Paralyzed by Fear: Rigid and Discrete Pricing Under Demand Uncertainty

Cosmin Ilut Rosen Valchev Nicolas Vincent

Duke & NBER Boston College HEC Montreal

22nd Annual DNB Research Conference Uncertainty and Non-linearities: Policy Challenges and New Perspectives

September 30, 2019

Motivation

- Aggregate inflation responds sluggishly to monetary shocks
 - but at the micro-level, prices do not appear to be particularly sticky
- Micro-level facts can be used to distinguish among models
 - Need degrees of freedom and/or parsimonious models
 - What micro-moments matter? In many models, just frequency and kurtosis (Alvarez et. al. (2016))
- This paper: a new model of rigid prices
 - Firms face Knightian uncertainty about competitive environment
 - * March and Shapira (1987): managers exhibit uncertainty aversion
 - 2 Parsimonious: consistent with a large set of challenging empirical facts
 - Those moments matter: strong monetary non-neutrality

Key Mechanism: competition uncertainty

- Uncertainty about the demand function: x(.)
 - Not confident it belongs to a particular parametric family of functions
 - Uncertainty reduction local to location of observations, i.e. past prices
 - + ambiguity aversion \Rightarrow kinks in *as if* expected demand at past prices
 - ★ if consider a price increase \Rightarrow worry demand is relatively elastic
 - $\star\,$ if consider a price decrease \Rightarrow worry demand is very inelastic
- **2** Uncertainty about relevant relative price: $x(p_{ijt} p_{jt})$
 - ▶ Relevant price index of competition is unknown; review it infrequently
 - The law of motion of industry price level is uncertain (ambiguous)
 - ★ if act under belief that unobserved industry price rose (fell)
 → want to increase (decrease) its nominal price
 - * precisely the wrong action in case industry price actually fell (rose)
 - \Rightarrow act *as if* industry inflation is not forecastable in short-run

KEY IMPLICATIONS

- Kinks from lower uncertainty at previously posted prices ⇒ endogenous, time-varying and history-dependent cost of price change
- Leads to prices that are
 - sticky : do not want to move and face higher uncertainty
 - 2 display memory : price changes likely to move back to 'safer' prices
 - increasingly attractive: larger kinks if posted more often
 - both flexible and sticky: endogenous cost of adjustment
 - Secoming stickier as a firm ages (and loses experimentation incentives)
- Novel empirical implications: prices with unusually high demand realizations are stickier, which we show is true in the data
- Significant and persistent real effects of monetary policy

LITERATURE

- Sticky prices
 - Empirical
 - Micro data: Bils & Klenow (2004), Klenow & Kryvtsov (2008), Nakamura & Steinsson (2008), Eichenbaum et al. (2011), Campbell and Eden(2014), Vavra (2014)
 - Theory: pricing rigidities
 - * Real: Ball & Romer (1990), Kimball (1995), kinked demand curves (Stigler 1947, Stiglitz 1979)
 - Nominal: Calvo, Taylor, menu costs (eg. Alvarez et al.(2011), Midrigan(2011), Kehoe & Midrigan, 2015), rational inattention (eg. Matejka (2015), Stevens (2014)), many others
- Pricing under demand uncertainty
 - Parameter learning: Rothschild (1974), Willems (2011), Bachmann & Moscarini (2011), Baley and Blanco(2018), Argente and Yeh (2018)
- 6 Knightian uncertainty
 - ► Gilboa & Schmeidler (1989), Epstein & Schneider (2007)

OUTLINE

Analytical Model

- Learning under ambiguity about demand function
- Optimal pricing
 - ★ static and dynamic tradeoffs
- Quantitative Model
 - Nominal Rigidity ambiguity about relevant relative price
 - Quantitative Results
 - Monetary Policy implication

Analytical Model

- The firm faces log marginal cost c_t , sells single good for price p_t
- Time t profit:

$$v(p_t, q_t, c_t) = (e^{p_t} - e^{c_t})e^{q(p_t)}$$

demand:

$$q_t = x(p_t) + z_t$$

- Information:
 - not observe $x(p_t)$ and z_t separately
 - *z_t* is risky i.e. know that

$$z_t \sim iidN(0, \sigma_z^2)$$

- x(.) is ambiguous not know its probability distribution
- the firm learns about x(.) through past sales data $\{q^{t-1}, p^{t-1}\}$

