
D
N

B
 
W

O
R

K
I
N

G
 
P

A
P

E
R

DNB Working Paper

No. 415 / February 2014

Irma Hindrayanto, Siem Jan Koopman and Jasper de Winter

Nowcasting and forecastingeconomic growth in the euro areausing principal components



 De Nederlandsche Bank NV 
P.O. Box 98 
1000 AB  AMSTERDAM 
The Netherlands 
 

Working Paper No. 415 

February 2014 

 

Nowcasting and forecasting economic growth in the euro area 
using principal components 
                      
Irma Hindrayanto, Siem Jan Koopman and Jasper de Winter * 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
  
 
 
 
 
 
 
 
 
* Views expressed are those of the authors and do not necessarily reflect official 
positions of De Nederlandsche Bank. 
 
 
 
 
 
 
 
 
 

 
 

 
  



Nowcasting and forecasting economic growth

in the euro area using principal components

Irma Hindrayanto∗, Siem Jan Koopman†, and Jasper de Winter‡

February 14, 2014

Abstract

Many empirical studies show that factor models have a relatively high forecast compared to

alternative short-term forecasting models. These empirical findings have been established

for different data sets and for different forecast horizons. However, choosing the appropriate

factor model specification is still a topic of ongoing debate. Moreover, the forecast perfor-

mance during the recent financial crisis is not well documented. In this study we investigate

these two issues in depth. We empirically test the forecast performance of three factor model

approaches and report our findings in an extended empirical out-of-sample forecasting com-

petition for the euro area and its five largest countries over the period 1992-2012. Besides,

we introduce two extensions to the existing factor models to make them more suited for

real-time forecasting. We show that the factor models were able to systematically beat the

benchmark autoregressive model, both before as well as during the financial crisis. The

recently proposed collapsed dynamic factor model shows the highest forecast accuracy for

the euro area and the majority of countries we analyzed. The improvement against the

benchmark model can range up to 77%, depending on the country and forecast horizon.
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1 Introduction

It is widely acknowledged that forecasting macro-economic time series is of key importance

for economic policy makers but also for the general public. Reliable short-term forecasts

are especially in high demand when the economic environment is uncertain. Many different

methodologies exist for this purpose, ranging from simple bridge models to sophisticated

dynamic factor models. Over the last decade the latter have become a popular tool for

short-term forecasting amongst practitioners and econometricians. This is due to their good

forecast performance as shown in amongst others Giannone et al. (2008) for the United

States, Rünstler et al. (2009) and Angelini et al. (2011) for the euro area and Schumacher

and Breitung (2008) for Germany. Despite the increasing attention for factor models, a

number of specification issues are still not resolved. One of the issues is how to determine

the optimal number of factors in the model, e.g. Bai and Ng (2002) and Bai and Ng (2007).

Another issue of debate is the determination of the optimal size of the database to extract

the factors from , e.g. Caggiano et al. (2011) and den Reijer (2013). A related issue that

has attracted relatively little attention in the literature is the gain in forecast accuracy

resulting from including autoregressive terms of the target variable in the model specification,

i.e. including one or more lags of the targeted variable, in our case GDP, in the forecast

equation. However, recent studies indicate this might be a promising extension in terms of

forecast accuracy. Clements and Galvão (2008), Kuzin et al. (2011) and Jansen et al. (2012)

find that the inclusion of an autoregressive term significantly improves the forecast accuracy

of simple bridge equations, MIDAS as well as MFVAR models. It is an empirical question

whether this conclusion also holds for factor models.

Our study compares the short-term forecast performance of different factor models for

quarterly GDP growth for the euro area and its five largest countries before and during the

financial crisis. We present a concise discussion of the literature on short-term forecasting

using factor models and consider several recent developments. The earliest contributions on

dynamic factor analysis have been recently reviewed by Stock and Watson (2006), Breitung

and Eickmeier (2006) and Bai and Ng (2008). We concentrate on three factor models, i.e. the

canonical factor model of Stock and Watson (2002) which started the current literature on

factor models, the widely used dynamic factor model of Bańbura and Rünstler (2011) and the

recently proposed collapsed dynamic factor model of Bräuning and Koopman (2014). The

two dynamic factor models are siblings of the canonical factor model of Stock and Watson

(2002) as the models are all built on the idea of using principal components to summarize the

information in a large set of monthly indicators. However, in contrast to Stock and Watson

(2002), both dynamic factor models analyze the target and the principal component variables

simultaneously in a low-dimensional multivariate unobserved component time series model.

This model setup allows for panels with mixed-frequencies and for the efficient handling of

monthly series with different publication delays, and different starting dates. Because of

these differences the matrix of monthly series contains so called “jagged” or “ragged” edges

at the beginning and the end of the sample.

The econometric foundation of the Bańbura and Rünstler (2011) model is described in

Doz et al. (2011). Doz et al. (2011) propose a two-step estimation method. In the first step,

the principal components are computed and its dynamic properties are estimated by means

of a vector autoregressive model. In the second step, the factor estimates and forecasts are

obtained from the Kalman filter and smoother. Doz et al. (2011) provide the asymptotic

properties of the Kalman filter and smoother estimates and apply the model to forecast

quarterly GDP growth with monthly variables containing jagged edges at the beginning and
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the end of the sample. Bańbura and Rünstler (2011) extend this approach by introducing

quarterly GDP growth more explicitly allowing tracing back the contributions of individual

variables to the factor model forecast, using an algorithm developed by Koopman and Harvey

(2003).

The model of Bräuning and Koopman (2014) differs from Bańbura and Rünstler (2011)

in the following respects: Firstly it adopts a low-dimensional unobserved components model

for the target variable and a set of principal components from which the dynamic factors

are extracted. The unknown parameters in this parsimonious model are jointly estimated by

using maximum likelihood for which the loglikelihood function is evaluated using the Kalman

filter and smoother. This model setup allows capturing all cross-sectional and dynamic time

information in a transparent and optimal way. Secondly, the idiosyncratic part for the

target vector series is modeled explicitly and estimated jointly with the dynamic factors.

This mitigates the problem that the estimated factors in a large macroeconomic panel are

not considering information from the forecasting target.

The main contributions of this paper are threefold. Firstly, we extend the approach of

Bräuning and Koopman (2014) by proposing a more efficient way of handling the jagged

edges in the collapsed dynamic factor model. We propose a three-step method. In the first

step we analyze each univariate time series by an unobserved components model to extract

the main signal for interpolating (or extrapolating) the jagged edges, in the second step we

extract the principal components and in the third step we estimate all model parameters

simultaneously. The efficient handling of the jagged edges significantly improves the forecast

accuracy. Secondly, we extend the model of Bańbura and Rünstler (2011) by including

autoregressive terms in the model, putting it on more equal footing with the models of

Stock and Watson (2002) and Bräuning and Koopman (2014). This modification improves

the forecast accuracy of the Bańbura and Rünstler (2011) model. Thirdly, we conduct a

rigorous test of the forecast accuracy of factor models. We present a systematic comparison

of the factor models for the euro area and its five largest countries (Germany, France, Italy,

Spain and the Netherlands) utilizing the same information set across countries and the

euro area. We show that the factor models were able to systematically beat the benchmark

autoregressive model. The good performance of the factor models was not limited to the pre-

crisis period, but the models also outperformed the benchmark model during the financial

crisis. During the financial crisis the factor models were able to improve on the forecast

accuracy of the benchmark model by up to 77%, depending on the factor model, country

and forecast horizon. The recently proposed collapsed dynamic factor showed the highest

forecast accuracy for the euro area and the majority of countries we analyzed, both before

as well as during the financial crisis.

The remainder of the paper is organized as follows. Section 2 gives an overview of the

factor models of Stock and Watson (2002), Bańbura and Rünstler (2011), and Bräuning

and Koopman (2014) and introduces the modifications we propose for the Bańbura and

Rünstler (2011) and Bräuning and Koopman (2014) models. Section 3 provides details

on the construction of the database, the forecast setup and model specification issues (e.g.

selection of the number of common factors and lags). Section 4 discusses the empirical results

of our forecasting study. We summarize our findings in Section 5.
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2 Factor models using principal components

This section describes the three factor models that are analyzed in our forecasting study:

the principal components in an autoregressive model as proposed by Stock and Watson

(2002), the high-dimensional dynamic factor model of Bańbura and Rünstler (2011), and the

(collapsed) low-dimensional dynamic factor model of Bräuning and Koopman (2014). We

focus on forecasting the quarterly GDP growth rate (quarter on quarter), denoted as yQtq ,

where tq = 1, . . . , Tq is the quarterly time index. Following the usual statistical convention

we express the quarterly GDP growth rate at the monthly frequency by defining yQt such that

it contains the quarterly GDP growth rate (yQtq ) in the third month of each quarter (t = 3tq),

and missings otherwise, where t = 1, . . . , T is the monthly time index. The reverse relation is

Tq = bT/3c. We define yt as the latent monthly GDP growth rate, i.e. the 3-month growth

rate with respect to the corresponding month of the previous quarter. The notation y∗t is

used to indicate the mean-adjusted series of yt, that is y∗t = yt − ȳ where ȳ is the sample

mean of yt.

