Funding Supply and Credit Quality

Enrico Perotti and Magdalena Rola-Janicka

November 13, 2018

Enrico Perotti and Magdalena Rola-Janicka

DNB Research Conference

November 13, 2018 1 / 35

 \equiv

SQC

イロト イポト イヨト イヨト

3

900

Deliberate risk-taking

 \equiv

SQC

イロト イポト イヨト イヨト

Deliberate risk-taking vs "honest mistakes"

イロト イポト イヨト イヨト

Deliberate risk-taking vs "honest mistakes"

The paper aims to reconcile these views.

・ロト ・ 一 ト ・ ヨ ト

Deliberate risk-taking vs "honest mistakes"

The paper aims to reconcile these views.

Financial fragility may result from:

- Risk-taking by intermediaries
- Amplification due to imperfect inference from prices

= 900

→ Ξ → < Ξ →</p>

Deliberate risk-taking vs "honest mistakes"

The paper aims to reconcile these views.

Financial fragility may result from:

- Risk-taking by intermediaries
- Amplification due to imperfect inference from prices

Key elements:

- inelastic savings
- opacity of bank balance sheets

ヨト・モヨト

• Two types of agents: informed large banks and uninformed small firms

 \equiv

Sac

- Two types of agents: informed large banks and uninformed small firms
- Large intermediaries have better info on:
 - aggregate productivity
 - own funding supply

 \equiv

- Two types of agents: informed large banks and uninformed small firms
- Large intermediaries have better info on:
 - aggregate productivity
 - own funding supply
- Smaller agents infer the productivity from asset prices

- Two types of agents: informed large banks and uninformed small firms
- Large intermediaries have better info on:
 - aggregate productivity
 - own funding supply
- Smaller agents infer the productivity from asset prices
- $\bullet~$ High funding supply $\rightarrow~$ high leverage $\rightarrow~$ risk-shifting incentives

→ □ → → □ → → □ → へのへ

 The inference by uninformed distorted: no info on funding supply → bank incentives unclear

< 🗇 🕨 <

3

DQC2

- The inference by uninformed distorted: no info on funding supply → bank incentives unclear
 - High price = high productivity?
 - High price = risk-shifting by banks?

3

SQA

- The inference by uninformed distorted: no info on funding supply → bank incentives unclear
 - High price = high productivity?
 - High price = risk-shifting by banks?
- \Rightarrow **Amplification**: overestimate productivity when banks risk-shift

3

200

ヨトィヨト

Supply and demand driven booms

Framework speaks to recent evidence:

- (E

Image: A matrix and a matrix

3

Sac

Supply and demand driven booms

Framework speaks to recent evidence:

- Good credit booms driven by TFP growth (Gorton & Ordonez, 2016)
- Bad credit booms driven by credit supply (Krishnamurthy & Muir, 2017) (Mian et al, 2018) (Richter, et al, 2017)

200

- E - E

Related literature

• Evidence on credit booms and crises

Kaminsky and Reinhart (1999), Gourinchas et al. (2001), Mian & Sufi (2009), Jorda et al. (2010), Justinaino et al. (2015), Krishnamurthy & Muir (2016), Richter et al., (2017)

• Erronous assessment of risk empirical: Barron & Xiong (2017), Cheng at al. (2014), theoretical: Thakor (2016), Greenwood, et al. (2016), Bordalo, et al. (2016)

Quality of assets over the cycle empirical: Madalloni & Peydro (2011), theoretical: Dell'Arriccia & Marquez (2006), Martinez-Miera and Repullo (2016), Bolton, et al. (2016)

200

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・

Model set up

Enrico Perotti and Magdalena Rola-Janicka

DNB Research Conference

November 13, 2018 7 / 35

Ξ

990

- 4 ⊒ →

・ロト ・ 戸ト ・ ヨト

Basic ingredients

- Two dates: t = 0, t = 1
- Two types of agents:
 - large/global banks
 - small/local firms (later: banks)
- Two investment opportunities:
 - productive technology
 - speculative asset
- Two shocks:
 - ullet aggregate productivity lpha
 - supply of bank funding ${m s}$

