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Abstract This paper studies why the micro-prudential regulations fails to maintain a

stable financial system by investigating the impact of micro-prudential regulation on the

systemic risk in a cross-sectional dimension. We construct a static model for risk-taking

behavior of financial institutions and compare the systemic risks in two cases with and

without a capital requirement regulation. In a system with a capital requirement regulation,

the individual risk-taking of the financial institutions are lower, whereas the systemic linkage

within the system is higher. With a proper systemic risk measure combining both individual

risks and systemic linkage, we find that, under certain circumstance, the systemic risk in a

regulated system can be higher than that in a regulation-free system. We discuss a sufficient

condition under which the systemic risk in a regulated system is always lower. Since the

condition is based on comparing balance sheets of all institutions in the system, it can be

verified only if information on risk-taking behaviros and capital structures of all institutions

are available. This suggests that a macro-prudential framework is necessary for establishing

banking regulations towards the stability of the financial system as a whole.
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1 Introduction

Regulations in the financial sector are designed to limit the risk-taking behavior of finan-

cial institutions and thus prevent potential financial crises. With the failure of the investment

bank Lehman Brothers in 2008, the financial system in the US and the EU came close to

a complete meltdown. This raises the questioning on the current financial regulations and

supervision. Current policy debate focuses on imposing macro-prudential tools in reform-

ing the incumbent regulations. The word “macro-prudential” is considered as the opposite

of “micro-prudential” which refers to the Basel II type of regulation that focuses on the

risk-taking behavior of individual financial institutions. In order to impose proper macro-

prudential regulation, it is necessary to understand what went wrong with micro-prudential

regulation.

The general critique on micro-prudential regulation is that it fails to achieve the goal of

maintaining the stability of a financial system as a whole. In other words, it fails to limit

the systemic risk within the system. There are two particular dimensions of systemic risk

which micro-prudential regulations may not handle. One is on the time dimension: with

micro-prudential regulations, the evolution of risk-taking behavior over time may result in a

procyclicality problem. There is an extensive literature addressing the procyclicality prob-

lem caused by micro-prudential regulations1. In contrast, only in recent studies, the other

dimension of systemic risk, the cross-sectional dimension, has caught attention. Because

banks are interconnected, banking crises may occur simultaneously. This is regarded as a

systemic risk on the cross-sectional dimension. The interconnectedness within the banking

system are established from either a direct channel such as interbank lending2 or an indirect

channel that banks share common exposures due to diversification at individual level, see,

e.g. Lagunoff and Schreft (2001), de Vries (2005) and Wagner (2010). For an overview on

the causes of the systemic risk, we refer to de Bandt and Hartmann (2001) and Allen et al.

1See, for example, Borio et al. (2001), Borio and Zhu (2008), Brunnermeier et al. (2009), Shin (2009),
Zhu (2008) and among others.

2See, for example, Allen and Gale (2000), Freixas et al. (2000), Dasgupta (2004) and among others.
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(2009). Since micro-prudential regulations are designed for regulating individual financial

institutions, they may not prevent the systemic risk on the cross-sectional dimension.

This study targets to pin down the impact of micro-prudential regulation on the cross-

sectional dimension. Considering that financial institutions are interconnected because of

common risk exposures, the interconnectedness, or in other words, systemic linkage, is then

determined by the similarity between the investment strategies. We model the risk-taking

behavior of financial institutions by optimizing their portfolio holdings and compare two

cases: with and without a micro-prudential regulation rule–capital requirement. Firstly, we

compare the difference on the individual risk-taking and the systemic linkage in the two

cases. Secondly, we define a systemic risk measure that combines individual risk-taking with

systemic linkage and compare the systemic risks in the two cases. We find that although in

the regulated system, the individual risk of each institution is lower, the systemic linkage

within the system is higher. Furthermore, under certain condition, the systemic risk can be

higher in the regulated case. We discuss a sufficient condition under which the systemic risk

in the regulated system is always lower. Since the sufficient condition is based on comparing

the balance sheets of all institutions within the system, it can be only verified when having

a helicopter view of the entire system. This suggests that a macro-prudential framework is

necessary for establishing banking regulations towards the stability of the financial system

as a whole.

Acharya (2009) also studied the impact of micro-prudential regulation on the cross-

sectional dimension of systemic risk. Within a multi-period general equilibrium model,

Acharya (2009) found that micro-prudential regulations based only the own risk of indi-

vidual banks can in fact accentuate systemic risk. Differently, our study considers a static

model, without imposing dynamics on the time dimension. Such a model is thus simpler.

Nevertheless, it is sufficient to show similar conclusion as in Acharya (2009).

This study is connected to another branch of studies on systemic risk: measuring systemic

risk, and further extending that to evaluate the contribution of one financial institution to
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the systemic risk, see Adrian and Brunnermeier (2008), Segoviano and Goodhart (2009),

Tarashev et al. (2009a), Tarashev et al. (2009b), Huang et al. (2009) and Zhou (2010a).

In our study, we considers the systemic risk measure proposed by Segoviano and Goodhart

(2009). Moreover, we employ a heavy-tailed framework to calculate the systemic risk mea-

sure. Besides the analysis under the heavy-tailed framework, we also provide the result in the

conventional variance and co-variance framework. The conventional framework is sufficient

to illustrate the impact of micro-prudential regulation on the individual risk-taking and the

systemic linkage, but fails to assess the systemic risk. With such a comparison, we show

that the heavy-tailed framework is necessary for systemic risk analysis. It on the one hand

addresses the heavy-tailed feature existing in the downside risks, on the other hand provides

an easy framework for systemic risk analysis.

Our finding on the limitation of micro-prudential regulations has direct policy implica-

tions. The model suggests that it is necessary to have a macro-prudential regulator holding

a helicopter view on all financial institutions in the system. That includes monitoring bank-

ing activities as well as liability compositions. From our result, we conclude that when

regulating a financial system consisting of institutions with similar banking activities, a

micro-prudential regulation can be sufficient for reducing systemic risk. In contrast, the

macro-prudential regulation is particularly important when regulating a diversified financial

system which contains heterogeneous financial institutions focusing on different banking ac-

tivities. For such a system, it is necessary to identify the systemically important institutions

and impose proper prudential regulations on them. This is crucial for managing the systemic

risk in the system.

The paper is organized as follows. Section 2 presents the setup of the general model.

Section 3 discusses a simple framework assuming normally distributed asset returns. We

also discuss the limitation of the normal framework. In Section 4, we consider a heavy-tailed

framework and establish the main result. Section 5 concludes the paper and provides further

discussion on potential extensions. Proofs of the results are gathered in Appendix.
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2 The model

We set up a static model to study the impact of micro-prudential regulation on systemic

risk. With the model, we can analyze the risk-taking behavior of individual financial institu-

tions, and evaluate the consequent systemic linkage and systemic risk in the two cases: the

regulation-free case and the regulated case. The comparison is between the two cases, thus,

there is no issue on the time dimension.