The factor models that we describe in the remainder of this section all use principal

component analysis to extract r monthly common factors, Ft, from a N -dimensional stan-

dardized stationary monthly time series of candidate predictors, Xt, for t = 1, . . . , T . We

denote the matrix of eigenvalues (or factor loadings) as Λ. We use notation FQtq to indicate

the r quarterly factors, that we calculate by taking 3-month averages of Ft.

2.1 Stock and Watson: autoregression with principal components

The Stock and Watson (2002) model aims at forecasting a single time series with length

T , using a large number N of candidate predictor series, where typically N >> T . The

high-dimensional problem is reduced to an autoregressive model for the key economic time

series of interest and extended by a small number of principal components that are used

as predictors. Forecasting is then carried out in a two-step procedure: first, a collection

of factors is estimated from the candidate predictors; second, the relationship between the

variable to forecast and the estimated factors is estimated by ordinary least squares (OLS)

regression.

In our application we use the Stock and Watson (2002) model to forecast the quarterly

GDP growth rate. We assume that (Xt, y
Q
tq+h

) can be described as a factor model represen-

tation such that

Xt = ΛFt + et, t = 1, . . . , T, (1)

and

yQtq+h = αh + βh(L)FQtq + γh(L)yQtq + εQtq+h, tq = 1 . . . , bT/3c, (2)

where et is a vector of idiosyncratic disturbances, h is the forecast horizon, αh is the constant

term, βh(L) and γh(L) are finite order lag polynomials to give dynamics in the model. yQtq+h

is the variable to forecast using (Xt, y
Q
tq ) , and εQtq+h is the resulting forecast error. Note that

the subscripts in the coefficients of the above forecast equation reflect the dependence of the

projection on the forecast horizon. This means that we re-estimate the model coefficients for

each forecast horizon h, holding the set of explanatory variables fixed. The matrix of factor

loadings Λ in equation (1) is estimated from a static principal components analysis, applied

to a balanced sub-sample of matrix Xt. The balanced sub-sample is obtained by discarding

all of the rows containing missing values at the end of the estimation period. This typically
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only involves removing the last few rows that are not completely filled due to publication

delays. The missing values at the beginning of the total sample are dealt with by using

the Expectation Maximization (EM) algorithm as described in Stock and Watson (2002).

We use a fixed lag structure equal to two for both lag-polynomials βh(L) and γh(L). The

parameters in forecast equation (2) are estimated by OLS.

2.2 Bańbura and Rünstler: high-dimensional dynamic factor model

The Bańbura and Rünstler (2011) model is based on the dynamic factor model of Giannone

et al. (2008), which is given by

Xt = ΛFt + et, et ∼ N(0,Σe), (3)

Ft =

p∑
j=1

ΦjFt−j + ζt, ζt = Bηt, ηt ∼ N(0, Iq), (4)

where the latent factors Ft are assumed to be driven by a q-dimensional standardized white

noise ηt, and where B is a r × q matrix with q < r, so that ζt = Bηt ∼ N(0, BB′). The

stochastic process for Ft is assumed to be a stationary VAR(p) process. It is also assumed

that the idiosyncratic disturbances et has a diagonal covariance matrix Σe.

The above specification differs from the presentation of Stock and Watson (2002) as

the dynamics of the factors are modeled explicitly through equation (4) before entering

the forecast equation. Moreover, the equations are cast in state space, enabling efficient

handling of the jagged edges in the data and allow easy forecasting via the Kalman filter and

smoother. Bańbura and Rünstler (2011) argue that exploiting the dynamics of the estimated

latent factors can help to improve the accuracy.

The forecast equation is constructed by combining the monthly factor model in equa-

tions (3)-(4) with a forecast equation for mean-adjusted quarterly GDP growth in a mixed-

frequency approach, see e.g. Mariano and Murasawa (2003), where the latent mean-adjusted

monthly GDP growth rate y∗t is introduced and is related to the common factors as follows,

y∗t = β′Ft + εt, εt ∼ N(0, σ2
ε), t =1, . . . , T. (5)

The latent monthly variable y∗T will be estimated via the Kalman filter. To complete the

model, Bańbura and Rünstler (2011) assume that the innovations in (3)-(5) et, ζt and εt are

mutually independent at all leads and lags.

The relationship between the observed quarterly GDP growth rate and the latent monthly

GDP growth rate is introduced via a recursive latent cumulator variable y∗Ct , as introduced

in Chapter 8 of Harvey (1989), where

y∗Ct+1 = δty
∗C
t +

1

3
y∗t+1, δt =

0, t = 3tq,

1, otherwise,
(6)

for t = 1, . . . , T and tq = 1, 2, . . . , bT/3c. To initialize the cumulator variable, it is assumed

that y∗C1 = 1
3y
∗
1 . The above rule implies that for t = 3tq, y

∗C
t is the average of the mean-

adjusted latent monthly series within quarter tq, which equals the observed mean-adjusted

quarterly GDP growth.

Equation (3)-(6) are cast in state space form to enable straightforward forecasting. To
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illustrate, the observation equation for r = 1 and p = 2 is defined as:

(
Xt

yQt

)
=

(
0

µ

)
+

[
Λ 0 0 0

0 0 0 1

]
Ft

Ft−1

y∗t
y∗Ct

+

(
et

0

)
, (7)

for t = 1, . . . , T , where µ is the unconditional mean of the observed quarterly GDP growth

rates. The transition equation is given by
Ir 0 0 0

0 Ir 0 0

−β′ 0 1 0

0 0 −1/3 1



Ft+1

Ft

y∗t+1

y∗Ct+1

 =


Φ1 Φ2 0 0

Ir 0 0 0

0 0 0 0

0 0 0 δt




Ft

Ft−1

y∗t
y∗Ct

+


ζt

0

εt

0

 , (8)

Bańbura and Rünstler (2011) estimate all parameters in equations (3)-(5) separately out-

side the state space model framework. The estimation of equation (3)-(4) and the statistical

properties of the estimators are explained in detail by Doz et al. (2011). In summary, the

matrix of factor loadings Λ in equation (3) is estimated from a static principal components

analysis, applied to a balanced sub-sample of matrix Xt. The balanced sub-sample is ob-

tained by discarding all of the rows that contain missing values at the end of the estimation

period. This typically only involves removing the last few rows that are not completely filled

due to publication delays. We deal with the missing values at the beginning of the sample

by replacing these with the means of the predictors in Xt. Note that in our application these

means are zero since the predictors in Xt are standardized. Principal component analysis,

which was applied in equation (3), also gives the sample estimates of the common factors

Ft, which are then plugged into equation (4). The estimation of parameters Φi is done by

OLS and matrix B is estimated by another round of principal component analysis applied

to the estimated residuals ζ̂t. For the estimation of β′ in equation (5), OLS is applied to the

quarterly version of this equation, i.e.:

y∗Qtq = β′FQtq + εQtq , tq = 1, . . . , Tq. (9)

The disturbance variance σ2
ε in equation (5) is estimated as one-third of the sample variance

of εQtq . The estimated factor loadings and parameters are then used in the state space matrices

together with the full matrix Xt, including the jagged edges at the end of the sample. Since

the above model kept the estimated factor loadings Λ̂ and diagonal covariance matrix Σ̂e

fixed in equation (7), the Kalman filter automatically reconstructs the unobserved common

factors Ft.

2.3 Bańbura and Rünstler: an extension

Following literature studies and the results of Jansen et al. (2012), adding an autoregressive

(AR) component into the forecast equation might significantly improve the accuracy of the

GDP forecast. Therefore we add two autoregressive terms of yt in equation (5) of Bańbura

and Rünstler (2011). We call this model the augmented Bańbura and Rünstler factor model.

