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Abstract

We analyze the empirical relevance of heterogeneous expectations at the effective lower
bound (ELB) in the canonical New Keynesian model. Agents are allowed switch between an
anchored Rational Expectations (RE) rule and an adaptive learning rule, where the latter may
generate a de-anchoring of expectations. The structural change in monetary policy during
ELB episodes, and the heterogeneity of private sector expectations are both captured in a
unified framework of endogenous regime switching. An application to the US economy over
the period 1982Q1-2019Q4 shows that expectations are characterized as a mixture of RE and
learning over the pre-GFC period, while a larger fraction of expectations remain anchored at
the RE during the ELB period after 2008Q4. Model projections over both post-GFC and
post-pandemic periods show that, a larger fraction of learning agents and a higher intensity
of learning can both generate deflationary spirals and prolonged periods of recession, which
highlights the importance of keeping expectations anchored during periods of uncertainty.
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1 Introduction

Following the Global Financial Crisis (GFC) of 2007-08, many leading central banks around the
globe cut their nominal interest rates to near zero levels and encountered the effective lower bound
(ELB) constraint on their rates, which generated an increased volume of research about the relevance
and impact of this constraint on the economy. Before the effects of the GFC fully dissipated and
the interest rates in many advanced economies started rising in a return to the normalization of
monetary policy, the global economy was hit by the pandemic-induced recession in the first half
of 2020, pushing the nominal rates to near-zero levels again and showing that the lower bound
constraint is here to stay for the foreseeable future.

In a large part of macroeconomic research using DSGE modeling, the standard assumption to an-
alyze the effects of ELB and the impact of unconventional monetary policy over this period is
Rational Expectations (RE). Within a variety of different modeling approaches, the RE assumption
has been shown to have a number of shortcomings. This paper aims to address two such shortcom-
ings associated with RE models. The first one relates to a specific form of modeling the ELB, which
uses a regime switching approach to capture the monetary policy shift during the ELB period. One
of the well known failures of RE models within this context is their inability to generate sufficiently
long ELB episodes on par with the empirically observed ones, due to the indeterminacy of the
equilibrium at the ELB. For example, Ji & Xiao (2016), Chen (2017) and Lindé et al. (2017) report
expected ELB duration estimates for the US economy ranging between 3 and 9 quarters over the
post-GFC period, while the empirical duration was 28 quarters over the period 2008-2015. This
makes the RE models within the regime switching framework unsuitable for policy analyses and for
studying counterfactual scenarios during ELB periods.

The second shortcoming of RE models relates to the relevance of central bank credibility and
the bank’s ability to anchor private sector expectations at the desired targets, which is closely
related to unconventional monetary policy tools such as forward guidance communication, and
the signaling channel of quantitative easing measures (Bernanke, 2017). If the assumption of RE
holds and the central bank is fully credible, then private sector expectations are always anchored
at the desired equilibrium. However, it has been documented that under this assumption, central
bank communications about future paths of policy rates have implausibly strong and stimulating
effects on current macroeconomic outcomes, a phenomenon that has been described as the Forward
Guidance Puzzle (Del Negro et al., 2012). In light of these shortcomings associated with RE
models, there has been increased interest in limited information and bounded rationality models
when analyzing the post-GFC period in New Keynesian DSGE models. This paper contributes to
the growing literature on limited information and heterogeneous expectations models by studying

their empirical implications on macroeconomic outcomes during ELB regimes.



In this paper, we estimate the canonical 3-equation hybrid New Keynesian model with hetero-
geneous expectations, subject to the ELB constraint on nominal interest rates. When forming
their expectations, agents are allowed to choose between an anchored pseudo-rational model and
an adaptive learning model, based on the past predictive performance of these two models. Both
the expectational heterogeneity and the ELB constraint on nominal rates are captured in a unified
framework of endogenous regime switching. During normal times when monetary policy follows the
Taylor rule, the model reduces to a standard heterogeneous expectations setup with a switching
mechanism along the lines of Brock & Hommes (1997). During ELB periods the central bank’s
desired interest rate is no longer observed or taken into account by all agents. In this case, rational
agents form their expectations as if the central bank is not constrained by the ELB, and as if the
desired interest rate affects macroeconomic outcomes. In other words, these agents continue form-
ing their beliefs as though there is no structural change in monetary policy. The presence of this
class of agents can be interpreted as anchoring their expectations at the targeted equilibrium, which
proxies for the central bank’s forward guidance communications, as well as the signaling channel of
quantitative easing measures. In other words, they form their expectations under the assumption
that unconventional policy measures substitute for the central bank’s inability to lower the nominal
interest rates further.

The adaptive learning agents instead ignore or do not observe the central bank’s desired policy rate
during the ELB regime. Instead, they use the observed variables, including the pegged nominal
rates during ELB periods, and act like econometricians who update their beliefs every period to
learn the new structural relations. As shown in Ozden & Wouters (2020), expectational dynamics
under adaptive learning are not stable in New Keynesian models when interest rates are pegged.
As such, learning dynamics over ELB regimes may generate a de-anchoring of expectations, which
may be gradual or fast depending on the speed and intensity of learning. The modeling framework is
characterized by a conditionally linear structure, which can be combined with the standard filtering
algorithm in Markov-switching literature a la Kim & Nelson (1999) as a state space model with
time-varying parameters, and estimated with Bayesian MCMC methods.

We estimate the model based on historical US data over the period 1982Q1-2019Q4. The main
contributions of the paper are threefold. First, during normal times before the GFC, expectations
are characterized as a mixture of the two forecasting rules associated with RE and adaptive learning
with nearly equal weights. Over the post-GFC period where the ELB constraint on nominal rates
starts binding, the forecasting rule based on RE receives nearly twice as much weight as the adaptive
learning rule. To the extent that learning leads to a de-anchoring of expectations, this result can
be interpreted as a successful central bank communication that steers expectations in the right
direction. In order to assess different aspects of the heterogeneous expectations regime switching

!Expectational stability is henceforth denoted as E-stability, as is standard in the adaptive learning literature
(Evans & Honkapohja, 2001).



model, we further provide estimation results for a a number of alternative models, namely the
benchmark RE without any regime switching, a RE model with regime switching in monetary
policy, and a pure adaptive learning model with regime switching in monetary policy.

As a second contribution, we carry out a set of counterfactual experiments to show that keeping
expectations anchored at the RE has an important stabilizing role. Since adaptive learning is
inherently unstable in New Keynesian models when interest rates are pegged, having a large fraction
of de-anchored expectations increases the likelihood of observing deflationary spirals and prolonged
recessions. In our modeling approach, the degree of de-anchoring is captured through both the
fraction of agents using adaptive learning, as well as how much weight these adaptive agents place
on the most recent observations in their models, which is captured through the constant gain

parameter.

Third, we carry out a pseudo out-of-sample forecasting exercise with the model over the period
2020Q1-2024Q4. In the absence of any other information, the model generates a 32% probability of
encountering another ELB episode over this period, the duration of which increases in the fraction
of learning agents. This shows the importance of keeping private sector expectations anchored
through central bank communication tools in order to prevent the adverse effects of pessimistic
waves on the business cycle.

Literature Review

The paper relates to the growing literatures on regime switching, adaptive learning and heteroge-
neous expectations. A large part of regime switching models in DSGE literature is centered around
the RE framework, and particularly the theoretical properties and solution methods of such mod-
els.? More recently, a number of papers also focus on endogenous regime switching DSGE models.?
A complication of RE models in this framework is that subjective expectations are equated to the
objective expectations of the model, which leads to non-linearities when solving for model-consistent
expectations. The advantage of adaptive learning models in this context is their conditionally linear
structure, which can often be handled using standard filtering algorithms.

2Examples include Farmer et al. (2009), Farmer et al. (2011) and Cho (2016) that study the theoretical properties
and determinacy conditions associated with RE equilibria in Markov-switching models; Bianchi (2016) proposing
new methods for measuring expectations and uncertainty in Markov-switching models; and Kulish & Pagan (2017)
who propose solution and estimation methods for forward-looking models with structural changes under a variety
of assumptions for agents’ beliefs about those structural changes. Other empirical applications in regime-switching
DSGE models include, among others, Sims & Zha (2006), Liu & Mumtaz (2011), Bianchi (2016) and Bianchi & Tlut
(2017).

3See e.g. Barthélemy & Marx (2017) using perturbation methods to solve and estimate endogenous regime
switching models; Chang et al. (2018) proposing an efficient filtering method to handle the estimation of state space
models with endogenous switching parameters depending on latent autoregressive factors; and Benigno et al. (2020)
considering an endogenous regime-switching framework to study financial crises.



While there is ample research in regime switching models with rational agents, research in this class
of models with imperfect information/learning agents has been scarce. Examples include Branch
et al. (2007) establishing theoretical properties of learning about both regime switches and structural
relations; Airaudo & Hajdini (2019) studying a class of Consistent Ezpectations Equilibria in a
regime-switching framework; and Ozden & Wouters (2020) considering the estimation of regime
switching models under a class of adaptive learning rules. A closely related paper within this
framework is Gust et al. (2018), who study the effectiveness of forward guidance in a model where
agents are aware of regime switches, but do not know the transition probabilities and instead infer
about them using a form of Bayesian learning.

