Unwinding Quantitative Easing: State Dependency and Household Heterogeneity

Cristiano Cantore¹ Pascal Meichtry²

¹Sapienza University of Rome ²Banque de France

26th Annual DNB Research Conference

2 November 2023

Disclaimer: The views expressed here are those of the authors alone and do not necessarily represent the views of the Banque de France or the Eurosystem.

Motivation

- Monetary policy normalization: CB balance sheet reduction
 - Need to create sufficient scope for monetary stimulus against future shocks
- Lack of evidence on Quantitative Tightening (QT)
 - Study it theoretically
- Debate on timing of unwinding Quantitative Easing (QE)
 - Raising policy rates or unwinding stocks of asset purchases: what comes first?
- Idea of state dependency
 - Effectiveness of (unwinding) QE might be linked to the state of the economy / financial markets

This paper

Research focus

- Study macroeconomic effects of state dependency of QE/QT
 - Different states through existence of occasionally binding ZLB
- Study interaction of state dependency with household heterogeneity

Approach

- Tractable New Keynesian model with borrowers and savers, two types of bonds, and two monetary policy instruments
 - o QE/QT operates via portfolio rebalancing between government bonds
 - Simulations for shocks at, close to, and above the ZLB

This paper

Research focus

- Study macroeconomic effects of state dependency of QE/QT
 - Different states through existence of occasionally binding ZLB
- Study interaction of state dependency with household heterogeneity

Approach

- Tractable New Keynesian model with borrowers and savers, two types of bonds, and two monetary policy instruments
 - o QE/QT operates via portfolio rebalancing between government bonds
 - o Simulations for shocks at, close to, and above the ZLB


Quantitative Tightening = active asset sales to the secondary market

Preview of results

- In or close to liquidity trap, central bank can minimize economic costs of MP normalization by raising policy rate prior to unwinding QE
 - o Short-term real rate increase depresses aggregate demand
- Asymmetry between (absolute) effects of state-dependent QE and QT
- HH heterogeneity does not amplify QE/QT per se, but amplifies asymmetry when combined with state dependency
 - Borrowers more exposed through direct (portfolio) and indirect (wage) effects

Related literature

- Borrowers and Savers TANK: Eggertsson and Krugman (2012), Bilbiie,
 Monacelli, and Perotti (2013)
- QE in RANK: Chen, Cúrdia, and Ferrero (2012), Harrison (2012), Gertler and Karadi (2013), Harrison (2017), Harrison, Seneca, and Waldron (2021), Sims and Wu (2021)
- QE in HANK: Cui and Sterk (2021), Nisticò and Seccareccia (2022), Sims, Wu, and Zhang (2022a), Sims, Wu, and Zhang (2022b), Wu and Xie (2022)
- QT: Wen (2014), Cui and Sterk (2021), Karadi and Nakov (2021), Benigno and Benigno (2022), Sims et al. (2022a), Wei (2022), Airaudo (2023)
- State dependency: Haldane, Roberts-Sklar, Wieladek, and Young (2016),
 Bailey, Bridges, Harrison, Jones, and Mankodi (2020), Vlieghe (2021)

Model structure

Two-agent New Keynesian DSGE model (TANK-BS)

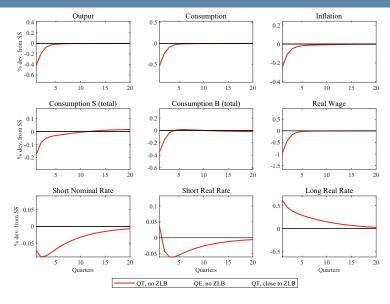
- → Households:
 - Two types: Borrowers (debt-constrained, impatient) and Savers (RA type)
 - Consume, work, save/borrow, earn labor and profit income, pay taxes
 - Access to short- and long-term bonds, s.t. (portfolio) adjustment cost
 - → Friction creates a wedge between bond returns
 - Portfolio balance channel: QE/QT \Rightarrow Δ relative asset supply \Rightarrow Δ relative asset prices and returns \Rightarrow rebalance

Model structure

- → Firms: standard NK setting, nominal frictions (Rotemberg) More
- → Government: issues bonds, levies taxes, redistributive policies
 → More

 More
- → Monetary authority: Two policy tools
 - Policy rate: Conventional interest rate setting (Taylor rule)
 - Asset market operations: Buy/sell fraction of total long-term bonds

► Calibration

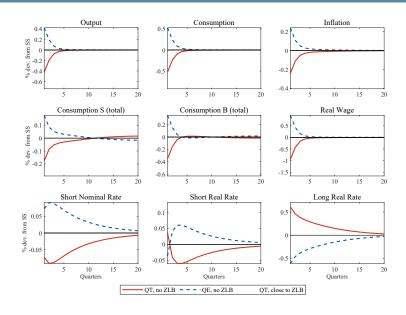

Central bank purchases/sells long-term bonds worth 1% of (annualized) GDP

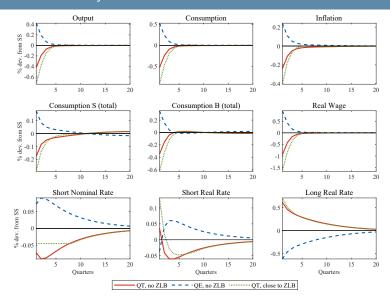
• Target: U.S. evidence on the peak impact of an asset purchase on real output \rightarrow Weale and Wieladek (2016): 0.58%