For the micro-prudential regulation tool, we consider the capital requirement as in Basel

II. In its elementary form, a capital requirement is calculated from the Value-at-Risk (VaR)

of the portfolio holding and multiplied by a risk-weight appointed by the regulator. Financial

institutions are required to hold sufficient equity capital to achieve the level of the require-

ment. In our model, instead of requiring a certain amount of capital holding, we regard

the capital structure of a bank as a non-adjustable characteristic in short term, while allow

banks to adjust their portfolios in order to obey the regulation rule. This setup is in line with

the situation in financial crisis: raising new capital is extremely difficult or very expensive

during a crisis; instead, financial institutions choose to fire sale their assets. Under such a

framework, the capital requirement regulation turns to be a restriction on the VaR of the

portfolio held by a bank.

Consider a financial system consisting of two banks. Each bank can invest in two risky

projects and the risk-free rate. The expected returns of the two projects R1 and R2 are µ1

and µ2 respectively. Without loss of generality, we assume that the risk-free rate is zero and

µ2 > µ1 > 0. Moreover, the two projects are independent.

From the bank side, suppose Bank j holds a portfolio Pj = wj1R1 + wj2R2, j = 1, 2. For

simplicity, short selling is not allowed, i.e. wji ≥ 0 and wj1 + wj2 ≤ 1, for j = 1, 2.

We consider a mean-downside risk utility for the two banks with different levels of risk

aversion λj, j = 1, 2. Without loss of generality, we assume that λ1 ≤ λ2, i.e. Bank 1 is less
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risk averse. More precisely, the utility function of Bank j is given as

Uj = wj1µ1 + wj2µ2 − λjD(wj1, wj2), (2.1)

where D(wj1, wj2) is a measure of the downside risk. An example of the downside risk

measure D is the variance of the portfolio. Then the utility function is a usual mean-variance

approach. In the regulation-free case, the portfolio holding of each bank is determined by

maximizing the utility in (2.1).

In the regulated case, a capital requirement regulation is imposed to the two-bank system.

The capital requirement is determined by the VaR of the portfolios hold by the banks and

a multiplier (risk-weight) chosen by the regulator.

For a given probability level p, the VaR of Pj, V aRj(p), is defined by the relation

P (Pj < −V aRj(p)) = p. From the VaR calculation, the capital requirement for Bank j

is IjV aRj(p)dj, where Ij is the total investment on the portfolio, and dj is a multiplier cho-

sen by the regulator. The capital requirement should be covered by the total (equity) capital

raised by the bank, denoted by Ej. Hence, we get the restriction as IjV aRj(p)dj ≤ Ej, for

j = 1, 2. It can be rewritten as

V aRj(p) ≤ Tj :=
Qj

dj

, (2.2)

where Qj := Ej/Ij is the equity ratio of the bank.

As discussed above, we regard the equity ratios as fixed within a short period. Moreover,

the regulator chooses the regulatory probability level p and the bank specific multiplier

dj ex ante. Hence the threshold Tj in the capital requirement rule (2.2) is regarded as a

characteristic of the bank which is ex ante determined. By fixing the threshold Tj, the

capital requirement rule (2.2) should be read as a restriction on the VaR of the portfolio

held by each bank.

In the case a capital requirement is imposed, banks rebalance their portfolios to obey the
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rule. Therefore, they solve the constrained utility maximization problem, that is to maximize

the utility in (2.1) with the constrain (2.2).

We make a few assumptions in order to simplify the analysis. Notice that the assumptions

are not essential. It is possible to omit those assumptions while having a full discussion on

all scenarios. The stylized results will be similar. Therefore, they are imposed only for

simplicity.

Assumption 1 In the regulation-free case, the optimal portfolios held by the banks are

not corner solutions which assign all portfolio weights to one asset.

Assumption 2 In the regulation-free case, the optimal portfolios held by the banks are

not partial investment solutions which assign positive weight to the risk-free asset.

Assumption 3 Any fully invested risky portfolio can not obey the regulation rule.

We remark that Assumption 1 implies that the risk aversion levels are not too low,

while Assumption 2 implies that the risk aversion levels are not too high. Assumption 3

implies that the thresholds Tj are sufficiently low such that the regulation rule is effective.

Together with Assumption 2, the optimal portfolio in the regulation-free case can not satisfy

the regulation requirement. Hence, banks must adjust their investment strategy in order

to obey the regulation rule. Without Assumption 3, banks may simply keep the optimal

portfolio in the regulation-free case while still obeying the capital requirement. In that case,

there is nothing to compare between the regulated case and regulation-free case. To prevent

this trivial situation, we impose Assumption 3. Moreover, because Tj is partially determined

by the regulator due to the choice of dj, the regulator can make sure that Tj is sufficiently

low such that the regulation is effective. Hence Assumption 3 is also reasonable.
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3 The impact on individual risk-taking and systemic

linkage: a normal framework

We consider a simple framework to illustrate the impact of capital requirement on the

individual risk-taking and the systemic linkage. It is called “simple”, because we assume

that the returns of the risky assets are normally distributed. This is not in accordance with

the fact that the distributions of asset returns, particularly the downside risks, are heavy-

tailed. The heavy-tailed feature for risk modeling is widely acknowledged in literature, see,

e.g. Jansen and De Vries (1991), Embrechts et al. (1997) and among others. Nevertheless,

we start with the simple normal framework, because it provides a natural individual risk

measure–the variance and a natural systemic linkage measure–the correlation coefficient.

We show that within the simple normal framework, in a regulated system, individual risks

will be lower, while the systemic linkage becomes higher.

The disadvantage of the normal framework is that it is not convenient for analyzing

the systemic risk due to the normal distribution setup. We discuss this at the end of this

section. Due to such difficulty and other shortages, it is necessary to consider a heavy-tailed

framework instead of the simple normal framework.

3.1 The regulation-free case

Suppose the returns of the two projects follow normal distributions, denoted as

Ri ∼ N(µi, σ
2
i ), for i = 1, 2,
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where µ2 > µ1 > 0 and σ2
2 > σ2

1, i.e. R2 is more risky than R1. Consider the downside risk

measured by the variance, i.e.

D(wj1, wj2) =
1

2
(σ2

1w
2
j1 + σ2

2w
2
j2).

3

In the regulation-free case, the utility function becomes the usual mean-variance utility.

The solution to the utility maximization problem is given as in the following proposition.

Proposition 3.1 With Assumptions 1 and 2 on the risk aversion levels, the solution to the

utility maximization problem in the regulation-free case is

w∗
j1 =

σ2
2 − µ2−µ1

λj

σ2
1 + σ2

2

, w∗
j2 =

σ2
1 + µ2−µ1

λj

σ2
1 + σ2

2

. (3.1)

From the optimal portfolios held by the two banks in Proposition 3.1, we can calculate

their individual risks measured by the variances, and their systemic linkage measured by the

correlation between their portfolio returns. The variance of the portfolio return for Bank j

is

IR0
j := (w∗

j1)
2σ2

1 + (w∗
j2)

2σ2
2 =

σ2
1σ

2
2 + (µ2−µ1)2

λ2
j

σ2
1 + σ2

2

. (3.2)

It is clear that a higher risk aversion level corresponds to a lower individual risk-taking.