Another closely related line of research is on heterogeneous expectations. Earlier work on hetero-
geneous expectations in New Keynesian models consider a variety of topics; e.g. Branch (2004)
studies the empirical properties of heterogeneous expectations with survey data on inflation ex-
pectations; Branch & McGough (2009) analyze the micro-foundations of New Keynesian models
with heterogeneous expectations; Anufriev et al. (2013) consider different interest rate rules and
macroeconomic stability under heterogeneous expectations; Di Bartolomeo et al. (2016) study how
heterogeneous expectations affect the design of optimal monetary policy in a New Keynesian model;
Cornea-Madeira et al. (2019) estimate the New Keynesian Phillips Curve with heterogeneous expec-
tations; and Hommes et al. (2019) test a number of heterogeneous and bounded rationality models

in a learning-to-forecast experiment.

More recently, there have been a number of papers that study the interactions between the ELB,
unconventional monetary policy and heterogeneous expectations. The closest study to this paper
along these lines is Busetti et al. (2017), where the authors study how prolonged periods of subdued
price developments in the Eurozone may induce a de-anchoring of expectations. This is done in
a heterogeneous expectations framework, similar to the one presented in this paper, where agents
choose between anchored and de-anchored forecasting rules depending on their past performance.
This paper can be seen as an extension of their modeling approach to estimate a heterogeneous
expectations model in a unified framework that includes monetary policy switching. Other related
papers include Andrade et al. (2019), who consider forward guidance in a heterogeneous expectations
framework with optimistic and pessimistic agents; Hommes & TLustenhouwer (2019), who study
the theoretical properties of a NK model with a ELB under heterogeneous expectations, with
fundamentalists who believe in the target of the CB, and naive expectations who believe in a random
walk; Goy et al. (2020), who analyze the effects of different types of forward guidance in a New
Keynesian model with heterogeneous expectations and the ELB constraint; Lansing (2019) where a
representative agent contemplates between a targeted equilibrium and a deflationary equilibrium,
where a non-trivial probability on the deflationary equilibrium becomes partially self-fulfilling by
lowering the averages of observed variables; and Arifovic et al. (2020) who study heterogeneous
expectations through a novel mechanism called social learning, where the authors analyze the



coordination and de-anchoring of expectations and how forward guidance may affect these results.
This paper contributes to the literature by estimating a heterogeneous expectations model in a
tractable way, which is done by re-formulating the standard heterogeneous expectations approach

in a regime-switching environment.

Finally, the paper also relates to representative agent models studying the effects of ELB and
unconventional monetary policy under imperfect information and adaptive learning. Examples
include Evans et al. (2008), where the global dynamics of liquidity traps under adaptive learning are
studied; Haberis et al. (2014), who analyze macroeconomic effects of transient interest rate pegs in an
imperfect information model; Eusepi & Preston (2010), who consider central bank communication
in a model where agents’ expectations are not consistent with the central bank policy; Cole (2018),
who studies the effectiveness of learning on forward guidance, where forward guidance is introduced
into monetary policy with a sequence of shocks; and similarly Cole & Martinez-Garcia (2019), who
study the effectiveness of forward guidance in a New Keynesian model with imperfect central bank
credibility. The present paper relates to this literature by allowing a fraction of agents to use

adaptive learning rules through an evolutionary selection mechanism.

The paper is organized as follows. Section 2 presents the main concepts and heterogeneous expec-
tations within the canonical 3-equation New Keynesian model. Section 3 presents the estimation
results for the model, along with a discussion of three other REE and learning models as different
points of comparison. Section 4 presents a number of counterfactual exercises to analyze the effects
of heterogeneous and de-anchored expectations. Section 5 concludes.

2 Model Setup

2.1 Structural Equations and Rational Expectations

We consider the simple canonical version of the New Keynesian model as in Clarida et al. (1999).
Similar setups have been considered in closely related papers of Busetti et al. (2017), Lansing (2019),
and Goy et al. (2020). We first present the basic form of the model without any regime switching,
given by the following structural equations:

Yt = (1 - Ly)Etyt+1 + lyYt—1 — %(Tt - Etﬂ't+1) + Eyts
T = B((1 — tp) Eymiss + tpme_1) + Kyt + €t (2.1)
re = prri—1 + (1 = pr)(@ame + Gyr) + Gy (v — 1) + €t



where y;, m; and r; denote the output gap, inflation and nominal interest rates respectively. The first
equation represents the IS curve, where ¢, is the intrinsic level of inertia (or indexation) in output
gap, and 7 is the intertemporal elasticity of substitution for households. The second equation is the
Phillips curve, with ¢, the price indexation and x denoting the slope of the Phillips curve. The last
equation is the monetary policy reaction function, with p, the interest smoothing rate, ¢, inflation
reaction, ¢, output gap reaction, and ¢, output gap growth reaction. The model is supplemented
with 3 shocks, where the demand shock wu,; and cost-push shock u,; follow AR(1) processes given
by:

Ext = Prlnrt—1 + Nrts
while the monetary policy shock ¢,; is assumed to be an i.i.d. process. Before introducing the
ELB constraint on the nominal rates and the regime switching setup, it is useful to start with
the Rational Expectations Equilibrium (REE) of the model, associated with the Minimum State
Variable (MSV) solution. The model can be written in the standard matrix form:

AXt = BXt,1 + CEtXtJrl + D&“t, (2 3)

€t = PEt—1 + Ny,

for conformable matrices A, B, C, D and p, with X; = [y, 7, 7¢]', €0 = [y, En, Ers), and n, =
Myt ety re) -t Under REE, the equilibrium solution takes the following form, along with the
implied 1-step ahead expectations:

Xy = bX_1 +dey,

(2.4)
E X1 = bX, + dpe;.
Plugging the expectations back into the law of motion (2.3) yields:
(A—Cb)X; = BX; 1+ (Cdp+ D)ey. (2.5)
The RE solution is then pinned down by the following fixed-point conditions:’
b=(A-Cb)™'B, (2.6)

d=(A—Cb)"\(Cdp+ D).

4For the monetary policy shock, we e, ; = 7,4 by assumption.
®We make use of the methods introduced in Uhlig (1995) to solve for the fixed-point conditions.



2.2 Zero Lower Bound and Regime Switching

The main objective of the paper is to evaluate the effects of the ELB constraint on macroeconomic
outcomes. Introducing the constraint on the interest rate rule leads to the following form:

Ty = mam{07 Prie—1 -+ (1 - pr)(¢7r7rt + ¢yyt) + ¢Ay(yt - yt—l) + Er,t}a (2'7)

which is an occasionally binding constraint (OCB) on the nominal rates. In the literature, a popular
method to approximate this OCB-induced non-linearity is to consider a regime-switching approach,
used in e.g. Binning & Maih (2016), Chen (2017), and Lindé et al. (2017). In this setup, monetary
policy is subject to two different regimes: a Taylor rule regime where interest rates follow the
intended reaction function when the ELB constraint does not bind, and an ELB regime where
monetary policy becomes inactive when the reaction function becomes constrained by the lower
bound. Denoting by s; the regime switching process, which can take on values s; = Z (ELB
regime) and s, = T (Taylor rule regime), the monetary policy rule evolves according to:

ri(se =T) = prric1 + (1 — pr) (0T + dyye) + Gy (Ye — ye—1) + 82,5;

' (2.8)
Tt(St = Z) = gr,t'

During the ELB regime, monetary policy is assumed to be unable to follow its standard reaction
function and therefore switches to the second function with pegged interest rates, i.e. p. = ¢, =
Oy = ¢ay = 0, with some additional white noise 67%,5. The regime probabilities evolve according to

o=| ¢ 1-¢
1—¢% ¢ |

with ¢ denoting the probability that period t with s, = T is followed by period t+ 1 with s,,; = 7.
Likewise, g7 denotes the probability that a ELB period with s; = Z is followed by a ELB period
with s;y1 = Z. For convenience, we assume that the transition probabilities are constant for the

a transition matrix () given by:

moment, while a time-varying version will be introduced in the next section. Under this approach,
the model dynamics can be captured with the notation:

A(sy) Xy = B(s1) Xi—1 + C(s1) X1 + D(s1)ey,
€t = PE¢—1 + N,

(2.9)

with conformable regime-dependent matrices A(s;), B(s:), C(s¢) and D(s;). The standard approach
in Markov-switching DSGE literature is to make use of the REE concept to solve the above system.
In the current framework, the REE approach boils down to the assumptions that agents are aware
of (i) the current underlying regime s;, and (ii) the transition matrix @ associated with the regimes.



In other words, Markov-switching REE (MS-REE) models equate agents’ subjective expectations
about regime switches to the objective expectations of the model, which leads to regime-dependent
expectations in the following form:®

Ei[Xialse = T) = ¢" (0(se11 = T)X; + d(s001 = T)per) + (1 — ¢")(0(s11 = 2) X + d(s041 = Z)per),
EXenlse = Z] = ¢7 (b(sep1 = 2) X + d(sp01 = Z)pe) + (1 = ¢7)(b(s11 = T)X; + d(sp41 = T)pey).
(2.10)

A well-known result in the literature is that the RE solution in the baseline version of the model in
(2.1) is determinate when the Taylor principle of ¢, > 1 is satisfied, while the equilibrium becomes
indeterminate with pegged interest rates. Davig & Leeper (2007) establish that in a regime switching
environment with RE, the equilibrium determinacy can continue to hold even if one of the underlying
regimes is indeterminate. They define this property as the Long-run Taylor principle (LRTP). The
implications of this for the canonical New Keynesian model with active and passive policy rules is
that, as long as the passive (indeterminate) periods are sufficiently short-lived relative to the active
(determinate) periods, the model dynamics can still be characterized by a determinate equilibrium.