The relationship between the latent monthly GDP growth rate and the common factor

becomes,

y∗t = φ1y
∗
t−1 + φ2y

∗
t−2 + β′Ft + εt, εt ∼ N(0, σ2

ε), (10)
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for t = 1, . . . , T , where φ1 and φ2 are the additional AR(2) coefficients. We then adjust the

state space form accordingly. To illustrate, the observation equation for r = 1 and p = 2 is

defined as:

(
Xt

yQt

)
=

(
0

µ

)
+

[
Λ 0 0 0 0

0 0 0 0 1

]


Ft

Ft−1

y∗t
y∗t−1
y∗Ct

+

(
et

0

)
, (11)

where µ is the unconditional mean of yQt . The transition equation is given by:
Ir 0 0 0 0

0 Ir 0 0 0

−β′ 0 1 0 0

0 0 0 1 0

0 0 −1/3 0 1




Ft+1

Ft

y∗t+1

y∗t
y∗Ct+1

 =


Φ1 Φ2 0 0 0

Ir 0 0 0 0

0 0 φ1 φ2 0

0 0 1 0 0

0 0 0 0 δt




Ft

Ft−1

y∗t
y∗t−1
y∗Ct

+


ζt

0

εt

0

0

 . (12)

We estimate the parameters φ1, φ2 and β′ in equation (12) by OLS on the quarterly version

of equation (10), which is given by

y∗Qtq = φ1y
∗Q
tq−1 + φ2y

∗Q
tq−2 + β′FQtq + εQtq , tq = 1, . . . , Tq. (13)

2.4 Bräuning and Koopman: collapsed dynamic factor model

The collapsed factor model by Bräuning and Koopman (2014) is constructed in order to

avoid the estimation of many unknown parameters due to the large dimensionality of matrix

Xt. The Bräuning and Koopman (2014) model simultaneously estimates all model param-

eters and predicts the target variable simultaneously in one parsimonious framework. The

state space framework enables easy estimation by using maximum likelihood, whilst the

Kalman filter allows consistent forecasting. As illustration of the general modeling frame-

work of Bräuning and Koopman (2014), we consider the following factor model to forecast

the quarterly GDP growth rate with the help of its own dynamics and a set of latent factors,

Xt = ΛFt + et et ∼ N(0,Σe),

yQt = µt + Γψψt + ΓFFt + εt, εt ∼ N(0, σ2
ε), (14)

for t = 1, . . . , T and where ψt is defined as the stochastic cyclical component, see Durbin

and Koopman (2012). The interaction between Xt and yQt can be specified in matrix form

as follows, (
yQt
Xt

)
=

(
µ

0

)
+

[
Γψ ΓF

0 Λ

](
ψt

Ft

)
+

(
εt

et

)
, t = 1, . . . , T. (15)

Bräuning and Koopman (2014) reduce the high dimensionality of Xt and its corresponding

matrix of factor loadings Λ by pre-multiplying equation (15) by the transformation matrix

P defined as

P =

(
1 0

0 APC

)
, (16)

where APC is an r × N matrix and r is the dimension of the numbers of latent factors in

Ft. The matrix APC is based on the eigenvectors associated with the r largest eigenvalues
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of the N ×N sample covariance matrix of Xt, such that the principal component estimates

can be presented by:

F̂PC,t = APCXt, t = 1, . . . , T.

Further, it is assumed that F̂PC,t = Ft+ error by imposing APCΛ = Ir. Summarized, the

collapsed dynamic factor model can be written as(
yQt
F̂PC,t

)
=

(
µ

0

)
+

(
Γψ ΓF

0 Ir

)(
ψt

Ft

)
+

(
εt

ẽt

)
, t = 1, . . . , T, (17)

where ẽt = APC(et−[A′PC−Λ]Ft). This error is expected to be small so that the disturbance

ẽt has a zero mean and a diagonal variance matrix by construction. In the model, Var(ẽt) is

treated as an unknown variance matrix and is to be estimated.

The specification of latent variables ψt and Ft is given by AR(pψ) and VAR(pF ), respec-

tively, with diagonal innovations variance matrix. Together with the cumulator variable y∗Ct
in equation (6), the state space representation of the collapsed dynamic factor model for

pψ = pF = 2 and r = 1 is constructed as follows. The observation equation becomes,

(
yQt

F̂PC1,t

)
=

(
µ

0

)
+

[
0 1 0 0 0 0

0 0 0 0 1 0

]


y∗t
y∗Ct
ψt

ψt−1

F1,t

F1,t−1


+

(
0

ẽt

)
, (18)

for t = 1, . . . , T , and where µ is the unconditional mean of the observed quarterly GDP

growth rate. The transition equation is given by

−1/3 1 0 0 0 0

1 0 −Γψ 0 −ΓF1
0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1





y∗t+1

y∗Ct+1

ψt+1

ψt

F1,t+1

F1,t


=



0 δt 0 0 0 0

0 0 0 0 0 0

0 0 φ1 φ2 0 0

0 0 1 0 0 0

0 0 0 0 φ̃1 φ̃2

0 0 0 0 1 0





y∗t
y∗Ct
ψt

ψt−1

F1,t

F1,t−1


+



0

εt

κt

0

ζ1,t

0


,

(19)

As summarized in Bräuning and Koopman (2014), the collapsed dynamic factor model

procedure is a two-step process. The first step is to carry out a principal component analysis

for dimension reduction of the large panel of indicators, equivalently to Stock and Watson

(2002) and Bańbura and Rünstler (2011). In the second step, Bräuning and Koopman (2014)

model the estimated principal components (F̂PC,t) jointly with the target variable (yQt ) in

a state space model that includes a small number of parameters. The unknown parameters

are then estimated simultaneously by maximum likelihood in a standard setting. This differs

from the second step in the Bańbura and Rünstler (2011) model, where all model parameters

are estimated separately outside the state space framework.

In the collapsed dynamic factor model it is crucial to pre-treat the jagged edges in the

dataset before extracting the monthly factors. This contrasts with the Bańbura and Rünstler

(2011) model, that include the jagged edges in the matrix Xt in the state-space framework.

In that setup, the Kalman filter and smoother automatically deal with the missing values

in the Xt matrix, using the specified parameters. The model of Bräuning and Koopman
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(2014) does not include the jagged edges in Xt in the state-space setup, but only contains

the estimated principal components F̂PC,t. If missing values in the matrix of candidate

predictors Xt are ignored at the end of the sample, the model of Bräuning and Koopman

(2014) is incapable of taking into account the latest information. To deal with the missing

values at the beginning and the end of Xt we use a simple stationary ARMA(p, q) process,

which is applied separately for each Xi,t, i = 1, . . . , N . The parameters of the ARMA(p, q)

specification are estimated by using maximum likelihood in a state space framework. The

Kalman filter and smoother are used to obtain a balanced dataset. The size of the balanced

dataset is determined by the series Xi,t in Xt with the shortest publication lag. Note that

all Xi,t are standardized and rendered stationary before estimation (see section 3.1), so the

use of an ARMA process is justified. To keep the process simple, we use an AR(2) model

to deal with the jagged edges. The AR(2) process ensures that the variables return fairly

quickly to their long-term trend. Figure 1 presents the idea for two variables j and k in

our monthly dataset, where variable j contains missing values only at the beginning of the

sample and variable k contains missing values only at the end of the sample. The x-axis

shows the year and quarters and the y-axis shows the 3-month growth rate. The red dots

show the realizations and the blue lines show the smoothed signal of the AR(2) process.

variable j trend variable j 

1980 1985 1990 1995 2000 2005 2010

-0.5

0.0

0.5
variable j trend variable j 

variable k trend variable k 

1980 1985 1990 1995 2000 2005 2010

-1

0

1

variable k trend variable k 

Figure 1: Dealing with the jagged edges of variables j and k using the smoothed signal of an AR(2).

3 Data, forecast design and specification issues

3.1 Dataset

Our monthly dataset of predictors consists of 52 monthly time-series, using harmonized

definitions across countries. The monthly predictors fall into four predefined categories:

production & sales, prices, monetary & financial indicators and surveys. Table IV in the
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Appendix provides an overview of all variables, the applied transformations and the starting

date of the monthly series for each country in our sample. Monthly data are usually available

on a seasonally (and calendar effects) adjusted basis at the source. When necessary, raw data

series are seasonally adjusted by the US Census X12-ARIMA-program. All monthly series

are made stationary by differencing or log-differencing (in case of trending data, such as

industrial production, retail sales and monetary aggregates). Thereafter, the variables are

standardized by subtracting the mean and dividing them by their standard deviation. This

standardization is necessary to avoid overweighting of large variance series in the extraction

of common factors.