For the systemic linkage measured by the correlation coefficient, we get that

ρ0 :=
Cov(w∗

11R1 + w∗
12R2, w

∗
21R1 + w∗

22R2)√
V ar(w∗

11R1 + w∗
12R2)V ar(w∗

21R1 + w∗
22R2)

=
w∗

11w
∗
21σ

2
1 + w∗

12w
∗
22σ

2
2√

((w∗
11)

2σ2
1 + (w∗

12)
2σ2

2)((w
∗
21)

2σ2
1 + (w∗

22)
2σ2

2)

=
λ1λ2 + K√

(λ2
1 + K)(λ2

2 + K)
, (3.3)

where K :=
(

µ2−µ1

σ1σ2

)2

is a constant. From Cauchy inequality, we get that 0 < ρ0 ≤ 1.

3We impose a multiplier 1/2 to make the utility function idential to the usual mean-variance approach.
It has no impact on the stylized outcome of the model.
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Moreover, ρ0 = 1 holds if and only if λ1 = λ2. Notice that, a high ρ0 corresponds to a high

systemic linkage between the two banks, while ρ0 = 1 corresponds to a fully linked system.

It can be verified that

∂ρ0

∂λ1

> 0 and
∂ρ0

∂λ2

< 0.

Thus, an increase on λ1 or an decrease on λ2 corresponds to an increase on ρ0. Because

increasing λ1 or decreasing λ2 will increase the similarity between the risk aversions of the

two banks, we conclude that increasing the homogeneity between the risk aversions of the

two banks corresponds to an increase in their systemic linkage. We summarize the results

on the systemic linkage into the following proposition.

Proposition 3.2 If the asset returns are normally distributed and there is no regulation, the

two banks are systemically connected at a level ρ0 ≤ 1. If and only if the risk aversion levels

of the two banks are identical, we get the fully connected case: ρ0 = 1. Moreover, increasing

the similarity between the risk aversion levels of the two banks will increase their systemic

linkage.

3.2 The regulated case

We consider the case a capital requirement regulation is imposed to the two-bank system.

Under the normal framework, we have that

Pj = wj1R1 + wj2R2 ∼ N(wj1µ1 + wj2µ2, w
2
j1σ

2
1 + w2

j2σ
2
2).

Hence, the VaR of Pj is calculated as

V aRj(wj1, wj2; p) = −
(
(wj1µ1 + wj2µ2)− zp

√
w2

j1σ
2
1 + w2

j2σ
2
2

)
,

where zp solves the equation Φ(zp) = 1−p with Φ the standard normal distribution function.

With Assumptions 1-3, both banks adjust their portfolio to solve the constrained utility
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maximization problem. The following proposition gives the solution.

Proposition 3.3 Denote ei = µi/σ
2
i for i = 1, 2, and

S =
µ2

1

σ2
1

+
µ2

2

σ2
2

.

With Assumptions 1-3, the constrained utility maximization is solved by (w̃j1, w̃j2) given as

w̃j1 =
Tje1

zp

√
S − S

, w̃j2 =
Tje2

zp

√
S − S

. (3.4)

From Assumption 3, we get that the total investment of the optimal portfolio w̃j1 + w̃j2 is

less than 1. Moreover, the relative proportion between the two risky assets w̃j1/w̃j2 equals

to e1/e2 which is irrelevant to the risk aversion level.

Similar to the regulation-free case, we evaluate the individual risk-taking behavior. For

Bank j, the individual risk under regulation, measured by the variance of its portfolio return

is given as

IR1
j := (w̃j1)

2σ2
1 + (w̃j2)

2σ2
2 =

T 2
j S

(
zp

√
S − S

)2 . (3.5)

It is compared to that in the regulation-free case as in the following proposition.

Proposition 3.4 In the regulated case, individual bank takes less risk compared to the

regulation-free case, i.e.

IR0
j > IR1

j , for j = 1, 2.

Next, we evaluate the systemic linkage. Notice that the relative proportion between the

two risky assets is a constant e1/e2 across the two banks. Therefore, the two banks are

in fact holding portfolios with the same construction in terms of relative proportion. The

only difference is that they have different total investment due to the different constrains on

the regulation thresholds Tj. Considering the systemic linkage measured by the correlation

of their portfolio returns, ρ1, clearly, we have that ρ1 = 1, which corresponds to the fully
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connected case. Intuitively, when imposing a capital requirement, the regulation plays a

dominate role in guiding the optimal strategy. It overrides the impact of the individual risk

aversion levels λj, j = 1, 2. This results in extremely similar portfolio holdings across banks

and thus creates high systemic linkage.4 We summarize this as the following proposition.

Proposition 3.5 If the asset returns are normally distributed and the banks are regulated by

a capital requirement, the systemic linkage between the two banks measured by the correlation

coefficient is ρ1 = 1. This corresponds to the fully connected case.

We summarize the comparison on individual risk-taking and systemic linkage between

the regulation-free and the regulated cases in the following theorem.

Theorem 3.6 With in the normal framework, when imposing a capital requirement as

micro-prudential regulation rule, the risk-taking of individual bank is lower, while the sys-

temic linkage within the banking system is higher.

3.3 Discussion on the limitation of the normal framework

The normal framework in this section follows the conventional variance and co-variance

analysis on risk modeling. We show that, under such a simple framework, it is sufficient

to demonstrate the two-folded impact of micro-prudential regulation: although imposing

a micro-prudential regulation may reduce individual risk-taking as it intends to, because

it overrides the diversified individual risk aversions,financial institutions tend to hold more

similar portfolios and thus generates higher systemic linkage.

A natural question following the two-folded result is that: how to evaluate the tradeoff?

To answer such a question it is necessary to consider a systemic risk measure that combines

individual risk with systemic linkage. For instance, a fully connected system with no in-

dividual risk should be regarded as having no systemic risk. Only with a proper systemic

risk measure, it is possible to evaluate the tradeoff between reducing individual risk and

4In our models, the regulation leads to exactly the same portfolio constructions in terms of relative
proportion. This results in a fully connected system.
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increasing systemic linkage and further assess whether a regulated system corresponds to a

lower systemic risk.

An example of such a systemic risk measure within a two-bank system is the probability

that both of the two banks are insolvent. With the notation in Section 2, the measure is

given as

SR := P (P1 < −Q1, P2 < −Q2), (3.6)

where Qj is the capital ratio for Bank j. This measure is a special case of the banking

stability index discussed in Segoviano and Goodhart (2009).

Notice that Qj = djTj is higher than the threshold Tj in (2.2) because the regulators

usually set a multiplier dj > 1. The corresponding probability in (3.6) must be at an

extremely low level, much lower than the probability p used in the regulation rule. Hence it

is a probability of a tail event. Apparently, this probability is associated to both individual

risk-taking and the dependence between them.

We try to calculate the systemic risk within the normal framework. In the regulation-free

case, (P1, P2) follows a bivariate normal distribution. The calculation of the joint probability

in (3.6) is complicated: it has no explicit expression. Therefore, the normal framework is

not convenient for comparing the systemic risks in the two cases with and without a capital

requirement. It is thus necessary to introduce a model that is accessible for calculating the

systemic risk measure as in (3.6).