Even when the overall model dynamics remain determinate, the regime-specific indeterminacy of
pegged interest rates leads to an important shortcoming in MS-REE models in the context of ELB
with pegged interest rates. The regime-specific indeterminacy typically generates more volatility
and adverse economic outcomes than intended, which become more severe as the expected duration
of these regimes increases. As a consequence, the MS-REE models are unable to generate persistent
ELB regimes in this context, e.g. Chen (2017) and Lindé et al. (2017) report expected duration
estimates between 3-9 quarters for the US economy, while the empirical duration between 2008-
2015 was 28 quarters. This makes MS-REE models ill-suited for counterfactual simulations and
policy analysis. It is also important to note that having short expected durations in the model
leads to an implicit form of non-rationality on the agents’ part: expecting short periods of ELB and
experiencing long durations leads them to be repeatedly surprised over these periods without ever
revising their beliefs.

Ozden & Wouters (2020) show that breaking the tight link between subjective and objective ex-
pectations in MS-REE models, and instead replacing agents’ expectations with adaptive learning
leads to substantial improvements in terms of model-implied expected durations. However, adap-
tive learning also comes with a regime-specific expectational instability (E-instability) during ELB
periods, which puts a downward pressure on the economy as inflation and output gap expectations
become de-anchored from their equilibrium values. This leads to frequent deflationary spirals and
crashes, which is also inconsistent with the historical ELB experiences in the US and elsewhere.

In this paper, we use the RISE toolbox (Maih, 2015) to handle the solution and estimation of the MS-REE
system with exogenous regime switching.



Therefore, the main goal of this paper is to introduce heterogeneous expectations into the previous
framework, thereby reducing the impact of adaptive learning on the economy and improving the

model’s longer-term projection performance.

2.3 Endogenous Regime Switching and Heterogeneous Expectations

The standard REE and the MS-REE models presented in the previous section serve as a benchmark
for the heterogeneous expectations model presented in this section. First, we relax the assumption
of exogenous regime switching of the previous section and introduce endogenous transition proba-
bilities for monetary policy, which follow the approach in Ozden & Wouters (2020).” Second, we
introduce heterogeneous expectations in the form of an endogenous regime switching process, which
is explained in further detail below.

Starting with the monetary policy function, the transition matrix is first replaced with the time-

0, = 9 1-qf
l—qf ¢ |

varying matrix:

where the probabilities ¢! and ¢Z depend on the central bank’s desired policy rate at every period,
which is defined as the shadow rate henceforth.® More formally, we assume that the shadow rate 7}
follows:

ri(se =T) = prri—1 + (1 = p)(0nme + Oyye) + Gy (Yt — Yi-1),

(2.11)
(st = 2) = periqy + (1= pr)(Oai + Gyye) + Oy (Ve — Y1)

This structure makes use of the following assumptions: the shadow rate 7} is the central bank’s
desired level of nominal interest rate in the absence of monetary policy shocks and the ELB con-
straint. During normal times with the Taylor rule, the shadow rate is smoothed over the observed
nominal interest rate. Therefore during normal times, the only difference between these two rates is
the presence of the i.i.d. monetary policy shocks. During ELB periods with pegged nominal rates,
the shadow rate is smoothed over itself, which allows for persistent deviations from the nominal
rate beyond the i.i.d. monetary policy shocks. This captures the idea of keeping the interest rates
lower-for-longer, where the central bank wants to keep the policy rate at near ELB levels until the
shadow rate recovers back to a level above the ELB.

"Endogenous regime switching models have also been considered within the context of RE models. Examples
include Binning & Maih (2016), Barthélemy & Marx (2017) and Benigno et al. (2020), among others. We abstract
from these in this paper.

8In the empirical exercise in Sections 3 and 4, the time-variation in these regime probabilities is limited except
for the entry to and exit from the ELB regime over the 2008-15 period.

10



Given the shadow rate r}, the transition probabilities are determined according to:

0 0
T 1 ELB 2
_ , _ S 2.12
4 01 + exp(—P1(rf + (rr — 72))) 4 Oy + exp(Po(rf + (rr — 772))) ( )

where rr and r; are the steady-state levels of the nominal interest rate during normal and ELB
regimes respectively. In this study, these steady-state values are taken to be the historical average
rates over the normal and ELB periods respectively, and they are introduced into the measurement
equations rather than the structural equations, which is discussed further in Section 3.

Anchored Expectations

Given the endogenous monetary policy switching, expectations are formed according to two types
of models. The first type is based on the RE solution of the baseline version of the model (2.1),
where monetary policy is active and the equilibrium is unique. We assume that this type of agents
always use the RE equilibrium associated with (2.6) where the Taylor principle ¢, > 1 is satisfied.
In other words, they always form their expectations based on a determinate RE solution. During
normal periods, this assumption boils down to the standard model solution associated with RE.
During the ELB periods, expectations associated with this type take on a different interpretation
where monetary policy is passive, but expectations evolve as if the central bank’s desired interest
rate, i.e. the shadow rate r;, matters for the economy.

The assumption that agents always use the RE solution associated with active policy rule implic-
itly means that they know the shadow rate at any given period, even though the shadow rate is
not directly observable during ELB periods. Therefore this assumption can be interpreted as a
successful central bank communication on the desired interest rate, which proxies for the impact
of central bank’s unconventional policy tools on expectations. We assume that forward guidance
communications and quantitative easing measures allow the central bank to correctly signal the
desired interest rate and anchor this class of agents’ expectations on the targeted equilibrium. Put
differently, the agents believe that unconventional monetary policy measures perfectly substitute
for the slack on the nominal rates introduced by the ELB constraint.

It is important to note that this expectation formation rule ignores not only the presence of the
ELB constraint, but also the presence of other agents in the economy that form their expectations
differently. Therefore these expectations correspond to a form of pseudo-rationality only, i.e. what
would happen if all expectations were rational, and if the monetary policy was not constrained by
the ELB. Such behavior is usually referred to as a fundamentalist rule in heterogeneous expectations
studies.” In this paper, we refer to this type as anchored expectations.

9See e.g. Hommes & Lustenhouwer (2019) and Goy et al. (2020), where fundamentalist agents use the steady-state
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Adaptive Learning

The second class of agents use a constant gain recursive least squares (RLS) learning rule based on
the observable variables of output gap, inflation and nominal interest rates. Specifically, we assume
that agents have the following regression model, along with the implied 1-step ahead expectations:

Xy =1+ fi-1 X1 + 0, (2.13)

EXE =+ B Xy,
where o;_1 is a vector of perceived means, 3;_; is the perceived first-order correlation matrix, and J;
is a vector of i.i.d. shocks. The first equation in (2.13) is referred to as the agents’ Perceived Law of
Motion (PLM) henceforth. This particular VAR(1) form of learning has been frequently used in the
learning literature, see e.g. Milani (2011) and Chung & Xiao (2013). It has the advantage of being
close to the beliefs consistent with the MSV solution of the model. The only difference is that with
the VAR(1) learning rule, the exogenous AR(1) shocks are not included in the regression, which
keeps the PLM small and more tractable. While the main results in the paper are discussed under
this learning rule, we also provide a robustness check for the estimations with a more parsimonious
AR(1) PLM in Appendices B, D and E.!°

It is important to note that in this paper, we use the assumption of t-téming on expectations,
which means that agents are able to use period t information when forming their expectations.
This corresponds to a joint determination of expectations and period t variables, which is also the
standard assumption in REE and MS-REE models in general. Keeping the information structure
in both learning and RE models is crucial for heterogeneous expectations in this context since
agents evaluate the rules based on their forecasting performance, which in turn is affected by the
information content.!' Agents update the perceived parameters in their PLM after the endogenous
variables are determined, hence these parameters appear with a lag in (2.13) in the form of a;_
and 3;_;. Under constant gain RLS, they evolve according to:

R, =R+ ’7(th1ng1 — Riq),

- B (2.14)
O, =0 +yR X (X — D1 X ),

values or long-run averages of the relevant endogenous variables when forming their expectations.

0Specifically, this alternative learning rule assumes a diagonal (; matrix in the notation of (2.13), where agents
ignore the cross-correlations between the variables. The results presented in the paper are robust to these two PLMs
considered. Ozden & Wouters (2020) provide a more thorough comparison and assessment of different learning rules,
including an MSV-learning rule with observed shocks.

1 The alternative is to use the assumption of ¢t — 1 dating for both types of agents, which takes on a sequential
structure where first expectations are formed using information from period ¢ — 1, and then period ¢ variables are
determined given the expectations.

12



where X;_; = [1,X] ], ® = [y, 3] and R, is the second moments matrix of perceived autoco-
variances. 7y denotes the constant gain value, which determines the weight that agents place on the
latest available observations.

