, p.190) 

concludes ‘Public policy must be designed to avoid catastrophic accidents. 

The way to do this is either to reduce the complexity of these systems or to 

reduce the tight coupling among constituent units of these systems’.
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vertices that have a very high number of edges (a high degree) are the main 

spreaders in a network and removing one or a few of them has destructive 

effects on the whole network (‘too big to fail’). From a network design 

perspective ‘too big to fail’ is a design error, and so are tight couplings. Such 

vertices cause uncertainty in society over the question whether indeed they 

will be rescued, they cause moral hazard and high cost to society for rescue 

and indirectly for uncertainty and loss of trust in the system. There must be 

private benefits, but for society benefits are limited, if existing, and turn into 

a huge cost transferred to others if it fails. Ten years after the recent financial 

crisis the problem has not been solved. It is not only the financial system that 

deals with players ‘too big to fail’, the issue has been at stake with private 

producers of telecommunications, energy and cars; and in the meantime we 

also have become dependent on private network platforms that dominate 

a sector be it search engines, retail or messaging platforms. For the private 

sector, ‘too big to fail’ should simply be avoided because the cost of failure to 

society is by definition too high. Therefore resilient networks should reasonably 

limit the degree of a vertex such that one or a few of them can be missed 

without destabilizing the whole network. 

For public infrastructure one can argue that centralized solutions are beneficial 

to society as benefits from scale efficiencies are passed on to society in a fair 

manner while proper governance avoids excessive costs for society. However, 

inherent vulnerabilities of such centralized solutions remain, even when 

mitigated with proper business continuity measures such as alternative sites 

and secured access. Think about software bugs that affect all sites, cyber-

attacks and hacks from within the organization. 

Systemic risk in the financial system refers to risk of instability of the financial 

system, either caused by a failure in one of the financial market infrastructures 
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to reduce systemic risk in the financial system would mean to design an 

infrastructure with a diversity of many institutions, limited in size, with optimal 

interconnectivity and some hierarchy. Optimal interconnectivity means 

institutions should not be coupled too tightly, nor should their environment 

be, as described by Mezias (1994). In a loosely coupled system, one or several 

bank failures would not lead to systemic risk but be absorbed by the system 

and resolution measures. Also the financial market infrastructures should have 

natural features that make it survive (an operational) failure, for instance by 

a decentralized set up using variety in implementation. Global services and 

efficiency benefits for customers can be achieved in such a network, global 

actors are not the only way to achieve such goal. The argument that big players 

are a necessity to offer global reach for large customers is one of efficiency for 

the actor, but cost for the system. Rickards (2014) proposes to break up large 

banks, so that bank failures are not a threat to the system anymore. They are 

not necessary for large financing, as a lead bank can organize a syndicate. 

It would not avoid bank failure, but bank failure would not pose a threat to the 

system anymore and its cost would not threaten society. 

The argument of efficiency is true at some level, but creates cost at a 

higher level (system, society) in the longer term (monopolistic behavior, 

dependencies). Compare with the original set-up of the internet where there 

was no systemic problem if one or a few webservers went down; unfortunately 

also here our governance model has allowed for dominance by a few larger 

players that put the natural redundancy concept at risk. In contrast, today 

we try to deal with dominant players in our systems, be it banks, platforms, 

hospitals, schools or cities, and the dominancy seems to grow. The concept of 

evolutionary complex adaptive systems allows us to reconsider the present 

set-up of the systems based on centralized solutions and a few big players that 

have become ‘too big to fail’. 
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that on system level we can afford a few ones to go into resolution or default. 

That means the natural mechanism of preferential attachment to a successful 

financial institution needs to be maximized (technically the power law 

growth would be bended off to some kind of S-curve). The financial system 

could become stronger from a default as it creates room for more diversity 

in players. It also creates room for new and potentially better ideas, from 

both new and existing players, which can be selected by them, and amplified 

through the evolutionary characteristic of the complex system. 

We also need a mechanism to keep the rules simple, challenging the present 

legislative and governance framework, and for instance affecting supervision. 