Different states of the economy:

- 1 Off the ZLB: Nominal interest rate unconstrained
- Olose to ZLB: Contractionary shock pushes economy into liquidity trap

Macroeconomic impact of unwinding QE





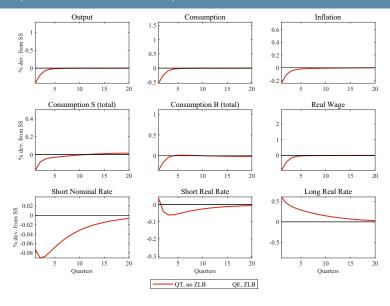
Symmetric effects away from the ZLB

What if the economy is close to the ZLB?

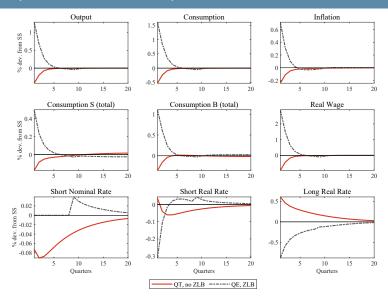
Timing of QT

When should central banks unwind?

- First normalize policy rate before starting active asset sales
 - → minimizes the economic costs associated with MP normalization
- To prevent that tightening brings the policy rate back to zero
 - Timing and pace: avoid "too early", "too big", and "too fast"


Counterfactual exercise

Compare **QE** and **QT** of <u>similar</u> size across different states of the economy and "quantify" the asymmetry coming from the ZLB


Two independent cases:

- lacktriangledown QE at the ZLB ightarrow capturing US-QE1 program
- **2** QT off the ZLB \rightarrow US-QT1 scenario

State-dependent asset market operations

State-dependent asset market operations

Net impact of QE (at ZLB) vs. QT (off ZLB)

	Output		Inflation		Consumption	
	QΕ	QΤ	QΕ	QΤ	QE	QΤ
RANK	1.05	-0.44	0.70	-0.32	1.32	-0.56
TANK-BS	1.29	-0.42	0.71	-0.24	1.61	-0.53

Multipliers on impact (baseline, in %)

Net impact of QE (at ZLB) vs. QT (off ZLB)

	Output		Inflation		Consumption	
	QΕ	QΤ	QΕ	QΤ	QΕ	QT
RANK	1.05	-0.44	0.70	-0.32	1.32	-0.56
TANK-BS	1.29	-0.42	0.71	-0.24	1.61	-0.53

Multipliers on impact (baseline, in %)

- \hookrightarrow Asymmetry at **aggregate** level (*within* model): |QE| impact |QE| impact
 - Macro effects of QE are stronger: 2x (RANK) and 3x (TANK-BS)
 - Important role of ZLB (state dependency)

Net impact of \overline{QE} (at \overline{ZLB}) vs. \overline{QT} (off \overline{ZLB})

	Output		Inflation		Consumption	
	QE	QT	QE	QT	QE	QT
RANK	1.05	-0.44	0.70	-0.32	1.32	-0.56
TANK-BS	1.29	-0.42	0.71	-0.24	1.61	-0.53

Multipliers on impact (baseline, in %)

- \hookrightarrow Asymmetry at **aggregate** level (*within* model): |QE| impact|>|QT| impact|>|QT|
 - Macro effects of QE are stronger: 2x (RANK) and 3x (TANK-BS)
 - Important role of ZLB (state dependency)
- \hookrightarrow **Distribution** matters (across models): $|\Delta QE \text{ impact}| > |\Delta QT \text{ impact}|$
 - \circ No ZLB: relative contribution of S \downarrow but high-MPC B's labor income ↑
 - \circ With ZLB: B's labor income $\uparrow \uparrow$ (via direct and indirect effects)

▶ Robust

Policy implications

- QE as powerful monetary policy tool at the ZLB ("temporary substitute")
 - o Constrained households accelerate the stabilization of the economy
- Away from ZLB, asset market operations relatively less influential
 - Different state of the world and "complementarity" with policy rate
 - o RANK may provide an adequate approximation of aggregate QE/QT effects
- At least two scenarios:
 - ① Strong PB channel: large macroeconomic costs or policy rate cut?
 - Weak PB channel and/or forceful other channels: degree of strength?