The primary source of the data is the ECB statistical data warehouse.1 The world

trade series are taken from the CPB world trade monitor.2 Since the CPB world trade

series only start in 1991 we backdated the series using world trade data from the IMF.

Time series on industrial production for the United States are downloaded from the Board

of Governors of the Federal Reserve System.3 The Commodity prices and most financial

market indicators are taken from Thomson Reuters Datastream. Survey data are taken

from the European Commission4 and the Purchasing Managers Indices for the United States

and United Kingdom are from Markit.5

The quarterly GDP series for Italy, Spain and the Netherlands start in the first quarter

of 1981.I, 2000.I and 1988.I, respectively. To backdate the GDP series to 1980.I we use the

OECD release data and revisions database that contains historical GDP vintages.6 The

backdated GDP series were constructed by applying the quarter-on-quarter growth rates

from the most recent OECD GDP vintages. In detail: for Italy we used the March 2013

and April 2006 vintages, for Spain the March 2013, November 2011, May 2005 and July

1999 vintages and for the Netherlands the March 2013 and July 2005 vintages. Quarterly

GDP data for Germany were taken from the Deutsche Bundesbank7 who constructed the

GDP series using only GDP data for West Germany pre 1991.I and the re-unified Germany

from 1991.I onwards. We constructed a synthetic GDP series for the euro area using the

database underlying the ECB’s Area Wide Model,8 supplemented with data from the OECD

database.

3.2 Pseudo real-time design

The forecast design aims to replicate the availability of the data at the time forecasts are

made in order to mimic the real-time flow of information as closely as possible. To this end,

we used a data set downloaded on March 4, 2013 and combined this with the typical data

release calendar to reconstruct the available dataset on the 4th of each month during the

period January 1992 – December 2012. We construct the database such that the earliest

starting date for the monthly series is January 1980, and the first quarter of 1980 for GDP.

We thus employ a pseudo real-time design, which takes data publication delays into account,

but ignores the possibility of data revisions for GDP and some indicators, such as industrial

production. The latter implies that we might overestimate the forecast accuracy. However,

1http://sdw.ecb.europa.eu
2http://www.cpb.nl/en/world-trade-monitor
3http://www.federalreserve.gov/releases/g17/Current
4http://ec.europa.eu/economy_finance/db_indicators/surveys/index_en.htm
5http://www.markit.com/en/products/research-and-reports/pmis/pmi.page
6http://stats.oecd.org/Index.aspx?querytype=view&queryname=206
7http://www.bundesbank.de/Navigation/EN/Home/home_node.html
8http://www.eabcn.org/data/awm/index.htm
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large real-time datasets for the countries we considered are not (yet) available. Moreover,

the effects of data revisions on the forecasts of factor might largely cancel out, as has been

documented by i.e. Bernanke and Boivin (2003) for the United States and Schumacher and

Breitung (2008) for Germany.

We estimate the parameters of all models recursively, using only the information available

at the time of the forecast, see Rünstler et al. (2009); Giannone et al. (2008); Kuzin et al.

(2011), among others, for a similar approach. We construct a sequence of eleven forecasts for

GDP growth in a given quarter, obtained in consecutive months. Table I explains the timing

of the forecasting exercise, taking the forecast for the third quarter of 2012 as an example.

We make the first forecast on January 4, 2012 which is called the two-quarter-ahead forecast

in month one. We subsequently produce a monthly forecast for the next ten months, from

February until November. The last forecast is made on November 4, 2012, approximately a

week and a half before the flash release of GDP in mid-November. Following the conventional

terminology, forecasts refer to one or two-quarter ahead forecasts, nowcasts refer to current

quarter forecasts and backcasts refer to forecasts for the preceding quarter, as long as official

GDP figures are not yet available. In our example, we make two-quarter ahead forecasts

from January to March, one-quarter ahead forecasts from April to June, nowcasts from July

to September, and backcasts in October and November.

Table I: Timing of forecast exercise (example: forecast for 2012.III)

Nr. Name Forecast made on the 4th of

1 January

2 2Q ahead February

3 March

4 April

5 1Q ahead May

6 June

7 July

8 Nowcast August

9 September

10 October

11 Backcast November

3.3 Choosing the appropriate model specification

Estimation of the factor models requires explicit specification of the r factors (Ft). One

approach is to determine the number of factors by applying information criteria. However,

as noted in recent contributions, the application of information criteria might lead to inferior

model specifications in terms of forecast accuracy, see Bernanke and Boivin (2003); Giannone

et al. (2005); Boivin and Ng (2005). An alternative to using information criteria is to pool

over different model specifications. In this paper we follow Kuzin et al. (2013), who conclude

that taking the unweighted averaged forecast over all possible specifications of the factor

models is superior to the use of information criteria or more complicated weighting schemes.

We limit our model specifications to models with two lags in the (vector) autoregres-

sive dynamics and a maximum of four static factors. The upper bound of four was derived

from the scree test of Cattell (1966) using normalized eigenvalues calculated from the set of
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Figure 2: Scree plots of normalized eigenvalues computed from the set of candidate predictors (euro area

and its five largest countries)
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Figure 3: Correlation principal components (PCs) with the set of candidate predictors (euro area)
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candidate predictors. Figure 2 shows the scree plots for the euro area and its five largest

countries, where the normalized eigenvalues of the largest thirty principal components are

presented. The plots show that the first principal component is able to explain between 20

and 30 percent of the comovement in the set of candidate predictors. Moreover, the explana-

tory power increases only very slightly after the fourth principal component. Figure 3 shows

the correlation of the first four estimated principal components with the matrix of candi-

date predictors for the euro area.The x-axis shows the candidate variables that correspond

to the numbers in Table IV in the Appendix, the y-axis shows the correlations in percent.

The first principal component is strongly correlated with a broad range of variables apart

from prices, which is in accordance with the high eigenvalue. This indicates that the bulk of

the covariance of the candidate predictors can be explained by the first factor. The second

and third principal components are strongly correlated with price variables, such as HICP,

commodity prices and oil price, whilst the fourth principal component is highly correlated

with financial variables, such as interest rates and exchange rates.

The factor model of Bańbura and Rünstler (2011) also requires a choice on the number

of principal components to extract from the disturbance matrix in equation (4), the so called

“dynamic” factors q. We followed a similar procedure as in Bańbura and Rünstler (2011)

by imposing the restrictions r ≤ 4 and q ≤ r. The second restriction is motivated by

the finding of D‘Agostino and Giannone (2012) who stated that restricting the number of

dynamic factors to be equal or less than the number of static factors does not hurt predictive

power. Moreover, we need to choose between the original Bańbura and Rünstler (2011)

and the augmented version of the model. Table IX in the Appendix compares the forecast

accuracy of the original Bańbura and Rünstler (2011) model with the augmented version. We

conclude that the forecast accuracy increases when the augmented version of the Bańbura

and Rünstler (2011) model is used, though the differences are usually quite small. In the

Tables in the remainder of this paper we will show the forecast accuracy of the augmented

Bańbura and Rünstler (2011) model.

4 Empirical results

4.1 Forecast accuracy using the complete sample

This subsection describes the forecast accuracy of the factor models versus the benchmark

model. The benchmark model is an autoregression of order 2. The factor models are the

principal component model of Stock and Watson (SW), the augmented dynamic factor model

of Bańbura and Rünstler (BR) and the collapsed dynamic factor model (CFM). In our

analysis, we analyze the forecast performance for the euro area (EA) and its five largest

countries, i.e.: Germany (DE), France (FR), Italy (IT), Spain (ES) and the Netherlands

(NL). We measure forecast accuracy as the mean squared forecast error (MSFE).

