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1. Introduction

We aim to calculate the impact on the Dutch economy of energy policy scenarios, at the level

of industries (1 or 2-digit). More in particular, we use a multiregional Input-Output (IO)

model to calculate the sectoral price effects of a CO2 tax. Furthermore, we are interested in the

additional price effects of substitution. With substitution we mean using a different technology.

The standard IO price model can be used for scenario analyses, i.e. imposing a CO2 tax.

Calculations are typically based on fixed IO data for a recent year, however. Such an approach

is very useful for short horizons in which the mixture of capital, labour and energy in production

cannot be changed.

With longer horizons we need to take into account possible factor substitution effects of

relative price changes, e.g. resulting from a CO2 tax. CO2 pricing aims at substitution from

energy inputs towards more capital/labor intensive production. Additionally, CO2 pricing may

lead to a greening of the electricity mix.

In this report we describe extensions of the standard Leontief IO price model to take into

account substitution effects. In a nutshell, the methodology consists of a variable IO model

allowing for a more flexible production structure. We distinguish two types of substitution.

First, we discuss substitution of primary inputs (capital-labor) for energy. Key input for this

type of substitution is an assumption on substitution elasticities between production factors.

The estimation of production functions helps us to identify substitution elasticities within

sectors. Second, we consider the case of substitution between types of electricity production.

The leading example is substituting electricity production generated by coal for electricity

generated by gas.

The remainder of this report is as follows. In Section 2 we describe how conventional IO

analysis can be used to evaluate the sectoral quantity and price effects of a CO2 tax. In Section

3 we describe substitution between energy and capital/labor inputs. In Section 4 we discuss

substitution between electricity input types. In Section 5 we describe how we constructed

country level price aggregates to summarize IO results at the macro (country) level. Finally,

in Section 6 we discuss estimation of quantity effects.
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2. basic Input-Output model and pricing CO2 emissions

2.1. quantity model

Consider an economy1 of n sectors. Denote with xi total output (production) for sector i. The

following equation2 describes how sector i distributes its product through intermediate sales to

other sectors (zij) and final demand (fi):

xi = zi1 + zi2 + ...+ zin + fi, i = 1, ..., n. (2.1)

A fundamental assumption in conventional IO models is that zij, i.e. the interindustry flow

from sector i to j, is entirely determined by the total output of sector j. In other words, the

technical coeffi cients defined as:

aij =
zij
xj
, (2.2)

measure fixed relationships between a sector’s output xj and its inputs zij. In other words, IO

analysis requires that a sector use inputs in fixed proportions. Consider, for example, the case

of two inputs. Once the proportion z1j/z2j of inputs 1 and 2 is known, then additional amounts

of input 1 or input 2 separately are useless for increasing output of sector j.

These fixed input-output ratios imply zero elasticity of substitution3 between inputs in

the production function. Ignoring the contribution of value added, the implicit form of the

production function used in IO analysis is the Leontief production function:

xj = min

{
z1j

a1j

, ...,
znj
anj

}
. (2.3)

This mathematical representation reflects the property of fixed proportions: increasing one in-

put, while leaving the other inputs unchanged, will not increase output. Under this assumption

of fixed technical coeffi cients (2.2), equation (2.1) can be expressed as:

xi = ai1x1 + ai2x2 + ...+ ainxn + fi, i = 1, ..., n. (2.4)

The matrix expression for (2.4) is:

x = Ax+ f. (2.5)

1For ease of exposition we abstract from multiple countries.
2This exposition uses notation from Miller and Blair (2009).
3We will relax the assumption of no substitution in later sections.
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Solving for x leads to the familiar expression:

x = Lf, (2.6)

where L = (I − A)−1 is known as the Leontief inverse. A typical element lij of L measures how

total output for sector i (xi) depends on final demand for product j (fj).

2.2. price model

A second set of n equations, which is closely related to (2.1), describes how sectoral output xj

is divided among value added vj and intermediate inputs z1j, ..., znj:

xj = z1j + z2j + ...+ znj + vj, j = 1, ..., n. (2.7)

Note the transpose of the subscripts, i.e. output is now defined as the sum of the column inputs

and value added. Value added is produced by the primary inputs capital and labor. Dividing

all elements in (2.7) by sectoral total output xj, we have:

