Start-ups, Credit, and the Jobless Recovery

Immo Schott (EUI)

DNB Annual Research Conference October 17th & 18th, 2013

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

motivation

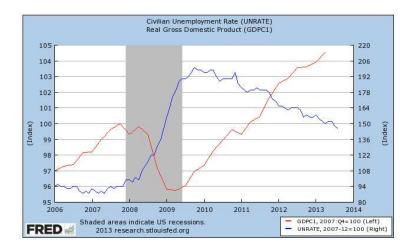


Figure : Jobless Recovery. Source: St.Louis FED, June 2013. past recessions

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

in this paper...

Link firm dynamics, the financial environment, and unemployment

- the 'jobless recovery' is largely the result of low job creation by start-ups.
- Iow start-up job creation can be linked to a deterioration in their lending environment.
- unprecedented fall in the value of real estate decreased collateral value to start a business.
- The model replicates several facts of the recovery
 - underproportional employment growth relative to GDP
 - increase and persistence in unemployment since 2006
 - start-up job creation begins to fall before the recession

a simple counterfactual

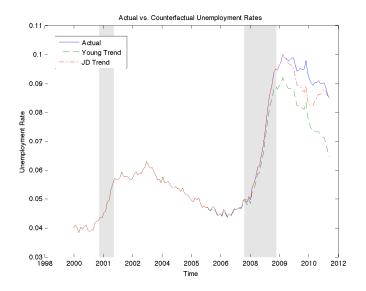


Figure : Actual vs. counterfactual UE. More: JC&JD

the importance of start-ups

- Start-ups are the engine of job creation in the US
 - they create about 3 Million jobs per year: more
- Yet since 2007 there has been a decline
 - ▶ JC by start-ups fell by 30%: _____
 - Start-ups had the largest average decline in gross JC: more

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

start-up financing

- Start-ups rely heavily on external financing
- Personal savings or assets were used as collateral to initiate more than 70% of nascent businesses
 - Most important source of funding of entrepreneurs
 - See Avery et al (1998), Moon (2009), Duke/Board of Governors (2011)
- Significant effect of (HP) on # of start-up on the state-level.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

See HPI Regressions

outline

Previous literature

- Model
- Results

this paper

 Heterogeneous firm paper which links real estate to entrepreneurship

- Generates jobless recovery
- Technology shocks alone only explain 1/2 of the increase in unemployment
- Mechanism generates a realistic amount of variability in entry rates

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

- entry (& exit) propagate exogenous shocks
- Model matches
 - macro moments (unemployment, vacancies)
 - employment change distribution
 - age-employment distribution of firms

literature

- Heterogeneous Firms & Financial Constraints: Midrigan and Xu (2010), Khan and Thomas (2011), Siemer (2013)
- Entry: Haltiwanger et al (2010), Fort et al (2013); Clementi & Palazzo (2010), Sedlacek (2011), Coles & Kelishomi (2011), Lee & Mukoyama (2012)
- Search w/ multi-worker plants: Cooper et al (2007), Kaas and Kirchner (2011), Schaal (2011), Elsby and Michaels (2013), Moscarini and Postel-Vinay (2013) and Acemoglu and Hawkins (2013)
- Jobless Recovery: Bachmann (2011), Berger (2012), Gali, Smets, Wouters (2012), Drautzburg (2013)

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Real estate, collateral: Chaney et al (2012), Liu et al (2013), Liu et al (2013b)

the model

- workers and entrepreneurs (in fixed mass), plus a competitive bank
- > all agents own one unit of housing h. Its price it q^h .
 - workers: supply labor, and consume income
 - entrepreneurs: own firms, use labor input to produce homogeneous good
 - heterogeneous shocks to profitability
 - bank: provides start-up financing, is owned by all agents

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

- ▶ to hire divisible labor, firms must post vacancies $v \rightarrow$ filled with endogenous probability H(U, V) = m/V.
- firms make take-it-or-leave-it offer to workers

timing

- A period plays out like this:
 - aggregate state realizes
 - potential entrants enter until $Q^e(a, \theta) = \tilde{c}_e$
 - \tilde{c}_e is borrowed from the bank
 - idiosyncratic shocks ε realize
 - firms decide on their employment level, production takes place

