Climate Change: Uncertainty and Economic Policy

Lars Peter Hansen (University of Chicago) Dutch National Bank Research Conference Uncertainties and Nonlinearities: Policy Challenges and New Perspectives October 1, 2019

Quantitative Storytelling

Use mathematical models with numerical inputs to further our understanding and support policy analysis.

Ingredients:

- ▷ substantive knowledge
- ▷ formal models
- ▷ empirical evidence

Where does Uncertainty emerge?

Quantitative storytelling with multiple stories

- multiple models give rise to multiple "stories" with different implications
- ▷ each model has random impulses and requires numerical inputs
- each model is an abstraction: stories not intended to be detailed recordings of actual histories or complete descriptions of reality

Dangers of Being Naive

The Cheat, Georges de La Tour

Conceptual Tools

decision theory under uncertainty - how to make "sensible" or "rational" decisions

- \circ statistics
- \circ control theory
- economics
- ▷ asset valuation under uncertainty
 - "assets" include financial, physical, human, organizational and environmental "capital"
 - associated with each asset is a prospective sequence of net payoffs to investments

How do we assess the investment opportunities in the face of uncertain future net payoffs?

decision-making and valuation are symbiotically linked

Navigating Uncertainty

Probability models we use in practice are misspecified, and there is ambiguity as to which among multiple models is the best one.

- Aim of robust approaches:
 - ▷ use models in sensible ways rather than discard them
 - use probability and statistics to provide tools for limiting the type and amount of uncertainty that is entertained
- aversion dislike of uncertainty about probabilities over future events
- implementation target the uncertainty components with the most adverse consequences for the decision maker

Uncertainty, climate change and economic valuation

- market valuation fails to account for full social impact of human inputs on the climate
- uncertainty can have a big impact on the measurement of the social cost of carbon - an idealized target defined formally as a socially efficient (Pigouvian) tax
- ▷ two interacting sources of uncertainty
 - impact of CO2 emissions on temperature changes geophysics
 - impact of temperature changes on well being economics

Climate Science and Uncertainty

... the eventual equilibrium global mean temperature associated with a given stabilization level of atmospheric greenhouse gas concentrations remains uncertain, complicating the setting of stabilization targets to avoid potentially dangerous levels of global warming.

Citation: Allen et al: 2009

Climate Impacts

Climate literature suggests an approximation that simplifies discussions of uncertainty and its impact.

Matthews *et al* and others have purposefully constructed a simple "approximate" climate model:

$$T_t - T_0 \approx \beta \int_0^t E_\tau d\tau = \beta_f F_t.$$

- \triangleright F cumulates (adds up) the emissions over time.
- ▷ Abstract from transient changes in temperature.

Emissions today have a permanent impact on temperature in the future where β is a climate sensitivity parameter.

Climate Sensitivity Uncertainty

Histograms and density for the climate sensitivity parameter across models. Evidence is from MacDougall-Swart-Knutti (2017).

Carbon Budgeting

Some in the climate science community and elsewhere argue for a carbon budgeting approach as a simplified way to frame the discussion of environmental damages.

- exploit the Matthews approximation linking emissions to temperature
- design policy to enforce a Hotelling-like restriction on cumulative carbon emissions because of climate impact

Still must confront uncertainty: the constraint should be because it depends on the unknown climate sensitivity parameter.

Beyond Carbon Budgeting

- ▷ explicitly model economic dynamics
- incorporate economic "damages" to measure the social cost climate change on the economic environment
- ▷ treat formally uncertainty and its interconnected components

Economic Environment: Information

- ▷ $W \doteq \{W_t : t \ge 0\}$ is a multivariate standard Brownian motion and $\mathcal{F} \doteq \{\mathfrak{F}_t : t \ge 0\}$ is the corresponding Brownian filtration with \mathfrak{F}_t generated by the Brownian motion between dates zero and *t*.
- ▷ Let $Z \doteq \{Z_t : t \ge 0\}$ be a stochastically stable, multivariate forcing process with evolution:

$$dZ_t = \mu_z(Z_t)dt + \sigma_z(Z_t)dW_t.$$

Economic Environment: Production

AK model with adjustment costs

 \triangleright Evolution of capital *K*

$$dK_t = K_t \left[\mu_k(Z_t) dt + \phi_0 \log \left(1 + \phi_1 \frac{I_t}{K_t} \right) dt + \sigma_k \cdot dW_t \right].$$

where I_t is investment and $0 < \phi_0 < 1$ and $\phi_1 > 1$.

▷ Production

$$C_t + I_t + J_t = \alpha K_t$$

where C_t is consumption and J_t is investment in the discovery of new fossil fuel reserves.

Economic Environment: Reserves

▷ **Reserve stock**, *R*, evolves according to:

$$dR_{t} = -E_{t}dt + \psi_{0}(R_{t})^{1-\psi_{1}}(J_{t})^{\psi_{1}} + R_{t}\sigma_{R} \cdot dW_{t}$$

where $\psi_0 > 0$ and $0 < \psi_1 \le 1$ and E_t is the emission of carbon. \triangleright Hotelling fixed stock of reserves is a special case with $\psi_0 = 0$.