There seems to be bureaucratic reflex to act, to intervene, with more rules 

and treatments rather than taking the opportunity to simplify and allow the 

system itself to heal. The system should be capable of experiencing several 

relative small painful events (illness, a fire, bank failure or cyber-attack), they 

are natural and allow the system to absorb, to correct and to remain robust 

and become antifragile as after the fire there is room for diversity and new 

players. According to such approach, badly managed banks or governments 

should fail in order to avoid a large unmanageable fire. For self-healing 

behavior Taleb (2012) refers to the medical phenomenon iatrogenesis, i.e. 

harm caused by the healer. Like harm to an individual undergoing treatment 

because some of the group gain from the treatment but the net loss from the 

treatment is in excess of the benefits; the damage is often hidden or delayed. 

Examples are bloodletting, unnecessary operations shortening life expectancy 

and antibiotics. Taleb (2012, p.113) puts it firmly as ‘anything in which there 

is naïve interventionism, nay even just intervention, will have iatrogenics’. 

Interventionism comes from the need to do something and depletes mental 

and economic resources. Part of the problem is the centralized control 

mechanism that prevents the evolutionary mechanism from healing the 
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although meant as healing, are moral hazard, wrong incentives to bank 

management, further borrowing beyond affordable levels, hollowing out 

savings and pensions, delayed restructuring of the financial system and 

of government budgets, loss of trust, more rules and increased costs of 

regulation. 

An important mitigator of fragility is ‘skin in the game’. Taleb (2012) states 

that an entrepreneur typically has skin in the game, a corporate executive 

does not. Citizens have, bureaucrats do not, and activists have, politicians do 

not. He makes us aware that most of the power is in the hands of those who 

do not have skin in the game. We see the transfer of fragility and antifragility 

from one party to the other with the power going to the ones without skin 

in the game. It looks like lack of courage. Mechanisms are necessary to 

incentivize ‘skin in the game’. 

There is also a need for better mechanisms to manage risk that arises from 

the increased interconnectedness. The technological development and 

increased connectedness have improved existing services, made them faster, 

less prone to errors and brought us new services. Financial services have 

dramatically improved with straight through processing and direct access 

to the account. But the widespread connectivity has also caused an increase 

of system risk because interruptions can faster propagate through a more 

interconnected network and infect other actors (e.g. cyber-attacks, liquidity 

risks). Society has also become more sensitive to attacks on stored data 

and the ubiquitously distribution of sensitive data, such as money transfer 

instructions, password updates, credit card data stored at web merchants, 

but also the distribution of false news. Surveillance, crime and terror can 

make use of similar possibilities through information technologies and 

already show the weaknesses in our information prone society. The impact 



138 of events is getting larger through the network, requiring mechanisms to 

protect the integrity of data as well as the continuity of service. 

Concluding that capital markets are complex systems has profound 

implications for regulation and risk management because the power 

law function at systemic scale causes the risk to accelerate following the 

power law. Richards (2014, p.11) describes two implications: 1) 'stress tests 

based on historic episodes such as 9/11 or 2008 are of no value’; and 2) ‘the 

proper measure of risk is the gross notional value of derivatives, not the 

net amount’. On the limited value of the stress tests based on historical 

data, imagine looking back at a power law curve to see a slowly increasing 

curve, while looking ahead on the same curve it goes steeply up, so one 

may expect risk to explode through the power law with the growth of 

the market. On his remark regarding risk measure, indeed the emerged 

behavior of settling net amounts becomes a new normal system behavior 

with large liquidity savings. However in a sudden, abnormal situation, if a 

few of the larger actors fail and cause the netting to fail, the other actors 

are left with much larger positions, potentially up to the sum of their gross 

positions. The gross notional value of derivatives is huge, a multiple of world 

GDP. According to the Bank for International Settlements (BIS), outstanding 

positions in over-the-counter derivatives markets in notional amounts 

outstanding reported by dealers, totaled USD 544 trillion at end-June 2016, 

of which 62% was centrally cleared. According to the World Bank the 

world GDP 2016 totaled USD 75 trillion. His point is that the non-linearity 

characteristic of the financial system is overlooked, derivatives increase the 

interconnectedness and systemic scale of the financial system and if the 

system size doubles risk would not double but increase much more due the 

power law characteristic. In sum, the risk of financial products need to be 

viewed in the context of the interconnected network and kept limited as risk 

follows a power law in a complex system. 