LEARNING FRAMEWORK

• Priors on x(.) are Gaussian Process distr.: for any $\mathbf{p} = [p_1, ..., p_N]'$

$$\times(\mathbf{p}) \sim N\left(\left[\begin{array}{ccc} m(p_1)\\ \vdots\\ m(p_N)\end{array}\right], \left[\begin{array}{ccc} K(p_1, p_1) & \dots & K(p_1, p_N)\\ \vdots & \ddots & \vdots\\ K(p_N, p_1) & \dots & K(p_N, p_N)\end{array}\right]\right)$$

- The firm entertains a set of priors ↑, differing in mean function m(p)
 The firm has ex-ante information that m(p):
 - **(**) lies within an interval centered at true DGP $x^{DGP} = -bp_t$:

$$m(p) \in [-\gamma - bp, \gamma - bp]$$

Is non-increasing, i.e. is a demand curve:

$$m(p') \leq m(p), ext{ for } orall p' > p$$

Is differentiable, with derivative within an interval around true DGP

Admissible Prior Mean Functions

Conditional Beliefs and Profit Maximization

- The firm uses data $arepsilon^{t-1} = (p^{t-1}, q^{t-1})$ to update each prior
- Recursive multiple priors utility (Epstein-Schneider (2007))

$$V\left(\varepsilon^{t-1}, c_{t}\right) = \max_{p_{t}} \min_{m(p) \in \Upsilon} E\left[v(\varepsilon_{t}, c_{t}) + \beta V\left(\varepsilon^{t-1}, \varepsilon_{t}, c_{t+1}\right) \middle| \varepsilon^{t-1}, c_{t}\right]$$

- Min operator is conditional on price choice p_t
 - * The firm looks for the p_t choice robust to the set of possible m(p)

Conditional Beliefs and Profit Maximization

- The firm uses data $arepsilon^{t-1} = (p^{t-1}, q^{t-1})$ to update each prior
- Recursive multiple priors utility (Epstein-Schneider (2007))

$$V\left(\varepsilon^{t-1}, c_{t}\right) = \max_{p_{t}} \min_{m(p) \in \Upsilon} E\left[\upsilon(\varepsilon_{t}, c_{t}) + \beta V\left(\varepsilon^{t-1}, \varepsilon_{t}, c_{t+1}\right) \middle| \varepsilon^{t-1}, c_{t}\right]$$

Min operator is conditional on price choice p_t

* The firm looks for the p_t choice robust to the set of possible m(p)

• Worst-case m(p) – lowest expected demand $\widehat{x}_{t-1}(p_t; m(p))$:

$$m^*(p; p_t) = \operatorname{argmin}_{m(p) \in \Upsilon} \widehat{x}_{t-1}(p_t; m(p))$$

KINKS IN EXPECTED DEMAND: A SIMPLE EXAMPLE

• Imagine $\varepsilon^{t-1} = \{p_0, \bar{q}_0, N_0\}$

• $\alpha_{t-1}(p)$ is the associated signal-to-noise ratio for any p

• Set of conditional expectations, indexed by the different $m(p)\in \Upsilon$

$$\widehat{x}_{t-1}(p_t; m(p)) = \underbrace{(1 - \alpha_{t-1}(p_t)) \operatorname{m}(p_t)}_{(p_t)} + \underbrace{\alpha_{t-1}(p_t) \left(q_0 + \operatorname{m}(p_t) - \operatorname{m}(p_0)\right)}_{(p_t)}$$

Prior of demand at p_t

Signal $+ \Delta$ in Demand between p_t and p_0

KINKS IN EXPECTED DEMAND: A SIMPLE EXAMPLE

• Imagine $\varepsilon^{t-1} = \{p_0, \bar{q}_0, N_0\}$

• Set of conditional expectations, indexed by the different $m(p)\in \Upsilon$

$$\widehat{x}_{t-1}(p_t; m(p)) = \underbrace{(1 - \alpha_{t-1}(p_t)) m(p_t)}_{\text{Prior of demand at } p_t} + \underbrace{\alpha_{t-1}(p_t) (q_0 + m(p_t) - m(p_0))}_{\text{Signal} + \Delta \text{ in Demand between } p_t \text{ and } p_0}$$