We remark that the normal framework bears some other shortages. Firstly, the normality

assumption is not in line with empirical observations. Empirical literature on asset returns

widely acknowledged the so-called “heavy-tail” feature, particularly for the downside of the

distribution. That is, the downside tail of the distribution function decays at a power speed

rather than an exponential speed. The tail of the normal distribution follows an exponentially

decaying property. Therefore, the normal framework may not reflect the reality.

Secondly, in the normal framework, we consider the variance as a measure of individual

risk-taking. Variance is a measure of how the asset return varies around its mean value.
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It is thus a measure of risk at a moderate level, rather than a measure of the downside

risk. For instance, if the probability of earning a high positive return is high, the variance

is correspondingly high; however, in this case, the high variance does not correspond to a

high risk. Therefore, when evaluating the downside risk, VaR or other measures that focus

on the downside tail of the distribution of the asset returns only should be considered.

Thirdly, parallel to the variance, in the normal framework, the correlation coefficient is

considered as a measure of systemic linkage. It is in fact a measure of the dependence at

a moderate level, rather than the tail dependence. It is known that the tail dependence

and the dependence at a moderate level are irrelevant, see e.g. Zhou (2010b). Therefore,

when measuring the linkage between banking crises, we need to consider a measure on

the dependence of the extreme losses. The correlation coefficient does not qualify for that

purpose.

To summarize, the normal assumption on the distributions of the asset returns is not

ideal. It is necessary to introduce a model such that, on the one hand, it accommodates the

observed heavy-tail feature for the asset returns and addresses tail risk and tail dependence,

on the other hand, it is convenient for evaluating systemic risk measures as in (3.6). In the

next session, we consider a heavy-tailed framework which overcomes all discussed shortages.

4 The impact on systemic risk: a heavy-tailed frame-

work

We inherit the general framework as in Section 2, but consider the heavy-tail feature on

the downside distribution of the asset returns. The left tails of the distributions of the asset

returns are given as

P (Ri < −t) = Ait
−α(1 + o(1)),
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where A2 > A1 > 0. The parameter α is called the tail index, while Ai is called the scale.

The right tails of the two asset returns are assumed to be thinner than the left tails, i.e.

P (Ri > t) = o(t−α).

This ensures that when constructing a portfolio based on R1 and R2, the downside risk of the

portfolio is dominated by the downside risks of the two asset returns, and the right tails do

not intervene.5 Moreover, we assume equal tail indices α for the two assets. Theoretically,

this is the only case in which the aggregation of risk factors is non-trivial, see Zhou (2010b).

Empirical evidence also supports the equal tail indices assumption; see, e.g., Jansen and

De Vries (1991). Finally, the existence of a finite mean implies that α > 1.

With such a setup, the left tail of the portfolio return held by Bank j, Pj = wj1R1+wj2R2

is also heavy-tailed, i.e.

P (Pj < −t) = APj
t−α(1 + o(1)),

where the scale of the left tail is APj
= wα

j1A1 +wα
j2A2. This comes from the properties of ag-

gregating independent heavy-tailed risks; see Feller (1971). Moreover, the left tail of (P1, P2)

follows the bivariate Extreme Value Theory (EVT) setup, and exhibits tail dependence. For

details on multivariate (or bivariate) EVT, see de Haan and Ferreira (2006).

With the equal tail indices among all risky assets, the scale is then a downside risk

measure, which is similar to the variance in the normal framework. The difference is that

the scale only measures the risk in the downside tail. Therefore, we use the scale as the

measure of the downside risk in the utility function, i.e.

D(wj1, wj,2) =
1

α
(wα

j1A1 + wα
j2A2).

6

5Empirical literature supports this assumption, see Jansen and De Vries (1991).
6The denominator α is imposed for simplifying the calculation just as the 1/2-multiplier in the normal

case. Again, it has no impact on the stylized outcome.
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The solution of the unconstrained utility maximization problem is given in the following

proposition. Since it is parallel to the normal case, we omit the proof.

Proposition 4.1 With Assumptions 1 and 2 on the risk aversion levels, the solution of the

unconstrained utility maximization problem in the regulation-free case, (w∗
j1, w

∗
j2), is given by

firstly solving the equation

(w∗
j2)

α−1A2 − (1− w∗
j2)

α−1A1 =
µ2 − µ1

λj

, (4.1)

and then taking w∗
j1 = 1− w∗

j2.

Assumption 1 and 2 ensure that there exists a unique solution of equation (4.1).

Combining the facts that µ2−µ1

λ2
≤ µ2−µ1

λ1
and the left hand side of (4.1) is an increasing

function of w∗
j2, we get that w∗

12 ≥ w∗
22. Intuitively, since Bank 1 is less risk averse, it assigns

more weight on the risky asset R2. The equality holds if and only if λ1 = λ2.

Next, we consider a capital requirement in the heavy-tailed model and the VaR-constrain

as in the inequality (2.2).

Under the heavy-tailed framework, the calculation of VaR is convenient thanks to the

explicit expansion of the tails. Since the left tail distribution of the portfolio return Pj is a

heavy-tailed distribution with tail index α and scale APj
= A1w

α
j1 + A2w

α
j2, we get that

V aRj(wj1, wj2; p) ≈
(

A1w
α
j1 + A2w

α
j2

p

)1/α

. (4.2)

Here the approximation is for low level of p.

With a capital requirement, the optimal portfolio construction for each bank is then

determined by the constrained utility maximization problem. The following proposition

gives the solution to that.
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Proposition 4.2 Denote e′i = (µi/Ai)
1

α−1 for i = 1, 2, and

c′j =
Tjp

1/α

((e′1)αA1 + (e′2)αA2)
1/α

.

With Assumption 1-3, the constrained utility maximization problem is solved by (w̃j1, w̃j2) as

w̃j1 = e′1c
′
j, w̃j2 = e′2c

′
j. (4.3)

Consider the individual risk measured by the scale APj
. Similar to the simple model, it

is not difficult to verify that in the regulated case, the individual risk is lower than that in

the regulation-free case. Therefore, we conclude that with the regulation rule, the individual

tail risks are lower. This result is parallel to that stated in Theorem 3.6 under the normal

framework.

Since the left tail of (P1, P2) follows the bivariate EVT, we consider a measure on the

systemic linkage stemming from a measure on tail dependence in EVT. Define a distress of

a bank with a low tail probability p as the loss exceeding the corresponding VaR. In other

words, a distress occurs with a frequency 1/p. The systemic linkage of distresses between

the two banks can be measured by

R(1, 1) := lim
p→0

P (P1 < −V aR1(p) and P2 < −V aR2(p))

p
. (4.4)

Here V aRj(p) is the VaR of the portfolio return held by Bank j.