3

SQA

- E - E

Agents

Global banks

- ullet Observe aggregate productivity lpha
- Have access to **s** debt funding
- Can invest in both investment opportunities (technology and asset)

Local firms

- Observe asset price p; use it to infer α
- Do not observe **s** or bank's investment choice
- Endowed with amount k of equity
- Can invest only in the productive technology

SQA

< 3 > 3

Investment opportunities

Depend on aggregate productivity α , drawn at t = 0 from $\alpha \sim U[\underline{\alpha}, \overline{\alpha}]$

Productive technology:

•
$$x_i \to f(x_i) = \alpha \sqrt{x_i}$$

Speculative asset in fixed supply:

•
$$y \rightarrow \begin{cases} Ry \text{ with prob. } q(\alpha) \\ 0 \text{ with prob. } 1 - q(\alpha) \end{cases}$$

• Speculative return increases in productivity q'(lpha) > 0

• Asset price *p* determined endogenously

Bank funding

• At t = 0 global banks have access to funding supply s

$$s = egin{cases} s^H \text{ with prob. }
ho \ s^L \text{ with prob. } 1-
ho \end{cases}$$

• Deposit insurance $ightarrow p_s = 1$ (can be relaxed)

Image: A matrix and a matrix

Bank strategy

Bank strategy

Enrico Perotti and Magdalena Rola-Janicka DNB Research Conference

Э

900

< ∃ >

< 戸

The investment choice

$$\max_{x_i, y_i, s_i} q(\alpha)(\alpha \sqrt{x_i} + Ry_i - s_i) + \\ (1 - q(\alpha)) \max[\alpha \sqrt{x_i} - s_i, 0]$$

subject to:

 $\begin{array}{ll} x_i + p y_i = s_i & (\text{budget constraint}) \\ s_i \leq s & (\text{funding constraint}) \\ x_i \geq 0, \ y_i \geq 0 & (\text{no short selling constraint}) \end{array}$

▲ロ ▶ ▲局 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

The investment choice

$$\max_{x_i, y_i, s_i} q(\alpha)(\alpha \sqrt{x_i} + Ry_i - s_i) + (1 - q(\alpha)) \max[\alpha \sqrt{x_i} - s_i, 0]$$

subject to:

 $\begin{array}{ll} x_i + p y_i = s_i & (\text{budget constraint}) \\ s_i \leq s & (\text{funding constraint}) \\ x_i \geq 0, \ y_i \geq 0 & (\text{no short selling constraint}) \end{array}$

Choose between:

- Solvent strategy
- Risk-shifting strategy

Enrico Perotti and Magdalena Rola-Janicka

- Productive lending st: marginal productivity = opportunity cost
 - opportunity cost depends on expected speculative return

3

SQR

- Productive lending st: marginal productivity = opportunity cost
 - opportunity cost depends on expected speculative return

• If
$$\frac{q(\alpha)R}{p} > 1$$
, x_s^* : $f'(x) = \frac{q(\alpha)R}{p}$

3

SQR

- Productive lending st: marginal productivity = opportunity cost
 - opportunity cost depends on expected speculative return

• If
$$\frac{q(\alpha)R}{p} > 1$$
, x_s^* : $f'(x) = \frac{q(\alpha)R}{p}$
• If $\frac{q(\alpha)R}{p} \le 1$, x_s^* : $f'(x) = 1$

- E - E

3

- Productive lending st: marginal productivity = opportunity cost
 - opportunity cost depends on expected speculative return

• If
$$\frac{q(\alpha)R}{p} > 1$$
, x_s^* : $f'(x) = \frac{q(\alpha)R}{p}$
• If $\frac{q(\alpha)R}{p} \le 1$, x_s^* : $f'(x) = 1$

• Invest in the speculative asset only if it's $NPV \ge 0$:

- Productive lending st: marginal productivity = opportunity cost
 - opportunity cost depends on expected speculative return

• If
$$\frac{q(\alpha)R}{p} > 1$$
, x_s^* : $f'(x) = \frac{q(\alpha)R}{p}$
• If $\frac{q(\alpha)R}{p} \le 1$, x_s^* : $f'(x) = 1$

• Invest in the speculative asset only if it's $NPV \ge 0$:

• If
$$\frac{q(\alpha)R}{p} > 1$$
, $py_s^* = s - x_s^*$

- Productive lending st: marginal productivity = opportunity cost
 - opportunity cost depends on expected speculative return

• If
$$\frac{q(\alpha)R}{p} > 1$$
, x_s^* : $f'(x) = \frac{q(\alpha)R}{p}$
• If $\frac{q(\alpha)R}{p} \le 1$, x_s^* : $f'(x) = 1$

• Invest in the speculative asset only if it's $NPV \ge 0$:

• If
$$\frac{q(\alpha)R}{p} > 1$$
, $py_s^* = s - x_s^*$

- Productive lending st: marginal productivity = opportunity cost
 - opportunity cost depends on expected speculative return

• If
$$\frac{q(\alpha)R}{p} > 1$$
, x_s^* : $f'(x) = \frac{q(\alpha)R}{p}$
• If $\frac{q(\alpha)R}{p} \le 1$, x_s^* : $f'(x) = 1$

• Invest in the speculative asset only if it's $NPV \ge 0$:

• If
$$\frac{q(\alpha)R}{p} > 1$$
, $py_s^* = s - x_s^*$
• If $\frac{q(\alpha)R}{p} < 1$, $py_s^* = 0$

- Productive lending st: marginal productivity = opportunity cost
 - opportunity cost depends on expected speculative return

• If
$$\frac{q(\alpha)R}{p} > 1$$
, x_s^* : $f'(x) = \frac{q(\alpha)R}{p}$
• If $\frac{q(\alpha)R}{p} \le 1$, x_s^* : $f'(x) = 1$

• Invest in the speculative asset only if it's $NPV \ge 0$:

• If
$$\frac{q(\alpha)R}{p} > 1$$
, $py_s^* = s - x_s^*$
• If $\frac{q(\alpha)R}{p} < 1$, $py_s^* = 0$

• Banks may not use all available funding $s_s^* \leq s$

SQA

Risk-shifting strategy

- Productive lending st: marginal productivity = opportunity cost
 - opportunity cost is the **speculative return in the high-state**: $\frac{R}{p}$

- E - E

3

Risk-shifting strategy

- Productive lending st: marginal productivity = opportunity cost
 - opportunity cost is the **speculative return in the high-state**: $\frac{R}{p}$

•
$$x_r^*$$
: $f'(x) = \frac{R}{p} \rightarrow x_r^* < x_s^*$

- E - E

3

Risk-shifting strategy

 Productive lending st: marginal productivity = opportunity cost • opportunity cost is the **speculative return in the high-state**: $\frac{R}{R}$

•
$$x_r^*$$
: $f'(x) = \frac{R}{p} \rightarrow x_r^* < x_s^*$

Invest all the remaining funds in the speculative asset
Indifference threshold

• $\hat{p}(\alpha, s)$ supply s.t: $E[\Pi(solvent)] = E[\Pi(risk shifting)]$

<=> ≥ √20°

Image: Image:

 $\equiv \rightarrow$

Indifference threshold

• $\hat{p}(\alpha, s)$ supply s.t: $E[\Pi(solvent)] = E[\Pi(risk shifting)]$

Lemma:

There exists a threshold asset price level $\hat{p}(\alpha, s)$ at which a global bank is indifferent between the solvent and a risk-shifting strategy.

- Banks prefer the solvent strategy if $p > \hat{p}(lpha, s)$
- Banks prefer the risk-shifting strategy if $p < \hat{p}(\alpha, s)$

SQA

Indifference threshold

• $\hat{p}(\alpha, s)$ supply s.t: $E[\Pi(solvent)] = E[\Pi(risk shifting)]$

Lemma:

There exists a threshold asset price level $\hat{p}(\alpha, s)$ at which a global bank is indifferent between the solvent and a risk-shifting strategy.