Worst-case priors: minimize

Prior demand at p_t:

$$m^*(p_t) = -\gamma - bp_t$$

2 ∆ in demand from p_t to p₀: worst-case conditional on price choice p_t
 ★ For p_t > p₀: worry demand is elastic between p_t and p₀

$$m^*(p_t) - m^*(p_0) = -(b + \delta)(p_t - p_0)$$

★ For $p_t < p_0$: worry demand is inelastic between p_t and p_0

$$m^*(p_t) - m^*(p_0) = -(b - \delta)(p_t - p_0)$$

WORST-CASE PRIOR IS CONDITIONAL ON PRICE

Ilut, Valchev, Vincent

As if KINKED EXPECTED DEMAND

TWO OBSERVED PAST PRICE LEVELS

Optimal pricing: Myopic (static) maximization

Key implication: first-order cost of changing price from p_i ∈ ε^{t-1}
 Result 1: Prices are sticky

$$\Pr\left(p_t^* = p_{t-1}|\varepsilon^{t-1}\right) = \int_{\underline{c}_{t-1,t-1}}^{\overline{c}_{t-1,t-1}} g(c_t|c_{t-1}) dc_t > 0$$

Result 2: Conditional on change prices display memory

$$\Pr\left(p_t^* = p_i \in \varepsilon^{t-1} | p_{t-1} \neq p_i, \varepsilon^{t-1}\right) = \int_{\underline{c}_{t-1,i}}^{\overline{c}_{t-1,i}} g(c_t | c_{t-1}) dc_t > 0$$

Result 3: Inaction widens if price is observed more often

$$\frac{\partial \underline{c}_{t-1,i}}{\partial N_i} < 0; \frac{\partial \overline{c}_{t-1,i}}{\partial N_i} > 0$$

Result 4: Good demand realizations (\bar{q}_i) increase stickiness

Ilut, Valchev, Vincent

OPTIMAL PRICING: FORWARD-LOOKING INCENTIVES

- \bullet Price choice affects profits today and information set tomorrow: ε^t
- History of observations ε^{t-1} is an infinitely long state variable \Rightarrow general dynamic problem is intractable
- To get around this issue, we use following approximation
 - The firm understands $\varepsilon^t = \{p_t, q_t, \varepsilon^{t-1}\}$
 - ▶ But thinks no new information in future: $\varepsilon^{t+k} = \varepsilon^t$ for all k > 0
 - \blacktriangleright no ad-hoc restrictions on size or structure of ε^{t-1} needed
- Key forward-looking pricing incentives
 - **(**) Experimentation: choose p_t in unexplored part so uncertainty is high
 - ⁽²⁾ Value relevant info: obtain signals that affect beliefs about demand near prices likely to be posted in the future \rightarrow so p_t close to p_{t+k}

OPTION VALUE OF EXPERIMENTATION

- New information has an important option value component
 - If new signal q_t is bad, firm can switch future prices (learning is local)
- As a result, forward-looking price setting incentives can both counteract and reinforce myopic stickiness
 - Depends on the structure of initial information ε^{t-1}
- Analytical results for a couple of illuminating cases
 - If firm has seen just one price level p_0 in neighborhood of future expected cost, then the price maximizing information value is $p_t \neq p_0$
 - 2 If firm has seen two distinct such prices, then there exists interval of costs such that $p_t = p_0$ maximizes information value
- Highlights importance of the structure of ε^{t-1}
 - for example: interesting life-cycle effects
 - history is endogenous in our quantitative model

OUTLINE

- Analytical Model
- **Quantitative Model**
 - Nominal Rigidity ambiguity about relevant relative price
 - Quantitative Results
 - Monetary Policy implication

NOMINAL PRICES

- Household: CES aggregator over goods produced by industries j
- Industry *j*: aggregates over interm. goods \Rightarrow demand for good *i*

$$y_{i,j,t} = h(\underbrace{p_{i,t} - p_{j,t}}_{\equiv r_{it}}) \underbrace{-b(p_{j,t} - p_t) + y_t}_{= \text{demand for industry } j} + z_{i,t}$$