A well-known result in the adaptive learning literature is that, akin to the determinacy condition
in RE models, the learning dynamics are E-stable when the Taylor principle ¢, > 1 is satisfied
(Bullard & Mitra, 2002). During ELB periods where monetary policy is inactive, the E-stability
principle breaks down and learning dynamics become unstable, which may give rise to deflationary
spirals. Ozden & Wouters (2020) derive the long-run E-stability (LRES) principle, akin to the
LRTP of Davig & Leeper (2007), which shows that as long as the ELB episodes are relatively short-
lived compared to normal episodes, the overall model dynamics remain stable and deflationary
spirals do not arise. Both LRTP and LRES conditions in these studies depend on the assumption
of exogenous regime switches, whereas the model of interest in this paper is based on endogenous
regime switching. Nevertheless, the general stability principles associated with the RE equilibria
and adaptive learning serve as an intuitive starting point to analyze the endogenous switching
model.

Aggregate Dynamics

Given the RE- and learning-based expectation formation rules, the fraction of agents using each
rule evolves according to a fitness measure based on their 1-step ahead forecasting performance as
in Busetti et al. (2017), Hommes & Lustenhouwer (2019), Lansing (2019) and Goy et al. (2020). In
particular, we assume the following fitness measures (/** and (! associated with each rule:'?

¢ =1 —wFEF +w(/,
where F EfE and F EtL denote the sum of forecast errors for inflation and output gap under for
the RE- and learning-based PLMs respectively. Given the fitness measures, agents’ fractions are
determined by:

RE _ exp(x¢™*) L_ exp(x¢i)

exp(xXCEE) + exp(xCF)’ e = exp(XCFP) + eap(xCE)’ (2.16)

where nf'f and nF denote the fractions of agents associated with each type, and  is an intensity of

choice measure, common across both types, which determines the frequency of switching between
the rules.

12The fitness measures follow the standard assumption in the heterogeneous expectations literature as in the
aforementioned studies.
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In this paper, different from previous studies, we introduce the expectational heterogeneity as a
regime switching mechanism. In previous studies, the fractions nf** and nl determine the aggregate
expectations as a weighted average, whereas we instead interpret these fractions as the probability
of realization for each regime. Accordingly, the law of motion (2.3) is determined separately under
(2.4) and (2.13). Then we take a weighted average of each regime, based on the fractions n/*5 and
nl |, in order to obtain the realized regimes. The advantage of this approach is that it allows us
to re-cast the heterogeneous expectations framework as a regime switching process, which can be
estimated with the conditionally linear filter described in Ozden & Wouters (2020). Together with
the monetary policy switching, the expectational switching gives rise to a 4-regime model, which are
summarized as follows: (1) Taylor rule regime with learning (E-stable), (2) Taylor rule regime with
RE equilibrium (determinate equilibrium), (3) ELB regime with learning (E-instable and possibly
de-anchored expectations), (4) ELB regime with RE equilibrium (anchored expectations at the

determinate RE solution). Putting together all 4 regimes, the transition matrix is given by:

g i q"ni (I=gl)nfy (1=l )i

4 i q"nf (I—=gl)nfy (1—=q¢f)nf
(1—g/™ )iy =g of"Pnfy ¢ |7
(L—=q/ Py =g of"Pnpy PP

where we make the assumption that the fraction of expectations enter into the transition matrix
with a 1-period lag, similar to the learning parameters in agents’ PLM. This leads to a sequential
intra-period timeline as follows: (i) first the shadow rate is decided by the central bank, which
determines the monetary policy regime, (ii) expectations and the endogenous variables are jointly
determined for each possible regime transition, (iii) regimes probabilities are calculated based on
the shadow rate, and period ¢ — 1 fraction of agent types (iv) states are collapsed, the adaptive
learning rule is updated, and period t fraction of expectations are realized based on their forecast

errors.

3 Estimation

Methodology, Data and Priors

This section discusses the estimation methodology, along with the dataset used in estimations
and prior distributions for the estimated parameters. The regime switching model described in
the previous section can be summarized as a time-varying recursive state-space system with the

following structure:
S = ’Yff@t + 7§f<1>tstfl + ’Y;fqﬂ?t, (3.1)
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with S; = [ Xy, &' and conformable matrices 7Yy, ; V5'g, and 73'y, With two layers of time-variation in
the system matrices. The time-varying adaptive learning parameters are captured by ®;, while the
regimes switches are captured by s,. The filtering process and calculation of the likelihood function
of the model is handled by the conditionally linear filter described Ozden & Wouters (2020), which
is a straightforward extension of the standard Kim & Nelson (1999) filter (henceforth KN) used in
Markov-switching state-space models. In a Markov-switching environment with m regimes, a sample
size of T generates m? distinct timelines associated with the model due to the history dependence
of the Markov-switching structure. This number quickly becomes intractable as the sample size and
the number of regimes grow. KN filter deals with this issue with a collapsing step, which amounts
to taking a weighted average of the state vector and the covariance matrix at every iteration of the
filter, effectively reducing the number of timelines from m” to m2. The adaptive learning step and
updating of expectational fractions are applied on the collapsed variables, which feed back into the
next iteration of the filter. This leads to a sequential and conditionally linear structure.'3

For the estimation of the New Keynesian model, we use historical US data on output gap, infla-
tion and nominal interest rates over the post-Great Moderation period starting from 1982Q1 until
2019Q4. Further details and descriptions of the time series used in the estimation can be found in
Appendix A. The measurement equations are straightforward and are related to the model variables

as follows:
yt - y + yz)b57
T =7+ Wfbs, (3.2)

e =7(s) + 1§,

where the right-hand side variables are the historical data (observables), and the left-hand side
variables are the model variables. The historical averages are denoted by g, 7 and 7(s;) respectively,
which are included in the measurement equations rather than demeaning the data prior to the
estimation. Following the approach in Gust et al. (2018), we assume there is a shift in the intercept
of interest rates 7(s;), which switches to a lower value during the ELB period. Different than
monetary policy and expectational switching mechanisms in the model, we assume that this is a
deterministic switch over the period 2008-2015, corresponding to the period where the US Federal
Reserve used forward guidance.!* The regime specific values are subsequently denoted as 1 during
the ELB period between 2008-2015, and 77 during the Taylor rule regime. The output gap series is
based on a quadratic de-trending of output over the sample period, following Cornea-Madeira et al.
(2019).

All structural, learning and switching parameters are assigned prior distributions consistent with
previous values used in the literature. The risk aversion parameter 7 has a Gamma distribution with
a mean 2 and standard deviation 0.5 as in An & Schorfheide (2007). The monetary policy reaction

13See Appendix C in Ozden & Wouters (2020) for a more detailed discussion of the estimation algorithm.
4The same intercept shift is also assumed for the shadow rate over the same period.
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coefficients are all based on the Smets-Wouters (2007) model. Accordingly, inflation reaction ¢, is
assigned a Gamma distribution with mean 1.5 and standard deviation 0.25; output gap reaction
coefficients ¢, and ¢, are assigned Gamma distributions with mean 0.25 and standard deviation
0.1. The interest rate smoothing parameter p, is assigned a Beta distribution with mean 0.75 and
standard deviation 0.1. Similarly, shock parameters are based on the same model, where shock
persistence parameters p, and p, are assigned a Beta distribution with mean 0.5 and standard
deviation 0.2, and shock standard deviations are assigned inverted Gamma distributions with mean
0.1 and standard deviation 2. The standard deviation of the monetary policy shock over the ELB
regime is an exception, which is instead assigned a Uniform distribution over the unit interval.
For the slope of the Phillips curve k, we use a relatively tight prior of a Beta distribution with
mean 0.05 and standard deviation 0.025. This corresponds to a lower mean and standard deviation
compared to previous studies, e.g. An & Schorfheide (2007) use a wider Beta distribution with
mean 0.3 and standard deviation 0.15. Nevertheless, the prior used here encompasses parameter
values consistent with most empirical studies as its credible interval. The indexation parameters ¢,
and ¢, are assigned Beta distributions with mean 0.25 and standard deviation 0.1. The historical
averages in the measurement equations are assigned Uniform distributions over the interval [0, 2],
except for the output gap mean which is fixed at 0 and is not included in the estimation. The
average for interest rates during the ELB period, 7z, is assigned a more informative Normal prior
with a mean of 0.1 and standard deviation 0.25 in order to restrict the range of parameter values
over this period.

For the exogenous switching REE model, the transition probabilities 1 —p;; and 1 — poo are assigned
uniform priors over the unit interval, which differs from previous studies that assume tighter Beta
distributions, e.g. Chen (2017) and Lindé et al. (2017). For the endogenous switching models,
the parameters #; and #, in the monetary policy switching functions are fixed at 1 and are not
included in the estimation; this is based on the analysis in Ozden & Wouters (2020) which shows
that the data is not informative on both 6 and ® simultaneously. For the other two parameters on
monetary policy switching, we assign Gamma distributions with mean 0.2 and standard deviation
0.1 on 2 and -22. which covers both gradual and abrupt transitions for monetary policy regime

1000 1000
switching. The persistence of expectational switching, w, is assigned the same distribution as the

shock persistence parameters, i.e a Beta distribution with mean 0.5 and standard deviation 0.2.
The intensity of choice y is assigned a Gamma distribution with mean 5 and standard deviation 2,
which is based on the findings of Cornea-Madeira et al. (2019) on inflation expectations. Finally,
the constant gain parameter ~y is assigned a Gamma distribution with mean 0.035 and standard
deviation 0.015, which is based on Slobodyan & Wouters (2012) and Ozden & Wouters (2020). The
prior distributions for all estimated parameters are summarized in Table 1.