Conclusion

Key take-aways

- Built a tractable borrower-saver model to study macroeconomic implications of doing QE and unwinding it
- Highlighted the role of an occasionally binding ZLB in determining an asymmetry between QE and QT (state dependency)
- When economy is close to or at ZLB, central bank should prioritize raising the nominal interest rate before unwinding QE
- Asymmetry is more pronounced with household heterogeneity on top
- ⇒ QT in practice: state of economy, timing, pace, and channels matter

pascal.meichtry@banque-france.fr

Thank you for your attention

- Airaudo, F. S. (2023). Exit Strategies from Quantitative Easing: The Role of the Fiscal-Monetary Policy Mix. (Mimeo)
- Andrés, J., López-Salido, J. D., & Nelson, E. (2004). Tobin's Imperfect Asset Substitution in Optimizing General Equilibrium. *Journal of Money, Credit and Banking*, *36*(4), 665–690.
- Bailey, A., Bridges, J., Harrison, R., Jones, J., & Mankodi, A. (2020, December). The central bank balance sheet as a policy tool: past, present and future (Staff Working Paper No. 899). Bank of England.
- Benigno, G., & Benigno, P. (2022, May). Managing Monetary Policy
 Normalization (Staff Reports No. 1015). Federal Reserve Bank of New York.
 Retrieved from https://ideas.repec.org/p/fip/fednsr/94241.html
- Bilbiie, F. O., Monacelli, T., & Perotti, R. (2013). Public Debt and Redistribution with Borrowing Constraints. *The Economic Journal*, 123(566), F64–F98.

- Chen, H., Cúrdia, V., & Ferrero, A. (2012). The macroeconomic effects of large-scale asset purchase programmes. *The Economic Journal*, *122*(564), F289–F315.
- Christensen, J. H. E., & Rudebusch, G. D. (2012). The Response of Interest Rates to US and UK Quantitative Easing. *Economic Journal*, *122*(564), F385–F414.
- Cui, W., & Sterk, V. (2021). Quantitative easing with heterogeneous agents. *Journal of Monetary Economics*, 123, 68–90.
- Eggertsson, G. B., & Krugman, P. (2012). Debt, Deleveraging, and the Liquidity Trap: A Fisher-Minsky-Koo Approach. *The Quarterly Journal of Economics*, 127(3), 1469–1513.
- Gertler, M., & Karadi, P. (2013). QE 1 vs. 2 vs. 3. . . : A Framework for Analyzing Large-Scale Asset Purchases as a Monetary Policy Tool. *International Journal of Central Banking*, *9*(1), 5–53.

- Haldane, A., Roberts-Sklar, M., Wieladek, T., & Young, C. (2016, October). *QE: The Story so far* (Staff Working Paper No. 624). Bank of England.
- Harrison, R. (2012, January). Asset purchase policy at the effective lower bound for interest rates (Staff Working Paper No. 444). Bank of England.
- Harrison, R. (2017, September). *Optimal Quantitative Easing* (Staff Working Paper No. 678). Bank of England.
- Harrison, R., Seneca, M., & Waldron, M. (2021). *Monetary policy options in a 'low for long' era.* (Mimeo)
- Joyce, M., Lasaosa, A., Stevens, I., & Tong, M. (2011). The Financial Market Impact of Quantitative Easing in the United Kingdom. *International Journal* of Central Banking, 7(3), 113–161.
- Karadi, P., & Nakov, A. (2021). Effectiveness and addictiveness of quantitative easing. *Journal of Monetary Economics*, *117*, 1096–1117.

References IV

- Nisticò, S., & Seccareccia, M. (2022, November). *Unconventional Monetary Policy and Inequality* (Working Papers No. 7/22). Sapienza University of Rome, DISS.
- Sims, E., & Wu, J. C. (2021). Evaluating Central Banks' tool kit: Past, present, and future. *Journal of Monetary Economics*, 118, 135–160.
- Sims, E., Wu, J. C., & Zhang, J. (2022a). The Four Equation New Keynesian Model. *Review of Economics and Statistics, Forthcoming.*
- Sims, E., Wu, J. C., & Zhang, J. (2022b, August). *Unconventional Monetary Policy According to HANK* (NBER Working Paper No. 30329). National Bureau of Economic Research.
- Vayanos, D., & Vila, J.-L. (2009, November). A Preferred-Habitat Model of the Term Structure of Interest Rates (NBER Working Paper No. 15487). National Bureau of Economic Research.
- Vayanos, D., & Vila, J.-L. (2021). A Preferred-Habitat Model of the Term Structure of Interest Rates. *Econometrica*, 89(1), 77–112.

References V

- Vlieghe, G. (2021, July). Running out of room: revisiting the 3D perspective on low interest rates (Speech, London School of Economics). Bank of England. Retrieved from
 - https://www.bankofengland.co.uk/speech/2021/july/
 gertjan-vlieghe-speech-at-the-london-school-of-economics
 e M. & Wieladek T. (2016). What are the macroeconomic effects of asset
- Weale, M., & Wieladek, T. (2016). What are the macroeconomic effects of asset purchases? *Journal of Monetary Economics*, 79, 81–93.
- Wei, B. (2022, July). Quantifying "Quantitative Tightening" (QT): How Many Rate Hikes Is QT Equivalent To? (Working Paper No. 2022-8). Federal Reserve Bank of Atlanta.
- Wen, Y. (2014). When and how to exit quantitative easing? Federal Reserve Bank of St. Louis Review, 96(3), 243–265.
- Woodford, M. (2001). Fiscal Requirements for Price Stability. *Journal of Money, Credit and Banking*, 33(3), 669–728.