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

- incumbent firms decide whether or not to exit
 - entrants can default on loans (exit)

workers

• Either unemployed or employed $W^{u}(a, h) = Z(b(a) + \pi^{b}) + \varphi(h) + \dots$ $\beta E_{a'|a}[\phi(U, V)W^{e}(a', h) + (1 - \phi(U, V))W^{u}(a', h)],$ $W^{e}(a, h) = Z(\omega(a) + \pi^{b}) + \varphi(h) + \beta E_{a'|a}[(1 - \delta)W^{e}(a', h) + \delta W^{u}(a', h)]$

entrepreneurs

- ▶ Production technology F(e), with $F_e(e) > 0$ and $F_{ee}(e) < 0$
- State vector at time t is $s = (\varepsilon, e; a, \theta)$, where $\theta = \frac{V}{U}$ reflects labor market tightness
- Period profits are:

$$\pi(a,\varepsilon,e) = a\varepsilon F(e) - e \cdot w(a) - F - \mathbb{C}$$

- \blacktriangleright $\mathbb C$ includes fixed and variable adjustment costs to labor
 - discrete choice: hiring, firing, inaction Policy Function
- Incumbent entrepreneurs do not borrow funds

entrepreneur's labor choice

The value Q^c(s) of a continuing firm:

$$Q^c(s) = \max\{Q^v(s), Q^n(s), Q^t(s)\}$$

► Value of posting vacancies, given $\Delta e = H(U, V)v$ $Q^{v}(s) = \max_{v} \pi(a, \epsilon, e) + \beta E_{\varepsilon', a'} \max\{Q^{c}(x', e'; \theta'), Q^{x}(0, e)\}$

► Value of firing, given
$$\Delta e = -f$$

 $Q^{f}(s) = \max_{f} \pi(a, \epsilon, e) + \beta E_{\varepsilon', a'} \max\{Q^{c}(x', e'; \theta'), Q^{x}(0, e)\}$

Value of inaction

$$Q^n(s) = \pi(a,\epsilon,e_{-1}) + eta E_{arepsilon',a'} \max\{Q^c(x',e'; heta'),Q^x(0,e)\}$$

▶ Value of exiting with employment e_{-1} $Q^x(a, e_{-1}) = 0 - F_f - C_f e_{-1} \le 0.$

Exit whenever

$$E_{a',\epsilon'|a,\epsilon}\left[Q^c(a',\varepsilon',e_{-1},\theta')-Q^x(a',e_{-1})\right]<0.$$

Policy Function

entry

Value of entry for ex-ante identical entrants given by

$$Q^{e}(a,\theta)\equiv\int_{\epsilon}Q^{c}(a,\varepsilon_{i,0},0,\theta)d
u.$$

• Entry cost $\tilde{c}_e \equiv \tilde{R} \cdot c_e$. Consists of c_e and interest payments \tilde{R}

- Entrants borrow at intra-period non-default loan rate R

 (defined next slide)
- Free entry requires

$$\tilde{c}_e = Q^e(a, \theta)$$

Firms entering in period t have mass M_t

Proposition

There exists a unique value of M_t each period such that $\tilde{c}_e = Q^e(a, \theta)$

► intuition: as $M_t \uparrow \Longrightarrow \theta \uparrow$ and the value of entry falls

start-up loans

- To pay the entry cost c_e new firms must obtain a loan from the bank.
- An entering entrepreneur may exit, hence walk from loan obligation.
- ▶ Use real estate *h* as collateral to secure part of the loan.

Proposition

The non-default interest rate \hat{R} is given by $\hat{R} = \frac{c_e}{\int_{e^{X}}^{\infty} c_e d\nu}$. The overall effective interest rate \tilde{R} is given by $\begin{cases} \tilde{R} = \frac{q^h}{c_e} + \frac{c_e - q^h}{\int_{e^{X}}^{\infty} c_e d\nu} & \text{if } q^h < c_e \\ \tilde{R} = 1 & \text{if } q^h \ge c_e \end{cases}$

factors influencing \tilde{R}

Proposition

 \tilde{R} is weakly decreasing in q^h and a. \tilde{R} is weakly increasing in θ .