The initial transition probabilities for monetary policy switching are based on the unconditional
moments for the normal and ELB periods in the sample. Accordingly, we use ¢/ = 0.991, which
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implies an expected duration of 107 quarters based on the initial period over 1982-2008, and ¢Z =
0.964, which implies an expected duration of 28 quarters based on the ELB period over 2008-2015.
For the expectational switching, we make no prior assumptions on the distributions and set nf¥

and n¥ both equal to 0.5. The results are not sensitive to these initial values as the data is very

informative about the fraction probabilities over the sample period.

The initial beliefs for adaptive learning are derived from the estimated RE model: we first estimate

the baseline model in (2.1) under REE without regime switching. Then we retrieve the implied

VAR(1) beliefs consistent with the estimated equilibrium. The initial values remain fixed at these

values throughout the estimation. We use Sim’s csminwel algorithm (1999) to obtain the posterior

mode, which is used to initialize the MCMC algorithm using random-walk Metropolis-Hastings. We

use 250000 parameter draws for all models under consideration. The first 40% of the draws are dis-

carded as burn-in sample, and the convergence diagnostics for the remaining 60% are checked using

Geweke’s statistics (1992). Further details on posterior distributions and convergence diagnostics

are provided in Appendix B.
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Table 1. Prior distributions for the estimated parameters in the New Keynesian model.
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Posterior Estimation Results

This section discusses the posterior estimation results for the heterogeneous switching model, along
with three accompanying models to assess the impact of monetary policy and expectational switch-
ing mechanisms. In particular, we estimate the baseline REE model without any regime switching
as described in Section (2.1), the exogenous MS-REE model with a switch in monetary policy reac-
tion function as described in Section (2.2), and a 2-regime adaptive learning model with switching
only in the monetary policy reaction function. This last model is a special case of the 4-regime
heterogeneous expectations model, which assumes that all expectations evolve according to adap-
tive learning without the expectational switching mechanism. These four models are subsequently
referred to as the baseline REE, the MS-REE, 2-regime and 4-regime adaptive learning models
respectively. The estimation results for all four models are reported in Table 2, and the discussion
below is based mainly on the posterior mean values.

We start with the discussion of parameters that are common across all models. The Slope of the
Phillips curve & is larger in the 2-regime VAR(1) model with a value of 0.01, compared with values
ranging between [0.002,0.003] under the REE, MS-REE and 4-regime VAR(1) models. The larger
slope under learning is consistent with previous studies in the literature, e.g. Milani (2007, 2011)
and Slobodyan & Wouters (2012). The result that x is smaller under the 4-regime learning model,
compared the 2-regime learning is intuitive in this sense since the former model is closer to the REE
benchmark. The risk aversion parameter 7 is considerably lower in both 2-regime and 4-regime
learning models with values of 1.44 and 1.53, and highest in the MS-REE model with 3.52 compared
to the REE model with 2.43. The relatively high value in the MS-REE model is explained by
the expectational feedback channel: when monetary policy becomes inactive, expectations directly
account for this switch in the MS-REE model. As a result, the ex-ante real interest rate ry; — Fy[m41]
has a larger feedback on output gap y; in the IS equation. Therefore the higher risk aversion
parameter in the MS-REE model has the effect of dampening this feedback channel, which is absent
in the other model specifications since expectations either do not account for the ELB regime (in
the baseline REE model), or only indirectly account for it (in the 2- and 4-regime learning models).

Looking at the monetary policy parameters, these are typically consistent across all models with
HPD intervals within the range of each other. The posterior means for ¢, range over the interval
[1.648,1.959], whereas the output gap reaction ¢, and output gap growth reaction ¢, range over
the intervals [0.116, 0.203] and [0.194, 0.221] respectively. The same argument also applies to interest
rate smoothing p,, which fluctuates between 0.89 and 0.936.

We observe some differences in the estimated indexation and shock persistence parameters. Output
gap shock persistence p, is relatively lower under REE with 0.6, which ranges between 0.942 and
0.967 in the other models. The differences between the indexation parameter ¢, are smaller, the
lowest value being 0.113 in the 2-regime learning, and highest value 0.322 in the 4-regime learning.
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This picture is reversed when we look at inflation dynamics: while the REE model has a highly
persistence shock with a p, of 0.965, the estimate ranges between 0.625 and 0.553 in other models.
The indexation value ¢, again shows smaller differences, with values fluctuating between 0.213 and
0.344. These results suggest that the feedback from output gap shock persistence on inflation
dynamics is stronger in the MS-REE and learning models, whereas the REE model needs a more
persistent cost-push shock e, ; to match the observed inflation persistence.

The intercept values in the measurement equations are higher under REE and MS-REE models,
with 0.62 and 0.7 for 7 and 0.63 and 0.79 for 77 respectively. These values are 0.43 and 0.44 for 7
in learning models. Similarly, 77 is estimated at 0.182 and 0.27 in these two models. The smaller
values are justified by the perceived mean dynamics fluctuating at above-zero values on average in
the learning models, leading to lower values for the intercept terms in the measurement equations.

Among the remaining parameters, the exogenous regime transition probabilities in the MS-REE
model are estimated at 0.207 for the ELB exit probability, and 0.037 for the normal regime proba-
bility. These values correspond to expected durations of roughly 4.83 quarters for the ELB regime,
and 27.02 quarters for the Taylor rule regime. Particularly for the ELB regime, this leads to very
short-lived ELB episodes compared to the empirical duration of 28 quarters.

For the endogenous regime transition probabilities, the monetary policy switching parameters &,
and ¥, are estimated at 177 and 147 under 2-regime learning, whereas they turn out to be 167 and
134 under 4-regime learning. In both models, these values suggest a faster transition from Taylor
rule regime to ELB, compared to the transition from ELB to Taylor rule regime. Put differently,
the policy switches from Taylor rule to ELB quickly when the shadow rate falls below the lower
bound threshold. However, once the policy is in the ELB regime, it may linger there for a while
longer even after the shadow rate reaches values above the ELB threshold.

For the heterogeneous expectations and learning related parameters, we obtain similar values of
0.007 and 0.009 for the constant gain -, which is in the range of values obtained in previous
studies for the US, see e.g. Branch (2007), Milani (2007) and Slobodyan & Wouters (2012). For
the memory parameter w in expectational switching, we obtain a mean of 0.72 with a wide HPD
interval covering values between [0.39,0.99], which suggests that the data is not very informative
about this parameter. For the intensity of choice y, we obtain a mean of 2.1, with an HPD interval
of [0.55,3.89]. This value is lower than the estimate in Cornea-Madeira et al. (2019).'

Overall, it is readily seen that relative to the REE model, the model fit is improved under MS-REE,
as well as 2- and 4-regime learning models based on the posterior mode and Modified Harmonic
Mean (MHM) estimators. The 4-regime learning model yields a slightly worse model fit compared

15This difference is explained by the lack of survey expectations as observables in our model. Including expectations
data is likely to improve the inference on these parameters, which is left for future research.
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to MS-REE and 2-regime models, while the latter two models yield similar values. However, both
the MS-REE and 2-regime learning models have important shortcomings. Given the estimated
transition probabilities, the MS-REE model implies short-lived ELB episodes of 4-6 quarters that
are inconsistent with the empirically observed ELLB durations. This makes the model unsuitable
for studying the potential downside risks of ELB episodes. While the 2-regime learning model
improves on this point by breaking the tight link of the MS-REE model between model-consistent
expectations and agents’ subjective expectations, Ozden & Wouters (2020) show that a pure learning
model typically leads to a fast de-anchoring of expectations resulting in deflationary spirals. The 4-
regime model, by incorporating heterogeneous expectations into the adaptive learning framework,
allows for the possibility of more stable ELB episodes, as long as a sufficiently large fraction of
expectations remain anchored at the REE. These points are further discussed using counterfactual
simulations in Section 4 with applications to the post-GFC period, as well as the pandemic-induced
recession of 2020. We provide robustness checks on the estimation results discussed in this section
in Appendix D, where the VAR(1) rule for adaptive learning is instead replaced with a parsimonious
AR(1) rule.

For the remainder of this section, we focus on results under the 4-regime adaptive learning model.
Figure 1 shows the filtered time series of the learning parameters «; and S; for output gap and infla-
tion in agents’ PLM over the estimation period. It is readily seen that the GFC and the subsequent
switch to the ELB episode in 2008-2009 are associated with a substantial drop in the perceived
means for both variables. Further, there is a clear upward or downward jump pattern in some of
the perceived 3; parameters when the economy switches to the ELB episode. In particular 3, , and
Bry jump down, while 8, ,, B, and B;, jump up. This suggests a relatively fast adoption of the
new regime in learning agents’ PLM, where the regression model goes through large updates over
a short period of a few quarters, after which the time variation in learning parameters resumes to
a pattern of gradual changes as in the pre-crisis period. This quick updating during the mone-
tary regime switch is consistent with the findings in Ozden & Wouters (2020), where such jumps
are investigated in more detail in the context of long-run E-stability and Restricted Perceptions
Equilibria.