The limit in and (4.4) exist because the left tail of (P1, P2) follows a bivariate EVT

setup. Notice that the measure R(1, 1) indicates the quotient ratio between the probability

of a joint distress and that of an individual distress. Therefore, 0 ≤ R(1, 1) ≤ 1. Moreover,

a higher R(1, 1) corresponds to a higher systemic linkage. R(1, 1) = 1 corresponds to the

full tail dependence case. We remark that R(1, 1) measure contains only information on

the tail dependence: it is irrelevant to the individual risk-taking of the banks as well as
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the dependence at a moderate level. Hence the R(1, 1) measure plays a similar role as the

correlation coefficient in the normal framework, but focuses on the tail dependence only. We

calculate this measure for the regulation-free case as well as the regulated case. To compare

them, we have the following proposition.

Proposition 4.3 Consider the systemic linkage measured by the R(1, 1) measure and denote

them as SL0 and SL1 for the regulation-free case and the regulated case respectively. Then,

we have that SL0 < 1 = SL1.

To summarize, under the heavy-tailed framework, we confirm similar statements as in

Theorem 3.6 in the normal framework: when imposing a capital requirement as the micro-

prudential regulation rule, the individual risk of each bank is lower, while the systemic linkage

within the banking system is higher.

Different from the normal framework, under the heavy-tailed model, it is now possible

to assess the systemic risk measure as in (3.6). The following lemma shows how to calculate

SR given the portfolio structure of the two banks.

Lemma 4.4 Suppose Bank j holds a portfolio (wj1, wj2) for j = 1, 2. Then the systemic

risk measure in (3.6) is calculated as

SR ≈ A1

(
wα

11

Qα
1

∧ wα
21

Qα
2

)
+ A2

(
wα

12

Qα
1

∧ wα
22

Qα
2

)
. (4.5)

From (4.5), when increasing the capital ratio of a bank, the systemic risk may decrease or

remain at the same level due to the minimum feature in the formula.

A modification of the formula on SR is that

SR ≈ A1
wα

21

Qα
1

(
w11

w21

∧ Q1

Q2

)α

+ A2
wα

22

Qα
1

(
w12

w22

∧ Q1

Q2

)α

. (4.6)

From this representation, we observe that for calculating SR, it is necessary to compare w11

w21

and w12

w22
with Q1

Q2
.
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Finally, we compare the systemic risk measures in the regulation-free and the regulated

cases. The result is presented in the following proposition.

Proposition 4.5 Consider the systemic risks measured by the SR measure in (3.6). De-

note the systemic risk measures in the regulation-free and regulated cases as SR0 and SR1

respectively.

From the solution of the optimal portfolio in the regulation-free case, w∗
ji, i = 1, 2 and

j = 1, 2, we define two thresholds as





l(λ1, λ2; µ1, µ2, A1, A2) :=
w∗11
w∗21

r(λ1, λ2; µ1, µ2, A1, A2) :=
w∗12
w∗22

(4.7)

It is clear that l < 1 < r, provided by λ1 < λ2.

If Q1

Q2
≤ l or Q1

Q2
≥ r, we have that SR0 > SR1, i.e. in the regulated system,the total

systemic risk is lower.

If l < Q1

Q2
< r, with suitable choices of the parameters λj, dj, j = 1, 2 and µi, Ai, i = 1, 2,

it is possible to have SR0 < SR1, i.e. the systemic risk in the regulated case can be higher

than that in the regulation-free case.

We summarize the impacts of capital requirement on individual risk-taking, systemic

linkage and systemic risk in the following theorem.

Theorem 4.6 Within the heavy-tailed framework, when imposing a capital requirement,

compared to the regulation-free case, we have that 1) the individual risk of each bank is lower;

2) the systemic linkage within the banking system is higher; 3) the systemic risk within the

banking system is lower if the capital ratios of the two banks are sufficiently different, i.e. Q1

Q2

is out of the range (l, r), where l and r are determined by the risk aversion levels of the two

banks as in (4.7). If l < Q1

Q2
< r, it is possible that the systemic risk in a regulated system is

higher.

From Theorem 4.6, whether the systemic risk in a system regulated by a micro-prudential
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regulation is lower than that in a regulation-free system depends on whether Q1

Q2
is out of the

range (l, r). We further discuss this sufficient condition.

Firstly, by definition, both l and r are determined by the portfolio holding strategies of

the banks, i.e. the asset side of the balance sheet. Meanwhile, Q1

Q2
is a comparison between

the capital ratios of the two banks, i.e. the liability side of the balance sheet. The condition

on whether Q1

Q2
is in between l and r is then a comparison between the asset and liability

sides of the balance sheets of the two banks. It can not be verified by having information

on only one of the two banks or only one side of the balance sheets. Therefore, Theorem

4.6 demonstrates the potential limitation of micro-prudential regulation and indicates that

to overcome such a limitation it is necessary to have a helicopter view on the strategies and

the liability compositions of all banks in the system. In other words, it is necessary to have

a macro-prudential approach.

Secondly, it is not difficult to verify that

∂l

∂λ1

> 0,
∂r

∂λ1

< 0,
∂l

∂λ2

< 0,
∂r

∂λ2

> 0.

Thus, fixing λ2, an increase in λ1 would increase l but decrease r. Notice that λ1 < λ2,

increasing λ1 is in fact reducing the heterogeneity between the two banks. Similar result

can be observed when fixing λ1 and varying λ2. We thus conclude that when reducing the

heterogeneity between λ1 and λ2, the range of (l, r) will be reduced. With a narrower range

of (l, r), it is more likely that the ratio Q1

Q2
falls out of the range. Hence, when the two banks

are more homogeneous in terms of risk aversion, the capital requirement regulation may be

more effective in reducing systemic risk. This can be interpreted as follows. When the two

banks are more similar in risk-taking, their systemic linkage in the regulation-free case would

be at a high level. Imposing the capital requirement increases the systemic linkage further.

However, that is a relatively minor effect compared to the reduction on individual bank

risk-taking caused by the regulation. Therefore, the tradeoff is eventually on the beneficial
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side: the systemic risk in the regulated case will be lower. Policy wise, when regulating a

banking system with banks having similar banking activities, a micro-prudential regulation

such as capital requirement might be effective in reducing systemic risk.

Conversely, when the two banks are more heterogeneous in terms of risk-taking. Their

systemic linkage in the regulation-free case would be at a low level. In our model, the range

(l, r) will be wider. Then imposing a capital requirement regulation might increases the

systemic risk because the ratio Q1

Q2
is more likely to fall into the range (l, r). To avoid this,

it is necessary to have heterogeneity between the two banks liability side in order to achieve

the sufficient condition that Q1

Q2
falls out of the (l, r) range. If Q1

Q2
< l, from (4.6), we get that

SR ≈ A1
wα

21

Qα
1

(
Q1

Q2

)α

+ A2
wα

22

Qα
1

(
Q1

Q2

)α

=
A1w

α
21 + A2w

α
22

Qα
2

.

Symmetrically, when Q1

Q2
> r,

SR ≈ A1w
α
11 + A2w

α
12

Qα
1

.