139It is important to acknowledge that complex problems not always require 

complex solutions. Simple solutions actually often tend to offer a robust 

answer. Heuristics can be seen as a tool to deal with complex situations, 

in particular with uncertainty, as described in chapter 3. Other tools are 

trial and error, follow the crowd and past is like future. Heuristics are useful, 

though we need to recognize when heuristics are actually an inaccurate but 

fast solution and when heuristics are a superior solution compared to other, 

complex, solutions. Shortcomings of heuristics are caused by a limited use 

of information in order to save time. Experimental evidence shows investors 

do not discount as assumed, they have biases regarding risk and have 

framing errors. Heuristics also leads to preoccupation, by  negative news and 

exceptions, and consequently not being open to new data and methods but 

seeking confirmation of what is already known. These inaccuracies cause us 

to lose sight of the low probable, disruptive events. Heuristics may give us an 

illusion of control, believing we have control over chance events. Benefits of 

heuristics are that they are simple and easy to implement. People usually know 

that heuristics are not perfect, but it becomes dangerous when they forget. 

Kahneman (2011) concludes that we need heuristics for decision making, 

because our brain has limited processing power and time, and simply does not 

know all data and probabilities. Taleb (2012) states heuristics being favorable 

over regulation, as legislators have a tendency to make complex regulation; 

insiders are the enemies of the ‘less is more rule’. Gigerenzer (2016) calls for 

studies that deal with uncertainty systematically and sees heuristics as a way 

to deal with uncertainty systematically. He says good decisions under risk do 

not transfer to good decisions under uncertainty and heuristics can improve 

decision making under uncertainty. He shows that complex problems do not 

always need complex solutions. He illustrates this with a ball player. Catching 

a ball is a complex problem, but a player solves the problem by constantly 

estimating and adjusting rather than calculation (fix your gaze on the ball; 
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constant). The heuristic is the focus on one variable while ignoring all other 

information. A ball player also decides intuitively; a challenge is to work out 

the underlying heuristics and to teach it. It shows that less can be more, 

ignoring the information pays because it reduces estimation error. Another 

example he gave relates to an investing problem, showing that spreading your 

money equally over all assets proves to be more profitable than the so-called 

Markowitz mean variance portfolio model. The reason is that the estimation 

of all the parameters, not the calculation, makes the model too complex. 

These examples show simple heuristics could do better, safer and faster 

than complex models. This conclusion differs from the one from behavioral 

economists, like Kahneman (2011), who say that people want quick answers 

but pay the price with accuracy. Gigerezer’s view is that only in the world of 

risk is that conclusion true and heuristics always second best. But in the world 

of uncertainty, heuristics can be better, safer and faster. Most models are 

typically made for risk where we know the probabilities and then fine-tuning 

pays. In case of uncertainty, fine-tuning does not pay, it makes the model 

more fragile and leads to surprises. Under uncertainty, robustness needs to be 

the goal, not optimization. It is therefore key to distinguish between situations 

of certainty (risk) and uncertainty. Uncertainty has many more dimensions 

than certainty. Even if you know the possible outcomes, you do not know 

the probabilities, so therefore you cannot optimize. It is not about people 

being irrational, people are rational and it would be a rational choice to use 

heuristics. 

Finally, AI may help improve our decision making in cases where our brain 

unjustly neglects the low probability chances. An AI algorithm could be used 

as a fast thinking extension of our slow thinking brain to improve the accuracy 

of our fast but inaccurate brain. A simple example is an electronic calculator, 

a more advanced one is an adaptive cruise control that adapts smoother than 

many car drivers do. The potential of AI as a brain extension is enormous. 



141In summary, the complexity characteristics of the financial system have 

profound implications for regulation and risk management. The inherent 

sudden changes are from an overall risk management perspective unwanted. 

We need to strike a better balance between efficiency of actors and the 

vulnerability of the system. Suggestions for improvements of the resilience 

of the financial network are: stay at the convex side of the network, before 

the tipping point. Limit the size of financial institutions to avoid ’too big to 

fail’. Create diversity of actors. Take care for diversity of applied technology to 

protect against targeted attacks. Keep the rules of the system simple. Demand 

skin in the game to keep responsibilities and risk together. Use heuristics to deal 

with uncertainty provided that measures are taken to alert for inaccuracies and 

black swans that heuristics usually neglect, for instance AI tools.