1 = a1j + a2j + ...+ anj +
vj
xj
, j = 1, ..., n, (2.8)

where we exploited the definition of the technical coeffi cients (2.2). The elements on the right-

hand side reflect how much of each input is used to produce a single unit of output from industry

j. The term vj
xj
is the value added content of output for sector j. The model (2.7) is expressed

in monetary terms, hence it can be split into separate price and quantity4 components:

xjpj = z1jp1 + z2jp2 + ...+ znjpn + vj, j = 1, ..., n. (2.9)

Dividing all elements in (2.9) by sectoral total output xj, we have:

pj = a1jp1 + a2jp2 + ...+ anjpn +
vj
xj
, j = 1, ..., n. (2.10)

Output prices pj are equal to the cost of production and (using matrix notation) the IO price

model becomes:

p = A′p+ vc, (2.11)

4There is a slight abuse of notation in the sense that we don’t use separate symbols for quantities compared

with the value transactions before.
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where vc =
(
v1
x1
, ..., vn

xn

)′
is the vector of value added content of output. Solving for p leads to:

p = L′vc, (2.12)

which describes how output prices depend on primary input prices. This structure can be used

to evaluate how changes in value added lead to changes in sectoral unit costs and therefore

output prices. The price model (2.12) is known as the cost-push IO model as opposed to the

demand-pull quantity model in (2.6).

2.3. CO2 price effects

We use the IO price model (2.12) to calculate direct and indirect price effects of a carbon tax.5

In the IO price model the carbon tax can be modeled as a tax on intermediate inputs or value

added. Although environmental corporate income taxes do exist, most of the environmental

taxes apply to the purchase of an intermediate input. Typical examples are coal, oil and gas.

Fullerton (1995) gives an overview of environmental taxes for the US as well as an unifying

framework for analyzing their effects in the IO price model. Assuming that each intermediate

input has its own tax rate we rewrite (2.10) as:

pj = a1j (1 + τ 1) p1 + a2j (1 + τ 2) p2 + ...+ anj (1 + τn) pn + vcj, j = 1, ..., n, (2.13)

where τ j, j = 1, ..., n, are tax rates. Defining

T =


1 + τ 1 0 · · · 0

0 1 + τ 2
...

...
. . . 0

0 · · · 0 1 + τn

 , (2.14)

we can then express the IO price model including taxes as:

p = (I − A′T )
−1
vc. (2.15)

Instead, if the tax applies to value added we rewrite (2.10) as:

pj = a1jp1 + a2jp2 + ...+ anjpn + vcj (1 + τ j) , j = 1, ..., n, (2.16)

5Due to (2.8) all baseline prices are set equal to 1.
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resulting in:

p = (I − A′)
−1
Tvc. (2.17)

Summarizing, a tax on intermediate inputs can be seen as changing A, while an income tax

changes vc. In general the two types of taxes will lead to different cost increases in the IO price

model. We will focus on the latter in the remaining of the analysis. To determine the sectoral

tax rate τ j we first calculate the total tax revenues, which are the product of the uniform CO2

price tr (euro per kg) and the sectoral CO2 emissions co2j (kg):

tj = tr × co2j, j = 1, ..., n. (2.18)

The sectoral tax rate is then defined as the total tax revenue per unit value added:

τ j =
tj
vj
, j = 1, ..., n, (2.19)

which is the relative change in value added as a result of the CO2 tax.

3. substitution from energy to capital-labor

The conventional IO model assumes fixed technical coeffi cients. Output changes are solely

due to changes in final demand (income effect) and output changes are independent of price

changes. There are a number of alternative ways to relax the restrictive assumption of a zero

elasticity of substitution. First, the Leontief production function (2.3) can be replaced with

another production function, which explicitly allows for substitution. Examples are generalized

Leontief, Cobb-Douglas and CES production functions. Klijs et al. (2015) apply a non-linear

IO model for economic impact analysis in the region Zeeland. Second, conventional IO analysis

can be combined with a Computational General Equilibrium (CGE) model. The IO analysis

then provides volume effects, while the CGE model quantifies price effects. For example, in the

EXIOMOD model developed by Bulavskaya et al. (2016) the production technology is modeled

as a nested CES production function. In particular, energy can be substituted to the aggregate

labor-capital input. Also there is substitution possible between energy types (electricity and

petroleum products).

An advantage of non-linear IO or CGE models is that substitution is endogenously de-

termined. A major disadvantage of non-linear IO models is that solving a large number of
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nonlinear equations is numerically challenging. In order to maintain the sectoral aggregation

level and to avoid computational diffi culties due to non-linearities, we maintain the linear IO

framework. To relax the restrictive assumption of a zero elasticity of substitution, we will make

changes to the technical coeffi cients. The resulting variable input-output model (Liew, 1984)

is a conventional IO model, but it also contains a substitution effect:6

∆x = L ·∆A · x+ L ·∆f. (3.1)

Output changes are dependent on price changes via a change in the technical coeffi cients (∆A).

