Technological Revolutions and Debt Hangovers: Is There a Link?

> Dan Cao Jean-Paul L'Huillier

DNB Research Conference Oct 25th, 2012

イロト 不得 とくほと 不足と 一日

Introduction

Observation:

- Before Great Recession: IT (late 1990s)
- Before Japanese crisis 1990s: electronics (1980s)
- Before Great Depression: combustion/electricity (1910-1925?)
- Write a business cycle model
 - Anticipations about the future + imperfect information
 - Main mechanism: Rational formation of beliefs around tech rev

Focus:

- 1. Consumption
- 2. Medium frequencies

Model: Productivity

Productivity sum of two components:

$$a_t = x_t + z_t$$

permanent component

$$\Delta x_t = \rho \Delta x_{t-1} + \varepsilon_t$$

transitory component

$$z_t = \rho z_{t-1} + \eta_t.$$

Cao and L'Huillier

2/15

Information

"News and Noise" information structure (Blanchard, L'Huillier & Lorenzoni)

- Agents observe:
 - 1. current productivity a_t

2. noisy signal regarding the permanent component x_t

$$s_t = x_t + v_t$$

Plan:

- 1. Study Kalman filter of these agents
- 2. Put into open economy a la Aguiar & Gopinath (2007)
- 3. Do structural estimation for the 3 episodes

Key: Slow Adjustment of Beliefs

Borrow idea from Hobijn & Jovanovic (1999): "Technological revolutions come in waves"

1. Start of tech rev

Increase in growth of permanent productivity (from the old, deterministic, trend)

2. End of tech rev

Decrease in growth of permanent productivity (from the new trend)

Consumers use Kalman filter to update beliefs

- Try to track path of permanent component
- Slow to adjust beliefs after slowdown
- Remain "optimistic" for a while

イロト 不得 トイヨト イヨト 二日

An Example: Off-trend Permanent Tech Shocks

Cao and L'Huillier

An Example: Off-trend Permanent Tech Shocks, cont.

Cao and L'Huillier

- Open economy DSGE
- Use previous information structure
- Permanent income consumers
 - Form beliefs about the future path of x_t
 - These beliefs affect consumption and net exports

Consumers and Production

Representative consumer maximizes

$$E_t\left[\sum_{t=0}^{\infty}\beta^t\left(\ln\left(C_t\right)-\frac{\varphi}{1+\phi}N_t^{1+\phi}\right)\right]$$

subject to

$$C_t + B_{t-1} = W_t N_t + Q_t B_t$$

B_t is external debt

Linear production and competitive goods market

$$Y_t = e^{a_t} N_t.$$

Resource Constraint and Interest Rate

Resource constraint

$$C_t + NX_t = Y_t$$

Interest rate

$$\frac{1}{Q_t} = R_t = R^* + \psi \left\{ e^{\frac{B_t}{Y_t} - b} - 1 \right\}$$

Cao and L'Huillier

8/15

◆□▶ ◆□▶ ★ 臣▶ ★ 臣▶ 三臣 - のへで

IRFs to a Permanent Tech Shock ε_t

Debt accumulation comes with a delay $z \rightarrow z = 2$

Cao and L'Huillier

Data: labor productivity, and NIPA net exports (using consumption gives similar results)

Parameter	Description	Value
ρ	Persistence tech. shocks	0.98
σ_u	Std. dev. productivity	0.63
σ_{v}	Std. dev. permanent tech. shock	0.01
σ_z	Std. dev. transitory tech. shock	0.62
σ_s	Std. dev. noise	10.80

イロト 不得 トイヨト イヨト 二日

Estimated States Using Data on a_t and nx_t (U.S. 1990-2010)

Smoothed and detrended long-run component of productivity $(x_{t+\infty}, \text{ in$ **black** $})$, and consumers' contemporaneous beliefs $(E_t[x_{t+\infty}], \text{ in$ **blue** $})$

Cao and L'Huillier

Out-of-Sample Check: Comparison With Survey Evidence

Reason for delay: productivity-to-consumption ratio, US (1990–2010)

- IT Revolution: productivity boom in the 1990s
- Wavy-form:

 Declining productivity growth rates over the period: 1.87% for 1990:1–2005:1; 1.18% for 2005:2–2010:1

Japan (1975-2003)

- Electronics Revolution: productivity boom in the 1980s
- Wavy-form (productivity-to-consumption ratio):

 Declining productivity growth rates over the period: 3.22% for 1975:1–1990:1; 1.06% for 1990:2–2003:1

US (1919-1933)

- Combustion/Elec. Revolution: productivity boom in the 1920s
- Wavy-form (productivity-to-consumption ratio):

 Declining productivity growth rates over the period: 2.82% for 1920:1–1926:1; -.91% for 1926:2–1933:1 Depends on three elements:

- 1. Persistence of permanent technology process: ρ (income effect + persistence of beliefs)
- 2. Relative size of standard deviations: σ_v , σ_z , σ_s (speed of learning)

イロト 不得 とくほと 不足と 一日

13/15

 Timing of the shocks (degree of optimism before slowdown)

Dynamics of Debt-to-Output Ratio Implied by the Estimated Model

In 2010: low productivity and high debt

Cao and L'Huillier

Conclusions

Contribution to literature on tech rev

Investigate implications for the cycle

Point out: tech rev precede private debt crisis

- Attempt to understand why
- Slow adjustment of beliefs seems key
- Analyze implications for debt dynamics after 2010
 - ► High levels of debt + productivity slowdown ⇒ Long, debt related, consumption slump

イロト 不得 トイヨト イヨト 二日