- Banks prefer the solvent strategy if $p > \hat{p}(lpha, s)$
- Banks prefer the risk-shifting strategy if $p < \hat{p}(\alpha, s)$
- \bullet Low price \to profits from speculation high \to risk-shifting

Funding supply and risk-shifting

Lemma:

The threshold asset price level increases in the funding supply: $\frac{\partial \hat{\rho}(\alpha,s)}{\partial s} > 0$

Enrico Perotti and Magdalena Rola-Janicka DNB Research Conference No

200

프 문 국 프 문 문 프

Funding supply and risk-shifting

Lemma:

The threshold asset price level increases in the funding supply: $\frac{\partial \hat{\rho}(\alpha,s)}{\partial s} > 0$

 ${\scriptstyle \bullet}\,$ Higher funding supply ${\rightarrow}\,$ risk shifting for a larger set of prices

Funding supply and risk-shifting

Lemma:

The threshold asset price level increases in the funding supply: $\frac{\partial \hat{\rho}(\alpha,s)}{\partial s} > 0$

- $\bullet\,$ Higher funding supply $\rightarrow\,$ risk shifting for a larger set of prices
- Intution: more funding \rightarrow higher leverage \rightarrow higher risk-shifting incentives at a given price

• Consider the risk-shifting threshold \hat{p}

 $\rightarrow \equiv \rightarrow$

< 口 > < 同

 \equiv

Sac

• Consider the risk-shifting threshold \hat{p}

- Consider the risk-shifting threshold \hat{p}
- If all banks invest **solvently**: p_s^*

< 一型

DQC2

3

< ∃ >

- Consider the risk-shifting threshold \hat{p}
- If all banks invest **solvently**: p_s^*

- Consider the risk-shifting threshold \hat{p}
- If all banks invest **solvently**: p_s^*
- ightarrow all play solvent strategy if and only if $s \leq \hat{s}^*$

• If all banks would **risk-shift**: p_r^*

• If all banks would **risk-shift**: p_r^*

Enrico Perotti and Magdalena Rola-Janicka

- If all banks would **risk-shift**: p_r^*
- Price is too high for risk-shifting to be prefered

Enrico Perotti and Magdalena Rola-Janicka

- If all banks would **risk-shift**: p_r^*
- Price is too high for risk-shifting to be prefered
- ightarrow mixed equilibrium if $s > \hat{s}^*$: some risk-shift, others solvent

Equilibrium risk-shifting thresholds

Proposition:

There exists an equilibrium risk-shifting threshold of funding supply $\hat{s}^*(\alpha)$.

• If $s \leq \hat{s}^*(\alpha)$, all banks choose the solvent strategy

• If $s > \hat{s}^*(\alpha)$, fraction ψ^* of banks risk shifts and $1 - \psi^*$ invest solvently

→ □ → → □ → → □ → へへへ

If $s < s_{min}$, all banks invest solvently but are constrained

イロト イポト イヨト イヨト

3

If s < s_{min}, all banks invest solvently but are constrained
Funding insufficient to use all opportunities

医子宫下子 医下

= 900

If s < s_{min}, all banks invest solvently but are constrained
Funding insufficient to use all opportunities
p^{*}_s = y^{*}_s = s − x^{*}_s(p) → asset underpriced

If s < s_{min}, all banks invest solvently but are constrained
Funding insufficient to use all opportunities

•
$$p_s^* = y_s^* = s - x_s^*(p) o$$
 asset underpriced

"Missed boom"

3

ヨト・モート

If $s_{min} \leq s \leq \hat{s}^*(\alpha)$, all banks invest solvently.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ の Q (>)

- If $s_{min} \leq s \leq \hat{s}^*(\alpha)$, all banks invest solvently.
 - Efficient investment in the productive technology