4.6 Complexity and education
We face a number of challenges for adopting the concept of complex 

systems. In order to get better prepared for unexpected events we need more 

awareness of our misconceptions, inaccuracies, narratives and the like as 

described in chapter 3. We also need to be more aware of the overestimation 

of the use of our models with their limitations in scope and utility and their 

flaws in assumptions. We saw that assumptions on equilibrium and linearity 

are a misconception and do more harm than good. They make people believe 

outcomes are reliable and make them ignorant to alternative views and 

probability distributions. It will be challenging to release the assumption 

of equilibrium because most of the economic literature is based on it and 

outcomes may get questioned as complexity models may produce different 

outcomes. Causes of unexpected events should be endogenous to the model 

and not be blocked by the model’s preconditions. Also uncertainty intervals and 

distributions should be part of the outcome, even if they are large. This way we 

get a wider variety of outcomes like distributions. Consequently we have to 

accept the uncertainties in the outcome, whereas in the mainstream models 
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means abolishing the precise looking, though inaccurate, long-term prediction 

that some economic forecasting models produce, as they do insufficiently take 

into account real-world non-linearities. Accepting that the economy is full of 

non-linearity, bifurcation and other chaotic behavior requires a regime change 

towards using complexity models that allow for extreme outcomes. 

Change starts with education. Adults must learn a new approach and 

partly unlearn hypotheses and assumptions that are incorrect. That is quite 

a challenge. Reprogramming our own brain is tough as habits are deeply 

embedded in our brains, change in habits is hard and involves individual risk 

taking. Schools face the challenge of renewing the educational programs 

that have been used for so long. For economics, complexity is a new science 

overturning the old scientific paradigms, which means many teachers need to 

go back to school. As referred to earlier, Rickards (2014) concludes complexity 

has not been warmly embraced by mainstream economics, in part because it 

reveals that much economic research for the past half-century is irrelevant or 

deeply flawed. Resistance to change is to be expected. For students complexity 

need to be brought in a coherent way while complexity theory is still very 

much in development. Fichter et al. (2010) describe a method for teaching 

complex and evolutionary systems. Their point of departure is to overcome 

a number of impediments. One is the dominance of linear and equilibrium 

thinking and training in schools, which requires students to be familiar with 

mathematical principles and techniques that are presently not systematically 

taught. Another is the problem that evolution is now only linked to biology but 

needs to be taught in a wider scope. And there is the lack of both an agreed 

definition of complexity theory and rubrics for introducing chaos and complex 

systems and for modelling. Fichter et al. present answers to these challenges 

and propose classifications, representations and a list of rubrics to facilitate 

teaching and understanding the whole concept and its coherence. 



143The evolutionary complexity concept can also be used to further improve 

the educational system. Learning follows the same evolutionary path with 

emergence, path dependency and the stages of selection and amplification; 

looser structure and more randomness. Rather unstructured, it is key to offer 

a wide spectrum of opportunity to students, at any age. Random tinkering 

(antifragile) leads to heuristics, diversity, experience and skills. Taleb (2012) 

ironically paraphrases our educations system by ‘lecturing birds how to 

fly’: we teach students what to do what they would do anyway without 

help. With no attention for what failed and no attention for what hurts 

(iatrogenics). We could learn from games how to motivate students and let 

them grow through levels of difficulty which is more motivational than many 

of the framed assessment schemes presently in use.

Both complexity theory and exponential technologies deliberately ignore 

the boundaries of disciplines. To improve modelling and preparedness of all 

kinds of dynamics, research could benefit from a more holistic view of the 

matter. Like studying neurobiology and psychology to better understand our 

brain, brings us closer to understanding the economic behavior of agents. 

Knowledge of probability science to understand the impact power laws 

have on growth and developments allows us to better understand system 

dynamics, impacts of networks and exponential technologies and help us to 

recognize criticalities. We must abandon the absolute and embrace the realm 

of probability.