Figure 2 shows the estimated fraction of agents with expectations anchored at the (determinate)
RE equilibrium, together with the nominal interest rate and the estimated shadow rate over the
sample period. It is readily seen that during normal times prior to 2008, the fraction fluctuates
around 50%, indicating a roughly equal share of agents with anchored expectations and learning
agents. However with the switch to the ELB regime, there is a large jump in the fraction of anchored
expectations for a short period until 2010, which then goes back down to below 50% and gradually
increases afterwards. This suggests that a de-anchoring of expectations immediately following the
crisis is not supported by the data. It is also important to note that the increase in the fraction
of anchored expectations is accompanied by the jumps in adaptive learning agents’ PLM: the crisis
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period creates a large impact on the learning agents’ PLM through a large expectational error,
leading to a quick de-anchoring for this type. In turn, the effect that this jump would have had on
the aggregate variables is dampened by the reduction of agents using adaptive learning.

Next looking at the estimated shadow rate, we observe that during the pre-crisis period, it closely
follows the nominal interest rate. As discussed in the previous section, this close relationship
between the interest rates during the Taylor rule regime is by construction, since the shadow rate
is smoothed over the observed nominal rate. During the initial phase of the ELB regime, a large
disparity between the two rates arises once the crisis hits, where the shadow rate falls to roughly
—1% on a quarterly basis. This is consistent with other studies in the literature, e.g. Kulish et al.
(2014), where the authors report an annual rate of —4% for the lowest point of the shadow rate at
the posterior mean. The shadow rate gradually picks up after the initial crisis period and catches
up with the nominal rates, where the latter starts rising during the last quarter of 2015 and first

quarter of 2016 and the economy switches back to the Taylor rule regime.

The observed pattern in the shadow rate offers another interpretation for the estimated fraction of
agents using adaptive learning. To the extent that learning with a passive Taylor rule is unstable,
a larger difference between the shadow and nominal rates implies more instability in the learning
dynamics. Therefore, the period with the largest difference between these two rates (i.e. the earlier
crisis period) is associated with a smaller fraction of agents using adaptive learning, which serves
as a dampening mechanism on the downward economic pressure of induced by learning.
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Figure 2. (a) Fraction of agents using the Determinate RE solution. (b) Shadow rate and the nominal interest rate
in the 4-regime learning model.

Figure 3 shows the estimated probabilities of each regime over the sample period. Not surprisingly,
the first 2 regimes (learning + Taylor rule, and REE + Taylor rule respectively) are dominant over
the earlier sample up to start of the GFC. During the post-GFC period, regime 4 (determinate REE
+ ELB) is more dominant over the earlier sample, while the probability of regime 3 (learning +
ELB) increases after 2010. Once the economy switches back to the Taylor regime by the end of 2015,
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we observe that the fraction of learning agents is higher until the end of the sample. Looking at the
average probabilities as reported in Figure 3, we observe that the economy spends roughly the same
amount of time in regimes 1 and 2 with around 40% over the entire sample period (corresponding
to a 50% average during Taylor rule regimes). Regimes 3 and 4 are activated over the ELB period
between 2008-2015, where the system spends nearly twice as much time in regime 4 compared to
regime 3, with averages of 12% and 6.64% over the entire sample period. These values correspond
to averages of 64.3% and 35.6% over the ELB regime.
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(c) Regime 3: ELB + Learning. (d) Regime 4: ELB + (Determinate)
REE.

Regime Averages

Regime 1 Regime 2 Regime 3 | Regime 4
Expectations Learning REE Learning | REE

(Determinate Solution)

Monetary Policy Taylor Rule | Taylor Rule | Passive Passive
VAR(1) Learning
Whole sample period | 40.70% 40.60% 6.64% 12%
Taylor rule period 50% 50% 0% 0%
ELB period 0% 0% 35.6% 64.3%

Figure 3. 4-regime learning model: estimated regime probabilities, along with the average regime probabilities over
the entire sample period, and during the Taylor rule and ELB periods.
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The results based on the estimated regime probabilities suggest that, during the ELB period, the
data supports a large fraction of expectations staying anchored, while the remaining one third of
expectations are de-anchored. As we show with counterfactual simulations in Section 4, a higher
fraction of agents using adaptive learning puts a downward pressure on inflation and output gap,
and sufficiently high fractions of adaptive learning can lead to deflationary spirals with ever-falling
output gap and inflation. Accordingly, the high fraction of anchored expectations can be interpreted
as the impact of unconventional monetary policy on expectations, to the extent that we evaluate
such measures through their impact on expectations. In particular, by signaling a commitment
to monetary easing through forward guidance, and through the signaling channel of quantitative
easing, the central bank is able to keep a high fraction of expectations anchored during the crisis
period, which in turn improves economic outcomes.

Before closing this section, we briefly discuss some impulse responses under 2- and 4-regime learning
models. The aim of this exercise is to see the impact of heterogeneous expectations on impulse
responses. As an example, Figure 4 shows the impulse response of output gap to a cost-push
shock. The top two panels in the Figure show the conditional impulse responses of output over
the period 2001Q1-2019Q4. The black and red lines at the beginning and end denote the IRFs
under MS-REE model as a point of reference. The general pattern we observe in these two figures
is that, when the system switches from the Taylor rule regime to the ELB regime, the direction
of change in the impulse responses is the same in all three models. However, there is considerable
time variation in the IRFs of learning models, which are characterized by a jump when the switch
to ELB occurs, after which the IRFs change only gradually until the end of the ELB period. At
that point the system switches back to the Taylor rule regime, leading to another jump in the IRFs.
The overall change in the IRFs for learning models tends to be smaller than the MS-REE model,
which is discussed extensively in Ozden & Wouters (2020) for a wide set of variables and shocks
in the Smets & Wouters (2007) model. An additional observation here is that the regime-specific
differences tend to be smaller under the 4-regime learning model compared to the 2-regime model,
since the fraction of anchored expectations keeps the IRFs more stable compared to the 2-regime
model. The full set of impulse responses for both output gap and inflation to demand and cost-push
shocks is omitted here, and can be found in Appendix E, along with the IRFs associated with the
AR(1) learning model.
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Figure 4. Conditional and average impulses responses of output gap y: to a cost-push shock 7, ; in the learning
and MS-REE models over the period 2001Q1-2019Q4.

4 Counterfactual Experiments

In this section, we consider a set of counterfactual simulations with the heterogeneous expectations
model to assess the impact of de-anchored expectations on economic outcomes. The main focus is
on how the fraction of learning agents n’ and the constant gain value v affect output gap, inflation
and the duration of ELB regimes. We first discuss a set of counterfactuals over the post-GFC period
until the end of 2019. Then we discuss the model’s out-of-sample projections over the post-2019

period with randomized shocks.

4.1 Counterfactuals with different fractions of agents

The first exercise is based on the period 2009Q4-2019Q4. The motivation for starting the counter-
factual in 2009Q4 is that both inflation and output gap series attain their lowest values in 2009Q3,
hence the simulation period starts after the recession reaches its lowest point in this context. This
exercise proceeds as follows: we first take the filtered shocks from the heterogeneous expectations
model at the posterior mean. Then we use these shocks to re-simulate the economy with different
fractions of learning agents n’ over the counterfactual period. We use a total of 1000 simulations,
all using the same set of filtered shocks at the posterior mean, while learning agents’ fraction n’ is

varied over the interval [0, 0.9)].

The results of the exercise are shown in Figure 5. We focus on four variables of interest, namely
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the output gap, inflation, the shadow rate and the probability of the Taylor rule regime.'® The left-
hand side panels show the period-specific variation in the variables as a function of learning agents’
fraction n’, where the solid black line denotes the baseline (estimated) scenario with endogenous
fractions. The figure reveals a clear impact of the fraction n* on the economic outcomes. As the
fraction of agents using adaptive learning increases, output gap, inflation, and the shadow rate
decrease on average over the counterfactual period. While the effects are negligible over the earlier
periods, higher fractions of de-anchored expectations clearly generate a large downside risk over the
post-2015 period. As a result, the probability of returning to the Taylor rule regime decreases as
nl increases. The overall effects are more clearly seen on the right-hand side panels, which show
the averages over the counterfactual period as a function of the fraction nF. A fixed value of nF
exceeding roughly 0.45 leads to counterfactual averages lower than the empirical ones. Around
nl ~ 0.7, the averages start to decrease exponentially, resulting in ever-falling values of output gap,
inflation and shadow rate. The last panel on the right-hand side shows the average probabilities
of the Taylor rule regime across different sub-periods. When all expectations are anchored (i.e.
nk = 0), the average probability rises up to 50 % over 2009Q2-2019Q4, and remains around 12%
over 2009Q2-2014Q4.'7 As we increase the fraction of adaptive learning agents, probabilities across
all sub-subsamples decrease towards zero as n approaches 0.9. Overall, these results suggest that
de-anchoring of expectations through a larger fraction of learning agents substantially increase the
downside risk on the economy, making deflationary spirals more likely and increasing the probability
of a prolonged ELB regime.