Economic Impacts of Climate Change

Explore three specifications:

i) adverse impact on societal preferences

ii) adverse impact on production possibilities

iii) adverse impact on the growth potential

Measurement challenges

- ▷ little historical experience to draw upon
- impacts are likely different for regions of the world that are differentially exposed to climate change
- potentially big differences between long-run and short-run consequences because of adaptation

Damage Specification

Posit a damage process, *D*, to capture negative externalities on society imposed by carbon emissions.

$$\log D_t = \Gamma(\beta F_t) + \nu_d(Z_t)$$

where in our illustration, for $y \leq \overline{\gamma}$:

$$\Gamma(y) = \gamma_1 y + \frac{\gamma_2}{2} y^2$$

with an additional penalty for $y > \overline{\gamma}$:

$$\frac{\gamma_2^+}{2} \left(y - \overline{\gamma} \right)^2.$$

- $\triangleright \gamma_2$ gives a nonlinear damage adjustment
- $\triangleright \gamma_2^+ > 0$ gives a smooth alternative to a carbon budget
- ▷ damage evolution deduced by Ito's formula

Uncertainty in the economic damages (Γ) and climate sensitivity (coefficient β) multiplies!

Proportional damages

▷ the per period (instantaneous) contribution to preferences is:

 $\delta(1-\kappa)\left(\log C_t - \log D_t\right) + \delta\kappa\log E_t$

where $\delta > 0$ is the subjective rate of discount and $0 < \kappa < 1$ is a preference parameter that determines the relative importance of emissions in the instantaneous utility function.

▷ equivalently this is a model with proportional damages to consumption and or production.

Proportional Damage Uncertainty

Damages to Growth

Climate change diminishes growth in the capital evolution:

$$dK_t = K_t \left[\mu_k(Z_t) dt - \log D_t dt + \phi_0 \log \left(1 + \phi_1 \frac{I_t}{K_t} \right) dt + \sigma_k \cdot dW_t \right]$$

- \triangleright no threshold
- \triangleright no extra penalty ($\gamma_2^+ = 0$).

Growth-Rate Damage Uncertainty

Quintiles from Burke et al (2018)

Uncertainty in Decision Making

Explore three components to uncertainty:

- ▷ risk uncertainty within a model: uncertain outcomes with known probabilities
- ambiguity uncertainty across models: unknown weights for alternative possible models
- misspecification uncertainty *about* models: unknown flaws of approximating models

We incorporate these explicitly into the social planning problem and to assess the quantitative impact on the solution.

Decision Theory I

Ambiguity over alternative (structured) models and concerns about model misspecification. Hansen-Sargent (2019) show how to combine two approaches:

- Chen- Epstein (2002) recursive implementation of max-min utility model axiomatized by Gilboa-Schmeidler(1989).
 Confront structured model uncertainty.
- Hansen-Sargent (2001) a recursive penalization used to explore model misspecification building on robust control theory.

Decision Theory II

Hansen-Miao (2018) propose a recursive implementation of the smooth ambiguity model in continuous time. Discrete time version originally axiomatized by Klibanoff-Marinacci-Mukerji (2005).

- ▷ ambiguity about local mean specification in the state dynamics
- ▷ axiomatic defense justifies a differential aversion to ambiguity over models
- equivalence between the smooth ambiguity and recursive robust choice of priors (Hansen-Sargent, 2007)
- additional adjustment for potential model misspecification as in Hansen and Sargent (2009)

Constructing the Adjusted Measure

▷ State evolution:

$$dX_t = \mu_x(X_t, A_t)dt + \sigma_x(X_t, A_t)dW_t$$

where A is decision process.

Girsanov transformation

$$dW_t = H_t dt + dW_t^H$$

with dW_t^H a Brownian increment under the change of measure.

Constructing the Adjusted Measure

▷ For misspecification include a penalty

$$\frac{\xi_m}{2}H_t \cdot H_t$$

and minimize.

- ▷ For structured uncertainty:
 - Chen-Epstein implementation of max-min decision theory:

$$\min_{\theta \in \Theta_t} \mu_x(X_t, A_t; \theta)$$

• Hansen-Miao implementation of smooth ambiguity

$$-\xi_a \log E\left(\exp\left[-\frac{1}{\xi_a}\mu_x(X_t,A_t;\theta)|X_t\right]\right)$$

where the expectation is take over θ . Equivalent to a change in the probabilities over θ with a relative entropy penalty

Social Cost of Carbon as an Asset Price

- ▷ Interpret the outcome of a robust social planner's problem
- Discounting is stochastic and adjusted to accommodate concerns for ambiguity and model misspecification
- Shadow prices are computed using an efficient allocation and not necessarily what is observed in competitive markets

Construct a decomposition of the SCC in terms of economically meaningful components.

An Uncertainty Adjustment for Valuation

- Deduce uncertainty-adjusted probabilities via a max-min problem.
- Consider a social cash flow given by the impact of emissions today on future log damages
 - form nonlinear impulse responses
 - o incorporate marginal utility adjustments
 - adjust for interacting uncertainty about economic damages and climate change
- compute the difference between two discounted expected value measures.
 - one integrates over the uncertainty.
 - another uses ambiguity-adjusted probabilities deduced from the planners problem
- Quantify the impact of uncertainty on the SCC (social cost of carbon).

Proportional Damage Uncertainty: Reconsidered

Ambiguity Adjusted Probabilities

Ambiguity Adjusted Probabilities

40/42

Future Responses to Climate Change

Opens additional channels with uncertain consequences

Education is the path from cocky ignorance to miserable uncertainty

- Mark Twain