For example, substitution away from energy would make the technical coeffi cient of this input

lower. The price version of the variable input-output model can be expressed in a similar way

as:

∆p = L′ ·∆A′ · p+ L′ ·∆vc. (3.2)

The second term in (3.2) summarizes the price effects from the conventional Leontief price

model (2.12), while the first term is again measuring the substitution effect.

In case of energy versus capital-labor substitution, we use the estimated substitution elas-

ticities from sectoral production functions to determine the particular change in the entries of

A. We illustrate the approach with a numerical example. We use a simplified IO model with

only 3 sectors producing intermediate inputs: (1) energy; (2) agriculture; (3) manufacturing.

This results in the following price model:

a11p1 + a21p2 + a31p3 + vc1 = p1, (3.3)

a12p1 + a22p2 + a32p3 + vc2 = p2, (3.4)

a13p1 + a23p2 + a33p3 + vc3 = p3. (3.5)

We assume that value added consists of a composite capital-labor input and tax:

v = pzz + t, (3.6)

vc = pz
z

x
+
t

x
= zcpz + tc. (3.7)

The CO2 tax applied to value added then amounts to a change in the tax t, while the

price and quantity of the composite capital-labor input stays unchanged. Suppose the CO2 tax

6This expression follows from taking the total differential of the quantity IO model (2.5).
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changes the relative energy price p1/pz with c1. We will analyze how this relative price change

of energy leads to substitution. Throughout the analysis we assume that the substitution

elasticities of the agricultural and manufacturing inputs are zero, hence their relative price

effects do not matter for substitution.

The substitution elasticity of energy with repect to the composite capital-labor input mea-

sures the responsiveness of the ratio in which factors are used to the ratio of factor prices. For

each sector this is defined as:

σj =

∆(zcj/a1j)

zcj/a1j

∆(p1/pz)
p1/pz

, j = 1, 2, 3. (3.8)

Because zcj and a1j have the same denominator xj, the ratio zcj/a1j is the ratio of the capital-

labor and energy inputs for sector j.

Define c1 = ∆(p1/pz)
p1/pz

as the relative price change.7 Given (3.8) this will lead to a relative

change of capital/labor-energy factor shares of:

∆ (zcj/a1j)

zcj/a1j

= σjc1. (3.9)

Defining
∆ (zcj/a1j)

zcj/a1j

=
z1
cj/a

1
1j

z0
cj/a

0
1j

− 1, (3.10)

we have
z1
cj

z0
cj

= (1 + σjc1)
a1

1j

a0
1j

. (3.11)

We consider two scenarios. First, suppose there is substitution between energy and the

capital-labor input. Then we have

a1
1j + z1

cj = a0
1j + z0

cj. (3.12)

Equations (3.11) and (3.12) can be solved for z1
c1 and a

1
11. After some algebra we have:

z1
cj

z0
cj

=

(
a0

1j + z0
cj

)
(1 + σjc1)

a0
1j + z0

cj(1 + σjc1)
, (3.13)

a1
1j

a0
1j

=
a0

1j + z0
cj

a0
1j + z0

cj(1 + σjc1)
, (3.14)

7Note that in the IO price model the price of value added is exogenous, hence c1 is actually the relative

change in p1 or c1 =
∆p1
p1
.
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where the right hand side can be calculated from the data. Second, assume that ∆zcj = 0

then the relative change originates solely from a change in the technical coeffi cient a1j. In other

words, we consider the case of pure technological progress. We then have:

a1
1j

a0
1j

=
1

1 + σjc1

, (3.15)

hence the absolute change in the technical coeffi cient is

∆a1j = − σjc1

1 + σjc1

a1j, (3.16)

which can again be calculated with the data. Given that σj ≥ 0 and a1j ≥ 0, the sign of the

absolute changes critically depends on the sign of c1. If c1 ≥ 0, i.e. the energy price increases,

production will become more energy effi cient or ∆a1j ≤ 0, and vice versa.