- Intuition:
 - if q^h ↑ the collateralizable fraction of the loan increases
 since ∂ z = 0 if a ↑ this implies ∫ c = 0 if a ↑ this implie

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

distribution of firms

λ is the joint distribution over employment and profitability
 law of motion is λ' = T(λ, M)

$$\begin{split} \lambda'((e \ x)' \in E \times X) &= \\ \int_{x \in x'} \int_{E \times X} (1 - \phi_x(x, e; \theta)) \times \mathbb{1}_{\{\phi_e(x, e; \theta) \in e'\}} \times F(dx'|x) \lambda(dex) \\ &+ M \times \int_{x \in x'} \int_{0 \times X} \times \mathbb{1}_{\{\phi_e(x, 0; \theta) \in e'\}} \times F(dx'|x) \nu(dx) \end{split}$$

► This defines the operator *T*. For the case *x* = *ε* a stationary distribution exists.

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

recursive equilibrium

- Given stochastic processes, λ₀ and λ' = T(λ, M) a (boundedly rational) RE consists of
- ▶ i) value functions, ii) policy functions, iii) $\{w_t\}_{t=0}^{\infty}$, $\{\hat{R}_t\}_{t=0}^{\infty}$, $\{U_t\}_{t=0}^{\infty}$, $\{V_t\}_{t=0}^{\infty}$, $\{\lambda_t\}_{t=0}^{\infty}$, and $\{M_t\}_{t=0}^{\infty}$ s.t.
- i) and ii) solve the firm problem
- ▶ $\{w_t\}_{t=0}^{\infty}$ and $\{\hat{R}_t\}_{t=0}^{\infty}$ are determined through the worker's participation constraint and the bank's zero-profit condition

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• measure of entrants M_t is determined by free-entry

approximate equilibrium

Firms need θ in order compute the vacancy-filling rate

$$heta' = H(a,a',\lambda)$$

- The aggregate variable θ is determined in equilibrium similar to Krusell, Smith (1998).
- Prediction rule generates an R² = 0.9994 and a maximum forecast error of 0.005%

 $\log \theta_t = b_0 + b_1 \log \theta_{t-1} + b_2 \log A_t + b_3 \log A_{t-1} + b_4 \cdot I(A_t \neq A_{t-1})$

stationary distribution

- \blacktriangleright without aggregate shocks, a stationary distribution λ^* exists
- constant mass of entrants, and a constant number of exiting firms each period

	Age 0	Age 1	Age 2	Age 3	Age 4	Age 5
DATA	11.09%	8.54%	7.22%	6.29%	5.55%	4.97%
Model	11.86%	9.89%	8.83%	7.91%	7.07%	6.29%
	Age 6-10	Age 11-15	Age 16-20	Age 21-25	Age 26+	
DATA	18.67%	12.91%	9.42%	7.18%	8.16%	
Model	18.82%	13.59%	7.30%	3.91%	4.52%	

Table : Firm distribution by age. Census and I.

calibration 1/2

Calibrated Parameters	Symbol	Value	Target
Discount Factor	β	.9967	$r^{ann}=4\%$
Curvature of profit function	α	.65	—
Autocorrelation of a	$ ho_a$.958	HP-filtered Output 1970-2011
Standard deviation of ν_a	σ_{a}	.009	HP-filtered Output 1970-2011
Autocorrelation of q^h	$ ho_q$	0.9565	HPI 1975-2012
Standard deviation of $ u_q$	σ_q	.008	HPI 1975-2012
Matching elasticity	γ	.6	Literature
Match efficiency	μ	.5132	$\phi=$ 0.45, $ heta=$ 0.7
Sensitivity of outside option to a	Sensitivity of outside option to a b_1		Cooper et al (2007)

calibration 2/2

▶ The adjustment costs, ρ_{ϵ} , σ_{ϵ} , and c_o are estimated via SMM

- The targets are derived from the employment change distribution
- I calibrate = c_o through the average firm size of 21.43
- details in the paper

results

	σ_U	Ρυ	σ_V	ρ_V	ρ _{U,V}	σ_{θ}	ρ_{θ}	$\rho(Y,M^E)$
US Data	0.13	0.948	0.16	0.93	-0.896	0.316	0.94	0.09
Benchmark Model	0.13	0.996	0.17	0.91	-0.86	0.303	0.943	0.09
No Financial Friction	0.17	0.995	0.198	0.95	-0.94	0.359	0.984	0.15
No Shocks to a	0.02	0.99	0.02	0.90	-0.89	0.03	0.97	0.07

Table : Data and Model Moments. Source: FRED, FHFA, and BLS.