- Firm *i* observes aggregate and own realizations: {*p_t*, *y_t*, *p_{i,t}*, *y_{i,t}*}
 Firm *i* observes relevant prices *p_{j,t}* infrequently, with prob. λ_T
- Ambiguity about competition: two layers
 - demand function set of GP over industry demand h(.)
 argument of demand function: ambiguity about idustry price p_{i,t}
 - * Firm understands p_{jt} and aggregate p_t are co-integrated, but uncertain about short-run relationship $\phi(.)$ set of GP distributions

$$p_{jt} - \tilde{p}_{jt} = \phi(p_t - \tilde{p}_{jt}) \in [-\gamma_p, \gamma_p], \text{ for } |p_t - \tilde{p}_{j,t}| \leq \Gamma.$$

where \tilde{p}_{jt} is value of last perfectly revealing signal on p_{jt}

Joint uncertainty

• Relative price of firm i = unambiguous estimate + ambiguous part

$$r_{it} = p_{it} - p_{jt} = \underbrace{p_{it} - \tilde{p}_{jt}}_{ ext{unambiguous estimate}} = \frac{-\phi(p_t - \tilde{p}_{jt})}{\tilde{r}_{it}}$$

- Illustrate joint uncertainty: t = 1, firm born at t = 0
- The uncertain part of demand is

$$(1 - \alpha) \left(\underbrace{\underline{m(r_{i,1}) - b\phi(p_1 - \widetilde{p}_{j,1})}_{\text{Prior of demand at } r_{i,1}} \right) + \alpha \left\{ y_{i,0} - \left[\underbrace{\underline{m(r_{i,0}) - m(r_{i,1})}_{\text{Prior on change in demand}} - b \underbrace{(\phi(p_0 - \widetilde{p}_{j,0}) - \phi(p_1 - \widetilde{p}_{j,1}))}_{\text{Perceived change in industry price}} \right] \right\}$$

• Firm picks price p_{i1} robust to joint uncertainty over h(.) and p_{j1}

Joint worst-case beliefs

- For a price increase $\tilde{r}_{i1} > \tilde{r}_{i0}$, firm worries of a 'double whammy'
 - **)** Demand is elastic $\delta^* = \delta$
 - Industry price index fell, increasing firm's effective relative price
- The joint worst-case beliefs induce the conditional demand schedule:

 $\widehat{x}^*(\widetilde{r}_i) = \text{smooth terms} - \delta |\widetilde{r}_{i,1} - \widetilde{r}_{i,0}|$

- Two key results:
 - Relevant argument of worst-case demand is *unambiguous estimate* \tilde{r}_{it}
 - Our contract of the second state of the second previous \tilde{r}_{i0}
- When unambiguous signals on p_{jt} are not continuously available we obtain nominal rigidity and memory in nominal prices
 - indexation not optimal even though p_t is observed

QUANTITATIVE EVALUATION

- Macro model with measure zero of ambiguity-averse firms
 - Aggregate shocks: nominal spending and TFP
 - Endogenous aggregates evolve as with flex prices
 - Micro shocks: iid demand shocks z_{it} and idios. TFP
 - Firms exit with exogenous probability λ_{ϕ}
- Stochastic steady state
 - Data is endogenous past prices become attractive reference prices, leading the firm to select from coarse set of prices
 - Never learns demand at all possible prices, friction remains in long-term
 - $\lambda_{\phi} > 0$ kills dependence on initial conditions
- Parameters:
 - macro: calibrate to standard moments on inflation and aggregate TFP
 - micro: calibrate and estimate using micro-data pricing moments

Calibrated
 Fatimated

A typical path of nominal prices

Ilut, Valchev, Vincent

OTHER TESTABLE IMPLICATIONS

- Without being targeted, the model fits other moments
 - "reference price" behavior
 - memory
 - declining hazard

		Data	Model
Panel A	Prob. modal <i>P</i> is max <i>P</i>	0.819	0.740
	Frac. of weeks at modal P (13-w window)	0.828	0.880
	Prob. price moves to modal P	0.592	0.669
Panel B	Prob. visiting old price (26-w window)	0.48	0.414
Panel C	Avg hazard slope (LPM)	-0.011	-0.015
	Old vs. young prices - Average slope	-0.104	-0.173