Table II presents the forecast performance of the three factor models and the benchmark

model for our five countries and the euro area for the complete length of the sample (1992.I–

2012.IV). The underlying empirical analysis has been carried out on a monthly basis for eleven

horizons. To keep the table parsimonious we only report the average forecast accuracy for the

one and two quarter ahead forecast, the nowcast and the backcast.9 Moreover, the presented

MSFEs are averaged over model specifications with one to four factors. The rows labeled

AR(2) report the MSFE of the benchmark model. For the three factor models, the entries

9 The forecast for the months within the quarters are available from the authors upon request.
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Table II: Forecast accuracy dynamic factor models (MSFE), 1992.I-2012.IV

EA DE FR IT ES NL

Absolute

AR(2)

All horizons 0.42 0.79 0.26 0.57 0.39 0.51

2Q ahead forecast 0.49 0.81 0.34 0.66 0.46 0.56

1Q ahead forecast 0.45 0.81 0.28 0.60 0.41 0.53

Nowcast 0.39 0.78 0.21 0.53 0.35 0.49

Backcast 0.32 0.76 0.16 0.47 0.31 0.45

Relative to AR(2) model

BR

All horizons 0.70 0.81 1.18 0.74 0.93 0.76

2Q ahead forecast 0.79 0.93 1.11 0.86 0.99 0.92

1Q ahead forecast 0.72 0.85 1.15 0.81 0.90 0.76

Nowcast 0.62 0.77 1.31 0.63 0.93 0.65

Backcast 0.57 0.62 1.23 0.57 0.83 0.64

CFM

All horizons 0.60 0.78 0.86 0.68 0.84 0.70

2Q ahead forecast 0.74 0.85 0.89 0.77 0.94 0.85

1Q ahead forecast 0.62 0.83 0.86 0.73 0.90 0.69

Nowcast 0.51 0.78 0.85 0.63 0.75 0.60

Backcast 0.38 0.58 0.80 0.50 0.67 0.61

SW

All horizons 0.87 1.04 0.93 0.85 0.87 0.88

2Q ahead forecast 0.94 1.18 0.99 0.85 1.03 1.00

1Q ahead forecast 0.92 1.12 0.93 0.88 0.85 0.94

Nowcast 0.82 0.95 0.85 0.87 0.76 0.78

Backcast 0.68 0.85 0.87 0.77 0.77 0.70

This table presents the MSFEs of backcasts, nowcasts, one quarter

ahead forecasts and two quarter ahead forecasts as well as the aver-

age MSFE over all these horizons. The benchmark model is an au-

toregression of order 2 (AR(2)). The factor models are: the principal

component model with diffusion index of Stock and Watson (SW),

the augmented dynamic factor model of Bańbura and Rünstler (BR)

and the collapsed dynamic factor model (CFM). The country codes

are: Euro Area (EA), Germany (DE), France (FR), Italy (IT), Spain

(ES) and the Netherlands (NL). The model forecasts are averaged

over model specifications with one to four factors. The smallest

MSFE for each horizon is highlighted. MSFEs that are at most 10%

larger than the MSFE of the best model and also smaller than the

MSFE of the benchmark model are in boldface.
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refer to their MSFE relative to the benchmark model in order to improve comparability of

the results across countries and horizons. Shaded areas indicate the model with the lowest

MSFE for a particular forecast horizon and a particular country. Bold faced entries indicate

models that have an MSFE that is less than 10% larger than that of the best model and also

smaller than the MSFE of the benchmark model. The 10% threshold is meant as a rough

assessment of the economic significance of differences in forecasting ability. We will call

models that meet this condition “competitive models” as in terms of forecast performance

they do no differ “too much” from the best model.10 The outcomes in Table II point to

several interesting results.

First, incorporating monthly information in a factor model pays off in terms of forecast

accuracy, in particular for nowcasts and backcasts. Averaged over all horizons and countries,

the improvement for the best models is around 26% on the benchmark AR(2) model, whilst

the worst model still posts a gain of 9% on the benchmark. The results also indicate that

predictions by the factor models deteriorate when the forecast horizon is longer. This is in line

with previous research, that concludes that factor models are suitable for making nowcasts

and backcasts but less suited for forecasting one and two quarters ahead, e.g. Giannone et al.

(2008), Rünstler et al. (2009) and Bańbura and Rünstler (2011).

Second, the collapsed dynamic factor model displays the highest forecast accuracy. Look-

ing across all countries and horizons, the collapsed dynamic factor model performs the best.

The only exceptions are the nowcasts for Germany and the one quarter ahead forecast for

Spain. However, in both cases the difference with the best model is negligible. The collapsed

dynamic factor model post the highest gains in forecast accuracy on the benchmark model

for the euro area, ranging from an average improvement of 26% for the two quarter ahead

forecast to 62% for the backcasts.

Third, the collapsed dynamic factor model is the only model that beats the benchmark

model by more than 10% or more across most countries and forecast horizons. The other two

factor models have a less favorable forecast performance, i.e: the augmented Bańbura and

Rünstler (2011) model fails to beat the benchmark model in France for all forecast horizons,

whilst the Stock and Watson (2002) model is unable to outperform the benchmark model

for Germany, Spain and the Netherlands when forecasting one or two quarters ahead.

The first result is yet another piece of empirical evidence that predictions by factor models

are especially well suited for nowcasting and backcasting. The second result suggests that

the collapsed dynamic factor model displays a significantly larger ability to absorb monthly

information than the other two factor models we considered.

The relatively good forecast performance of the collapsed dynamic factor model is robust

to model specification, as shown in Table V to VIII in the Appendix. The Tables show the

forecast accuracy for model specifications with one to four factors respectively for all factor

models.

4.2 Forecast accuracy during the Great Moderation and the Great

Recession

Our sample includes the period of financial crisis. During this period there was a sharp drop

in a broad range of indicators, including manufacturing, confidence indicators and exports.

As a consequence real GDP growth sharply dropped across all industrialized countries. An

interesting question is whether and to what extent the performance of the factor models

10 We also conducted conventional statistical tests but -like other authors- we found these are not discriminating

in practice. Details are available from the authors upon request.
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differs between the volatile financial crisis and the years before, that can be characterized as

a relatively stable period. Forecasting in times of crisis of course poses greater challenges,

so the results of a comparative analysis might be more informative on the issue which factor

model is best suited to forecast GDP growth. To determine the influence of the financial

crisis on the forecast accuracy of the factor models we divide the sample into two periods, i.e.

1992.I-2007.IV and 2008.I-2012.IV. We call the latter period the “Great Recession” and the

former the “Great Recession”. Table III presents the outcome of the forecast performance

of the three factor models and the benchmark model for our five countries and the euro area

during both periods. The comparison of these two distinct periods points to some interesting

results that we describe as follows.

First, predicting GDP growth during the Great Recession is more difficult than during the

Great Moderation. Depending on the country analyzed, the MSFE of the benchmark model

during the Great Recession is two to six times larger than during the Great Moderation.

This deterioration is partly offset as the scope for improving forecast by using monthly

information appears to be larger during the Great Recession, in particular for nowcasting and

backcasting. For example, the relative MSFE of the collapsed dynamic factor model improves

by 51% during the Great Recession, compared to 14% during the Great Moderation. This

finding is consistent with the results of D‘Agostino and Giannone (2012) and Jansen et al.

(2012). Both studies show that the gain in forecast accuracy is especially sizeable in periods

of large swings and high comovement in the monthly predictors, as was the case during the

Great Recession.

Second, averaged over all horizons the collapsed dynamic factor model is the best or

a competitive model during the Great Recession. This indicates that the model structure

of the collapsed dynamic factor model is best suited to process monthly information in

volatile times. This conclusion also holds for most countries when we analyze the forecast

performance for each forecast horizon separately. The maximum gain in forecast accuracy

against the benchmark model was 77%, recorded for the backcasts in the euro area. However,

there are two exceptions. In Spain the collapsed dynamic factor model is not competitive

when nowcasting and forecasting one quarter ahead, whilst in Germany the model is not

competitive when backcasting and nowcasting.

Third, during the Great Moderation the collapsed factor model is still the best model

for most of the countries, but not for all countries. Averaged across forecast horizon the

collapsed dynamic factor model is the best model for the euro area and three out of the five

countries we analyzed (Germany, Italy, Spain), but for the Netherlands the forecast accuracy

of the Bańbura and Rünstler (2011) is higher for all horizons. In France, none of the factor

models is able to beat the benchmark model.

Last, the low forecast accuracy of the Stock and Watson (2002) model during the Great

Moderation is quite striking. The model is unable to beat the benchmark model for the

majority of countries and forecast horizons.