Consider the following numerical example:

Z =


10 10 30

10 20 20

10 30 30

 , f =


30

50

50

 , v =


50

40

40

 , x =


80

100

120

 ,
hence the matrix of technical coeffi cients and its Leontief inverse become:

A =


1
8

1
10

1
4

1
8

1
5

1
6

1
8

3
10

1
4

 ,

L =




1 0 0

0 1 0

0 0 1

−


1
8

1
10

1
4

1
8

1
5

1
6

1
8

3
10

1
4



−1

=


1.2632 0.34450 0.49761

0.26316 1.4354 0.40670

0.31579 0.63158 1.5789

 ,

vc =


5
8

2
5

1
3

 .
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Suppose we introduce a CO2 tax of 0.10 Euro per kg, hence we have a tax rate vector equal to:

tr =


0.1

0.1

0.1

 .
In combination with a hypothetical CO2 emissions (in kg) vector:

co2 =


100

20

50

 ,
we have that the change in valued added (i.e. total paid tax) becomes:

∆v = ∆t =


10

2

5

 .
Using the conventional price model (2.12) we have the following price change:

∆p =


1.2632 0.34450 0.49761

0.26316 1.4354 0.40670

0.31579 0.63158 1.5789


T

∗


1
80

0 0

0 1
100

0

0 0 1
120

 ∗


10

2

5



=


0.17632

0.098086

0.13612

 ,
which means a 17.6% price increase for the energy sector and smaller price changes (9.8 and

13.6%) for the other 2 sectors.

We next calculate the substitution effect. We assume a substitution elasticity σ1 = 0.5 for

the energy sector and σ2 = σ3 = 0 for the agricultural and manufacturing sectors. The price of

the capital-labor input is exogenous and fixed. Given that all baseline prices were standardized

at 1, the relative price change then becomes

c1 =
∆ (p1/pz)

p1/pz
=

∆p1

p1

= 0.17632.
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We analyze the two scenarios described above. First, assume that there is substitution and we

calculate the new shares of energy and capital-labor in the energy sector according to (3.13)

and (3.14):

z1
c1 =

5

8
∗
(

1
8

+ 5
8

)
∗ (1 + 0.5 ∗ 0.17632)

1
8

+ 5
8
∗ (1 + 0.5 ∗ 0.17632)

= 0.63355,

a1
11 =

1

8
∗

1
8

+ 5
8

1
8

+ 5
8
∗ (1 + 0.5 ∗ 0.17632)

= 0.11645.

Using the variable input-output model (3.2), we calculate the price change due to substitution

as follows:

∆p =


1.2632 0.34450 0.49761

0.26316 1.4354 0.40670

0.31579 0.63158 1.5789


T

∗


−0.00855

0

0



=


−0.0108

−0.0029455

−0.0042546

 .
In this numerical example the substitution effect is much smaller than the original price effect.

The use of more capital-labor instead of energy in the energy sector leads to an additional 1%

decrease in the price of energy, while even smaller price decreases result for agriculture and

manufacturing.

When we assume that there has been technological progress in the energy sector from

decreasing the energy input according to (3.16), we have

∆a11 = − 0.5 ∗ 0.17632

1 + 0.5 ∗ 0.17632
∗ 1

8

= −0.010127.

Using the variable input-output model (3.2), the new technical coeffi cient for the energy input
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in the energy sector implies a price change of:

∆p =


1.2632 0.34450 0.49761

0.26316 1.4354 0.40670

0.31579 0.63158 1.5789


T

∗


−0.010127

0

0



=


−0.012792

−0.0034888

−0.0050393

 .
Compared to substitution, pure technological progress leads to a somewhat stronger decrease

in prices (e.g. the energy price drops 1.3%) mitigating the original CO2 price effect.

4. substitution between energy types

To model substitution between energy types we construct hypothetical values for intermediary

sales Z, value added v, final demand f and total production x. Denote this new technology

by Z̄, f̄ , v̄, and x̄. The new matrix of technical coeffi cients Ā and its Leontief inverse L̄ are

constructed from Z̄ and x̄ in the usual way. Furthermore, we update the vector of value added

content in production v̄c using v̄ and x̄. For the alternative technology the price model is:

p̄ = L̄′v̄c. (4.1)

We then evaluate for this alternative technology what the change in value added content ∆v̄c

is and calculate:

∆p̄ = L̄′∆v̄c. (4.2)

as the change in prices including substitution. This is merely evaluating what the price increase

of a CO2 tax would be given that we are in the new hypothetical technology already. The

substitution effect is then equal to ∆p̄−∆p.

The construction of the new technology is illustrated by means of a numerical example.