- Significant variation in flexibility and size of price change over life-cycle. In first 26 weeks,
 - Price change probability +23%
 - Avg price changes + 9%
 - consistent with the evidence of Argente and Yeh(2018)

PRICE CHANGE SIZE DISTRIBUTION

QUANTITY EFFECTS ON PRICE CHANGE PROBABILITY

- Novel: higher past innovations \hat{z}_t lower prob. of price change
- Test in model and in data
 - Estimate z_{i,t} in data from kitchen-sink demand regression
 - Run regression

$$\mathbb{1}(p_{i,j,t} \neq p_{i,j,t-1}) = \alpha_{ij} + \beta_Z \Delta \bar{z}_{ij,t-1} + \beta_N \bar{N}_{ij,t-1} + \varepsilon_{ijt}$$

	Data			Model		
$ar{N}_{ij,t-1} \leq x$	<i>x</i> =	= 12	<i>x</i> =	= 25	<i>x</i> = 12	<i>x</i> = 25
$\Delta \bar{z}_{ij,t-1}$	-0.0087	-0.0086	-0.0058	-0.0057	-0.0083	-0.0065
$\bar{N}_{ij,t-1}$	-0.0373	-0.0290	-0.0466	-0.0264	-0.0253	-0.0195
Category/market FE	Х		Х			
Product/store FE		Х		Х		

MONETARY POLICY IRF

MICRO-MOMENTS SHAPE NON-NEUTRALITY

• Standard sufficient statistic for non-neutrality (Alvarez et al, 2018)

Kurtosis / Frequency

- ▶ more general when no history dependence (Baley & Blanco, 2019)
- Our model generates memory (consistent with data)
- Significant departure from the standard result

	Menu cost	Calvo	Our model
Kurtosis	1.25	6	2
MP effects	1.1%	6.5%	6.7%

- Because price movements tend to happen between kinks get long-lived neutrality even
 - as firms exhibit apparent flexibility
 - and there are large price changes

CONCLUSIONS

- Novel theory of nominal price rigidity
- Firms face uncertainty about competitive environment
 - Learn about demand function non-parametrically
 - Act as if kinked expected demand at previously observed prices
 - Interacted with uncertainty about relative price yields nominal rigidity
 - Consistent with a number of important additional micro-level facts
- Significant real monetary policy effects
 - especially due to their persistence
 - kurtosis not a sufficient statistic
- Endogenous cost of price change: history and state dependent rigidity
 - rich laboratory for counter-factual exercises
 - implications for policy

PARAMETERS

Parameter	Value	Source/Target
		Macro Parameters
β	0.9994	period is a week, 3% annual int. rate
μ_s	0.00046	2.4% annual inflation
σ_s	0.0015	1.1% std. dev. nominal GDP growth
$ ho_a$	0.993	Vavra (2014)
σ_{a}	0.0017	Vavra (2014)
λ_{ϕ}	0.0075	mean lifespan of a product 2.5 yrs (Argente-Yeh2017)
σ_z	0.613	median demand forecast error IRI dataset
δ	b = 6	set to minimize degree of freedom

Calibrated Parameters

Back

ESTIMATION FOR THE REST

• Rest of parameters estimate via SMM

		Estimated Parameters
Parameter	Value	Description
ρ_w	0.998	Persistence of idiosyncratic productivity
σ_w	0.008	St. dev. of idiosyncratic productivity shock
σ_{x}	0.691	Prior variance of $x(.)$
ψ	4.609	Prior covariance function smoothing parameter
λ_T	0.018	Frequency of price reviews
γ	0.614	ambiguity (width of tunnel on $m(r)$)

	Data	Model
Frequency of regular price changes	0.108	0.105
Median size of absolute regular price changes	0.149	0.154
75th pctile of $ \Delta p_{it} $	0.274	0.277
Fraction of non-zero price changes that are increases	0.537	0.533
Frequency of modal price changes (13-week window)	0.027	0.026
Mean duration of pricing regimes	29.90	30.54