Shock to a

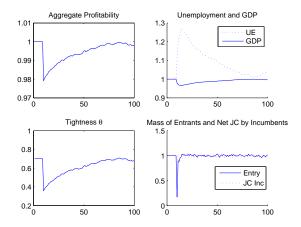
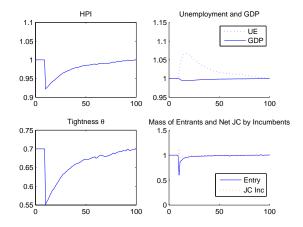



Figure : Impulse Response Functions for a shock to *a*. Simulation results from 1'000 repetitions of 200 periods.

Shock to q^h

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Figure : Impulse Response Functions for a shock to q^h . Shock to both

policy experiment

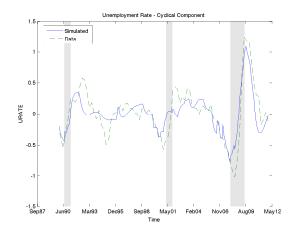


Figure : Cyclical component of the unemployment rate. Data vs. simulation using estimated processes for *a* and q^h 1990 - 2011. Shaded areas are NBER recession dates.

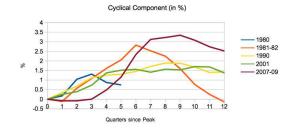
policy experiment - results

- Recovery is 'jobless' because of the ongoing negative influence of the low HPI on start-up job creation.
- Start-up job creation decreases prior to the beginning of the recession, as in the data
- Incumbents' job creation begins to recover before job creation by start-ups

- This is the effect of a low θ
- Same experiment with shocks only to q^h
 - does not generate enough variation in U more
- Same experiment with shocks only to a
 - does not generate enough persistence more

conclusion

- Severe recession with a jobless recovery
- Accompanied by unprecedented fall in the value of real estate
 - I claim that these two facts are related
 - idea: start-ups require external financing, for which real estate is used as collateral
 - value of collateral falls, start-up costs increase, # of new firms declines

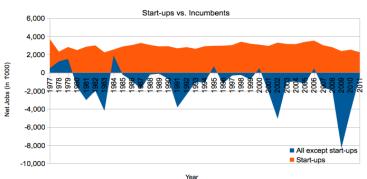

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- The model can
 - explain important factor for jobless recovery
 - generate realistic amount of variability in entry rates

thanks...

▲□▶▲母▶▲目▶▲目▶ 目 のみの

UR during recessions



Unemployment Rate

Figure : Recessions and Recoveries. Source: St.Louis FED, June 2013

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● □ ● ● ●

the importance of start-ups

Net Job Creation

Figure : Net job creation by start-ups vs. incumbents. Source: Census, Longitudinal Business Database back

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

start-up JC during recessions

Job Creation by Start-ups

Compared to pre-recession values

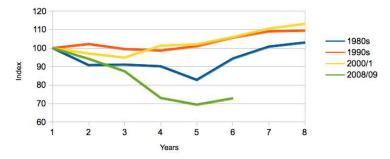


Figure : Job Creation by Startups during Recessions. Source: Census BDS back

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◆○◆

Case Shiller Home Price Index

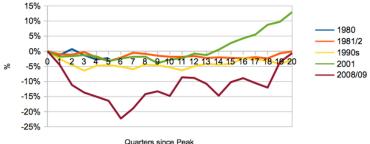


Figure : Cash Shiller Home Price Index. HP-filter $\lambda = 1600$. The x-axis shows guarters since the respective pre-recession guarter (based on NBER classification). Inflation-adjusted, not seasonally adjusted. Source: Standard&Poor's. Own computations back

State-level regressions

Table 3: Descriptive Regressions at the state level

11.9366^{*} (2.32)	9.4346*	10.2039*	8.7394*
(2.32)			0.1004
	(2.36)	(2.04)	(2.14)
	0.0153***		0.0149***
	(13.98)		(14.67)
		-87.2835*	-38.4972
		(-2.58)	(-1.13)
-50.4743	96.9491***	-48.6150	-50.1817
(-1.87)	(5.27)	(-0.62)	(-0.69)
3276	3276	3276	3276
0.0567	0.0775	0.0590	0.0779
nt variable:	Establishment	Birth. t statisti	ics in parenthe
	(-1.87) 3276 0.0567 nt variable:	-50.4743 96.9491*** (-1.87) (5.27) 3276 3276 0.0567 0.0775 nt variable: Establishment	$\begin{array}{c} (13.98) \\ & -87.2835^{*} \\ (-2.58) \\ \hline \\ -50.4743 & 96.9491^{***} & -48.6150 \\ \hline \\ (-1.87) & (5.27) & (-0.62) \\ \hline \\ 3276 & 3276 & 3276 \end{array}$