References VI

Wu, J. C., & Xie, Y. (2022, December). (Un)Conventional Monetary and Fiscal Policy (NBER Working Paper No. 30706). National Bureau of Economic Research.

– Appendix –

Households

Period utility function for $j = \{B, S\}$

$$U\left(c_t^j, N_t^j
ight) = heta_t\left(rac{(c_t^j)^{1-rac{1}{\sigma}}}{1-rac{1}{\sigma}} - \zeta^j rac{(N_t^j)^{1+arphi}}{1+arphi}
ight)$$

Savers (S): Maximize lifetime utility subject to real budget constraint

$$c_{t}^{S} + b_{t}^{S} + b_{t}^{S,L} = r_{t-1} b_{t-1}^{S} + r_{t}^{L} b_{t-1}^{S,L} + w_{t} N_{t}^{S} + \frac{1 - \tau^{D}}{1 - \lambda} d_{t} - t_{t} - \Psi_{t}^{S} - \frac{tr}{1 - \lambda}$$

Borrowers (B): Less patient than savers (value future less): $\beta^{S} > \beta^{B}$

- Difference in discount factors induces lending from S to B in equilibrium
- Budget and borrowing constraint, with exogenous borrowing limit $\overline{D} \geq 0$

$$c_{t}^{B} + b_{t}^{B} + b_{t}^{B,L} \leq r_{t-1} b_{t-1}^{B} + r_{t}^{L} b_{t-1}^{B,L} + w_{t} N_{t}^{B} + \frac{\tau^{D}}{\lambda} d_{t} - t_{t} - \Psi_{t}^{B} + \frac{tr}{\lambda} - b_{t}^{B} - b_{t}^{B,L} \leq \overline{D}$$

Households: Optimality conditions

For
$$j = \{B, S\}$$

$$w_t = \zeta^j \left(N_t^j\right)^{\varphi} \left(c_t^j\right)^{\frac{1}{\sigma}}$$

$$1 = \beta^j R_t \mathbb{E}_t \left[\frac{\theta_{t+1}}{\theta_t} \left(\frac{c_{t+1}^j}{c_t^j} \right)^{-\frac{1}{\sigma}} \frac{1}{\Pi_{t+1}} \right] - \frac{\nu \delta}{b_t^{j,L}} \left(\delta \frac{b_t^j}{b_t^{j,L}} - 1 \right) + \mathbb{I}^j \psi_t^B$$

$$1 = \beta^j \mathbb{E}_t \left[\frac{\theta_{t+1}}{\theta_t} \left(\frac{c_{t+1}^j}{c_t^j} \right)^{-\frac{1}{\sigma}} \frac{R_{t+1}^L}{\Pi_{t+1}} \right] + \frac{\nu \delta b_t^j}{\left(b_t^{j,L} \right)^2} \left(\delta \frac{b_t^j}{b_t^{j,L}} - 1 \right) + \mathbb{I}^j \psi_t^B$$

$$0 = \mathbb{I}^j \psi_t^B \left(b_t^B + b_t^{B,L} + \overline{D} \right)$$

where \mathbb{I}^j is an indicator function with values $\mathbb{I}^S=0$ and $\mathbb{I}^B=1$, and $\psi^B_t\geq 0$ is the Lagrangian multiplier on the borrowing constraint.

Long-term bonds

- Perpetuities with exponentially declining coupon (Woodford, 2001)
- Bond issued at t pays k+1 periods later a nominal coupon χ^k $(k \ge 0)$
- Nominal value of a bond...
 - o issued at t: V_t
 - issued k periods ago: $\chi^k V_t$
- Nominal value of long-term bond holdings of $j = \{B, S\}$: $B_t^{j, L} = V_t \tilde{B}_t^{j, L}$
- (Ex-post) nominal return on long-term bonds (Harrison, 2017):

$$R_t^L = \frac{1 + \chi V_t}{V_{t-1}}$$

Portfolio adjustment cost

Costly changes in asset allocation between short-term and long-term bonds (Chen et al., 2012; Harrison, 2017)

$$\Psi_t^j = \frac{\nu}{2} \left(\delta^j \frac{b_t^j}{b_t^{j,L}} - 1 \right)^2$$

with $\delta^j = \frac{b^{j,L}}{b^j}$

- Creates role for QE/QT as a policy instrument
- Portfolio balance channel: $QE/QT \Rightarrow \Delta$ relative asset supply $\Rightarrow \Delta$ relative asset prices and returns \Rightarrow rebalance
 - Evidence (UK): Christensen and Rudebusch (2012); Joyce, Lasaosa, Stevens, and Tong (2011)
- Rationale: imperfect substitutability between assets along yield curve (Andrés, López-Salido, & Nelson, 2004; Vayanos & Vila, 2009, 2021)