4.2 Counterfactuals with different gain values and fractions

The second counterfactual exercise evaluates the impact of the constant gain parameter v together
with the fractions nl, using the same setup as the previous exercise. Accordingly, we use the
estimated (filtered) shocks at the posterior mean, with fixed constant gain v and fraction values
nl over the intervals [0,0.01] and [0,0.9] respectively, with a grid of 100 points each.!® For this
exercise, we provide only the averages over the sample period as a function of the gain ~ and the
fraction n’. The results are shown for output gap, inflation and the shadow rate in Figure 6. The
conclusions obtained in the first exercise continue to hold for sufficiently large values of the gain
parameter. While the downside risk of a large fraction of de-anchored expectations is clearly visible
for gain values exceeding 0.006, the sample averages become less sensitive to the fraction nl as the
gain value approaches 0. This result follows from the fact that the gain value controls the speed of

learning. As the gain decreases, adaptive learning converges to an anchored expectations rule, albeit

16The Taylor rule regime probability is obtained by summing up the first two regime probabilities, i.e. the Taylor
rule learning and Taylor rule REE regimes.

"These results also imply that recovery earlier than 2014Q4 remains unlikely, since the average probability never
exceeds 12% even with all expectations anchored.

8Note that the region for constant gain + also includes the posterior mean value of 0.009.
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a different rule than the underlying REE. At the other extreme with increasing values of the gain,
the downside risk associated with larger nl is compounded by larger values of the gain parameter,

leading to the lowest averages in the region with high gain values and high learning fractions.

The two counterfactuals considered so far can be interpreted as an in-sample evaluation of agents’
fractions and the speed of learning, where larger fractions and faster rates of learning both make
it more likely to generate deflationary spirals and prolonged recessions. In what follows, we assess
the model-implied projections over the post-2019 period.

Average Output Gap, 09Q4-19Q4
Average Inflation, 09Q4-19Q4

Average Shadow Rate, 09Q4-19Q4

001 o . bl 001 ¢ . v 001 o .

(a) Output Gap (b) Inflation (c) Shadow Rate

Figure 6. Averages for key variables over the counterfactual simulation period from 2009Q4 to 2019Q4. The
counterfactuals are based on the filtered shocks at the posterior mean, while the fraction of adaptive learning agents
nk and the constant gain parameter v in the adaptive learning rule are varied over intervals [0,0.9] and [0,0.01]
respectively, with a grid of 20220 points.

4.3 Out-of-sample Projections

We consider the post-2019 period to examine the model’s unconditional forecasts about the likeli-
hood of the next ELB event in the absence of any other information. With this in mind, the third
counterfactual proceeds as follows: all parameters and variables are fixed at their posterior mean
values up to 2019Q4, after which we simulate the economy 1000 times with randomized shocks for
20 quarters until 2024Q4. The simulation averages, along with the 10th and 90th percentiles of the
Monte Carlo distributions for output gap, inflation, shadow rate and learning agents’ fraction n’
are reported in Figures 7 and 8.

In discussing the results, we divide the simulations into two categories: those that result in an
average Taylor rule probability above 50% over the projection period 2020Q1-2024Q4, and those
that result in an average Taylor rule probability below 50%. The simulations in the first category
turn out to be 68% of all simulations, while simulations with a Taylor rule probability below 50%
make up the remaining 32%. In other words, in the absence of any other external effects, the model
attaches a 32% probability to encountering another ELB episode over at least half of the projection
period 2020Q1-2024Q4. Looking at the first category of simulations, it is readily seen that output
gap remains stable around its pre-2020 levels while inflation picks up, and the nominal interest rate
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along with the shadow rate increases on average. Among these simulations, the nominal rate rarely
falls into near-zero levels and therefore the Taylor rule probability stays stays close to 1 over the
entire projection period.

Looking at the second category of simulations, output gap and inflation show a clearly decreasing
pattern on average, while nominal rates remain stuck at the ELB and the shadow rate falls into
the negative territory. The average Taylor rule probability for these simulations quickly approaches
zero during 2021, before slowly starting to rise after 2023.

Taking both categories of simulations together, these results imply that the model has a bimodal
prediction for the post-2019 period. The first case, with a probability of 68%, suggests that the
economy remains in the Taylor rule regime and the probability of hitting the ELB again before
2025 remains close to 0. In the second case, which has a probability of 32%, the economy hits the
ELB again and enters into another recessionary period. Interestingly, the fractions of agents in
the first set of simulations remain balanced around 50%, similar to the estimated fractions before
the pre-GFC period. The second set of simulations is instead accompanied by an upward trend
in the fraction of agents using adaptive learning. This result confirms the observation from the
previous two counterfactuals that a larger fraction of learning agents and de-anchored expectations
are associated with worsening economic conditions, which highlights the importance of keeping
expectations anchored during periods of uncertainty.®

19We provide two additional sets of counterfactual exercises in Appendix C by introducing a pair of pandemic-
induced demand and cost-push shocks into the model over the post-2019Q4 period. The results are similar to those
discussed in this section, where a higher fraction of learning agents increases the likelihood of deflationary spirals
and prolonged periods of ELB episodes.
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Figure 7. Counterfactual simulations with randomized shocks after 2019Q4 over a period of 20 quarters until
2024Q4. The panels show the Monte Carlo moments for key variables among simulations that yield an average Taylor
rule probability of 50% or above, which make up 68% of all simulations. The dotted lines denote the simulation
averages, whereas the blue regions correspond to 10% and 90% quantiles of the Monte Carlo distributions.
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Figure 8. Counterfactual simulations with randomized shocks after 2019Q4 over a period of 20 quarters until
2024Q4. The panels show the Monte Carlo moments for key variables among simulations that yield an average
Taylor rule probability below 50%, which makes up 32% of all simulations. The dotted lines denote the simulation
averages, whereas the blue regions correspond to 10% and 90% quantiles of the Monte Carlo distributions.
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5 Conclusions

This paper proposes a heterogeneous expectations model based on the canonical New Keynesian
model, with monetary policy subject to the ELB constraint on the nominal interest rates in an
endogenous regime switching framework. Several important lessons stand out. First and foremost,
the results in the paper suggest that private sector expectations for the US economy over the
period 1982-2019 can be described as a mixture of anchored, pseudo-rational expectations and
de-anchored expectations based on adaptive learning. This suggests that not accounting for the
expectational heterogeneity in policy design, in particular unconventional monetary policy tools
such as forward guidance and quantitative easing, may have unintended consequences. Second, the
model shows that during the US experience with ELB after the GFC, expectations remained mostly
anchored, which can be interpreted as a successful central bank communication over this period.
Third, counterfactual experiments show that more de-anchoring, either through a higher fraction
of adaptive learning agents or a faster rate of learning by these agents, increases the likelihood of
deflationary spirals and prolonged recessions by putting a downward pressure on economic variables.

The paper also opens potential avenues of future research. The current framework only incorpo-
rates unconventional monetary policy through its expectational channel and future studies should
also model the direct effects of unconventional tools, in particular quantitative easing measures.
Additionally, in order to obtain more concrete policy recommendations, further research in hetero-
geneous expectations is needed in more realistic medium- and large-scale DSGE models on par with
those used at central banks.
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Appendix

A Data Descriptions

This section describes the quarterly time series used in the estimations. The dataset spans from
1982Q1 to 2019Q4 and the time series are retrieved from the FRED database.

e Real Gross Domestic Product (FRED mnemonic: GDPC1), denoted as GDP, and available
at:
https://fred.stlouisfed.org/series/GDPC1.

e Consumer Price Index for All Urban Consumers (FRED mnemonic: CPIAUCSL), denoted as
P, and available at:
https://fred.stlouisfed.orq/series/CPIAUCSL.

e Effective Federal Funds Rate (FRED mnemonic: FEDFUNDS), denoted as R; and available
at:
hitps://fred.stlouisfed.org/series/FEDFUNDS.

Given GDP,, P, and Ry, the following variables are used in the measurement equations:

e Output Gap y; is based on a second-order de-trending of log(GDP,) over the estimation
sample.

P
Pi1’

e Inflation m =

e Nominal interest rate r;, = R;.

B Posterior Distributions, Diagnostic Checks

This section presents the posterior parameter distributions, trace plots and the results of Geweke’s
diagnostic tests (1992) for the convergence of MCMCs. Figures 9, 10 and 11 show the posterior
distributions and trace plots of the parameter estimates for all models, namely the REE, MS-REE,
2- and 4-regime VAR(1) learning models that are presented in Section 3, as well as the 2- and
4-regime AR(1) learning models presented in Appendices D and E as a robustness check.

Table 3 shows the results of Geweke’s convergence diagnostic tests (1992). The table reports the
p-values of the tests with different tapering steps of 4%, 8% and 15% respectively, which account
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Figure 9. Rational Expectations models. For both models, the left-hand panel shows the posterior distributions,

while the right-hand panel shows the trace plots.
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Test Result
Tapering Step || REE RISE VAR(1) VAR(1) AR(1) AR(1)
1-regime 2-regime 2-regime 4-regime 2-regime 4-regime
4% 39% 79% 18% 52% 88% 50%
8% 35% 75% 23% 57% 89% 50%
15% 32% 1% 26% 56% 89% 47%

Table 3. Geweke’s Convergence Diagnostics (1992). The table reports the p-values of the tests with different
tapering steps (4%, 8% and 15% respectively). The test compares the means of the first 20% and last 50% of the
posterior draws after discarding the burn-in sample.

for potential autocorrelation in the Markov chains. Each model is estimated using a single chain
with 250000 draws initialized at the posterior mode, of which the first 100000 of the draws (i.e. the
initial 40% of the sample) are discarded as burn-in sample. For the remaining 150000 draws, the test
compares the means of the first 20% and the last 50% of the posterior draws. The resulting p-values
for all 6 models are well above the 5% significance level with all three tapering steps, indicating a
failure to reject the null hypothesis that the distributions are different at the beginning and end of
the chain. This suggests that all chains have converged.