Overall, splitting the total sample period into the volatile Great Recession and more

tranquil Great Moderation enhances the understanding of the forecast accuracy of factor

models. We show that for the euro area and three of our five countries the collapsed dynamic

factor model is the best forecasting model during the Great Moderation as well as during the

Great Recession. However, for France and the Netherlands, the high forecast accuracy of the

collapsed dynamic factor model is limited to the Great Recession. This finding underlines

the importance of continuous monitoring the forecast accuracy of the short-term forecasting

models policy makers and econometricians use.
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Table III: Forecast accuracy dynamic factor models (MSFE) during the Great Moderation and the Great

Recession

EA DE FR IT ES NL EA DE FR IT ES NL

Great Moderation (1992.I-2007.IV) Great Recession (2008.I-2012.IV)

Absolute

AR(2)

All horizons 0.20 0.44 0.15 0.28 0.27 0.32 1.12 1.93 0.60 1.51 0.77 1.13

2Q ahead forecast 0.23 0.44 0.18 0.31 0.30 0.35 1.32 2.01 0.83 1.77 0.96 1.23

1Q ahead forecast 0.21 0.44 0.15 0.29 0.28 0.32 1.23 1.98 0.68 1.60 0.84 1.18

Nowcast 0.19 0.44 0.13 0.27 0.25 0.30 1.03 1.89 0.47 1.39 0.67 1.09

Backcast 0.18 0.43 0.12 0.25 0.24 0.28 0.80 1.78 0.31 1.17 0.55 0.99

Relative to AR(2) model

BR(2011)

All horizons 0.86 0.99 1.37 0.79 0.93 0.83 0.60 0.68 1.03 0.72 0.92 0.70

2Q ahead forecast 0.80 0.96 1.09 0.86 0.96 0.88 0.79 0.91 1.13 0.85 1.01 0.97

1Q ahead forecast 0.78 0.91 1.32 0.80 0.87 0.82 0.68 0.80 1.03 0.81 0.93 0.71

Nowcast 0.97 1.11 1.72 0.70 0.96 0.81 0.41 0.52 0.95 0.59 0.90 0.50

Backcast 0.93 1.00 1.57 0.75 0.91 0.83 0.32 0.31 0.82 0.45 0.73 0.47

CFM(2013)

All horizons 0.69 0.88 1.06 0.73 0.98 0.94 0.54 0.71 0.70 0.66 0.69 0.49

2Q ahead forecast 0.83 0.96 1.04 0.82 1.03 0.95 0.69 0.78 0.78 0.74 0.85 0.76

1Q ahead forecast 0.68 0.89 1.04 0.76 1.06 0.91 0.59 0.79 0.72 0.72 0.73 0.50

Nowcast 0.61 0.85 1.11 0.67 0.91 0.95 0.44 0.74 0.61 0.61 0.55 0.29

Backcast 0.59 0.78 1.07 0.60 0.86 0.99 0.23 0.43 0.46 0.44 0.42 0.27

SW(2002)

All horizons 1.01 1.20 1.01 0.90 1.08 0.97 0.79 0.93 0.86 0.82 0.65 0.80

2Q ahead forecast 1.09 1.32 1.03 0.87 1.17 1.00 0.86 1.09 0.96 0.84 0.90 1.00

1Q ahead forecast 1.06 1.24 1.00 0.87 1.06 0.98 0.84 1.03 0.88 0.89 0.63 0.91

Nowcast 0.92 1.09 0.97 0.93 1.02 0.94 0.76 0.85 0.75 0.84 0.44 0.64

Backcast 0.88 1.12 1.05 0.95 1.02 0.98 0.53 0.63 0.65 0.65 0.42 0.45

This table presents the MSFEs of backcasts, nowcasts, one quarter ahead forecasts and two quarter ahead forecasts

as well as the average MSFE over all these horizons. The benchmark model is an autoregression of order 2 (AR(2)).

The factor models are: the principal component model with diffusion index of Stock and Watson (SW), the augmented

dynamic factor model of Bańbura and Rünstler (BR) and the collapsed dynamic factor model (CFM). The country

codes are: Euro Area (EA), Germany (DE), France (FR), Italy (IT), Spain (ES) and the Netherlands (NL). The model

forecasts are averaged over model specifications with one to four factors. The smallest MSFE for each horizon is

highlighted. MSFEs that are at most 10% larger than the MSFE of the best model and also smaller than the MSFE of

the benchmark model are in boldface.
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5 Conclusions

This paper makes three contributions to the existing empirical literature on forecasting

GDP in the short-term. The first contribution is empirical. We present the outcome of a

forecasting horse race of two popular factor models amongst policy makers and the recently

developed collapsed dynamic factor model for the euro area and its five largest countries

(Germany, France, Italy, Spain and the Netherlands), utilizing the same information set

for all countries and the euro area. Our sample (1992.I-2012.IV) allows us to discriminate

between the performance of the factor models during the volatile financial crisis and the

more tranquil years before the crisis. Our second and third contribution are extensions to

the existing factor models. First, we extend the model of Bańbura and Rünstler (2011)

by introducing an autoregressive term of the target variable (GDP). Second, we extend the

collapsed dynamic factor by proposing and efficient way to deal with jagged edges at the

begin and the end of the estimation period.

We summarize our findings in four points. First, factor models can extract valuable

information for short-term GDP forecasting, in particular as the forecast horizon shortens

and more monthly information is processed. We find the largest gains in forecast accuracy

for nowcasting and backcasting, suggesting that factor models are especially helpful when

they are able to use information that pertains to the quarter of interest.

Second, during the Great Recession the gains in forecast accuracy against a simple bench-

mark model was much larger than during the Great Moderation. This finding underlines

the importance of using factor models instead of simple benchmark models during volatile

periods.

Third, measured over our sample, the collapsed dynamic factor model showed the highest

forecast accuracy for the euro area and its five largest countries. For the euro area and three

out of five countries (Germany, Italy and Spain) this result was driven by the high forecast

accuracy during the Great Recession as well as the Great Moderation. However, for France

and the Netherlands the higher forecast accuracy of the collapsed dynamic factor model is

limited to the Great Recession.

Fourth, small changes in the structure of factor models can improve the forecast accuracy

considerably. We show that the inclusion of an autoregressive term of the target variable

(GDP) in the Bańbura and Rünstler (2011) model increases its forecast accuracy. Moreover,

efficient handling of the jagged edges in the Bräuning and Koopman (2014) model is key to

its good forecast performance.

The results of our large-scale comparative analysis may be useful to econometricians and

policy makers who regularly use short-term forecasting models. An interesting topic for

future research is how to trace back the contribution of the monthly indicators to the GDP

forecast of the collapsed dynamic factor model. The competing Bańbura and Rünstler (2011)

model does have this feature, and the collapsed dynamic factor model would probably gain

in attractiveness for policy makers if this feature was incorporated as well.
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A Appendix