Suppose we want to analyse the price effects of a CO2 tax allowing for the possibility that

coal driven electricity power plants are substituted by plants using gas. We use a simplified

IO model with only 3 sectors producing intermediate inputs: (1) electricity generated by coal;

(2) electricity generated by gas; (3) manufacturing. We furthermore assume that value added
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consists of a composite capital-labor input and tax as in (3.6)-(3.7), hence we have again the

price model (3.3)-(3.5).

Consider the following numerical example:

Z =


10 10 30

10 20 20

10 30 30

 , f =


30

50

50

 , v =


50

40

40

 , x =


80

100

120

 . (4.3)

We consider the substitution effect of shutting down the whole ’coal’electricity sector. This

implies that all electricity, which formerly has been produced by coal, is now produced by gas.

Define the matrix S as follows:

S =


0 0 0

1 1 0

0 0 1

 .
The matrix S sets all quantities (intermediary sales, value added and production) in the ’coal’

sector equal to zero, while at the same time attributing the aggregate over both energy sectors

to the ’gas’sector. In other words, it is assumed that production totals are unchanged and

there only is a redistribution between electricity sectors. We then have:

Z̄ =


0 0 0

0 50 50

0 40 30

 , f̄ =


0

80

50

 , v̄ =


0

90

40

 , x̄ =


0

180

120

 ,
hence the new matrix of technical coeffi cients is:

Ā =


0 0 0

0 0.28 0.42

0 0.22 0.25

 .
Using the IO price model we can now calculate the price changes for the hypothetical technology

with (4.2).

5. country level prices

In our multiregional IO model we have r = 1, ..., c countries and i = 1, ..., n sectors. Compared

to the standard IO model introduced earlier the multiregional IO set up needs some additional
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notation.8 In the standard IO model the basic equation for the distribution of the product of

sector i is:

xi = zi1 + zi2 + ...+ zin + fi, i = 1, ..., n. (5.1)

In a multicountry set up this is generalized to:

xri =
c∑
s=1

n∑
j=1

zrsij + f ri , s = 1, ..., c; i = 1, ..., n, (5.2)

where superscripts (r, s) denote the region and subscripts (i, j) sectors. The element zrsij is

intermediary sales from sector i in country r to sector j in country s, while f ri is final demand

in sector i of country r. Total production in sector i of country r is denoted by xri .

Prices can be summarized in various ways. We have an industry and country specific nc×1

price vector p. A typical element pri in this column vector is the price in sector i of country

r. At the country level we define three different prices: (1) GDP deflator; (2) export price; (3)

consumer price.

The GDP deflator is defined as follows. We calculate the change in sectoral value added

as a result of the carbon tax. As a result we have value added measured before and after tax,

which we denote by the nc × 1 vectors v1 and v0 respectively. Quantities are fixed in the IO

model, hence changes in value added are solely due to price changes. Therefore, we calculate

the relative change in the GDP deflator for country r as the relative change in total valued

added aggregated over all sectors in country r:

GDP r =

∑n
i=1 v

r
i1∑n

i=1 v
r
i0

. (5.3)

The exports for industry i in country r consists of two components, i.e. exports for final

demand and intermediate exports. Define:

Kf = Ic ⊗ ιn, (5.4)

E1 = (ιn ⊗ ιcι
′
c −Kf ) ◦ F, (5.5)

where F is the nc× c matrix of final demand with typical element f rsi , i.e. sales of sector i in

country r to final demand of sector i in country s. Note that total final demand of sector i in

8We use notation from Miller and Blair (2009).

14



country r is defined as the row sum of F , i.e. f ri =
∑c

s=1 f
rs
i . Furthermore, define:

Kι = Ic ⊗ ιnι
′
n, (5.6)

E2 = (ιncι
′
nc −Kι) ◦ Z, (5.7)

where the typical element of Z is zrsij . Then exports for final demand and intermediate exports

are calculated as e1 = E1ιc and e2 = E2ιnc respectively, with typical elements:

e1ri =

c∑
s=1

f rsi − f rri

=
∑
s 6=r

f rsi , (5.8)

e2ri =
n∑
j=1

c∑
s=1

zrsij −
n∑
j=1

zrrij

=
n∑
j=1

∑
r 6=s

zrsij . (5.9)

The quantity e1ri is total exports of sector i in country r due to final demand in the rest of the

world. The quantity e2ri is total exports of sector i in country r due to intermediate sales to all

sectors in the rest of the world. Total exports of sector i in country r therefore is simply the

aggregate of intermediate exports and final demand exports:

eri = (e1ri + e2ri ) . (5.10)

Quantities are fixed in the IO model, hence changes in exports are due to price changes. The

relative price change for exports of country r is then calculated as:

EXP r =

∑n
i=1 e

r
i1∑n

i=1 e
r
i0

, (5.11)

where eri1 and e
r
i0 are the value of exports before and after tax.