C Counterfactual Simulations with Pandemic Shocks

In this section we consider two additional counterfactual exercises over the post-2019Q4 period with
a pair of pandemic-induced demand and cost-push shocks, as a supplement to the results discussed
in Section 4.

C.1 Post-2019Q4 period with pandemic shocks

We take the first set of simulations from the exercise in Section 4.3 where the Taylor-rule regime
probability remains above 50%. Then we introduce a pair of large adverse demand and cost-push
shocks over 2020Q1-2020Q4 into these simulations to proxy for the downfall associated with the
pandemic-induced recession. Specifically, this sequence of adverse shocks assume that the downturn
already starts in the first quarter, that the main pandemic shock hits the economy in the second
quarter and that the negative effects persist in the last two quarters of the year.? The aim of this
exercise is to qualitatively assess how and when the economy recovers from the recession, rather
than matching the exact magnitude of downfall in output gap and inflation throughout 2020.

The resulting time series for average shocks are shown in the first two panels of Figure 12. It is

20Namely, the shocks are of the the following magnitude: -1 st. dev. in 2020Q1, -6 st. dev. in 2020Q2, and -2 st.
dev. in 2020Q3 and 2020Q4.
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readily seen that the resulting downfall in the demand shock is comparable to the GFC period
in magnitude, while the negative cost-push shock was absent during the GFC period. Given that
the demand shock is a near unit root process with a persistence of 0.96 at the posterior mean,
this sequence of adverse shocks resembles a permanent shock on the economy, while the cost-push
shock recovers back to its baseline levels since its persistence is only 0.55. Under the assumption
that the sequence of adverse shocks remain contained within the year of 2020, the model predicts a
V-shaped pattern for inflation, which recovers to positive values by mid-2021. Output gap does not
start recovering from the shock throughout the projection period, which again relates to the fact
that the demand shock is a near unit root process.?! Under this scenario, the nominal rate remains
stuck at near-zero levels until the end of 2021, after which it slowly starts to rise again, which is
when the shadow rate also catches up with the nominal rate.?? Immediately following the large
shock in 2020Q2, the fraction of agents using the de-anchored learning rule falls down to near-zero
levels, which is qualitatively the same pattern as the estimated fractions during the GFC period.
After this point, the fraction rises back up to nearly 70% and remains elevated until the end of the
projection period. The Taylor rule probability remains close to zero throughout 2021 and slowly
starts to rise again afterwards, but the probability of having escaped the ELB regime by 2024Q4
remains relatively low at around 54.1% under this benchmark scenario.

2Tn order to reduce the large impact of the demand shock on output gap, an alternative approach is to repeat
the exercise with a less persistent demand shock. However, this has a small impact on the overall predictions of the
model since monetary policy reaction to output gap growth is larger than the reaction to output gap level. As such,
persistently low levels of output gap does not prevent the interest rates from starting to rise during the projection
period.

22Note that, even though the fall in both output gap and inflation is larger in this exercise compared to the GFC
period, the fall in the shadow rate remains smaller compared to that period. This is due to the assumption that the
period of 2008-2015 is accompanied by an intercept shift in the policy rate, whereas we do not make this assumption
for the 2020-2024 period.
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Figure 12. Counterfactual simulations with pandemic-shocks after 2019Q4 over a period of 20 quarters until
2024Q4. This exercise uses the simulations from the previous set of counterfactual simulations, where the average
Taylor rule probability remains above 50% (i.e. 680 simulations in total). Using only these simulations ensures that
the ELB regime would remain unlikely in the absence of other adverse shocks. The simulations are then re-run
with the introduction of pandemic-shocks throughout 2020. The dotted red lines correspond to simulation averages
without the pandemic-shocks, while the solid black lines are the averages with pandemic-shocks.

44



C.2 Post-2019Q4 period with different fractions of agent types

Table 4 shows what happens under different scenarios with fixed fractions over the 2020Q1-2024Q4
period, for which we use two end points of 10 % and 90 % fractions of learning agents. When
only 10% of agents use adaptive learning, the probability of escaping the ELB episode by 2024Q4
decreases from 54.1% to 52%, whereas if 90% of agents use adaptive learning, the probability
decreases to 41.5%. Accordingly, having an excessively large fraction of agents using adaptive
learning decreases the probability of escaping the ELB episode by nearly 13 percentage points over
this period.

Degree of

de-anchoring
Date | Endogenous || fixed 10 % fixed 90 %
20Q1 | 98.3% 98.3% 98.3%
20Q2 | 0.06% 0.06% 11.8%
21Q4 | 3.99% 04.3% 0.6%
22Q4 | 32.8% 33.7% 21.05%
23Q4 | 45.3% 44.6% 33.3%
24Q4 | 54.1% 52% 41.5

Table 4. Probabilities of returning back to the Taylor rule regime over different periods. Results from three exercises
are reported: the benchmark scenario with endogenously determined fractions, the scenario where only 10% of agents
use adaptive learning and the scenario where 90% of agents use adaptive learning.

D Estimation Results with AR(1) learning rule

This section presents some alternative estimation results as a robustness check, where we replace the
VAR(1) forecasting rule in adaptive learning agents’ PLM with a more parsimonious AR(1) rule.
The parameter estimates under the 2- and 4-regime learning models are generally consistent with
those presented in Section 3. A notable difference arises in the estimated gain parameter, which has
a larger posterior mean for both 2- and 4-regime AR(1) learning models, compared to their VAR(1)
counterparts. Aside from this, the memory parameter in expectational switching, w, has a slightly
lower mean but the HPD band is fairly wide, similar to the results in Section 3. This suggests
that the data is not informative about the memory parameter. Similarly, the intensity of choice
parameter x has a lower mean compared to the VAR(1) learning model, but the posterior intervals
for the parameter in both models are well within the range of each other. A notable difference in
this section with AR(1) learning, compared to the results in Section 3, is the deterioration in the
model fit for both 2- and 4-regime learning models. In this case, the learning models yield a worse
likelihood compared to the MS-REE model, suggesting that the AR(1) learning rule does not fit
the data as well as the VAR(1) rule in this context. Nevertheless, both learning models still provide
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a better fit compared to the baseline REE model without regime switching.

The estimated regime probabilities, agents’ fractions, time-variation in PLM parameters and the
shadow rate, as well as the counterfactual simulation results for the AR(1) learning model are
consistent with the results presented in Sections 3 and 4. The full set of figures and tables are
omitted here for brevity, and we only discuss some of the key results. Figure 13 shows the filtered
PLM parameters in o; and (; for output gap and inflation. Given the univariate learning rule,
there are 2 learning parameters for each variable. The intercept parameters in «; are characterized
by large downward shifts during the GFC period, while the parameter in [, are characterized by
"jumps" during the same period. These results are consistent with those discussed in Section 3.

Table 6 presents the results of the last simulation exercise in Section 4 with the AR(1) rule, which
shows the probabilities of returning back to the Taylor rule regime over different periods until
2024Q4. Tt is readily seen that the results are qualitatively similar to the VAR(1) learning model,
where a higher fraction of adaptive learning agents is associated with a lower probability of leaving
the ELB regime. In this case, the benchmark scenario yields a probability of 58.2% for returning
to the Taylor regime by the end of 2024Q4, compared to 54.1% under the VAR(1) learning model.
When 90% of agents use adaptive learning, this probability decreases to 50.1%, compared to the
41.5% under the VAR(1) learning model. As such, the impact of agents’ fractions is smaller when
the AR(1) learning rule is used, but both models predict a downward adjustment in the probability
of leaving the ELB with a higher fraction of learning agents.

E Full Set of Impulse Responses for all Learning Models

This section presents the conditional impulse responses of output gap and inflation to both demand
and cost-push shocks for all VAR(1) and AR(1)-learning models over the period 2001Q1-2019Q4.
The IRFs are presented in Figure 14. Each panel also includes the regime-specific IRFs under the
Taylor rule and ELB regimes for the MS-REE model, given as the solid black and red lines at the
beginning and end of the panels respectively.

Similar to the discussion in Section 3, there are two main takeaways from the IRFs. The first is
that, when the system switches from the Taylor rule regime to the ELB regime, the direction of
change in the IRFs for all learning models is the same as the MS-REE model. A notable exception
is the response of inflation m; to a cost-push shock 7,, which remains fairly stable across both
regimes and in all time periods. The remaining IRFs in the learning models are characterized by
gradual movements over the sample period, and two jumps with with the entry to and exit from the
ELB regime. For these IRFs, the time-variation in the 2-regime models with only adaptive learning
agents is generally larger compared to the 4-regime models with heterogeneous expectations. This
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Table 6. Probabilities of returning back to the Taylor rule regime over different periods. Results from three exercises
are reported: the benchmark scenario with endogenously determined fractions, the scenario where only 10% of agents
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use adaptive learning and the scenario where 90% of agents use adaptive learning.

is due to the stabilizing effects of anchored expectations, which smooths the pattern in the IRFs.

These results are similar for both VAR(1)- and AR(1)-learning models.
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