Therefore, when Q1

Q2
falls out of the range (l, r), the systemic risk is mainly from the risk of

one of the two banks. In other words, one of the two banks is more “systemically important”

than the other. In such a case, imposing a capital requirement that reduces risk-taking of

the systemically important bank may effectively reduce the systemic risk. Policy wise, when

regulating a financial system with different types of financial institutions having different

banking activities, it is necessary to identify the systemically important institutions and

imposing proper regulation rules to limit the risk-taking of the systemically important in-

stitutions. The identification of the systemically important institutions requires monitoring

both the asset side and the liability side of the balance sheets of all financial institutions in

the system.

To summarize, with the heavy-tailed model, we observe a potentially higher systemic risk

in a system regulated by micro-prudential regulation than that in a regulation-free system.

The condition on comparing the capital ratios and the portfolio compositions help avoid such
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a possibility. To verify the condition, it is necessary to have full information on the balance

sheets of all financial institutions in the system. Therefore, introducing a macro-prudential

framework is the only solution for the problem we raised.

5 Conclusion and discussions

This paper studies why a micro-prudential regulation may not reduce systemic risk and

maintain the stability of a banking system as it intends to. As an example of a micro-

prudential regulation tool, we consider the capital requirement rule as in Basel II. We start

with a simple normal framework to show that, in a financial system regulated by a micro-

prudential regulation rule, the individual risk-taking of all institutions can be lower, but

the systemic linkage is higher simultaneously. Under the heavy-tailed framework, we further

explore the systemic risk which is a combination of individual risks and the systemic linkage.

We conclude that, the impact of a micro-prudential regulation can be two-folded.

If the liability sides of the balance sheets of the two banks are more heterogeneous than

their asset sides, the systemic risk in the regulated system is lower than that in the regulation-

free system. Otherwise, it is possible that the systemic risk in the regulated system is higher

due to the enhanced systemic linkage.

Throughout the paper, we consider capital requirement as the micro-prudential regulation

rule. A system with such a regulation may have a higher systemic risk, because the regulation

rule can override the risk appetite of individual financial institutions in guiding the formation

of portfolio holdings, and thus generates higher systemic linkage. This intuition is not

limited to capital requirement regulation. It applies to all micro-prudential approaches

based on a unified rule that applies to all financial institutions in a system. Therefore, we

stress that the potential drawback raised in this study is a drawback of all micro-prudential

regulations, rather than that of a particular micro-prudential tool. Hence, our result shows

the limitation of micro-prudential regulation as a whole and the necessity of having a macro-
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prudential regulation framework. Particularly, the model suggests that it is necessary to have

a general regulator holding a helicopter view on all financial institutions in the system. That

includes monitoring the banking activities as well as the liability compositions. Such a macro-

prudential framework helps justify whether a (micro-prudential) regulation too indeed help

reduce systemic risk. It is worth mentioning that although a macro-prudential framework

is necessary, we may not have to construct new “macro-prudential tools”. With carefully

monitoring the financial system from a macro-prudential view, the micro-prudential tools

such as capital requirement may act as the practical tool for implementing regulations. In

the end, a proper regulation scheme may consist of macro-prudential framework and micro-

prudential tools: “macro-prudential” should be regarded as a general overview, while the

practical regulation tools can still be “micro-prudential”.

We also provide policy advice for regulating different types of financial systems. When

regulating a system consisting of similar institutions, or in other words, the system is highly

interconnected, considering a micro-prudential regulation can be sufficient for reducing the

overall systemic risk. In contrast, the macro-prudential regulation is particularly impor-

tant when regulating a diversified financial system consisting of heterogeneous financial in-

stitutions focusing on different banking activities. Regulations on the more systemically

important institutions are necessary in such a case.

Our model bears two potential limitations.

Firstly, our model is a static model, i.e. it only considers systemic risk on the cross-

sectional dimension, without addressing the potential impact of micro-prudential regulation

on the time dimension. Although the model in this study intends to focus on the cross-

sectional dimension, by varying the risk-weights dj set by the regulator, we may partially

address some impact on the time dimension within the current model. The static model

in our study keeps dj constant across time, which corresponds to a flat regulation rule. To

consider a time-varying regulation rule, for example, a countercyclical regulation, one may

consider our model with varying dj according to macroeconomic environment. Notice that
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when dj is in a very low level, the regulation rule may not be effective, i.e. Assumption 3

may not be valid. Increasing dj to a high level makes the regulation rule effective. Therefore,

increasing dj may mimic the procedure of imposing the regulation rule to a regulation-free

system. According to our result, this may actually impose higher systemic risk. From

the calculation of the systemic risk, after dj is sufficiently high for which the regulation is

effective, increasing dj further will reduce the systemic risk. Nevertheless, even in the latter

case, the systemic risk is still possible to be higher than that in the regulation-free case.

Therefore, if one intends to impose a time-varying regulation to deal with the procyclicality

problem, it is not always better off increasing dj. It is thus important to analyze the overall

impact of such a regulation rule on the time dimension and the cross-sectional dimension by

evaluating the time variation of the systemic risk measure.

Secondly, our model assumes that the capital ratios are fixed, at least in short term. This

assumption implies that in order to obey the regulation, a bank must adjust its portfolio

holding. In reality, financial institutions may raise more capital to achieve the same goal. To

relax this assumption, the corresponding discussion within our framework is then to allow

changes of Q1 and Q2. As we discussed, increasing capital ratio will decrease or maintain the

level of systemic risk. Thus if possible, it is indeed better off increasing the capital ratios. On

the other hand, changing Q1 and Q2 will correspondingly change the ratio Q1

Q2
. A potential

outcome is that the value of Q1

Q2
can move from out of the range (l, r) to be in this range, or

vice versa. This will change the stylized property on whether the systemic risk is lower for

the regulated case than the regulation-free case. If financial institutions raise capital such

that their liabilities compositions are similar, then although the systemic risk is reduced in

absolute level, the systemic risk under regulation is still possible to be higher than that in

the regulation-free case. Particularly, if both banks follow a minimal capital requirement as

in Basel I, i.e. Q1 = Q2, since l < 1 < r, the sufficient condition for a lower systemic risk in

regulated system is always violated. With such a regulation rule, there is a possibility that

the systemic risk is higher in the regulated case.
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Appendix: Proofs

Proof of Proposition 3.1

To solve the unconstrained utility maximization problem, we first find the explicit boundaries

for the risk aversion levels under Assumption 1 and 2. It is presented as in the following

lemma.

Lemma A.1 Assumption 1 and 2 are equivalent to the following inequality

µ2 − µ1

σ2
2

< λj <
µ1

σ2
1

+
µ2

σ2
2

, (A.1)

for j = 1, 2.

Proof of Lemma A.1

For Bank j with a portfolio (wj1, wj2), the marginal utility on asset i is calculated as

MUji(wj1, wj2) :=
∂Uj

∂wji

= µi − λjwjiσ
2
i .