Firms

Final goods producer (perfectly competitive)

Aggregates differentiated intermediate goods (CES production function)

Intermediate goods producers (monopolistically competitive)

- Use technology $y_t(i) = z_t N_t(i)$ to produce varieties i
- Set prices s.t. quadratic adjustment cost (Rotemberg)
- Marginal cost pricing \Rightarrow zero-profit steady state
- Phillips curve:

$$\phi_{P}\left(\Pi_{t}-1\right)\Pi_{t} = \beta \mathbb{E}_{t}\left[\frac{\theta_{t+1}}{\theta_{t}}\left(\frac{c_{t+1}^{S}}{c_{t}^{S}}\right)^{-\frac{1}{\sigma}}\phi_{P}\left(\Pi_{t+1}-1\right)\Pi_{t+1}\frac{y_{t+1}}{y_{t}}\right] + \epsilon mc_{t} + \left(1 + \tau^{S}\right)\left(1 - \epsilon\right)$$

Fiscal and monetary policy

Government budget constraint

$$b_t + b_t^L = r_{t-1} b_{t-1} + r_t^L b_{t-1}^L + \Omega_t + g_t - t_t$$

- Supply of long-term bonds and govt spending: AR(1) process
- Lump-sum taxes: $\frac{t_t}{t} = \left(\frac{t_{t-1}}{t}\right)^{\rho^{\tau,t}} \left(\frac{b_t + b_t^L}{b + b^L}\right)^{\rho^{\tau,b}} \left(\frac{g_t}{g}\right)^{\rho^{\tau,g}}$
- ullet Net purchases of long-term bonds by central bank: $\Omega_t = b_t^{{\it CB}, {\it L}} r_t^{\it L} \, b_{t-1}^{{\it CB}, {\it L}}$

Monetary policy instruments

(i) Asset purchases via fraction of total market value of long bonds (\sim AR(1)):

$$b_t^{CB,L} = \mathbf{q}_t \, b_t^L$$

(ii) Conventional interest rate setting according to Taylor rule

Aggregation and market clearing

Aggregate consumption and aggregate:

$$c_t = \lambda c_t^H + (1 - \lambda)c_t^S$$

$$N_t = \lambda N_t^H + (1 - \lambda)N_t^S$$

Bond markets clearing:

$$b_{t} = \lambda b_{t}^{B} + (1 - \lambda)b_{t}^{S}$$

$$b_{t}^{L} = \underbrace{\lambda b_{t}^{B,L} + (1 - \lambda)b_{t}^{S,L}}_{b_{t}^{H,L}} + b_{t}^{CB,L}$$

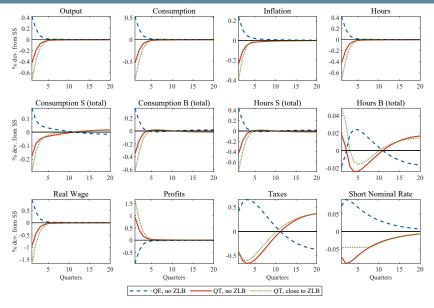
Resource constraint:

$$y_t = c_t + g_t + \frac{\phi_p}{2} (\Pi_t - 1)^2 y_t$$

Model summary (1)

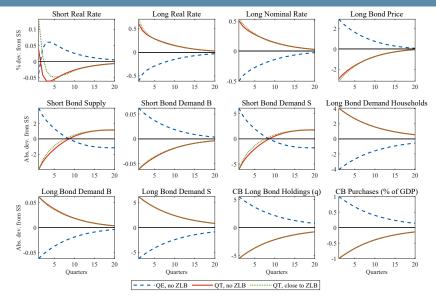
$$\begin{array}{lll} \text{Labor supply} & w_t = \zeta^{j} \left(N_t^{j} \right)^{\varphi} \left(c_t^{j} \right)^{1/\sigma}, \ \ j = \{B, S\} \\ \text{Euler short bonds, } S & 1 = \beta^S \, \mathbb{E}_t \left[\frac{\theta_{t+1}}{\theta_t} \left(\frac{c_{t+1}^S}{c_t^S} \right)^{-\frac{1}{\sigma}} \frac{R_t}{\Pi_{t+1}} \right] - \frac{\nu}{b_t^{S,L}} \left(\delta^S \frac{b_t^S}{b_t^{S,L}} - 1 \right) \\ \text{Euler long bonds, } S & 1 = \beta^S \, \mathbb{E}_t \left[\frac{\theta_{t+1}}{\theta_t} \left(\frac{c_{t+1}^S}{c_t^S} \right)^{-\frac{1}{\sigma}} \frac{R_{t+1}^L}{\Pi_{t+1}} \right] + \frac{\nu}{b_t^S b_t^S} \left(\delta^S \frac{b_t^S}{b_t^{S,L}} - 1 \right) \\ \text{Budget constraint, } S & c_t^S + b_t^S, l = r_{t-1} b_{t-1}^S + r_t^L b_{t-1}^{S,L} \\ + w_t \, N_t^S + \frac{1-\tau^D}{1-\lambda} d_t - t_t - \Psi_t^S - \frac{tr}{1-\lambda} \\ \text{Euler short bonds, } B & 1 = \beta^B \, \mathbb{E}_t \left[\frac{\theta_{t+1}}{\theta_t} \left(\frac{c_{t+1}^B}{c_t^B} \right)^{-\frac{1}{\sigma}} \frac{R_t}{\Pi_{t+1}} \right] - \frac{\nu}{b_t^S b_t^B} \left(\delta^B \frac{b_t^B}{b_t^B, L} - 1 \right) + \psi_t^B \\ \text{Euler long bonds, } B & 1 = \beta^B \, \mathbb{E}_t \left[\frac{\theta_{t+1}}{\theta_t} \left(\frac{c_{t+1}^B}{c_t^B} \right)^{-\frac{1}{\sigma}} \frac{R_{t+1}}{\Pi_{t+1}} \right] + \frac{\nu}{b_t^S b_t^B} \left(\delta^B \frac{b_t^B}{b_t^B, L} - 1 \right) + \psi_t^B \\ \text{Budget constraint, } B & c_t^B + b_t^B + b_t^B, L = r_{t-1} b_{t-1}^B + r_t^L b_{t-1}^B + \frac{\nu}{h} b_{t-1}^B + \frac{\nu}{h}$$