A.1 Dataset

Table IV: Monthly series in uniform dataset

Nr. Variable Transformation Country

sa ln. dif. EA DE FR IT ES NL

I. Production & sales (N=15)

1 World Trade 1 1 1 ‘77 ‘77 ‘77 ‘77 ‘77 ‘77

2 Ind. prod. US 1 1 1 ‘60 ‘60 ‘60 ‘60 ‘60 ‘60

3 Ind. prod. UK 1 1 1 ‘68 ‘68 ‘68 ‘68 ‘68 ‘68

4 Ind. prod. (excl. constr.) 1 1 1 ‘60 ‘60 ‘60 ‘60 ‘61 ‘62

5 Ind. prod., consumer goods 2 1 1 ‘80 ‘80 ‘63 ‘60 ‘65 ‘90

6 Ind. prod., energy 2 1 1 ‘80 ‘91 ‘63 ‘80 ‘80 ‘00

7 Ind. prod., interm. goods 1 1 1 ‘60 ‘80 ‘63 ‘77 ‘65 ‘00

8 Ind. prod., capital goods 1 1 1 ‘60 ‘80 ‘63 ‘77 ‘65 ‘70

9 Ind. prod., manufacturing 2 1 1 ‘60 ‘78 ‘60 ‘71 ‘80 ‘70

10 Ind. prod., construction 2 1 1 ‘85 ‘78 ‘85 ‘95 ‘88 ‘85

11 Passenger car registration 1 1 1 ‘77 ‘77 ‘77 ‘77 ‘77 ‘79

12 Retail trade volume 2 1 1 ‘70 ‘68 ‘70 ‘90 ‘95 ‘60

13 Unemployment rate 1 0 1 ‘83 ‘62 ‘83 ‘83 ‘86 ‘83

14 Unemployment rate UK 1 0 1 ‘83 ‘83 ‘83 ‘83 ‘83 ‘83

15 Unemployment rate US 1 0 1 ‘83 ‘83 ‘83 ‘83 ‘83 ‘83

II. Prices (N=9)

16 Total HICP-index 2 1 2 ‘60 ‘60 ‘60 ‘60 ‘60 ‘60

17 Core HICP-index 2 1 2 ‘62 ‘62 ‘60 ‘60 ‘76 ‘61

18 Producer prices 2 1 2 ‘81 ‘60 ‘62 ‘70 ‘60 ‘60

19 Commod. prices, tot. 2 1 2 ‘60 ‘60 ‘60 ‘60 ‘60 ‘60

20 Commod. prices, ind. mat. 2 1 2 ‘60 ‘60 ‘60 ‘60 ‘60 ‘60

21 Commod. prices, food-bev. 2 1 2 ‘60 ‘60 ‘60 ‘60 ‘60 ‘60

22 Commod. prices, metals 2 1 2 ‘60 ‘60 ‘60 ‘60 ‘60 ‘60

23 Commod. prices, energy 2 1 2 ‘60 ‘60 ‘60 ‘60 ‘60 ‘60

24 Oil price 2 1 2 ‘85 ‘85 ‘85 ‘85 ‘85 ‘85

III. Monetary & financial indicators (N=14)

25 M1 2 1 1 ‘70 ‘80 ‘80 ‘80 ‘80 ‘80

26 M3 2 1 1 ‘70 ‘70 ‘70 ‘70 ‘70 ‘70

27 Int. rate mortgage 2 0 1 ‘03 ‘82 ‘80 ‘95 ‘84 ‘80

28 3 month interest rate 2 0 1 ‘94 ‘60 ‘64 ‘60 ‘60 ‘60

29 10 year gov. bond yield 2 0 1 ‘70 ‘60 ‘70 ‘60 ‘80 ‘60

30 Headline stock-index 2 1 1 ‘73 ‘73 ‘73 ‘73 ‘87 ‘73

31 Basic material-index 2 1 1 ‘73 ‘73 ‘73 ‘73 ‘87 ‘73

32 Industrials stock-index 2 1 1 ‘73 ‘73 ‘73 ‘73 ‘87 ‘73

33 Cons. goods stock-index 2 1 1 ‘73 ‘73 ‘73 ‘73 ‘87 ‘73

34 Cons. service stock-index 2 1 1 ‘73 ‘73 ‘73 ‘73 ‘87 ‘73

35 Financials stock-index 2 1 1 ‘73 ‘73 ‘73 ‘73 ‘87 ‘73

36 Loans to the private sector 2 1 1 ‘80 ‘80 ‘80 ‘83 ‘80 ‘82

37 Exchange rate, $ per EUR 2 1 1 ‘74 ‘74 ‘74 ‘74 ‘74 ‘74

38 Real eff. exchange rate 2 1 1 ‘70 ‘70 ‘70 ‘70 ‘70 ‘70

IV. Surveys (N=14)

39 Ind. conf. - headline 1 0 1 ‘85 ‘85 ‘85 ‘85 ‘87 ‘85

40 Ind. conf. - orders 1 0 1 ‘85 ‘85 ‘85 ‘85 ‘87 ‘85

Continued on next page
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Table IV – Continued from previous page

Nr. Variable Transformation Country

sa ln. dif. EA DE FR IT ES NL

41 Ind. conf. - stocks 1 0 1 ‘85 ‘85 ‘85 ‘85 ‘87 ‘85

42 Ind. conf. - prod. expect. 1 0 1 ‘85 ‘85 ‘85 ‘85 ‘87 ‘85

43 Ind. conf. - empl. expect. 1 0 1 ‘85 ‘85 ‘85 ‘85 ‘87 ‘85

44 Cons. conf. - headline 1 0 1 ‘85 ‘85 ‘85 ‘85 ‘86 ‘85

45 Cons. conf. - exp. fin. sit. 1 0 1 ‘85 ‘85 ‘85 ‘85 ‘86 ‘85

46 Cons. conf. - exp. ec. sit. 1 0 1 ‘85 ‘85 ‘85 ‘85 ‘86 ‘85

47 Cons. conf. - exp. unemp. 1 0 1 ‘85 ‘85 ‘85 ‘85 ‘86 ‘85

48 Cons. conf. - exp. maj. pur. 1 0 1 ‘85 ‘85 ‘85 ‘85 ‘86 ‘85

49 PMI United States 1 0 1 ‘60 ‘60 ‘60 ‘60 ‘60 ‘60

50 OECD leading ind. UK 1 1 1 ‘60 ‘60 ‘60 ‘60 ‘60 ‘60

51 OECD leading ind. US 1 1 1 ‘60 ‘60 ‘60 ‘60 ‘60 ‘60

52 OECD comp. leading ind. 1 1 1 ‘70 ‘61 ‘70 ‘62 ‘76 ‘61

This table presents the starting year of the monthly series that were used for estimation. Series for

which the time series starts later than 1986 are highlighted and excluded in the models because the series

are too short. transform: sa: 1= seasonal adjustment at the source, 2= seasonal adjustment by US

Census X12-method, log: 0=no logarithm, 1=logarithm, dif.: degree of differencing 1=first difference,

2=second difference
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A.2 Number of factors in dynamic factor models

Table V: Forecast accuracy dynamic factor models (MSFE), 1992.I-2012.IV, one factor

EA DE FR IT ES NL

Absolute

AR

All horizons 0.42 0.79 0.26 0.57 0.39 0.51

2Q ahead forecast 0.49 0.81 0.34 0.66 0.46 0.56

1Q ahead forecast 0.45 0.81 0.28 0.60 0.41 0.53

Nowcast 0.39 0.78 0.21 0.53 0.35 0.49

Backcast 0.32 0.76 0.16 0.47 0.31 0.45

Relative to AR(2) model

BR

All horizons 0.73 0.80 1.18 0.81 1.04 0.85

2Q ahead forecast 0.83 0.94 1.15 0.88 1.05 0.99

1Q ahead forecast 0.78 0.86 1.21 0.87 1.03 0.87

Nowcast 0.64 0.70 1.24 0.75 1.11 0.77

Backcast 0.58 0.63 1.07 0.67 0.94 0.71

CFM

All horizons 0.64 0.73 0.95 0.73 0.91 0.72

2Q ahead forecast 0.79 0.87 0.95 0.83 0.95 0.84

1Q ahead forecast 0.65 0.76 0.92 0.77 0.92 0.71

Nowcast 0.52 0.63 0.98 0.64 0.88 0.63

Backcast 0.49 0.57 0.97 0.58 0.87 0.65

SW

All horizons 0.83 1.00 0.88 0.86 0.86 0.86

2Q ahead forecast 0.89 1.12 0.98 0.88 0.98 0.96

1Q ahead forecast 0.88 1.08 0.88 0.90 0.87 0.90

Nowcast 0.78 0.92 0.78 0.87 0.73 0.79

Backcast 0.64 0.79 0.77 0.72 0.83 0.74

This table presents the MSFEs of backcasts, nowcasts, one and two

quarter ahead forecasts. The benchmark model is an autoregression

of order 2 (AR(2)). The factor models are: the principal component

of Stock and Watson model (SW), the augmented dynamic factor

model of Bańbura and Rünstler (BR) and the collapsed dynamic

factor model (CFM). The country codes are: Euro Area (EA), Ger-

many (DE), France (FR), Italy (IT), Spain (ES) and the Nether-

lands (NL). The model forecasts are averaged over model specifi-

cations with one to four factors. The smallest MSFE for each

horizon is highlighted. MSFEs that are at most 10% larger than

the MSFE of the best model and also smaller than the MSFE of the

benchmark model are in boldface.
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Table VI: Forecast accuracy dynamic factor models (MSFE), 1992.I-2012.IV, two factors