Adhering to the concept of complexity means making changes in the way we 

organize our work traditionally. Thinking in linearity and equilibrium limits our 

view on the real world. Many (large) organizations are designed to execute 

tasks, which are fixed per worker and an organizational chart reflecting 

the position in the hierarchy. That is Taylorism from industrial processes 

a century ago. In contrast, start-ups and larger organization with a clear 



144 (transformative) goal and a loose structure to achieve such goal, work more 

dynamically and are better adaptors. They follow an agile and lean approach, 

which challenges people to try, tinker and build a prototype within days or 

weeks, make a minimum viable product, test it with customers and improve it 

from there. This is applicable to basically anything, from a piece of hardware, 

software or professional advice. Such a lean approach stands for embracing 

emergent behavior. Allowing failure is part of this concept because there 

is no trial without error; it is part of the evolution formula. Entrepreneurs 

are risk takers, and risk taking is an inherent feature of man. A motto like 

‘failure is not an option’ is perfect for communicating the high level of service 

a company aims to achieve, but once internalized too far into the internal 

culture of an organization would make people rigid and the organization more 

vulnerable to disruption. Risk avoidance is not an option, one should allow 

for experimentation which means ideas and prototypes could also fail; by the 

way, doing nothing is also a risk. One should take intelligent risk. Failure has in 

many cultures a negative connotation, or is simply not allowed, so a change 

in culture is needed in order to free the emergence of ideas. The track-record 

of existing organization to innovate and adaptation to change is limited, 

see Christenson (1997), Hagel and Brown (2008, 2010) and Ismail et al. (2014). 

This is caused by the way they are organized, the inflexible processes, the way 

risk is taken and the dominant efficiency thinking. Hierarchy is an efficient 

mechanism when a limited number of well described processes have to be 

executed, but are a hindrance to the process of letting ideas emerge. 

4.7 Conclusions
This chapter looks at ways to get better prepared for unexpected events. 

The economy is assumed to behave like an evolutionary complex adaptive 

system. Such systems assume no central control and show emerging patterns 

that are different from the sum of individual behavior; such systems may 

show stable outcomes, but also critical states. Stable outcomes usually do not 
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a pile of sand that grows when you add sand following a power law, but at 

a certain point added sand becomes too much for the pile and a disruptive 

change happens totally changing the shape of the pile. The chaotic and non-

linear characteristics of the economy and the financial system in particular 

should be recognized and as the cause of disruptive events and agent-based 

models could help to understand the non-linear behavior of economic and 

financial systems. 

Complexity has been explained, as well as the evolutionary aspects of the 

economy and examples of models are provided. Suggestions are made for 

improving the financial system, along the lines of keeping the system simple 

and divers, as heterogeneity helps resilience of the system. We need a kind of 

immune system for the financial network which not only protects the system 

from instability but also improves its resilience to other attacks. 

Adopting complexity theory in education and institutions faces resistance as it 

creates uncertainty over the existing theories and assumptions, and the work 

done based on traditional models. This is a plea for moving ahead in economic 

modelling, away from the assumed equilibrium thinking towards embracing 

evolutionary complex adaptive systems.





147The spread of digitized services using networks has an increasing impact on 

the dynamic behavior of the economy and the financial system, reinforces 

them behaving as an evolutionary complex adaptive system leading to more 

disruptive events. People have a hard time dealing with disruptive events, 

even when such events can be imagined. Several explanations have been 

addressed, from brain functioning to mainstream economic models, which 

prevent us from understanding the complex behavior of the economy. 

Suggestions are made to get better prepared for disruptive events.

The growth of information technology will produce more non-linearities in 

the economy, because:

 ▪  A rapidly growing number of products and services are digitized and shift 

to an information-based environment. Once information-based, the pace 

of development grows exponentially because price/performance doubles 

about every two years and global networks accelerate the use of services.

 ▪  The networked society allows smart ideas to develop at accelerating 

speed, following a power law feature of the network and using 

the evolutionary blueprint of rapid idea generation, selection and 

amplification, potentially disrupting existing business. The result is more 

disruptions, shorter lifetime of companies and faster emergence of new, 

global dominant platforms, but also substantial price decreases because 

of dematerialization of products which leads to abundance.