Model summary (2)

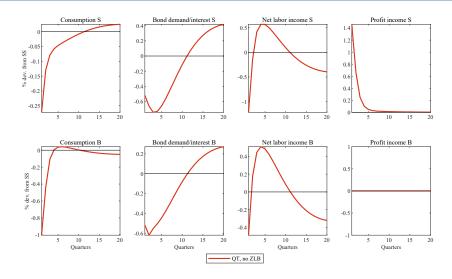

Labor demand	$w_t = mc_t \frac{y_t}{N_t}$
Production function	$y_t = z_t N_t$
Profits, aggregate	$d_t = \left[1 - mc_t - rac{\phi_p}{2} \left(\Pi_t - 1 ight)^2 ight]y_t$
	$\phi_{p}\left(\Pi_{t}^{L}-1 ight)\Pi_{t}=\epsilon\ \mathit{mc}_{t}+\left(1+ au^{\mathcal{S}} ight)\left(1-\epsilon ight)$
Phillips curve	$+\beta \mathbb{E}_t \left[\frac{\theta_{t+1}}{\theta_t} \left(\frac{c_{t+1}^S}{c_t^S} \right)^{-\frac{1}{\sigma}} \phi_p \left(\Pi_{t+1} - 1 \right) \Pi_{t+1} \frac{y_{t+1}}{y_t} \right]$
Government budget constraint	$b_t + b_t^L = r_{t-1} b_{t-1} + r_t^L b_{t-1}^L + \Omega_t + g_t - t_t$
Real short-term interest rate	$r_t = \frac{R_t}{\mathbb{E}_t \Pi_{t+1}}$
Nominal long-term bond return	$R_t^L = rac{1+\chi \ V_t}{V_{t-1}}$
Real long-term bond return	$r_t^L = \frac{R_t^L}{\Pi_t}$
Net bond purchases, CB	$\Omega_t = b_t^{\mathit{CB}, \mathit{L}} - r_t^{\mathit{L}} \ b_{t-1}^{\mathit{CB}, \mathit{L}}$
Value bond purchases, CB	$b_t^{CB,L} = q_t \ b_t^L$

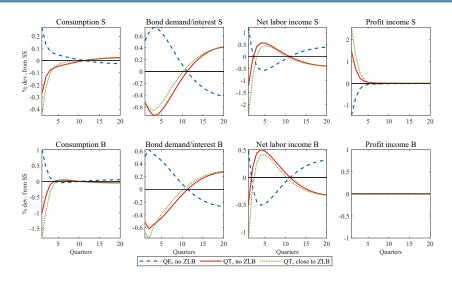
Model summary (3)