It is clear that, in case wj1 = 1, wj2 = 0, MUj1(1, 0) < MUj2(1, 0). Thus, if the optimal

portfolio weights correspond to a corner solution, it must be a corner solution with wj1 = 0

and wj2 = 1, i.e. the optimal portfolio assigns all weights to the more risky asset R2. That

implies MUj1 ≤ MUj2 for all wj1 + wj2 = 1. Due to the monotonicity of the two marginal

utilities, we only need to check MUj1 ≤ MUj2 at the point wj1 = 0 and wj2 = 1, which leads

to

µ1 ≤ µ2 − λjσ
2
2,

i.e. λj ≤ µ2−µ1

σ2
2

. Therefore, the assumption that there is no corner solution is equivalent to

λj > µ2−µ1

σ2 , which verifies the lower bound in (A.1).
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For the upper bound, we consider the solution for utility maximization without restric-

tions on wj1, wj2, i.e. the solution of MUj1 = MUj2 = 0. That is

w′
ji =

µi

λjσ2
i

, for i = 1, 2.

Then, Assumption 2 implies that w′
j1 + w′

j2 > 1, which gives exactly the upper bound of λj

as in (A.1). ¤

From the proof of Lemma A.1, we get that with Assumption 1 and 2, or equivalently under

condition (A.1), it is not possible to achieve MUj1 = MUj2 = 0 within the area wj1+wj2 < 1.

Thus, we consider the constrained utility maximization problem with wj1 + wj2 = 1. By the

Lagrange multiplier method, we maximize

U1
j = Uj −K(wj1 + wj2 − 1).

Denote

MU1
ji :=

∂U1
j

∂wji

= µi − λjwjiσ
2
i −K.

By taking MU1
j1 = MU1

j2 = 0, we get that

µ1 − λjw
∗
j1σ

2
1 = µ2 − λjw

∗
j2σ

2
2.

Together with w∗
j1 + w∗

j2 = 1, we solve the equations system to obtain the solution as in

(3.1). Notice that the condition on λj ensures that wj1 > 0. ¤

Proof of Proposition 3.3

Denote the optimal solution of the VaR-constrained utility maximization problem as

(w̃j1, w̃j2). We first show that the optimal solution matches VaR constrain, i.e.

V aRj(w̃j1, w̃j2) = Tj.
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From Assumption 3, it is clear that w̃j1 + w̃j2 < 1. Suppose V aRj(w̃j1, w̃j2) < Tj, then

a small increment on risky asset 1 is still possible and with such an increment, the new

portfolio will still obey the regulation rule. Since (w̃j1, w̃j2) is the optimal solution, we must

have that, MU0
j1 = 0 at (w̃j1, w̃j2). Similarly, we have MU0

j2 = 0. According to the proof of

Lemma (A.1), this can not be achieved in the area wj1 + wj2 < 1. Thus, by contradiction,

we proved that

V aRj(w̃j1, w̃j2) = Tj. (A.2)

With Assumption 3, (A.2) automatically implies that w̃j1 + w̃j2 < 1. Thus thus VaR-

constrained utility maximization problem turns to be a maximization problem on Uj with

the restriction (A.2). By the Lagrange multiplier method, we maximize

U2
j = Uj −K ′(V aRj − Tj).

Denote

MU2
ji :=

∂U2
j

∂wji

= µi − λjwjiσ
2
i −K ′


zp

wjiσ
2
i√

w2
j1σ

2
1 + w2

j2σ
2
2

− µi


 .

By taking MU2
j1 = MU2

j2 = 0, we get that

µi(1 + K ′) = w̃jiσ
2
i


λj +

K ′zp√
w̃2

j1σ
2
1 + w̃2

j2σ
2
2


 ,

for i = 1, 2.

The equation has two solutions.

Case 1) K ′ 6= −1

In this case, by taking the quotient of the two relations for i = 1, 2, we get that.

µ1

µ2

=
w̃j1σ

2
1

w̃j2σ2
2

.
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Hence
w̃j1

w̃j2
= e1

e2
, where ei := µi/σ

2
i , for i = 1, 2.

Denote the total amount of investment as c := w̃j1 + w̃j2 < 1. Then w̃ji = cei/(e1 + e2).

We solve c from the relation V aRj(w̃j1, w̃j2) = Tj as

c =
Tj(e1 + e2)

zp

√
S − S

,

where S =
µ2

1

σ2
1

+
µ2

2

σ2
2
. Thus, we get the solution as in (3.4).

To verify that the solution maximizes the utility U2
j , it is necessary to check the conditions

on the second order derivatives. This is confirmed by further calculation. We omit the details.

We remark that from c < 1, we get the boundary of the threshold Tj for making the

regulation effective as

zp

√
S − S

e1 + e2

> Tj, (A.3)

for j = 1, 2.

Case 2) K ′ = −1

Then we must have

λj =
zp√

w2
j1σ

2
1 + w2

j2σ
2
2

.

It can be verified that, for solutions satisfying the above equation, the second order deriva-

tives does not satisfy the condition for being local maxima. Thus, such a solution does not

maximize the utility U2
j .

All in all, we have a unique solution as given in (3.4).¤

Proof of Proposition 3.4

From inequality (A.3), we get

IR1
j <

S

(e1 + e2)2
.
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On the other hand, from (3.2) and (A.1), we get that

IR0
j =

σ2
1σ

2
2 + (µ2−µ1)2

λ2
j

σ2
1 + σ2

2

>
σ2

1σ
2
2 + (µ2−µ1)2

(e1+e2)2

σ2
1 + σ2

2

=
1

(e1 + e2)2

σ2
1σ

2
2(e1 + e2)

2 + (µ2 − µ1)
2

σ2
1 + σ2

2

=
1

(e1 + e2)2

µ2
1σ2

2

σ2
1

+
µ2

2σ2
1

σ2
2

+ µ2
2 + µ2

1

σ2
1 + σ2

2

=
1

(e1 + e2)2

(
µ2

1

σ2
1

+
µ2

2

σ2
2

)

=
S

(e1 + e2)2
.

Hence, we conclude that IR0
j > IR1

j . ¤

Proof of Proposition 4.2

Similar to the simple model case, the optimal portfolio must verifies the VaR restriction. By

the Lagrange multiplier method, we maximize

U ′
j := Uj −K (V aRj − Tj) ,

where V aRj is given in (4.2). The first order conditions for Bank j are that

µi = Aiw̃
α−1
ji


λj +

K
(
A1w̃α

j1 + A2w̃α
j2

)1− 1
α


 ,

for i = 1, 2.
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Following a parallel discussion as in the simple model, the only solution of the equation

systems which maximizes U ′
j must satisfy

µ1

µ2

=
A1w̃

α−1
j1

A2w̃
α−1
j2

.

Therefore, with the notation e′i = (µi/Ai)
1

α−1 for i = 1, 2, we get that

w̃11

w̃21

=
e′1
e′2

,

which gives the relative proportion between the two risky assets. The restriction on VaR

determines the total investment which results in the final solution as in (4.3). ¤

Proof of Proposition 4.3

The following lemma shows how to calculate R(1, 1) in our model, given the portfolio holding

of the two banks.

Lemma A.2 Suppose Bank j holds a portfolio (wj1, wj2) for j = 1, 2. Then the systemic

linkage between the two banks is given as

R(1, 1) = s1 ∧ s2 + (1− s1) ∧ (1− s2), (A.4)

where

sj =
A1w

α
j1

A1wα
j1 + A2wα

j2

, for j = 1, 2.