- - E - E

= ~~~~

- If $s_{min} \leq s \leq \hat{s}^*(lpha)$, all banks invest solvently.
 - Efficient investment in the productive technology
 - $\pmb{p^*_s} = \pmb{q}(lpha) \pmb{R} o$ asset fairly priced

→ □ → → □ → → □ → へへへ

- If $s_{min} \leq s \leq \hat{s}^*(lpha)$, all banks invest solvently.
 - Efficient investment in the productive technology
 - $\pmb{p}^*_{\pmb{s}} = \pmb{q}(lpha) \pmb{R} o$ asset fairly priced
 - "Good boom"

→ □ → → □ → → □ → へへへ

If $s > \hat{s}^*(lpha)$, a fraction of banks is risk shifting

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ の Q (>)

If $s > \hat{s}^*(lpha)$, a fraction of banks is risk shifting

• Risk-shifters: $py_r^* = [s - x_r^*(p)]$, solvent : $y_s^* = 0$

If $s > \hat{s}^*(lpha)$, a fraction of banks is risk shifting

- Risk-shifters: $py_r^* = [s x_r^*(p)]$, solvent : $y_s^* = 0$
- Overinvestment in speculative asset, underinvestment in technology

If $s > \hat{s}^*(lpha)$, a fraction of banks is risk shifting

- Risk-shifters: $py_r^* = [s x_r^*(p)]$, solvent : $y_s^* = 0$
- Overinvestment in speculative asset, underinvestment in technology

•
$${m
ho}^*=\hat{{m
ho}}(lpha,{m s}) o$$
 asset overpriced

If $s > \hat{s}^*(lpha)$, a fraction of banks is risk shifting

- Risk-shifters: $py_r^* = [s x_r^*(p)]$, solvent : $y_s^* = 0$
- Overinvestment in speculative asset, underinvestment in technology

•
$${m
ho}^* = \hat{{m
ho}}(lpha, {m s}) o$$
 asset overpriced

Banks risk default

▲ロ ▶ ▲局 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

23 / 35

If $s > \hat{s}^*(lpha)$, a fraction of banks is risk shifting

- Risk-shifters: $py_r^* = [s x_r^*(p)]$, solvent : $y_s^* = 0$
- Overinvestment in speculative asset, underinvestment in technology

•
$$oldsymbol{p}^* = \hat{oldsymbol{p}}(lpha, oldsymbol{s}) o$$
 asset overpriced

- Banks risk default
- "Bad boom"

Key result: Funding supply relative to productivity determines the quality of bank lending choice

Sac

1

< ∃ →

Key result: Funding supply relative to productivity determines the quality of bank lending choice

 ${\scriptstyle \bullet} \,$ Low funding supply ${\rightarrow}$ unable to use all opportunities

- 3 - 3

Key result: Funding supply relative to productivity determines the quality of bank lending choice

- Low funding supply \rightarrow unable to use all opportunities
- High funding supply \rightarrow investment misallocated:

Key result: Funding supply relative to productivity determines the quality of bank lending choice

- ${\scriptstyle \bullet} \,$ Low funding supply ${\rightarrow}$ unable to use all opportunities
- High funding supply \rightarrow investment misallocated:
 - excessive in speculative asset,
 - insufficient in productive technology

Key result: Funding supply relative to productivity determines the quality of bank lending choice

- Low funding supply \rightarrow unable to use all opportunities
- High funding supply \rightarrow investment misallocated: •
 - excessive in speculative asset,
 - insufficient in productive technology

	High productivity	Low productivity
High funding	Good boom	Bad boom
Low funding	Missed boom	Good boom

In what follows focus on good vs bad boom

Enrico Perotti and Magdalena Rola-Janicka

DNB Research Conference

- E - E November 13, 2018 24 / 35

SQA

Inference and investment by local agents

Enrico Perotti and Magdalena Rola-Janicka DNB Research Conference November 13, 2018 25 / 35

DQC2
Assume:

< ∃ >

< □ > < 同 > < 三 >

 \equiv

Assume:

•
$$s^H > \hat{s}(\alpha)$$
 for some α
• $\hat{s}(\alpha) > s^L > s_{min}$ for all α
 p^{\bigstar}

Assume:

Enrico Perotti and Magdalena Rola-Janicka

Assume:

Enrico Perotti and Magdalena Rola-Janicka

Assume:

Enrico Perotti and Magdalena Rola-Janicka

DNB Research Conference

November 13, 2018 26 / 35

Posterior beliefs

If $p^* \in (p, \overline{p})$ local agents form beliefs:

$$\alpha = \begin{cases} \hat{\alpha}(s^{H}) \text{ with prob. } \rho \\ \hat{\alpha}(s^{L}) \text{ with prob. } 1 - \rho \end{cases}$$

Posterior beliefs

If $p^* \in (p, \overline{p})$ local agents form beliefs:

$$\alpha = \begin{cases} \hat{\alpha}(s^{H}) \text{ with prob. } \rho \\ \hat{\alpha}(s^{L}) \text{ with prob. } 1 - \rho \end{cases}$$

Proposition:

The inferred values are such that:

$$\hat{\alpha}(s^L) > \hat{\alpha}(s^H)$$

Overestimate productivity when supply is high

Underestimate productivity when supply is low •

Enrico Perotti and Magdalena Rola-Janicka

DNB Research Conference

 $\rightarrow \equiv \rightarrow$ November 13, 2018 27 / 35

JQ P

$$\begin{aligned} \max_{x_j} \ [\rho \hat{\alpha}(s^H) + (1 - \rho) \hat{\alpha}(s^L)] \sqrt{x_j} - x_j \\ \text{subject to: } x_j \leq k, \ x_j \geq 0 \end{aligned}$$

Enrico Perotti and Magdalena Rola-Janicka DNB Research Conference November 13, 2018 28 / 35

イロト イポト イヨト イヨト

 \equiv

$$\begin{aligned} \max_{x_j} \ [\rho \hat{\alpha}(s^H) + (1-\rho)\hat{\alpha}(s^L)]\sqrt{x_j} - x_j \\ \text{subject to: } x_j \leq k, \ x_j \geq 0 \end{aligned}$$

 $\rightarrow x_j^* = (\frac{E(\alpha)}{2})^2$

Enrico Perotti and Magdalena Rola-Janicka DNB Research Conference November 13, 2018 28 / 35

$$max_{x_j} \left[\rho\hat{\alpha}(s^H) + (1-\rho)\hat{\alpha}(s^L)\right]\sqrt{x_j} - x_j$$

subject to: $x_j \le k, \ x_j \ge 0$

→
$$x_j^* = (\frac{E(\alpha)}{2})^2$$

• If $s = s^H(\alpha)$, $E(\alpha) > \alpha$: overinvestment

Enrico Perotti and Magdalena Rola-Janicka D

 \equiv

SQC

イロト イポト イヨト イヨト

$$\begin{aligned} \max_{x_j} \ [\rho \hat{\alpha}(s^H) + (1 - \rho) \hat{\alpha}(s^L)] \sqrt{x_j} - x_j \\ \text{subject to: } x_j \leq k, \ x_j \geq 0 \end{aligned}$$

$$\rightarrow x_j^* = (\frac{E(\alpha)}{2})^2$$

Enrico Perotti and Magdalena Rola-Janicka

 \equiv

Sac

イロト イポト イヨト イヨト

$$\begin{aligned} \max_{x_j} \ [\rho \hat{\alpha}(s^H) + (1-\rho)\hat{\alpha}(s^L)]\sqrt{x_j} - x_j \\ \text{subject to: } x_j \leq k, \ x_j \geq 0 \end{aligned}$$

$$\rightarrow x_j^* = (\frac{E(\alpha)}{2})^2$$

 $\rightarrow \text{amplification}$

500

・ロト ・ 一日 ト ・ 日 ト ・ 日 ト

Local bank and regulator

Local bank and regulator

Enrico Perotti and Magdalena Rola-Janicka DNB Research Conference November 13, 2018 29 / 35