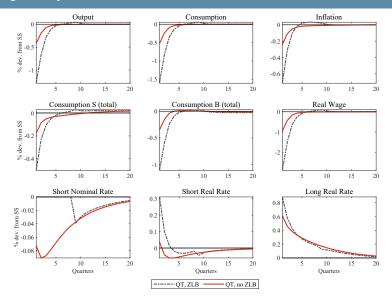
Taylor rule	$\log\left(\frac{R_{t}}{R}\right) = \rho_{r}\log\left(\frac{R_{t-1}}{R}\right) + (1-\rho_{r})\left[\phi_{\pi}\log\left(\frac{\Pi_{t}}{\Pi}\right)\right] + \epsilon_{t}^{m}$
QE shock rule	$\log\left(rac{q_t}{q} ight) = ho_q\log\left(rac{q_{t-1}}{q} ight) + \epsilon_t^q$
Fiscal rule	$rac{t_{ ext{t}}}{t} = \left(rac{t_{ ext{t}-1}}{t} ight)^{ ho^{ au, ext{t}}} \left(rac{b_{ ext{t}}+b_{ ext{t}}^L}{b+b^L} ight)^{ ho^{ au, ext{b}}} \left(rac{g_{ ext{t}}}{g} ight)^{ ho^{ au, ext{g}}}$
Aggregate consumption	$c_t = \lambda c_t^H + (1-\lambda) c_t^S$
Aggregate labor	$N_t = \lambda N_t^H + (1 - \lambda) N_t^S$
Short-term bonds market clearing	$b_t = \lambda b_t^B + (1-\lambda) b_t^S$
Long-term bonds market clearing	$b_{t}^{L}=\left(\lambda b_{t}^{B,L}+\left(1-\lambda ight)b_{t}^{\mathcal{S},L} ight)+b_{t}^{\mathcal{C}B,L}$
Resource constraint	$y_t = c_t + g_t + rac{\phi_{ ho}}{2} \left(\Pi_t - 1 ight)^2 y_t$
Other shock rules	$\log\left(rac{x_t}{x} ight) = ho_{\scriptscriptstyle X}\log\left(rac{x_{t-1}}{x} ight) + \epsilon_t^{\scriptscriptstyle X}, \;\; x = \{g,b^L,z, heta\}$

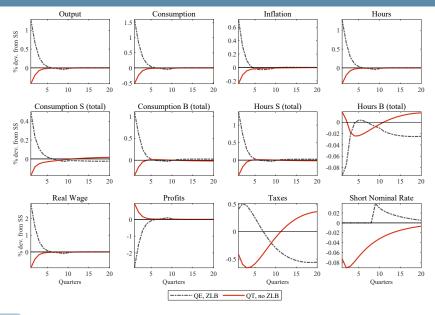

Parameter	Description	Value
λ	Proportion of borrowers	0.35
σ	Intertemporal elasticity of substitution	1
1/arphi	Frisch elasticity of labor supply	1
$eta^{\mathcal{S}}$	Discount factor, saver	0.99 0.999
β^B	Discount factor, borrower	0.95
\overline{D}	Borrowing limit	0.5
ϵ	Elasticity of substitution between goods	6
$\phi_{ extcolor{p}}$	Rotemberg price adjustment cost	42.68
ϕ_π	Taylor rule coefficient on inflation	1.5
χ	Long-term bond coupon decay rate	0.975
u	Portfolio share adjustment cost	0.1
b^L/b	Steady-state ratio of long-term to short-term bonds	0.3
q	Steady-state CB long-term bond holdings	0.25
g/y	Steady-state government-spending-to-GDP ratio	0.2
$(b+b^L)/y$	Steady-state total-debt-to-GDP ratio	0.6
$\rho^{\tau,t}$	Tax smoothing in fiscal rule	0.7
$ ho^{ au,b}$	Tax response to total debt	0.33
$ ho^{ au, g}$	Tax response to government spending	0.1
ρ_q	QE smoothing	0.9

QE/QT shock and QT shock near the ZLB (1/2)

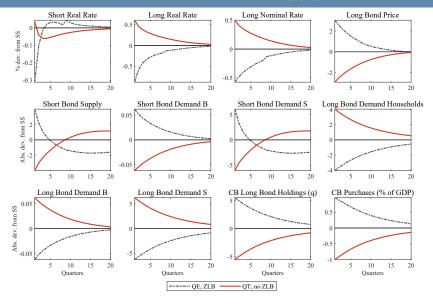



QE/QT shock and QT shock near the ZLB (2/2)

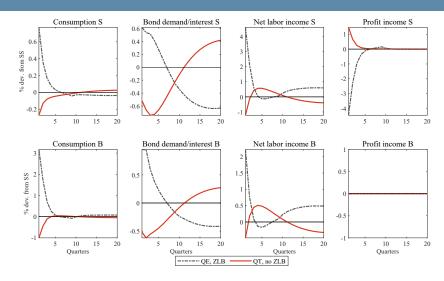

HHs' budget components: QE/QT shock and QT shock near the ZLB


HHs' budget components: QE/QT shock and QT shock near the ZLB

QT peg vs Taylor rule

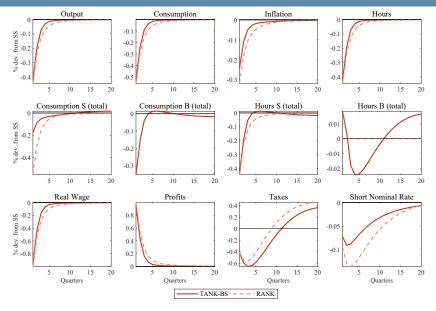


QE shock ZLB and QT shock off the ZLB (1/2)