 ▪  The result is more complexity in the economy. This trend continues as 

these exponential technologies potentially transform any economic 

sector, emphasizing the urgency to recognize the economy as an 

evolutionary complex adaptive system. 

5 Conclusions



148 We often experience disruptive events as unexpected, because: 

 ▪  We think less than we think we do, we are sensitive to several biases 

and prefer stories over facts; we have a tendency to confuse risk with 

uncertainty.

 ▪  We have a preference for short-term solutions and favor short-term gain 

over long-term risk, our perception of time is biased underestimating 

long-term risk and overestimating short-term risk.

 ▪  We tend to assume linearity and quickly grasp averages and normal 

distributions; whereas we have difficulties with thinking in non-

linearities, power laws and discontinuities like phase transitions.

 ▪  Mainstream economic models incorrectly assume homogeneity of 

agents, completeness of information, little room for uncertainty and an 

equilibrium of outcome. In times of stability these models could be of help 

to provide direction for the short-term, but warnings for crises and other 

disruptions cannot be expected, and require a different approach.

 ▪  Mainstream economic models do not recognize that the economy 

behaves as an evolutionary complex adaptive system, which shows self-

organized criticality and other higher order patterns that could be but 

often do not tend to equilibrium situations. 

Suggestions to better understand and prepare for unwanted non-linear 

behavior and disruptive events:

 ▪  Accept the economy is an evolutionary complex adaptive system and not 

in equilibrium by default.

 ▪  Use computational agent-based models to prepare for emerging higher 

order patterns in the economy. Such models help us to imagine potential 

behavior like self-organized criticality and disruptions and allow us to 

experiment with impact of policy changes and their sensitivity. These 

models could present us a distribution of likely outcomes. 



149 ▪  Apply these models for short-term projections and accept that prediction 

and central control do not fit in complex systems because small events 

may cause big changes. 

 ▪  It is recommended to allocate more resources to computational 

modelling in order to understand the systems we use and to analyze the 

(non-linear) impact (small) changes to the system may have. Our hands 

are not tied, people deal with many more complex systems around them. 

It will however take time, money and a change of mind to build up vast 

experience with such alternative way of modeling.

 ▪  Recognize that growing dependency on information services causes 

further complex behavior and requires to adapt systems to better cope 

with the features that complex systems characterize. The longer-tailed 

distribution feature typically makes systems more robust to random 

disturbances compared to normal distributed systems, but more 

vulnerable to targeted attacks. 

 ▪  Strike a better balance between efficiency of actors and the vulnerability 

of the financial system. Limit the size of financial institutions to avoid 

‘too big to fail’ and take care for diversity of actors, necessary to hold the 

system at the convex side, before the tipping point and keep it robust. 

Beyond that point the system becomes fragile. 

 ▪  Incentivize skin in the game to keep responsibilities and risk together. 

Keep the rules of the system simple. 

 ▪  Heuristics could be used to deal with uncertainty provided that measures 

are taken to cover the inherent inaccuracy of overlooking out-of-scope 

small probability, large impact events. Artificial intelligence tools could 

serve to keep us alert for our inaccuracies of overlooking long-tail events. 

 ▪  Limit the impact of an unwanted disruption: systems under uncertainty 

need robustness as the main goal, not optimization. Namely we do not 

know when lightning strikes, but we know it will, which leaves us no 

other option than to limit the impact of a disruption. 



150  ▪  Choose resilience over efficiency also in centralized public infrastructure 

solutions. Even with business continuity measures like alternative sites 

and secured access in place, inherent vulnerabilities such as targeted 

attacks remain. Mitigate these risks by applying diversity in technologies, 

and by keeping the system simple and adaptable. 

 ▪  Make the financial system antifragile by applying an immune system 

which improves it when being attacked. Examples would be a learning 

algorithm to improve cyber defense automatically when being attacked; 

or a large company disrupted by several new ones, adding diversity to the 

system and improving the industry’s level of service.

 ▪  Change education to teach complex adaptive systems and related 

models, and teach the shortcomings of the mainstream models. Start 

with the math of power laws and exponentials already at primary school 

to show the non-linearity of life.
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