EA DE FR IT ES NL

Absolute

AR

All horizons 0.42 0.79 0.26 0.57 0.39 0.51

2Q ahead forecast 0.49 0.81 0.34 0.66 0.46 0.56

1Q ahead forecast 0.45 0.81 0.28 0.60 0.41 0.53

Nowcast 0.39 0.78 0.21 0.53 0.35 0.49

Backcast 0.32 0.76 0.16 0.47 0.31 0.45

Relative to AR(2) model

BR

All horizons 0.73 0.97 1.26 0.76 1.03 0.72

2Q ahead forecast 0.81 1.03 1.12 0.87 1.01 0.88

1Q ahead forecast 0.74 0.97 1.21 0.81 0.99 0.70

Nowcast 0.66 1.01 1.48 0.64 1.12 0.61

Backcast 0.66 0.79 1.41 0.66 1.03 0.63

CFM

All horizons 0.58 0.85 0.91 0.66 0.89 0.74

2Q ahead forecast 0.69 0.84 0.94 0.74 0.91 0.88

1Q ahead forecast 0.57 0.85 0.91 0.68 0.90 0.72

Nowcast 0.50 0.91 0.90 0.57 0.86 0.65

Backcast 0.49 0.76 0.86 0.59 0.84 0.65

SW

All horizons 0.87 1.05 0.91 0.90 0.91 0.93

2Q ahead forecast 0.91 1.16 0.98 0.91 1.04 1.05

1Q ahead forecast 0.92 1.14 0.91 0.91 0.87 1.01

Nowcast 0.84 0.97 0.83 0.93 0.79 0.82

Backcast 0.73 0.85 0.87 0.80 0.90 0.73

This table presents the MSFEs of backcasts, nowcasts, one and two

quarter ahead forecasts. The benchmark model is an autoregression

of order 2 (AR(2)). The factor models are: the principal component

of Stock and Watson model (SW), the augmented dynamic factor

model of Bańbura and Rünstler (BR) and the collapsed dynamic

factor model (CFM). The country codes are: Euro Area (EA), Ger-

many (DE), France (FR), Italy (IT), Spain (ES) and the Nether-

lands (NL). The model forecasts are averaged over model specifi-

cations with one to four factors. The smallest MSFE for each

horizon is highlighted. MSFEs that are at most 10% larger than

the MSFE of the best model and also smaller than the MSFE of the

benchmark model are in boldface.
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Table VII: Forecast accuracy dynamic factor models (MSFE), 1992.I-2012.IV, three factors

EA DE FR IT ES NL

Absolute

AR

All horizons 0.42 0.79 0.26 0.57 0.39 0.51

2Q ahead forecast 0.49 0.81 0.34 0.66 0.46 0.56

1Q ahead forecast 0.45 0.81 0.28 0.60 0.41 0.53

Nowcast 0.39 0.78 0.21 0.53 0.35 0.49

Backcast 0.32 0.76 0.16 0.47 0.31 0.45

Relative to AR(2) model

BR

All horizons 0.75 0.85 1.21 0.78 0.92 0.75

2Q ahead forecast 0.80 0.94 1.12 0.87 0.98 0.91

1Q ahead forecast 0.76 0.88 1.16 0.83 0.85 0.75

Nowcast 0.75 0.86 1.36 0.72 0.93 0.62

Backcast 0.65 0.67 1.3 0.63 0.89 0.63

CFM

All horizons 0.64 0.87 0.94 0.71 0.92 0.72

2Q ahead forecast 0.73 0.92 0.98 0.74 0.97 0.89

1Q ahead forecast 0.66 0.92 0.94 0.74 0.97 0.70

Nowcast 0.59 0.90 0.91 0.72 0.85 0.60

Backcast 0.48 0.68 0.86 0.56 0.82 0.64

SW

All horizons 0.87 1.11 0.91 0.89 0.99 0.99

2Q ahead forecast 0.94 1.27 0.95 0.88 1.13 1.09

1Q ahead forecast 0.91 1.19 0.92 0.92 0.97 1.05

Nowcast 0.83 0.99 0.86 0.9 0.88 0.93

Backcast 0.72 0.92 0.88 0.81 0.90 0.81

This table presents the MSFEs of backcasts, nowcasts, one and two

quarter ahead forecasts. The benchmark model is an autoregression

of order 2 (AR(2)). The factor models are: the principal component

of Stock and Watson model (SW), the augmented dynamic factor

model of Bańbura and Rünstler (BR) and the collapsed dynamic

factor model (CFM). The country codes are: Euro Area (EA), Ger-

many (DE), France (FR), Italy (IT), Spain (ES) and the Nether-

lands (NL). The model forecasts are averaged over model specifi-

cations with one to four factors. The smallest MSFE for each

horizon is highlighted. MSFEs that are at most 10% larger than

the MSFE of the best model and also smaller than the MSFE of the

benchmark model are in boldface.
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Table VIII: Forecast accuracy dynamic factor models (MSFE), 1992.I-2012.IV, four factors

EA DE FR IT ES NL

Absolute

AR

All horizons 0.42 0.79 0.26 0.57 0.39 0.51

2Q ahead forecast 0.49 0.81 0.34 0.66 0.46 0.56

1Q ahead forecast 0.45 0.81 0.28 0.60 0.41 0.53

Nowcast 0.39 0.78 0.21 0.53 0.35 0.49

Backcast 0.32 0.76 0.16 0.47 0.31 0.45

Relative to AR(2) model

BR

All horizons 0.75 0.83 1.21 0.76 0.88 0.78

2Q ahead forecast 0.81 0.92 1.10 0.87 0.99 0.95

1Q ahead forecast 0.73 0.87 1.14 0.85 0.85 0.78

Nowcast 0.75 0.84 1.42 0.68 0.83 0.64

Backcast 0.65 0.62 1.35 0.52 0.77 0.66

CFM

All horizons 0.67 0.86 0.80 0.75 0.93 0.71

2Q ahead forecast 0.79 0.86 0.82 0.81 1.10 0.87

1Q ahead forecast 0.69 0.92 0.80 0.80 0.99 0.68

Nowcast 0.62 0.95 0.78 0.75 0.75 0.61

Backcast 0.43 0.65 0.77 0.53 0.73 0.61

SW

All horizons 1.01 1.15 1.12 0.87 0.97 0.99

2Q ahead forecast 1.13 1.33 1.13 0.86 1.18 1.12

1Q ahead forecast 1.08 1.17 1.13 0.87 0.90 1.06

Nowcast 0.95 1.04 1.12 0.90 0.84 0.88

Backcast 0.73 0.98 1.10 0.84 0.86 0.80

This table presents the MSFEs of backcasts, nowcasts, one and two

quarter ahead forecasts. The benchmark model is an autoregression

of order 2 (AR(2)). The factor models are: the principal component

of Stock and Watson model (SW), the augmented dynamic factor

model of Bańbura and Rünstler (BR) and the collapsed dynamic

factor model (CFM). The country codes are: Euro Area (EA), Ger-

many (DE), France (FR), Italy (IT), Spain (ES) and the Nether-

lands (NL). The model forecasts are averaged over model specifi-

cations with one to four factors. The smallest MSFE for each

horizon is highlighted. MSFEs that are at most 10% larger than

the MSFE of the best model and also smaller than the MSFE of the

benchmark model are in boldface.

26



A.3 Adding an AR(2) term in Bańbura and Rünstler (2011)

Table IX: Sensitivity analysis (augmented) Bańbura and Rünstler model

EA DE FR IT ES NL

Absolute MSFE

Base BR model

1 factor 0.56 0.80 0.61 0.69 0.67 0.66

2 factor 0.57 0.91 0.60 0.66 0.66 0.61

3 factor 0.57 0.86 0.58 0.67 0.61 0.63

4 factor 0.58 0.84 0.58 0.66 0.60 0.63

average 1-4 factors 0.55 0.82 0.58 0.65 0.62 0.63

Augmented BR model

1 factor 0.56 0.80 0.55 0.68 0.64 0.66

2 factor 0.56 0.88 0.57 0.66 0.63 0.61

3 factor 0.56 0.82 0.55 0.67 0.60 0.62

4 factor 0.56 0.81 0.56 0.66 0.58 0.63

average 1-4 factors 0.54 0.80 0.55 0.65 0.60 0.62

This table presents the average MSFE over all forecast horizons

(backcast, nowcast, one quarter ahead forecast and two quarter

ahead forecast) for the Bańbura and Rünstler (2011) model and

the augmented Bańbura and Rünstler (2011) model. The coun-

try codes are: Euro Area (EA), Germany (DE), France (FR), Italy

(IT), Spain (ES) and the Netherlands (NL). Forecasts for specifica-

tion with four static factors. The smallest MSFE for each horizon

is highlighted. MSFEs that are at most 10% larger than the MSFE

of the best model are in boldface.
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