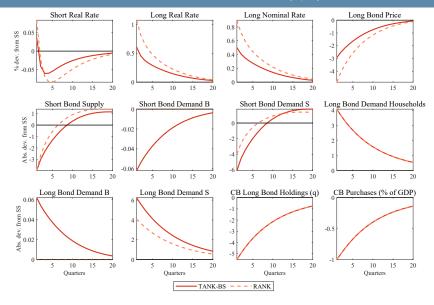


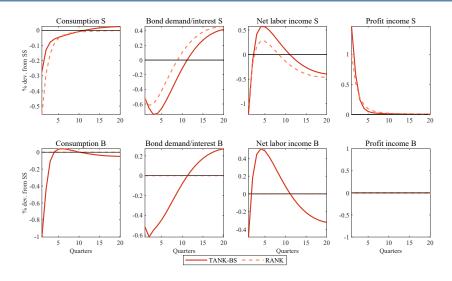
QE shock at ZLB and QT shock off the ZLB (2/2)

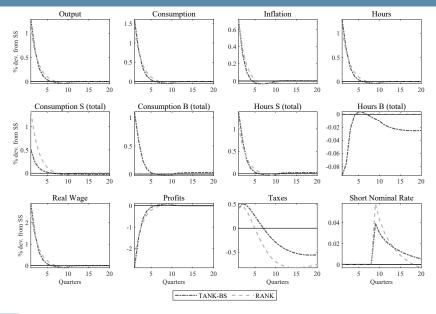
HHs' budget components: QE shock at ZLB and QT shock off the ZLB $\,$


Multipliers: on impact and cumulated

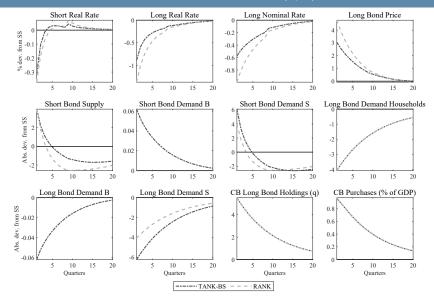
Output		Inflation		Consumption	
QE	QT	QE	QT	QE	QT
1.05	-0.44	0.70	-0.32	1.32	-0.56
1.29	-0.42	0.71	-0.24	1.61	-0.53
2.18	-0.86	1.32	-0.67	2.72	-1.08
2.32	-0.71	1.14	-0.43	2.90	-0.89
	QE 1.05 1.29 2.18	QE QT 1.05 -0.44 1.29 -0.42 2.18 -0.86	QE QT QE 1.05 -0.44 0.70 1.29 -0.42 0.71 2.18 -0.86 1.32	QE QT QE QT 1.05 -0.44 0.70 -0.32 1.29 -0.42 0.71 -0.24 2.18 -0.86 1.32 -0.67	QE QT QE QT QE 1.05 -0.44 0.70 -0.32 1.32 1.29 -0.42 0.71 -0.24 1.61 2.18 -0.86 1.32 -0.67 2.72


Multipliers on impact and cumulated over four periods (in %)

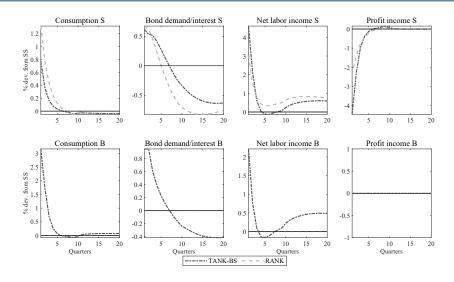

QT shock off the ZLB: RANK vs. TANK-BS (1/2)


QT shock off the ZLB: RANK vs. TANK-BS (2/2)

HHs' budget components: QT shock off the ZLB



QE shock at the ZLB: RANK vs. TANK-BS (1/2)



QE shock at the ZLB: RANK vs. TANK-BS (2/2)

HHs' budget components: QE shock at the ZLB: RANK vs. TANK-BS

Robustness: Multipliers on impact of a QE or QT shock

	Output		In	Inflation		Consumption	
	QE	QT	QE	QT	QE	QΤ	
TANK-BS							
Baseline ($ au^D$ =0, $ u$ =0.05)	1.29	-0.42	0.71	-0.24	1.61	-0.53	
$ au^D=0.2$	0.81	-0.31	0.52	-0.20	1.02	-0.38	
$ au^D=0.35$	0.63	-0.26	0.43	-0.18	0.79	-0.32	
$\nu = 0.04$	1.05	-0.34	0.58	-0.19	1.31	-0.43	
$\nu = 0.06$	1.51	-0.50	0.84	-0.29	1.89	-0.63	
RANK							
Baseline ($ au^D$ =0, $ u$ =0.05)	1.05	-0.44	0.70	-0.32	1.32	-0.56	
$ au^D=0.2$	0.88	-0.39	0.62	-0.29	1.10	-0.49	
$ au^D=0.35$	0.78	-0.36	0.57	-0.28	0.98	-0.45	
$\nu = 0.04$	0.90	-0.36	0.60	-0.26	1.12	-0.45	
$\nu = 0.06$	1.20	-0.53	0.79	-0.37	1.50	-0.66	