Э

Э

Local banks

- Can take up debt equal to s_k
- Deposit insurance

< ∃ >

 3

DQC2

Local banks

- Can take up debt equal to s_k
- Deposit insurance •

$$\begin{aligned} \max_{x_k} (1-\rho)[\hat{\alpha}(s^L)\sqrt{x_k} - x_k] + \rho \max[\hat{\alpha}(s^H)\sqrt{x_k} - x_k, 0] \\ \text{subject to: } x_k \leq s_k, \ x_k \geq 0 \end{aligned}$$

< 🗇 🕨 < - 3

DQC2

If dispersion is low $(2\hat{\alpha}(s^H) > E(\alpha))$, investment the same as the firm

<=> = √Q(~

If dispersion is low $(2\hat{\alpha}(s^H) > E(\alpha))$, investment the same as the firm

Otherwise, local bank risks default when supply is high

If dispersion is low $(2\hat{\alpha}(s^H) > E(\alpha))$, investment the same as the firm

Otherwise, local bank risks default when supply is high

Invest focusing on the higher estimate: $x_k^* = (\frac{\hat{\alpha}(s^L)}{2})^2 > (\frac{E(\alpha)}{2})^2$

If dispersion is low $(2\hat{\alpha}(s^H) > E(\alpha))$, investment the same as the firm

Otherwise, local bank risks default when supply is high

Invest focusing on the higher estimate: $x_k^* = (\frac{\hat{\alpha}(s^L)}{2})^2 > (\frac{E(\alpha)}{2})^2$

 \rightarrow risk-shifting induced by high uncertainty about α

If dispersion is low $(2\hat{\alpha}(s^H) > E(\alpha))$, investment the same as the firm

Otherwise, local bank risks default when supply is high

Invest focusing on the higher estimate: $x_k^* = (\frac{\hat{\alpha}(s^L)}{2})^2 > (\frac{E(\alpha)}{2})^2$

→ risk-shifting induced by high uncertainty about α
 If s = s^L: ex-post optimal

If dispersion is low $(2\hat{\alpha}(s^H) > E(\alpha))$, investment the same as the firm

Otherwise, local bank risks default when supply is high

Invest focusing on the higher estimate: $x_k^* = (\frac{\hat{\alpha}(s^L)}{2})^2 > (\frac{E(\alpha)}{2})^2$

 \rightarrow risk-shifting induced by high uncertainty about α

- If $s = s^{L}$: ex-post optimal
- If $s = s^H$: default

Local regulator

• Social planner incentives: maximize expected output

 $\rightarrow \equiv \rightarrow$

- 10

3

DQC2

Local regulator

- Social planner incentives: maximize expected output
- No information on global banks funding flows
- Infers productivity from asset prices

- E - E

3

SQA

Local regulator

- Social planner incentives: maximize expected output
- No information on global banks funding flows
- Infers productivity from asset prices
- Tool:
 - $\, \bullet \,$ Increase the marginal cost of lending to $1 + \tau \,$
 - Lump sum transfer of τx at the final date to solvent banks

1

SQA

Impact of the policy

$$egin{aligned} & \max_{\mathbf{x}_k}(1-
ho)[\hat{lpha}(s^L)\sqrt{x_k}-(1+ au)x_k+ au x]+\ &
ho\max[\hat{lpha}(s^H)\sqrt{x_k}-(1+ au)x_k+ au x,0] \end{aligned}$$
 subject to: $(1+ au)x_k\leq s_u, \ x_k\geq 0, \ x=\int x_k dk$