Proof of Lemma A.2

The calculation comes from a generalized version of the properties on the heavy-tailed dis-
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tributions, i.e. the Feller theorem, as follows. For any p → 0,

P (w11R1 + w12R2 < −V aR1(p), w21R1 + w22R2 < −V aR2(p))

∼P (w11R1 ∧ w12R2 < −V aR1(p), w21R1 ∧ w22R2 < −V aR2(p))

=P

(
R1 < −

(
V aR1(p)

w11

∨ V aR2(p)

w21

)
or R2 < −

(
V aR1(p)

w12

∨ V aR2(p)

w22

))

∼A1

(
w11

V aR1(p)

∨ w21

V aR2(p)

)α

+ A2

(
w12

V aR1(p)

∨ w22

V aR2(p)

)α

.

Together with the marginal VaRs calculated in (4.2), we get that

R(1, 1) := lim
p→0

1

p
P (w11R1 + w12R2 < −V aR1(p), w21R1 + w22R2 < −V aR2(p))

=A1

(
wα

11

A1wα
11 + A2wα

12

∨ wα
21

A1wα
21 + A2wα

22

)
+ A2

(
wα

12

A1wα
11 + A2wα

12

∨ wα
22

A1wα
21 + A2wα

22

)

=s1 ∧ s2 + (1− s1) ∧ (1− s2),

with the notation on s1 and s2 as in the lemma. ¤

Notice that sj = A1

A1+A2(wj2/wj1)α is only connected to the relative proportion of the weights

on the two assets. We have shown that in the regulation-free case, because λ1 < λ2, w∗
12 >

w∗
22. Thus, w∗

12/w
∗
11 > w∗

22/w
∗
21. Therefore, for the optimal solution of the regulation free

case, we get that s∗1 < s∗2. It implies that the systemic linkage of the crises between the two

banks in the regulation-free case is

SL0 = s∗1 + 1− s∗2 < 1. (A.5)

On the other hand, with the capital requirement regulation, as we shown in Proposition

4.3, the relative proportion of the two assets holding in the optimal portfolios is fixed to

e′1/e
′
2 regardless the risk aversions of the banks. Thus, s̃1 = s̃2. According to Lemma (A.2),
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we must have that the systemic linkage measure in the regulated case as

SL1 = s̃1 + 1− s̃1 = 1.

Compared to (A.5), we get that SL0 < SL1, i.e. the systemic linkage is increased. ¤

Proof of Lemma 4.4

The calculation follows exactly the same lines as in the proof of Lemma A.2. The only

difference is that the thresholds are given by the capital ratios where in the proof of Lemma

A.2, they are marginal VaRs. We omit the details. ¤

Proof of Proposition 4.5

Firstly, in the regulated case, from Proposition 4.2, we get that

w̃11

w̃21

=
w̃12

w̃22

=
c′1
c′2

=
T1

T2

.

In case d1 ≥ d2, we have that Q1

Q2
≥ T1

T2
. From Lemma 4.4, the systemic risk measure in the

regulated case is

SR1 ≈ A1
w̃α

11

Qα
1

+ A2
w̃α

12

Qα
1

= d−α
1 p.

Similarly, for the case d1 ≤ d2 we have that SR1 ≈ d−α
2 p. In all, we get that, for the regulated

case,

SR1 ≈ (d1 ∨ d2)
−αp. (A.6)

It means that with the capital requirement, the systemic risk measure is linked to the tail

probability level used in regulation, p, and the maximum of the multipliers applied to the

two banks.

Secondly, we calculate the systemic risk measure for the regulation-free case, SR0. This

is more complicated due to the lack of an explicit expression on w∗
ji for i, j = 1, 2. However,
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because the solutions are in the regulation-free case,
w∗11
w∗21

and
w∗12
w∗22

are independent from Q1

Q2
.

Since
w∗11
w∗21

< 1 <
w∗12
w∗22

, we consider the three different cases.

Case 1) Q1

Q2
≤ w∗11

w∗21
=: l

In this case, we get that

SR0 ≈ A1
(w∗

11)
α

Qα
1

+ A2
(w∗

12)
α

Qα
1

.

Notice that the portfolio (w∗
11, w

∗
12) does not satisfy the regulation rule. It implies that

A1(w
∗
11) + A2(w

∗
12)

α

T α
1

> p.

Thus, SR0 > d−α
1 p. Comparing with SR1 in (A.6), we get that SR0 > SR1. Hence the

systemic risk is lower in the regulated case.

Case 2) Q1

Q2
≥ w∗12

w∗22
=: r

Similar to Case 1), we have in this case SR0 > d−α
2 p ≥ SR1. The systemic risk is lower in

the regulated case.

Case 3) l < Q1

Q2
< r

In this case, we get that

SR0 ≈ A1
(w∗

11)
α

Qα
1

+ A2
(w∗

22)
α

Qα
2

.

We show that it is possible to have SR0 < SR1 by choosing particular values of the param-

eters.

Consider the case Bank 1 is extremely risk seeking and Bank 2 is extremely risk averse,

i.e. λ1 and λ2 reach the lower bound and upper bound for λ respectively. Then (w∗
11, w

∗
12)

is the riskiest corner solution (0, 1) and (w∗
21, w

∗
22) is the unrestricted solution of maximizing

the utility as

w∗
22 =

(
µ2

A2

) 1
α−1

(
µ1

A1

) 1
α−1

+
(

µ2

A2

) 1
α−1

=
1

1 +
(

µ1

µ2

A2

A1

) 1
α−1

.
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For simplicity, we consider d1 = d2 = d. Then, the systemic risk measure is given as

SR0 ≈ d−α A2

T α
2


 1

1 +
(

µ1

µ2

A2

A1

) 1
α−1




α

.

Similar to inequality (A.3), we can get the boundary of the threshold Tj in the heavy-tailed

model as

Tj <
(A1A2)

1/α

p1/α

(
A

1
α−1

1 + A
1

α−1

2

)α−1
α

,

for j = 1, 2. We make further assumption on T2 that it is very close to the upper bound.

Thus,

1

Tα
2

= p

(
A

1
α−1

1 + A
1

α−1

2

)α−1

A1A2

= p

(
1 +

(
A2

A1

) 1
α−1

)α−1

A2

.

Lastly, we make assumption on the parameters µ1, µ2, A1, A2 as µ1

µ2
=

(
A1

A2

) 1
α
. We get that

SR0 ≈ d−αp

(
1 +

(
A2

A1

) 1
α−1

)α−1

(
1 +

(
A2

A1

)1/α
)α .

Notice that A2

A1
> 1. Thus for α > 1, we have

(
1 +

(
A2

A1

) 1
α−1

)α−1

<

(
1 +

(
A2

A1

) 1
α

)α

.

Together with (A.6), we get that SR0 < d−αp = SR1. Therefore, in the case Q1

Q2
is in

(l, r), it is possible that the systemic risk in the regulated system is higher than that in the

regulation-free case. ¤
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