and state dummies. * p < 0.05, ** p < 0.01, *** p < 0.001

JC vs JD

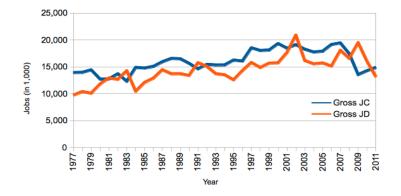


Figure : Gross job creation and destruction 1977-2011. Source: Census, BDS . $\ensuremath{\mathsf{back}}$

ヘロト 人間 と 人間 と 人間 とう

æ.

JC vs JD (2)

Log Inflow and Outflow Hazard Rates

Figure : Log inflow hazard rate *s* (orange, left scale) and log outflow hazard rate *f* (blue, right scale). Source: BLS, CPS, own computations. $u^*/I_t = \frac{s_t}{s_t+f_t}$ yields $d \log \tilde{u}_t \approx (1 - \tilde{u}_t)[d \log s_t - d \log f_t]$ as in Elsby et al (2009) back

JC by Firm Age

Dynamics of Job Creation by Firm Age

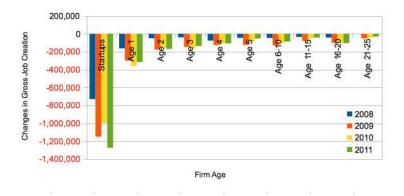


Figure : Changes in gross job creation relative to base year 2007. For aggregated age groups averages are shown. Source: BLS, Business Employment Dynamics, own computations. back

Employment Policy Function

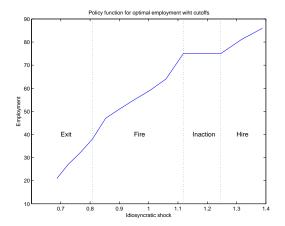


Figure : Target Employment as a function of ε given θ , a, e^{back}

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Equilibrium ctd...

- i) value functions Q(s) and Q^e(a, θ), ii) policy functions for employment and exit, and iii) bounded sequences of non-negative negotiated wages {wt}[∞]_{t=0} and interest rates {R̂_t}[∞]_{t=0}, unemployment {U_t}[∞]_{t=0}, vacancies {V_t}[∞]_{t=0}, incumbent measures {λ_t}[∞]_{t=0} and entrant measures {M_t}[∞]_{t=0} such that
- i) and ii) solve the firm problem subject to the worker's participation constraint
- $\{\hat{R}_t\}_{t=0}^{\infty}$ is given by the bank's zero-profit condition
- labor market tightness is determined vacancies and unemployment
- measure of entrants given by free-entry condition
- exogenous shocks move according to their LOMs.

Policy Experiment 2

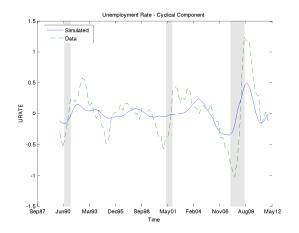


Figure : Cyclical component of the unemployment rate. Data vs. simulation using estimated processes only for q^h between 1990 and 2011. Shaded areas correspond to NBER recession dates. back

Policy Experiment 3

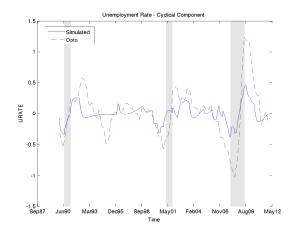


Figure : Cyclical component of the unemployment rate. Data vs. simulation using estimated processes only for *a* between 1990 and 2011. Shaded areas correspond to NBER recession dates.

Impulse Response for a and q^h

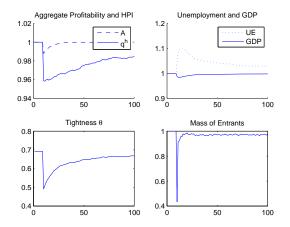


Figure : Impulse Response Functions for a shock to a and q^h . back

・ロト ・ 同ト ・ ヨト ・ ヨト

э