To measure the price competitiveness of sector i in country j we calculate proceed as follows.

Define the change in the relative export price for country r as

REP r = EXP r −
∑
s6=r

ωrsEXP s, (5.12)
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with ωrs the share of exports of country r to country s. Bilateral exports and export shares

from country r to country s are calculated as:

ers =
n∑
i=1

f rsi +

n∑
i=1

n∑
j=1

zrsij , (5.13)

ωrs =
ers∑c
s=1 e

rs
, (5.14)

where the denominator is total exports for country r. Note that
∑c

s=1 e
rs =

∑n
i=1 e

r
i and∑c

s=1 ω
rs = 1 by definition. An increase of REP r means a decrease in the competitiveness of

country r.

The consumer price of country r is defined as a weighted average its production prices:

pcr =
n∑
i=1

wri p
r
i , (5.15)

where the weights wri represent the share of consumption for each good i with respect to total

final demand in country r:

wri =
f ri∑n
i=1 f

r
i

. (5.16)

The relative price change for the consumer price of country r is then calculated as:

PCr =
pcr1
pcr0

. (5.17)

Similar calculations lead to export and consumer prices for aggregated sectors.

6. quantity effects

To acquire a broader view on the possible effects of the CO2 tax, we also estimate the impact

of cost increases on final demand, exports and production for the Netherlands. Because in the

conventional IO model price changes are independent from quantity changes, we estimate the

latter using external information on price elasticities. More specifically, to calculate quantity

changes in (domestic) final demand we use sectoral price elasticities of demand, which indicate

the percentage change in sectoral final demand as a result of a percentage change in costs.

Regarding exports (intermediate and final demand) we exploit sectoral export price elasticities,

which indicate the percentage change in sectoral exports as a result of a percentage change in
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the relative export price. Table 1 reports the calibrated price elasticities, which are based on

an extensive review of the recent empirical literature. The percentage quantity change (final

demand or exports) is then estimated as the product of the relevant sectoral price elasticity and

the percentage change in costs (final demand or relative export price) as calculated by the IO

price model. Note that this method delivers an upper bound on the expected quantity effects as

it assumes a full pass-through of costs to output prices as well as price inelastic supply curves.

To calculate the effects on production, we use the predicted domestic demand and export

quantity effects in combination with the IO quantity model (2.6), which models the relation

between final demand f and production x. Because we use a multiregional IO model, part of

the intermediate exports, i.e. intermediate sales to all sectors in the rest of the world e2ri , are

not in f , but in the intermediate sales. From the multiregional IO table we therefore construct

a national IO table for the Netherlands, which includes all exports (e1ri and e2
r
i ) in final demand

in the usual way. We then apply the quantity model (2.6) to calculate the change in production

x as a result of the change in final demand f , which now consists of domestic final demand and

total exports (intermediate and final demand).
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Table 1: calibrated sectoral price elasticities

sector demand exports

Agriculture, forestry and fishing -0.90 -1.55

Mining and quarrying -0.30 -2.00

Food, drink and tobacco -0.20 -1.12

Textile, clothing and leather-industry -0.50 -1.64

Wood, paper and graphical industry -0.50 -1.64

Oil industry -0.50 -1.64

Chemical industry -1.20 -2.04

Pharmaceutical industry -1.20 -2.04

Rubber, plastic and other non-metallic mineral products -0.30 -1.64

Basic metals and metal products -0.80 -1.98

Computer, electronic and optical products -0.50 -1.64

Electrical equipment -0.50 -1.64

Machine-industry -0.50 -1.64

Automobile, shipping and aircraft-industry -0.50 -1.64

Other industry and repair -0.50 -1.64

Energy companies -0.10 -2.00

Water and sewerage-treatment -0.10 -2.00

Construction -1.30 -2.00

Trade and repair -0.30 -1.65

Transportation -2.00 -1.65

Horeca -2.00 -1.65

Information and communication -2.00 -1.65

Financial services -0.10 -1.65

Real estate services -1.00 -1.65

Professional, scientific and technical activities -1.00 -1.65

Administrative and support services -1.00 -1.65

Public administration and defence -0.40 -1.65

Education -1.00 -1.65

Healthcare -0.20 -1.65

Culture, sports and recreation -1.30 -1.65

Other services -0.30 -1.65
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