イロト イポト イヨト イヨト

 \equiv

Impact of the policy

$$\begin{aligned} \max_{\mathbf{x}_k} (1-\rho) [\hat{\alpha}(s^L) \sqrt{\mathbf{x}_k} - (1+\tau)\mathbf{x}_k + \tau \mathbf{x}] + \\ \rho \max[\hat{\alpha}(s^H) \sqrt{\mathbf{x}_k} - (1+\tau)\mathbf{x}_k + \tau \mathbf{x}, 0] \\ \text{subject to: } (1+\tau)\mathbf{x}_k \le s_u, \ \mathbf{x}_k \ge 0, \ \mathbf{x} = \int \mathbf{x}_k dk \end{aligned}$$

A positive policy rate:

• Results in a lower lending (also if efficient)

- 10

 \equiv

Sac

Impact of the policy

$$\begin{split} \max_{x_k}(1-\rho)[\hat{\alpha}(s^L)\sqrt{x_k}-(1+\tau)x_k+\tau x]+\\ \rho\max[\hat{\alpha}(s^H)\sqrt{x_k}-(1+\tau)x_k+\tau x,0]\\ \text{subject to: } (1+\tau)x_k \leq s_u, \ x_k \geq 0, \ x=\int x_k dk \end{split}$$

A positive policy rate:

- Results in a lower lending (also if efficient) •
- Decreases risk shifting incentives:
 - There exists $\hat{\tau}$ above which no more risk-shifting incentives

1

SQA

The optimal requirement attempts to bring x_k^* closest to efficient

- - E - E

3

The optimal requirement attempts to bring x_k^* closest to efficient

• If probability of high funding is high, regulator can ensure efficient choice by risk-shifters: $\tau^* = \tau_r$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ●

The optimal requirement attempts to bring x_k^* closest to efficient

- If probability of high funding is high, regulator can ensure efficient choice by risk-shifters: $\tau^* = \tau_r$
- Otherwise, no risk shifting incentives at this policy rate $au_r > \hat{ au}$

The optimal requirement attempts to bring x_k^* closest to efficient

- If probability of high funding is high, regulator can ensure efficient choice by risk-shifters: $\tau^* = \tau_r$
- Otherwise, no risk shifting incentives at this policy rate $au_r > \hat{ au}$
- Thus, at $\tau = \hat{\tau}$ local banks invest according to $x_k^* = (\frac{E(\alpha)}{2(1+\tau)})^2 \rightarrow$ higher policy worsens underinvestment!
- Optimal policy does not ensure efficiency:

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

The optimal requirement attempts to bring x_k^* closest to efficient

- If probability of high funding is high, regulator can ensure efficient choice by risk-shifters: $\tau^* = \tau_r$
- Otherwise, no risk shifting incentives at this policy rate $au_r > \hat{ au}$
- Thus, at $\tau = \hat{\tau}$ local banks invest according to $x_k^* = (\frac{E(\alpha)}{2(1+\tau)})^2 \rightarrow$ higher policy worsens underinvestment!
- Optimal policy does not ensure efficiency:
 - Allow risk-shifting but limit the overinvestment: $au^* = \hat{ au} \epsilon$, or

The optimal requirement attempts to bring x_k^* closest to efficient

- If probability of high funding is high, regulator can ensure efficient choice by risk-shifters: $\tau^* = \tau_r$
- Otherwise, no risk shifting incentives at this policy rate $au_r > \hat{ au}$
- Thus, at $\tau = \hat{\tau}$ local banks invest according to $x_k^* = (\frac{E(\alpha)}{2(1+\tau)})^2 \rightarrow$ higher policy worsens underinvestment!
- Optimal policy does not ensure efficiency:
 - Allow risk-shifting but limit the overinvestment: $au^* = \hat{ au} \epsilon$, or
 - $\, \bullet \,$ Rule out risk-shifting: $\tau^* = \hat{\tau}$ but allow for underinvestment

Conclusions

We study uncertainty over credit demand and supply.

- Abundant funding can lead to risk-shifting by banks
- Balance sheet opacity key to distorted inference
- Errors may result in an amplification of over-investment
- .. or worsen under-investment
- May lead to "induced risk-shifting" by local banks
- Local regulator may be unable to ensure effcient investment

SQA